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Math 3560 Fall 2011
Solutions to the Final Exam

December 15, 2011

Problem 1: Answer True or False. (4 points each)

a. The product of three cyclic groups cannot be cyclic. F

b. If H and K are subgroups of G, and if H is normal in G, then HK = KH. T

c. If G is any group and x and y are any elements of G that commute,
then x is conjugate to y. F

d. No two elements of Z× Z are conjugate to one another. T

e. If the finite group G acts transitively on a set X, then |G| ≥ |X|. T

f. If two regular polygons (centered at the origin) have isomorphic rotational symmetry groups,
then the polygons are isometric. F

g. If A ∈ O3, then A2 ∈ SO3. T

h. Conjugate elements of a group have the same order. T

Problem 2: (10 points) Suppose thatG is a group of order 49 acting on the setX = {1, 2, 3, 4, 5, 6, 7}.
Consider the following assertion: The action is not trivial and not transitive. If you believe that
this assertion can be true, give an example. If you believe that this assertion must be false, give a
proof.

The assertion must be false, and here’s why. If the action is not transitive, then no orbit can
equal all of X. So, every orbit has size < 7. If the action is non-trivial, some orbit must have size
> 1. But, by the Orbit-Stabilizer Theorem, the size of every orbit divides the order of G, which is
49 = 72. Therefore, the size of a non-trivial orbit must be 7, which we have ruled out.

Problem 3: State definitions of each of the following (underlined) terms. (5 points each)

a. the commutator subgroup [G,G] of a group G.

[G,G] is the subgroup of G generated by all elements of the form aba−1b−1, for a, b ranging
over G.
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b. the conjugacy class of an element g in a group G.

The conjugacy class of g in G consists of all elements of the form hgh−1, where h ranges over
G.

c. the centralizer C(g) of an element g in a group G.

C(g) consists of all elements of G that commute with g; equivalently, it consists of all elements
h in G such that hgh−1 = g.

d. the axis of symmetry of a rotation A ∈ SO3.

The axis of symmetry is a line through the origin determined by an eigenvector of A having
eigenvalue 1.

Problem 4: State each of the following theorems: (5 points each)

a. The Orbit-Stabilizer Theorem.

Let G be a group acting on a set X, and choose any x ∈ X. Denoting the orbit of x by G(x)
and the stabilizer of x by Gx, as usual, the rule gGx $→ g(x) establishes a bijection between
G/Gx and G(x).

b. The First Isomorphism Theorem.

Let f : G → H be a homomorphism of groups. Then kernel(f) is a normal subgroup of G,
and the rule gkernel(f) $→ f(g) establishes an isomorphism between the group G/kernel()f)
and image(f).

c. A theorem that describes the structure of groups of order p2 for an arbitrary prime number
p.

A group of order p2, for any prime p, is either cyclic or isomorphic to Zp × Zp.

Problem 5: (30 points) Let ∆ denote an equilateral triangular glass pendant with jewels placed
at the vertices and center. The jewels are sapphires and rubies, all perfectly round and of the same
size. The pendant is not currently attached to a necklace, so it may be rotated or turned over.
The jewels are equally visible from both sides of the pendant. How many distinct pendants of this
kind can there be, if we count two as the same when, by rotation and flipping, they can be made
to look identical? Use the Counting Theorem of Chapter 18 of the text.
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Note that of course the point of this problem is to test your understanding of the Counting
Theorem. You may obtain an answer by direct enumeration or by some short-cut counting method
that works in this simple case. This might be useful for you for verifying the answer you get via the
Counting Theorem. But we will not credit answers that are obtained without using the Counting
Theorem.

Solution: We’ll first give a quick counting argument to find the answer. The center of the pen-
dant is fixed under all symmetries, so it can be either a ruby or a sapphire. Whatever configuration
of jewels on the vertices, it is easy to see that it is completely determined by the number of rubies:
any two configurations with the same number of rubies can be transformed to one another by a
symmetry. Since the possible number of rubies on the vertices is 4 (i.e., 0, 1, 2, 3) and the number
of kinds of jewels at the center is 2, the total number of pendants, up to symmetry, is 8.

