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Abstract

We give coarse geometric conditions for a metric space X to have N -connected asymp-
totic cones. These conditions are expressed in terms of certain filling functions concerning
filling N -spheres in an appropriate coarse sense.

We interpret the criteria in the case where X is a finitely generated group Γ with
a word metric. This leads to upper bounds on filling functions for groups with simply
connected cones – in particular they have linearly bounded filling length functions. We
prove that if all the asymptotic cones of Γ are N -connected then Γ is of type FN+1 and
we provide N -th order isoperimetric and isodiametric functions. Also we show that the
asymptotic cones of a virtually polycyclic group Γ are all contractible if and only if Γ is
virtually nilpotent.
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1 Introduction

In the book Asymptotic Invariants of Infinite Groups [25] Gromov says of a finitely generated
group Γ with a word metric d:

“This space may at first appear boring and uneventful to a geometer’s eye since it
is discrete and the traditional local (e.g. topological and infinitesimal) machinery
does not run in Γ.”

The asymptotic cone presents a different perspective in which to look at Γ. Imagine viewing
Γ from increasingly distant vantage points, i.e. scaling the metric by a sequence s = (sn) with
sn → ∞. Via some nonstandard analysis, an asymptotic cone provides a limit of the sequence
(Γ, 1

sn
d). This limit represents a coalescing of Γ to a more continuous object that is amenable

to attack by topological and infinitesimal machinery, and which “fills our geometer’s heart
with joy” (to quote Gromov [25] again).

In particular one can study the homotopy groups of the asymptotic cones of Γ, which, as
we will see, impart information about the coarse geometry of Γ. The essential technique is as
follows. Maps of spheres or discs into asymptotic cones of Γ can be pulled back to sequences
of maps into Γ. Information about Γ can then be gleaned from filling functions. (This idea
goes back to Gromov [25, Ch. 5]; it has been pursued further in relation to 1-connectedness
of asymptotic cones of finitely generated groups in [5], [10], [27], [37] – see §5.)

It turns out that an asymptotic cone is a rather general construction, not just applying
to groups but in fact to all metric spaces. Hence in §3 and §4 we work to understand what
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it means for any given metric space to have highly connected asymptotic cones, before inter-
preting what the results mean in the subsequent sections in the context of groups. Whilst the
definitions of §3 and the results of §4 are given in the full generality of any metric space X, the
reader may find it helpful to keep in mind the examples where X is a (quasi-) homogeneous,
non-compact metric space, e.g. X is quasi-isometric to a finitely generated group (with its
word metric) or is a non-compact Lie group.

The vanishing of particular homotopy groups is a bi-Lipschitz invariant property of asymp-
totic cones of a space X, and any bi-Lipschitz invariant of the cones provides a quasi-isometry
invariant for the underlying metric spaces X – see Proposition 2.5. Thus one motivation for
examining what the N -connectedness of the asymptotic cones of X means for X, is to find
quasi-isometry invariants. In particular the two conditions in Theorem A below are both
quasi-isometry invariants for metric spaces.

Important applications of asymptotic cones have exploited this fact that bi-Lipschitz in-
variants of cones give quasi-isometry: this fact is used by Kleiner and Leeb [30] in establishing
quasi-isometric rigidity results for symmetric spaces of non-compact type, and by M. Kapovich
and Leeb [29] in distinguishing quasi-isometry classes of fundamental groups of closed Haken
3-manifolds. Uses of asymptotic cones have also been found by Druţu who gives a new proof
in [12] of a result about quasi-isometries of irreducible non-uniform lattices in certain semi-
simple Lie groups, and in [11] finds bounds on the Dehn function of certain non-cocompact,
irreducible Q-rank 1 lattices.

This article is structured as follows. We define asymptotic cones, quasi-isometries, com-
binatorial complexes, ≃-equivalence of functions R → R, van Kampen diagrams and some
related notions from Geometric Group Theory in §2. Then in §3 we recursively define the
filling functions FillkR,µµµ : [0,∞) → N∪{∞} for metric spaces that we will use in characterising
spaces with highly connected asymptotic cones.

