Teddy Einstein Math

Sigma Invariants – Strebel Notes Chapter A

1. INTRODUCTION

1.1. preliminaries.

- i. Today we will talk about some invariants used to study finitely generated groups which are used to study finitely generated groups
- ii. The following all appear in Strebel's "Notes on Sigma Invariants
- iii. Useful especially for looking at finitely presented groups
- iv. Will focus on the geometrically defined invariant Σ^1
- v. Outline:
 - (a) Background on Σ invariants
 - (b) Definition of Σ^1 .
 - (c) Examples illustrating the definition
 - (d) Invariance of Σ^1 up to choice of generating set and other calculation techniques
 - (e) Results for Σ^1 which can be derived geometrically.
- vi. Originally Σ invariants had a more algebraic flavor which Yash will explore more in the next lecture.
- vii. Henceforth, assume G is always a finitely generated group.

1.2. The Character Sphere.

- i. All Σ invariants depend on a character sphere.
- ii. We study homomorphisms $\varphi: G \to \mathbb{R}$.
- iii. Given φ of the above type, then observe that $G' \leq \ker \varphi$ because \mathbb{R} is trivial:

i.e. φ is determined by its action on $G/G' \cong \mathbb{Z}^k \oplus T$ orsion. Since \mathbb{R} is torsionfree, φ is determined by its action on the \mathbb{Z}^k part.

- iv. Hence we can identify $\hom_{\mathbb{R}}(G,\mathbb{R}) \cong \mathbb{R}^k$, a vector space over \mathbb{R} .
- v. Define an equivalence relation on $\hom_{\mathbb{R}}(G,\mathbb{R})$ by $\chi \sim \rho$ if and only if $\chi = c\rho$ for some c > 0. vi.

Definition 1. Let $[\chi]$ be the equivalence class of χ mod ~. Define the character sphere $S(G) = \{ [\chi] : \chi \in \hom_{\mathbb{R}}(G, \mathbb{R}) \setminus 0 \}$. For a subgroup $N \leq G$, $S(G, N) = \{ \chi \in S(G) : \chi(N) = 0 \}$.

vii.

Definition 2. For each character χ , define $G_{\chi} = \{g \in G | \chi(g) \ge 0\}$. Observe that G_{χ} is a monoid.

1.3. Defining Σ invariants.

i. Where it all started.

Definition 3. Let G be finitely generated, A finitely generated over $\mathbb{Z}G$

 $\Sigma^0(G; A) \equiv \{ [\chi] \in S(G) : A \text{ fin gen over the monoid ring } \mathbb{Z}G_{\chi} \}$

- ii. If M = G'/G'' as a $\mathbb{Z}G$ module by conjugation. $\Sigma^0(G/G', M)$ provides a necessary condition for finite presentation in the case that G is solvable. If G is metabelian, then we obtain a sufficient condition as well.
- iii. Generalized invariant

Definition 4.

 $\Sigma_{G'} \equiv \{ [\chi] \in S(G) : G' \text{ fin gen}^1 \text{ over a fin gen submonoid of } G_{\chi} \}$

iv. These conditions are very technical. The invariant can be redefined in terms of connectedness of subgraphs of Cayley graphs.

1.4. Σ^1 . Blanket assumption: Let G be finitely generated by $\eta: X \to G$. $\Gamma(G, X)$ (often X will be suppressed and we will abbreviate $\Gamma(G)$) is the Cayley graph w/r/t X.

i.

Definition 5. Let G be finitely generated by $\eta : X \to G$. Let Γ_{χ} be the subgraph of $\Gamma(G)$ such that $\chi(g) \ge 0$ for all vertices g in Γ_{χ} . Then Σ^1 is defined as:

 $\Sigma^{1}(G) \equiv \{ [\chi] : \Gamma_{\chi} \text{ is connected} \}$

- ii. We will show that Σ^1 does not depend on the generating set used.
- iii. When G has no non-abelian free subgroups, Σ^1 yields a necessary condition for finite presentation analogous to that given by Σ^1 .
- iv. Σ^1 also yields structural information about solvable groups including information about when normal subgroups $G' \triangleleft N \triangleleft G$ are finitely generated.
- v. Also Σ^1 techniques can be used to extract normal subgroups with infinite cyclic quotients such that G is an HNN extension of said normal subgroup.

2. Examples

- 2.1. \mathbb{Z}^2 . Set $\mathbb{Z}^2 = \langle a, b | a b a^{-1} b^{-1} = 1 \rangle$.
 - i. The Cayley graph is the lattice grid.

