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Math 3560 Fall 2011
Solutions to the First Prelim

September 27, 2011

Problem 1: Answer T or F (true or false, of course) for each of the following (do not give
reasons). You may use the back of this sheet for scratch paper.

(a) Every surjective map from a finite set to itself is bijective. T

(b) Every rotation of R3 has an axis. T

(c) If (xy)−1 = x−1y−1 for all elements x, y of a group G, then G is abelian.T

(d) If n is a positive, even integer, then every cycle of length n is even.F

Problem 2: Complete the following partial sentences so as to produce correct definitions:

(a): A function f : X → Y is injective if for all x, y ∈ X, f(x) = f(y) ⇒ x = y [ or
x 6= y ⇒ f(x) 6= f(y)].

(b): A function f : R3 → R3 is an isometry if . . . it preserves distances [or, for all
x, y ∈ R3, ||f(x)− f(y)|| = ||x− y||].

(c): An element g in a group G has order 24 provided that . . .
textitg24 = e and gn 6= e, for all n satisfying 0 < n < 24. (Note: Both conditions are
important. Many students omitted the second condition.)

(d): A permutation σ in Sn is a cycle of length k provided that . . . .
There are a number of possible answers for this one. Here’s one: There is an integer

j ∈ {1, 2, . . . , n} such that (1) σk(j) = j and (2) σi(j) 6= j, for all integers i satisfying 0 <
i < k. Here’s another: There exist k distinct integers a1, a2, . . . , ak such that σ(ai) = ai+1,
for 0 < i < k − 1, and σ(ak) = a1.

Problem 3: Prove that the subgroup H ≤ S4 generated by {(12), (34)} is abelian and has
four elements. List the elements and give their orders. Justify your assertions.

Solution: By direct computation, the transpositions (12) and (34) have order 2. They
commute because they are disjoint. Therefore ((12)(34))2 = (12)2(34)2 = id · id = id. So
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the product (12)(34) has order one or two. But only the identity has order one, and clearly
(12)(34) is not the identity. So it has order two.

Using the commutativity of (12) and (34), the terms in any product of (12’s and (34)’s
(in any order) can be rearranged so that all the (12)’s come first and then the (34)’s. So, it
is of the form (12)m(34)n, for some integers m and n. But because (12) and (34) both have
order two, the factors (12)m and (34)n depend only on the parity of m and n. The first is
equal to the identity when m is even and equal to (12) when m is odd. Analogously for the
second. Therefore, we get (12)m(34)n = id when both m and n are even;= (12) when m is
odd and n is even;= (34) when m is even and n is odd; = (12(34) when both m and n are
odd. This shows that H = {id, (12), (34), (12)(34)} and completes the proof.

Problem 4: Suppose that G is a group of order 3. Say its elements are e, g, h, with e the
identity element.

(a) Prove that gh 6= g and gh 6= h. It follows that gh must equal e, that is, h = g−1.

The first two assertions are proved by assuming the contrary of each and then performing
a computation that leads to a contradiction. So: gh = g implies that g−1gh = g−1g = e,
hence h = e, contradicting what has been given. Similarly, gh = h implies that g = e, again
a contradiction. Thus by the principle of proof by contradiciton, we must have gh 6= g and
gh 6= h. (Of course, the only remaining possibility then is that gh = e, as stated. This was
not necessary to prove.)

(b) Prove that the equation g2 = e contradicts the conclusion of (a). Conclude that
g2 = h and, therefore, that g3 = e. (Justify these conclusions.)

The conclusion of (a) is that gh = e. It is slightly more convenient to state it as: e = gh.
We now assume that g2 = e and derive a contradiction. Multiply these two last equations,
obtaining: e · g2 = e · gh, or g2 = gh. Cancelling g from both sides (i.e., multiplying both
sides by g−1) yields g = h, contradicting what was given.

It follows that g2 6= e. Of course, we cannot have g2 = g, for then g would have to equal
e. So, the only remaining possibility is g2 = h. This shows, using the result of (a), that
g2 = g−1 (since (a) tells us that h = g−1). Therefore, multiplying both sides by g, we get
g3 = e. Therefore, the order of g is less than or equal to 3. It can’t equal 1, because g 6= e,
and it can’t equal 2, by what we proved in the preceding paragraph. So, the order of g must
be 3.

To summarize: G = {e, g, g2}, with o(g) = 3.

Problem 5: (a) List all of the generators of Z12.

By a homework exercise, the generators of Z12 consist of the integers between 1 and 11
that are relatively prime to 12 (i.e., have no factors in common with 12 bigger than 1). These
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numbers are precisely 1, 5, 7, 11.

Incidentally, a number of students used the multiplicative convention for Z12 rather than
the more commonly used additive convention. This sometimes led to some confusion. It is
better to stick to the additive convention for standard abelian groups like Z12.

(b) You are given an arbitrary generator x of Z12 as well as an isomorphism f : Z12 → Z12.
Prove that f(x) is a generator of Z12.

Proof 1: An element of Z12 is of order 12 if and only if it is a generator of Z12. Therefore,
the given generator x has order 12. Furthermore, we proved in class that an isomorphism
preserves the order of an element. Therefore f(x) also has order 12, implying that it is a
generator of Z12.

Proof 2: Since x is a generator, the powers xn give all 12 elements of Z12 as n goes from
0 to 11. Since f is a bijection, the elements f(xn) also comprise 12 distinct elements of Z12,
i.e all the elements. But, we also know that f(xn) = (f(x))n, for every integer n, because f
is an isomorphism. (In fact, this is true even if f is merely a homomorphism.) Therefore,
the powers (f(x))n give all of Z12. So, f(x) is a generator of Z12.

(c) Suppose that y is another generator of Z12. Show that there is a isomorphism
h : Z12 → Z12 such that h(x) = y. (This means that you have to define an explicit function
h and then prove that it is an isomorphism.)

Proof: We are given generators x and y of Z12. This means that the powers xn give all
of Z12 exactly once as n ranges from 0 to 11; the same holds for the powers yn. Therefore,
we may unambiguously define a function h : Z12 → Z12 by the formula h(xn) = yn, for
each n = 0, 1, . . . , 11. By the definition, the function is clearly surjective (since every yn

is a function value) and clearly injective as well (since, for the range of n’s considered,
xm 6= xn implies m 6= n, which implies that ym 6= yn, hence h(xm) 6= h(xn)). So h is a
bijection. To see that it is an isomorphism, simply compute h(xmxn) = h(xm+n) (reducing
mod 12 as necessary). Then h(xm+n) = ym+n = ymyn = h(xm)h(xn), so, in summary:
h(xmxn) = h(xm)h(xn). This completes the proof that h is an isomorphism.

(d) Suppose that h : Z12 → Z12 is an isomorphism and that it satisfies h(x) = f(x), with
f as above. Prove that f = h.

Proof: By the property of homomorphisms and isomorphisms already used above, we
have

h(xn) = (h(x))n = (f(x))n = f(xn),

for every integer n. But xn ranges over all of the elements of Z12 . So, h and f assume the
same values for every element of Z12, which means they are equal. This completes the proof.

Items (b), (c) and (d) show that there is a bijection between the set of all generators of
Z12 and the set of all isomorphisms Z12 → Z12