The definition of FillN+1
R,µµµ makes use of finite combinatorial structures (defined in §2.3) for

discs and spheres. The sequence R = (Ri) of positive integers constrains the combinatorial
complexity of the complexes used. Given a combinatorial structure C and a map γ : C(0) → X,
with domain the 0-skeleton of C, define

mesh(C, γ) := sup {d(γ(a), γ(b)) | a and b are the end points of a 1-cell in C} .

Suppose C is, in fact, a combinatorial structure for the N -sphere. The function FillN+1
R,µµµ :

[0,∞) → N ∪ {∞} tells us about extending any such γ : C(0) → X in a coarse sense across
the (N + 1)-disc DN+1. This extension is built up through the dimensions; that is, by first
extending (in a coarse sense) across 1-cells, then across 2-cells, and so on, until finally across
DN+1. The sequence of positive reals µµµ = (µi) introduce error terms into the definition,
and consequently a coarseness into the filling functions; this will be appropriate because
asymptotic cones ignore local geometry.

In §4 we prove the characterisation of metric spaces with highly connected asymptotic
cones that will be at the heart of all the subsequent results in the chapter. Recall that a
topological space is said to be N -connected when its homotopy groups π0, π1, . . . , πN are all
trivial. In the statement of this theorem e = (en) is a sequence of base points in X and
s = (sn) is a sequence of scaling factors with sn → ∞; both are part of the definition of an
asymptotic cone.

Theorem A. Let X be a metric space, let ω be a non-principal ultrafilter, and N ≥ 0. The
following are equivalent.
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• The asymptotic cones Coneω(X, e, s) are N -connected for all e and s.

• There exist R, µµµ such that the filling functions Fill1R,µµµ,Fill2R,µµµ, . . . ,FillN+1
R,µµµ are bounded.

In §5 we show how the 2-dimensional filling function Fill2R,µµµ can be reinterpreted to give
the following algebraic characterisation of finitely generated groups Γ with 1-connected cones:

Theorem B. Let Γ be a group with finite generating set A. Fix any non-principal ultrafilter
ω. The following are equivalent.

• The asymptotic cones Coneω(Γ,1, s) of Γ are simply connected for all s.

• There exist K,L ∈ N such that for all null-homotopic words w of length ℓ(w) ≥ L there
is an equality

w =
K∏

i=1

uiwiu
−1
i

in the free group F (A) for some words ui and wi such that the wi are null-homotopic
and have length ℓ(wi) ≤ ℓ(w)/2 for all i.

This theorem is then used to obtain information about filling invariants of Γ. We recover
results of Bridson [5], Druţu [10], Gromov [25], and Papasoglu [37] that say Γ has a polyno-
mially bounded Dehn function and a linearly bounded isodiametric function, and we are able
to add that the filling length function also has a linear bound. The constants K and L in the
statement of Theorem C are those arising in Theorem B.

Theorem C. Suppose that the asymptotic cones Coneω(Γ,1, s) of a finitely generated group
Γ are simply connected for all sequences of scalars s = (sn) with sn → ∞. Then there exists
a finite presentation 〈A | R〉 for Γ with respect to which, for all n ∈ N the Dehn function, the
minimal isodiametric function, and the filling length function satisfy

Area(n) ≤ Knlog2(K/L),

Diam(n) ≤ (K + 1)n,

FL(n) ≤ 2(K + 1)n,

for some constants K,L > 0. Further, given a null-homotopic word w with ℓ(w) = n, there
is a van Kampen diagram Dw for w on which these three bounds are realised simultaneously.

The filling length function FL is a filling invariant discussed extensively in [18]; it measures
the length of the contracting boundary loop of a van Kampen diagram for null-homotopic
words w in the course of a combinatorial analogue of a null-homotopy. Equivalently filling
length bounds the maximum length of words one must encounter when reducing w down to
the empty word using the relators. In particular, in the light of Pansu [36], we learn from
the above theorem that finitely generated nilpotent groups have linear filling length. Using
the result of Papasoglu [37] we learn that this is also the case for groups with quadratically
bounded Dehn functions (this includes Thompson’s Group F – see Guba [26]).
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In §6 we discuss finiteness properties and higher order isoperimetric and isodiametric func-
tions for finitely generated groups. This is in preparation for §7 in which we prove bounds on
the 2-variable N -th order isoperimetric function δ(N)(n, ℓ) and isodiametric function η(N)(n, ℓ)
for groups with N -connected cones. These functions concern the combinatorial filling volume
and filling diameter, respectively, of singular combinatorial N -spheres in terms of the com-
binatorial N -volume n of the N -spheres and the diameter of their images ℓ. The theorem
is:

Theorem D. Let Γ be a finitely generated group with a word metric. Suppose that the asymp-
totic cones of Γ are all N -connected (N ≥ 1). Then Γ is of type FN+1.