- ii. Let χ be a character. Then $\chi(a), \chi(b)$ determine χ . We see the subgraph Γ_{χ} is the intersection of a half plane bounded by $\chi(a) \chi(b) = 0$ with the lattice.
- iii. Show example where $\chi(a) = \chi(b) = 1$.
- 2.2. **BS(1,2).** Recall $BS(1,2) \equiv \mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix} \rtimes \mathbb{Z} = \langle a, u | uau^{-1} = a^2 \rangle$.
 - i. With this presentation,² we can see multiplication as $(a, 2^m)(b, 2^{m'}) = (a + b2^m, 2^{m+m'})$, where in the other presentation, a = (1, 0) and u = (0, 2).
 - ii. Draw connected component of identity of Cayley graph

- iii. Let χ be a character. Then $uau^{-1} = a^2$, then $\chi(a) = 2\chi(a) \Rightarrow \chi(a) = 0$. Hence χ is determined by $\chi(u)$ and $S(G) = \{\pm[\chi_0]\}$ where $\chi_0(u) = 1$.
- iv. $[\chi_0]$ is not in Σ^1 , but $-[\chi_0]$ is i.e. $\Sigma^1(BS(1,2)) = \{-[\chi_0]\}.$

Proof. Look at Γ_{χ_0} . Start with $(\frac{1}{2}, 2^m)$ for m > 0 which lies in Γ_{χ_0} . We see that for $z \in \mathbb{Z}$:

$$\left(\frac{1}{2}+z,2^k\right)(\pm 1,2^0) = \left(\frac{1}{2}+z\pm 1,2^k\right) \qquad \left(\frac{1}{2}+z,2^k\right)(0,2^{\pm 1}) = \left(\frac{1}{2}+z,2^{k\pm 1}\right)$$

²where \mathbb{Z} is represented multiplicatively with $\mathbb{Z} \cong \{2^t : t \in \mathbb{Z}\}.$

Thus the first coordinate of every path leading from $(\frac{1}{2}, 2^m)$ still has a non-integer first coordinate, so no path exists to $(0, 2^0)$, the identity.

On the other hand, for $-\chi_0$, consider the arbitrary point in the graph $\Gamma_{-\chi_0}$, $(t, 2^{-m})$, for some $m \ge 0$. There exists an integer n such that $t = z \cdot 2^{-n}$ for some $z \in \mathbb{Z}$. First starting with $(z2^{-n}, 2^{-m})$, by applying $\pm u$, |m - n| times as appropriate, we can obtain a path to $(z2^{-n}, 2^{-n})$ running entirely in $\Gamma_{-\chi_0}$ since the second coordinate will always have exponent ≤ 0 . Then $(z2^{-n}, 2^{-n})(1, 2^0)^k = ((z-k)2^{-n}, 2^{-m})$ which runs in $\Gamma_{-\chi_0}$ so we can reach $(0, 2^{-m})$ and then applying u m times gives a path to the identity, so $\Gamma_{-\chi_0}$ is connected.

2.3. Free Products.

4

i. F_2 has trivial invariant. More generally, the free product of two groups such that the abelianization of the free product is not finite also has trivial invariant.

Proof. Let $F_2 = \langle a, b \rangle$. Consider a character $\chi \neq 0$. WLOG $\chi(a) > 0$ by switching a for b and possibly switching inverses. Consider $a^{-1}ba$. The only path on the Cayley graph from 1 to $a^{-1}ba$ has exactly the word $a^{-1}ba$, but $\chi(a^{-1}) = -\chi(a) < 0$.

- ii. Use similar technique using canonical forms for words in general free products.
- iii. Although $S(F_2)$ is a circle, it has trivial invariant and is finitely presented, so the invariant doesn't "fill" enough of the sphere. Hence requirement for no free subgroups.

3. Invariance

Theorem 6. Σ^1 is invariant under choice of finite generating set.

Proof. Given finite generating sets X_1, X_2 , we may assume $X_2 = X_1 \cup \{z\}$ since going from one finite generating set to another involves a finite sequence of adjoining elements and deleting elements. Let $\Gamma = \Gamma(G, X_1)$ and $\Gamma' = \Gamma(G, X_2)$ and let χ be a character. We see that Γ_{χ} is a subgraph of Γ'_{χ} with the same vertices (but fewer edges), so Γ_{χ} connected implies that Γ'_{χ} is connected.

For any path p in Γ' , define $v_{\chi}(p) = \min\{\chi(v) : v \text{ a vertex on } p\}$. To get an idea of how this works, p in Γ lies in Γ_{χ} if and only if $v_{\chi}(p) \ge 0$. Now suppose Γ' is connected and let $g, h \in G$ be vertices.

Write $z = w_1 w_2 \dots w_n$, $w_i \in X_1^{\pm}$. If $v_{\chi}(w_1 \dots w_n) \ge 0$ we are done, so assume not. Choose $t \in X$ with $\chi(t) > 0$. Set k so that $\chi(t^k) = k\chi(t) \ge v_{\chi}(w_1 w_2 \dots w_n)$.

There exists a path from $t^{-k}gt^k$ to $t^{-k}ht^k$, which still lie in Γ_{χ} , in Γ' , let this be $p' = x_1x_2...x_{\ell}$, $x_i \in X_2^{\pm}$. Replace all instances of z by $w_1...w_n$. Then $v_{\chi}(p') \ge v_{\chi}(w_1...w_n)$ because at each endpoint of a path segment defined by $z^{\pm}1$, the path must lie in Γ_{χ} . Now apply the automorphism on Γ defined by left multiplication by t^k . Then $t^k p'$ gives a path from gt^k to ht^k , and $v_{\chi}(t^k p') = k_{\chi}(t) + v_{\chi}(p') \ge 0$, so $t^k p'$ is in Γ_{χ} .