Now, we use the Orbit Counting Theorem. Our answer here will be substantially longer than
what is expected for an answer on the exam, since I give fairly detailed explanations of the method
as I go along.

The symmetry group of the pendant is clearly S3 (the full symmetry group of the equilateral
triangle; each symmetry sends each jewel to another jewel). Call it G. of course |G| = 6. Let S be
the set of jewel sites on the pendant (four of them), and let X be the set of all bejeweled pendants:
|X| = 24 = 16, since there are four sites, each able to receive one of two jewels. The Orbit Counting
Theorem tells us that the number of orbits in X under the action of G is 1/6 the sum of all |Xg|,
g ranging over G. So, we need to compute this sum.

We know that |Xg| = |Xh| whenever g and h are conjugate. Therefore, we need only compute
one |Xg| for each single representative of a conjugacy class and then multiply that by the number
of elements in the conjugacy class.

Now G has exactly 3 conjugacy classes: {ε}, {(12), (13), (23)}, and {(123), (132)}. This follows
from the theorem that says that two permutations are conjugate (in the full permutation group) if
and only if they have the same cycle structure. We choose the following representatives from each
conjugacy class: ε, (12), and (123), and we compute |Xε|, |X(12)|, and |X(123)|.

It is not hard to see (and you have done so on the homework exercises) that a typical element
of Xg is obtained by assigning a ruby or a sapphire (i.e., a color) to each orbit of < g > in the set
S (the set of jewel sites). If there are n such orbits, then |Xg| = 2n.

Of course, we see directly that that |Xε| = |X| = 16, so we proceed to the remaining sets.

To compute |X(12)|, we first compute the number of orbits in S under the action of < (12) >,
as indicated. By the Orbit Stabilizer Theorem applied to this action on S, we see that the number
of orbits here is exactly 1/o((12)) = 1/2 the sum |Sε| + |S(12)| = (4 + |S(12)|)/2, so it remains to
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compute |S(12)|. But (12) is represented by reflection in some altitude, so it fixes exactly one vertex
and the center. Therefore, |S(12)| = 2 and the number of orbits in S under the action of < (12) >
is 4 + 2/2 = 3. Hence, |X(12)| = 23 = 8.

A similar argument now applies to computing |X(123)|. We apply the Orbit Counting Theorem
to the action of < (123) > on S. The number of these orbits is 1/3 the sum |Sε|+ |S(123)|+ |S(123)2 |.
The first term is just |S| = 4. Since the rotation represented by (123) fixes only the center, the
second term is equal to 1. Finally, since (123)2 = (132), also a rotation fixing only the center, the
last term also equals 1. So the sum of these terms is 6. Therefore, the number of orbits of S under
the action of < (123) > equals 6/3=2, from which it follows that |X(123)| = 22 = 4

Finally, we must multiply each of the terms we computed by the number of elements in the
corresponding conjugacy subgroup, and then divide the total by 6: the total number of orbits in X
under the action of G is then (16 + 3 · 8 + 2 · 4)/6 = 8, which is (fortunately :-)) the same answer
we got earlier.

Problem 6:(15 points) Let G be a group. Recall that an automorphism of G is defined to be
a homomorphism G → G that is a bijection. For example, the identity map G → G is an auto-
morphism of G. Since the composition of two automorphisms is again an automorphism, and the
inverse of an automorphism is again an automorphism, the set Aut(G) of all automorphisms forms
a group under composition. Prove: If |G| = n, then |Aut(G)| divides n!.

Proof: The group Aut(G) is a subgroup of the group SG of all bijections G → G. This last is
isomorphic to Sn, by the argument in the proof of Cayley’s Theorem and its corollary. Therefore,
Aut(G) is isomorphic to a subgroup H of Sn. But |Sn| = n!. Therefore, by Lagrange’s Theorem,
|Aut(G)| = |H| divides n!