Further, fix any finite (N + 1)-presentation for Γ. There exist aN , bN ∈ N and αN > 0
such that for all n ∈ N and ℓ ≥ 0,

δ(N)(n, ℓ) ≤ aN n ℓαN ,

η(N)(n, ℓ) ≤ bN ℓ.

Moreover these bounds are always realisable simultaneously.

The theorem of §2.8 is:

Theorem E. Let Γ be a virtually polycyclic group and let ω be any non-principal ultrafilter.
The following are equivalent.

• Γ is virtually nilpotent.

• Coneω(Γ,1, s) is contractible for all sequences of scalars s.

In the proof we appeal to results of Harkins [28] and Pansu [36]. It is immediate from Pansu’s
work that the asymptotic cones of nilpotent groups are contractible. Harkins shows that if Γ
is virtually polycyclic but not virtually nilpotent then one of its higher order Dehn functions
is exponential. We use Harkins’ techniques to show that the higher order isoperimetric and
isodiametric inequalities of §2.7 must fail for such a Γ in some dimension. It follows that the
higher homotopy groups of the asymptotic cones of Γ cannot all be trivial.

Related literature. Detailed references to work related to Theorems A to E can be found
in the text of this article. Here is a brief summary. Theorem A has origins in work of
Papasoglu [37], which in turn is based on ideas of Gromov [25]. The half of Theorem B that
begins with the assumption that the asymptotic cones are simply connected was essentially
proved by R. Handel [27] and subsequently by Gromov [25]. The reverse implication is used
by Papasoglu in [37] and our proof develops the arguments he gives. Gromov went on to
deduce the polynomial bound on the Dehn function in Theorem C. An exegesis of Gromov’s
proof was given by Druţu [10]. The linear bound on diameter in Theorem C was observed by
Papasoglu [37] and Bridson [5]. The inequalities in Theorem D are in a similar vein to those
obtained in different contexts in Epstein et al. [14, Theorem 10.2.1] (“mass times diameter
estimate”) and Gromov [23] (the “cone inequality”). Theorem E was suggested to me by
Martin Bridson, although there were many details to pursue; the proof includes appeals to
[28] and [36] as discussed above.

Acknowledgements. This article forms part of my doctoral thesis [40], and I am indebted
to my supervisor Martin Bridson. It was a privilege to be introduced to Geometric Group
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Institute of Great Britain for financial support. I would also like to thank Steve Pride, Alex
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2 Preliminaries

2.1 Asymptotic cones

Asymptotic cones were introduced by van den Dries and Wilkie in [44], who saw nonstandard
analysis as the natural context for the constructions used by Gromov in his proof (in [22])
that groups of polynomial growth are virtually1 nilpotent.

The construction is very general, applying not just to groups with word metrics but to
any metric space (X, d). Asymptotic cones encode large scale information about X whilst
ignoring local geometry. The idea is to view X from increasingly distant vantage points. That
is, we scale the metric by a sequence of strictly positive reals s = (sn) with sn → ∞ and we
seek a limit of the sequence (X, 1

sn
d).

So what limit of (X, 1
sn
d) should we take? In restricted circumstances a Gromov–Hausdorff

limit can be used (see [9, pages 70ff]) – in fact the groups for which the asymptotic cone
construction agrees with the taking of the Gromov–Hausdorff limit are precisely the virtually
nilpotent groups. But, in general, we need a device from non-standard analysis to force
convergence. This is a non-principal ultrafilter ω, which has the crucial property of selecting
a (possibly infinite) limit point, the ultralimit, limω an ∈ R ∪ {±∞} of any given sequence of
reals (an). Non-principal ultrafilters and ultralimits are defined and discussed in Appendix
A. One concise way of defining non-principal ultrafilters is to say that they are finitely
additive probability measures on N, taking values in {0, 1}. Non-principal ultrafilters cannot
be constructed explicitly; their existence is ensured by Zorn’s Lemma.

