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Math 3560 Fall 2011
Solutions to the Second Prelim

Problem 1: (10 points for each theorem) Select two of the the following theorems and
state each carefully: (a) Cayley’s Theorem; (b) Fermat’s Little Theorem; (c) Lagrange’s
Theorem; (d) Cauchy’s Theorem.

Make sure in each case that you indicate which theorem you are stating.

Each of these theorems appears in the text book.

Problem 2: (a) (10 points) Prove that the center Z(G) of a group G is a normal subgroup
of G.

Solution: Z(G) is the subgroup of G consisting of all elements that commute with every
element of G. Let z be any element of the center, and let g be any element of G, Then,
gz = zg. Since z is chosen arbitrarily, this shows that gZ(G) ⊆ Z(G)g, for every g. It
also demonstrates the reverse inclusion, so that gZ(G) = Z(G)g. Since this holds for every
g ∈ G, Z(G) is normal in G.

(b) (10 points) Let H be the subgroup of S3 generated by the transposition (12). That is,
H =< (12) >. Prove that H is not a normal subgroup of S3.

Solution: Denote < (12) > by H. There are many ways to show that H is not normal.
Most are equivalent to the following. Choose some σ ∈ S3 different from ε and different
from the transposition (12). In this case, almost any such choice will do. Say σ = (13).
Compute (13)(12) and (12)(13) and see that they are not equal. Since the first permutation
take 1 to 2 and the second takes 1 to 3, they are clearly not equal. Now argue that this shows
that the left coset (13)H is not equal to the right coset H(13), showing that H is not normal.

Problem 3: Consider the cycles (123), (45), (542), (31).

(a) (10 points) Find an odd permutation σ ∈ S5 such that

σ(123)(45)σ−1 = (542)(31).

Verify this equality.
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Solution: As shown in the textbook, we may let σ equal the permutation

(
1 2 3 4 5
5 4 2 3 1

)
.

Now it was shown in the textbook and in the homework solution sets that if α is a
permutation and β is a cycle, say, (b1b2 . . . bk), then αβα−1 is the cycle (α(b1)α(b2) . . . α(bk)).
Furthermore, we have seen that conjugation in any group preserves group multiplication.
Therefore, we can compute as follows:

σ(123)(45)σ−1 = σ(123)σ−1 · σ(45)σ−1 = (σ(1)σ(2)σ(3))(σ(4)σ(5)) = (542)(31),

as desired. Finally, it is easy to check that, in cycle notation, σ = (15)(243), a product of
two cycles, one of which is odd and the other even. Therefore, σ is odd.

(b) (10 points) With σ as in part (a), define τ = (13)σ. Of course, τ is even since σ is
odd. Verify that

τ(123)(45)τ−1 = (542)(31).

Solution: One way to do this is compute τ directly from the definitions, and then follow
the method of part (a). The reader can easily do this. Another approach is to use the
equation above proved in (a), and then conjugate the right-hand side by (13). Conjugation
by (13) is an isomorphism, as shown in class, so it respects multiplication; this means we
can conjugate separately on the two factors on the right-hand side, and then multiply them
(in order, of course). Since (542) doesn’t involve the numbers 1 and 3, conjugation by
(13) doesn’t change it. But (13) = (31), so conjugation by (13) fixes that too. In short,
conjugation by (13) fixes the entire right-hand side of the equation in part (a). Showing that
we get the same right-hand side in part (b) when we conjugate the given permutation by τ .

Problem 4: You are given a finite group G and some arbitrary, fixed g ∈ G. Define the
set H by H = {x ∈ G| xgx−1 = g}.

(a) (10 points) Prove that H is a subgroup of G.

Solution: The element e belongs to H because ege−1 = ege = g. Suppose that x and
y belong to H. Then, since xgx−1 = g and ygy−1 = g, we can compute: x−1g(x−1)−1 =
x−1(xgx−1)(x−1)−1 = ege = g, so x−1 ∈ H. Further, (xy)g(xy)−1 = x(ygy−1)x−1 = xgx−1 =
g. So, xy ∈ H. Thus, the three basic conditions for verifying that H is a subgroup are
satisfied.
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For the remaining parts of this problem, H will denote this subgroup and g will denote
the fixed element above. You are now also given r distinct elements y1, y2, . . . yr in G such that

(1)
⋃r

i=1 yiH = G.

(2) yiH ∩ yjH = ∅, for all subscripts i and j such that i 6= j.

(b) (10 points) Using (1), prove that for each y ∈ G, there exists an i ∈ {1, 2, . . . , r} such
that ygy−1 = yigy−1

i .

Solution: By (1), any y ∈ G must belong to some yiH. Therefore, the given y equals yih,
for some h ∈ H. We now compute:

ygy−1 = (yih)g(yih)−1 = yi(hgh−1)y−1
i .

Since hgh−1 = g, by the definition of H and h, the above chain of equalities reduces to
ygy−1 = yigy−1

i , as required.

(c) (10 points) Using (2), prove that whenever i 6= j, yigy−1
i 6= yjgy−1

j .

Solution: Suppose the contrary of what we are supposed to verify is true: that is, suppose
yigy−1

i = yjgy−1
j . By conjugating both sides by y−1

j , the equation becomes, y−1
j yigy−1

i yj = g,

which, in turn, can be written as (y−1
j yi)g(y−1

j yi)
−1 = g, implying that y−1

j yi ∈ H, hence
yiH = yjH. But this last is forbidden by (2) when i 6= j, so our original assumption that
yigy−1

i = yjgy−1
j must have been false, yielding the desired result.

For your convenience, the following statements summarize what has been proved so far.
You need not prove these. Part (b) shows that the conjugacy class of g, C(g) satisfies

C(g) = {y1gy−1
1 , y2gy−1

2 , . . . , yrgy−1
r }.

Hence, the order of C(g), namely |C(g)| satisfies |C(g)| ≤ r. Part (c) shows that

|C(g)| = r.

(d) (10 points) Use (a)–(c) to prove that |C(g)| divides |G|. (Hint: Recall how Lagrange’s
Theorem was proved.)

Solution: By the foregoing comments, it is required to show that r divides —G—. But
(1) and (2) state that the left cosets yiH partition G, just as in the proof of Lagrange’s
Theorem. Further, there it is also shown that each of the cosets yiH has the same num-
ber of elements as H. (This is because the rule x 7→ yix defines a bijection between H
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and yiH.) Therefore, as in the proof of Lagrange’s Theorem, r|H| = |G|. In Lagrange’s
proof, one then draws the conclusion that |H| divides |G|. But one could equally well con-
clude from the equation that r divides |G|, which is what we want. This concludes the proof.

A couple of comments on Problem 4. Some students mistakenly thought that the conju-
gacy class C(g) is the same as the subgroup H. If you think about the definition of both,
you will see that they are far from the same. H consist of all x that commute with g, i.e.,
xgx−1 = g. The conjugacy class of g consist of all the elements of the form ygy−1s, y ranging
over G.

Another, more fundamental problem occurred in a few of the exam papers. The element g
in Problem 4 is given and fixed throughout the duration of the exercise. It is not something
that can be modified or selected by you. It is given. Similarly, in 4 (b), the element y ∈ G
is given, fixed, immutable. You may not modify it in Problem 4 b). What this means in
both cases is that the proof(s) that you devise cannot use or assume any special features of
the given elements, other than that they are elements in G. Your proof(s) must be general
enough to work no matter what that element happens to be.