Problem 7: (10 points each) For each of the following groups, find an element of maximal order.
In each case, explain your reasoning. (You need not give a complete, airtight proof, as this could
be pretty time-consuming. But you should give an argument in favor of your answer. You’ll get
half-credit for the correct answer; the rest will depend on your reasoning.)

a. S17.

I get the answer 210 via the following reasoning. The order of any permutation is the least
common multiple (lcm) of the lengths of the cycles appearing in the cyclic decomposition of
the permutation (i.e., the cycles appearing when the permutation is written as a product of
disjoint cycles). If one of the cycles that appears has length " that involves two primes, we
may write " = rs where both r and s are > 1 and are coprime. Then, we may break up the
cycle into one of length r and a disjoint one of length s, obtaining a permutation with the
same order. However, the sum of the lengths of the cycles in this new permutation is rs−r−s
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shorter than that in the former permutation (strictly shorter when r or s is > 2). So the new
permutation has the same lcm as the first but we have eliminated the composite " in favor
of r and s. We can continue this process until each cycle length involves only powers of one
prime. Further reduction along these lines is possible so that the powers that occur are small.
But now, in this case, we have enough information to do a trial and error. We attempt to get
prime powers that add up to 17 (or as close as possible). And then we check the lcm of these.
For example 23 +32 = 17 and lcm of 23 and 32 is 72. So, there is at least one permutation of
order 72 in S17. However, we can do much better with cycle lengths (2, 3, 5, 7) which add up
to 17. The lcm of these is 210. Other reasonable possibilities are (2, 3, 11), (22, 5, 7), which
have smaller lcm’s. Similarly for other combinations.

b. D150.

The dihedral group D150 has an element of order 150, by definition. Since the group has
order 300 and every element in the group has order dividing 300, the only possibility for an
element of order > 150 would be an element of order 300. But D150 would then be cyclic,
and it is known to be non-commutative. Therefore, 150 is the maximal order.

c. Z18 × Z12 × Z10.

The lcm of 18, 12, 10 is 180, and we claim that this is the maximal order of an element in
Z18 × Z12 × Z10. To see this, first compute 180(a, b, c) for any a ∈ Z18, b ∈ Z12, c ∈ Z10:
so 180(a, b, c) = (180a, 180b, 180c) = (0, 0, 0). This shows that every element (a, b, c) ∈
Z18 × Z12 × Z10 has order that divides 180. Now suppose that d is any divisor of 180 that
is strictly less than 180 and compute d(1, 1, 1) = (d, d, d) ∈ Z18 × Z12 × Z10. If this equals
(0, 0, 0), we must have d = 0 in each of the cyclic groups Z18,Z12,Z10, respectively, implying
that 18, 12, and 10 all divide d. But then 180 must divide d, which is impossible. So (1, 1, 1)
has order 180, and this is the maximal order.

Problem 8: ( 7 points each) The following parts of this problem will prove the following: If a
group G has order 12, then G has a subgroup of order 4. This is a special case of a general theorem
known as The First Sylow Theorem, which can be stated as follows: If a group G has order divisible
by pk, for some prime p, but not by pk+1, then G has a subgroup of order pk.

Assume G is a group of order 12, and let S be the set of all subsets A of G such that |A| = 4.
The number of such subsets is well known to equal “ 12 choose 4” =12 C4 = 12!/4!8!, which equals
495. For our purposes, it is important to notice that 495 is coprime to 4. In other words, |S| is
coprime to 4. Given any A ∈ S and any g ∈ G, the set gA = {ga|a ∈ A} again has 4 elements,
and so it is a member of S. Therefore, the rule A $→ gA defines an action of G on S. We use this



6

action in (a) and (b) below.

a. Prove: There exists an A0 ∈ S such that the orbit |G(A0)| is coprime to 4. (Hint: Use the
fact that |S| is coprime to 4, together with any related theorems.)