Then gt^k and ht^k have clear paths in Γ_{χ} to g, h respectively. Hence Γ_{χ} is connected, yielding the desired result.

4. CALCULATION TRICKS

4.1. The center.

Proposition 7. Let G be finitely generated. Then $\Sigma^1(G)$ contains every point not vanishing on Z(G) i.e. $S(G, Z(G))^c \subseteq \Sigma^1(G)$.

Proof idea. Choose a generating set including the element $z \in Z(G)$ such that $\chi(z) \neq 0$. Act by $z^k w z^{-k}$ on the path until it passes through the right graph.

Example 8. If G is abelian, Z(G) = G, so every nontrivial character fails to vanish on Z(G), so $S(G) = \Sigma^{1}(G)$.

Example 9. If $G = \langle a, b | a^p = b^q \rangle$, the rank of G/G' is 1, so S(G) has two points, $\pm \chi_0$ with $\chi_0(a) = q$, $\chi_0(b) = p$. Observe that $a^p = b^q$ commutes with a, b, so it is central, and χ_0 does not vanish at $a^p = b^q$, so $\chi_0 \in \Sigma^1(G)$.

4.2. Direct products. Let $G = G_1 \times G_2$ and π_1, π_2 be the projections. If χ_1 is a character on G_1 , define $\pi_1^*(\chi_1) = \chi_1 \circ \pi_1$, a character on $G_1 \times G_2$. Then we obtain maps $\pi_1^* : S(G_1) \to S(G)$ and analogously $\pi_2^* : S(G_2) \to S(G)$.

Proposition 10. With above conditions

$$\Sigma^{1}(G_{1} \times G_{2})^{c} = \pi_{1}^{*}(\Sigma_{1}(G_{1})^{c}) \cup \pi_{2}^{*}(\Sigma^{1}(G_{2}))^{c}$$

Example 11. Let G = BS(1,2) with $(\Sigma^1(G))^c = \{+[\chi_0]\}$ so we see that $G \times G$ has two points in $\Sigma^1(G \times G)^c$.

5. Key technical result. Skip if necessary

Suppose G is finitely generated by X. Then $\Gamma_{\chi}(G, X)$ is connected if and only if for all $y \in X^{\pm 1}$, there exists a path p_y from t to $y \cdot t$ with $v_{\chi}(p_y) > v_{\chi}(1, y)$.

6. Properties and Results

Normal subgroups containing the commutator also play nicely with Σ^1 :

Theorem 12. Let G be finitely generated, $N \triangleleft G$ such that $G' \triangleleft N$. Then N is finitely generated if and only if $S(G, N) \subseteq \Sigma^1(G)$.

Ideas here involve reduction to the free abelian case. One of the most useful results:

Theorem 13. Suppose G is finitely presented with no non-abelian free subgroup. Then

$$\Sigma^1(G) \cup -\Sigma^1(G) = S(G)$$

Note how BS(1,2) satisfies this condition.

Useful fact: $\Sigma^1(G)$ is open in S(G) with induced topology from \mathbb{R}^k . When the above condition holds, connectedness arguments can be made to extract rank one characters from the intersection of $\pm \Sigma^1(G)$.

Corollary 14. IF G is finitely presented as above and rank $G/G' \ge 2$, there exists $N \triangleleft G$ such that $G/N \cong \mathbb{Z}$. (N is the kernel of a rank 1 character).

6.1. HNN extensions.

Theorem 15. Let χ be a rank 1 character and $t \in G$ with $\chi(t) = 1$. Then: $[\chi] \in \Sigma^1(G)$ if and only if $N = \ker \chi$ has a subgroup H such that $t^{-1}Ht \subseteq H$ and $\bigcup_{\ell \in \mathbb{N}} t^{\ell}Ht^{-\ell} = N$. In other words, G is an ascending HNN extension with finitely generated base group H and isomorphic subgroups $t^{-1}Ht \cong H$.

6.2. Descending HNN extensions.

Proposition 16. Let G be finitely generated by X and let χ be a rank 1 character. If C is the connected component of 1 in $\Gamma_{\chi}(G, X)$, then:

i. $C \cap \Gamma_{\chi}^{[0,k]}$ is connected

ii. $N = \ker \chi$ has a subgroup H which is finitely generated, $uHu^{-1} \subseteq H, \bigcup_{\ell \in \mathbb{N}} u^{-\ell}Hu^{\ell} = N$.

In other words, G is a descending HNN extension of H with stable letter u.

Example 17. Recall $BS(1,2) = \langle a, u | uau^{-1} = a^2 \rangle$ is an HNN extension of $\langle a \rangle$ with stable letter u. Here, $\Gamma_{\chi}^{[0,k]} \cap C$ is just chopping off the connected component of the identity at height k which is connected.