In addition to a metric space (X, d) the ingredients of the definition of an asymptotic cone
are:

• a non-principal ultrafilter ω,

• a sequence of basepoints e = (en)n∈N in X,

• a sequence of scalars2 s = (sn)n∈N of strictly positive reals with sn → ∞.

Definition 2.1. Define the asymptotic cone of (X, d) with respect to e, s and ω, to be

Coneω(X, e, s) :=

{
a = (an)n∈N

∣∣∣∣ limω
1

sn
d(en, an) <∞

}/
∼

1A group is said virtually to admit some property if it has a subgroup of finite index with that property.
2Throughout this article we insist that the sequences of scalars s = (sn) used in defining an asymptotic

cone tends to infinity. It is possible to relax this requirement and still get a well defined Coneω(X, e, s) but
this is not useful for our viewpoint of discarding local information, focusing only on large-scale behaviour.
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where the equivalence relation is

a ∼ b ⇔ lim
ω

d(an, bn)

sn
= 0.

The cone is given the metric

d([a], [b]) := lim
ω

d(an, bn)

sn
.

Here [a] denotes the equivalence class of the sequence a = (an), but henceforth we will
regularly abuse notation and refer to a as an element of Coneω(X, e, s).

The language of nonstandard analysis provides another way of looking at this construction
– via the ultraproduct X∗ (with respect to ω) of X. The ultraproduct has a natural distance
function d∗(a,b) = (d(an, bn)) taking values in the non-negative hyperreals. The sequence of
scalars s defines an infinite hyperreal, which is used to scale d∗ to 1

s
d∗. Then Coneω(X, e, s)

consists of the set of a ∈ X for which 1
s
d∗(a, e) is a finite hyperreal, quotiented by the

equivalence relation a ∼ b when 1
s
d∗(a,b) is infinitesimal.

It is important to note that the definition of the cone involves choices. In the first place
there is a dependence on the sequence of basepoints e. In many common contexts this is
not critical because when X is homogeneous (for example when X is a finitely generated
group with a word metric) or more generally is quasi-homogeneous3 (for example when X is
a Cayley Graph – see §2.5), we can appeal to the following well known lemma.

Lemma 2.2. Let X be a quasi-homogenous metric space, and suppose e = (en) and e′ = (e′n)
are two sequences of base points in X. Let s = (sn) be a sequence of scalars with sn → ∞.
Then the asymptotic cones Coneω(X, e, s) and Coneω(X, e′, s) are isometric.

Proof. The quasi-homogeneity hypothesis allows us to find isometries Φn : X → X such that

d(Φn(en), e′n) ≤ diam(X/IsomX) <∞.

Define ΦΦΦ := (Φn) to be the induced map Coneω(X, e, s) to Coneω(X, e′, s).
Then for a = (an) and b = (bn) in Coneω(X, e, s),

d(ΦΦΦ(a),ΦΦΦ(b)) = lim
ω

d(Φn(an),Φn(bn))

sn
= lim

ω

d(an, bn)

sn
= d(a,b).

Also

d(ΦΦΦ(e), e′) = lim
ω

d(Φn(en), e′n)

sn
≤ lim

ω

diam(X/IsomX)

sn
= 0.

It follows that ΦΦΦ is well defined, is an isometry, and maps e to e′.

More critical to applications is the dependence of the definition of an asymptotic cone on
the sequence of scalars and the non-principal ultrafilter. These are interrelated – changes in
the sequence of scalars can alternatively be achieved by altering the ultrafilter. In Appendix B
we prove a result which makes the relationship more precise. Essentially we show that given
an asymptotic cone Coneω(X, e, s) with s = (sn) not tending to infinity too slowly, there
is an ultrafilter ω′ and a sequence of base points e′ such that Coneω(X, e, s) is isometric to

3A metric space X is quasi-homogeneous when diam(X/IsomX) <∞.
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Coneω′(X, e′,N). (In this context we use N to denote the sequence (n) rather than the set of
natural numbers.)