Proof: S is a disjoint union of orbits under the action of G. Suppose none of the orbits has
order coprime to 4. This means that each contains an even number of elements. It follows
that |S| is even, which we have seen is not the case. Therefore, at least one orbit has order
coprime to 4.

b. With A0 as in (a), let GA0 be the stabilizer of A0.
Prove: |GA0 | is divisible by 4.

Proof: By the Orbit-Stabilizer Theorem, |GA0 ||G(A0)| = |G|. Since 4 divides |G|, it follows
that 4 divides the product |GA0 ||G(A0)|. Since |G(A0)| is coprime to 4 (i.e., it is odd), it
follows that 4 divides |GA0 |.

Therefore, |GA0 | ≥ 4. We continue to refer to the same A0.
Notice that, for any x ∈ A0 and g ∈ GA0 , we have gx ∈ A0, by definition of the concept of
stabilizer. This means that GA0 acts on A0 by left multiplication. We use this action in (c)
below.

c. Prove: For any x0 ∈ A0, the rule g $→ gx0 determines a bijection between GA0 and the orbit
GA0(x0).

Proof: Note that A0 is, by definition, a subset of the group G. So, x0 ∈ G. We know
that right multiplication by x0 is a bijection G → G; in particular, it is injective. Therefore,
right-multiplication by x0 defines an injection GA0 → G. By definition the image of this map
is the orbit GA0(x0). So the map defines an bijection GA0 → GA0(x0), as desired.

d. Conclude: |GA0 | ≤ 4.

Conclusion: The orbit GA0(x0) is a subset of A0, as commented above, so |GA0(x0)| ≤
|A0| = 4. Then (c) implies that |GA0 | ≤ 4.

When (b) and (d) are combined, we get |GA0 | = 4, so GA0 is the sought-after subgroup of G
that has order 4.
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Math 3560 Fall 2011
Addendum to Solutions to the Final Exam

December 15, 2011

In the solutions that I presented, I gave a solution to Problem 5 patterned after the general

model for solving coloring problems. This was more complicated than warranted by Problem 5. In

checking over the solutions submitted for the exam, I saw that most of you used a simpler approach

which was correct, so I’ll present that here (without repeating the problem).

Solution to Problem 5: The group of symmetries for ∆ is either the symmetric group S3 (which

I used in the other solution) or the dihedral group D3 — of course these two groups are isomorphic.

We may take as elements of D3, the symmetries, ε, r, r2, s, sr, sr2, where ε denotes the identity and

r denotes, say, counterclockwise rotation through 2π/3 radians (it being assumed that the pendant

is positioned in R2 with center at the origin and base parallel to the X-axis). Accordingly, r2 is

the rotation by 4π/3 radians, s is the reflection through one of the altitudes (say the one parallel

to the Y -axis), and accordingly sr and sr2 are the two further reflections through altitudes. The

conjugacy classes of D3 are known to be {ε}, {r, r2}, and {s, sr, sr2}.

Let G = D3, and let X be the set of all bejeweled pendants. |G| = 6 and |X| = 24 = 16. G acts

on X, and the Orbit Counting Theorem tells us that the number of distinct orbit is 1/6 the sum

of the quantitities |Xg| as g ranges over G. Since |Xg| = |Xh| whenever h and g are conjugate,

we need only compute these numbers once for each representative of a conjugacy class and then

multiply by the number of elements in that conjugacy class.

Of course |Xε| = |X| = 16. Since the rotation r fixes only the center and maps the vertices

counterclockwise to the next vertices, and since there are 2 possible jewels, |Xr| = 22 = 4. Since

s fixes only the vertical altitude, it fixes one vertex and the center and exchanges the other two

vertices. Therefore, the center and one vertex can each receive one of the two jewels, and the two

base vertices can both receive one of two jewels (the same for each) , making a possible number of

23 = 8 jeweled pendants counted by |Xs|.

Therefore the total number is (16+2 ·4+3 ·8)/6 = 48/6 = 8 possible pendants, up to symmetry.

Most students did very well on this problem.