Often authors wish to use N for the sequence of scalars, and take an obvious sequence of
base points – typically the constant sequence 1 = (1) at the identity in a finitely generated
group Γ with a word metric. In this circumstance the cone may be more concisely denoted
ConeωΓ.

In our applications we will find it most natural to fix the ultrafilter and then state results
whose hypothesis is that some conditions hold in all Coneω(X, e, s) as e and s vary4. In
this way we capture characteristics of the large scale geometry of X, but avoid the loss of
information that can occur when we just focus on one Coneω(X, e, s). The following, which
is Proposition 3.1.1 of Druţu [10], is an example.

Proposition 2.3. Let Γ be a finitely generated group and ω a non-principal ultrafilter. Then
Γ is hyperbolic if and only if Coneω(Γ,1, s) is an R-tree for all s.

The insistence that a condition in the cone holds for all s is often necessary, as the
following theorem testifies.

Theorem 2.4 (Thomas & Velickovic [43]). There exists a finitely generated group which
has two non-homeomorphic asymptotic cones.

The examples given by Thomas & Velickovic are not finitely presentable. (The question
of whether a finitely presentable group can have two non-homeomorphic cones remains open.)
Their examples Γ are defined using an infinite sequence of relators (ri) satisfying a small
cancellation property. Such groups Γ are not finitely presentable and so must have at least
one cone that is not 1-connected (see Theorem C). Thomas & Velickovic show that one can
choose the ri and an ultrafilter ω in such a way that in any neighbourhood of the base point,
ConeωΓ resembles the cone of a finitely presented small cancellation group ΓR. Such a group
ΓR is hyperbolic and ConeωΓR is an R-tree. It follows that ConeωΓ is itself an R-tree (and
so is 1-connected). Thomas & Velickovic achieve these different cones by using two different
ultrafilters, whilst fixing the sequence of scalars as N. However, their methods can easily be
adapted so that the difference is realised by two different sequences of scalars but a fixed
ultrafilter.

If X is a quasi-homogenous metric space then its asymptotic cones are homogeneous.
When Γ is a non-elementary (that is, not virtually cyclic) hyperbolic group, Coneω(Γ,1, s) is
an everywhere branching R-tree. In fact this R-tree turns out to be the (uniquely) everywhere
2ℵ0-branching universal R-tree (see [13]).

An important property of asymptotic cones is that they are complete metric spaces. Proofs
can be found in [9, page 79] and [44].

2.2 Quasi-isometries

We now recall an important notion of large scale equivalence of metric spaces that is designed
to respect only global properties of the space, ignoring local geometry.

Let X and Y be metric spaces. Let λ ≥ 1 and µ ≥ 0. A (not-necessary continuous) map
Φ : X → Y is a (λ, µ)-quasi-isometry if

4Fixing s and varying e and ω would work similarly. In either case the point is not to lose information on
some subsequence of (X, 1

sn

d).
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1. ∀x1, x2 ∈ X, 1
λd(x1, x2) − µ ≤ d(Φ(x1),Φ(x2)) ≤ λd(x1, x2) + µ, and

2. ∀ y ∈ Y, ∃x ∈ X, d(Φ(x), y) ≤ µ.

When such Φ, λ, µ exist we say X and Y are quasi-isometric. This defines an equivalence
relation on any given set of metric spaces.

The first condition says Φ combines the stretching λ of a bi-Lipschitz map with an amount
of tearing bounded by µ. The second condition tells us that ImΦ is quasi-dense in Y . If we
discard the second condition then Φ is called a quasi-isometric embedding .

The following proposition is well known.

Proposition 2.5. A (λ, µ)-quasi-isometry Φ : X → Y induces a λ-bi-Lipschitz homeomor-
phism

ΦΦΦ : Coneω(X, e, s) → Coneω(Y,ΦΦΦ(e), s).

Proof. Suppose that a = (an) and b = (bn) are elements of Coneω(X, e, s). Then

d (ΦΦΦ(a),ΦΦΦ(b)) = lim
ω

d(Φ(an),Φ(bn))

sn
≤ lim

ω

λd(an, bn) + µ

sn
= λd(a,b).

The other half of the bi-Lipschitz condition is proved similarly. It remains to show that ΦΦΦ is
surjective. Well suppose y = (yn) is a point in Coneω(Y,ΦΦΦ(e), s). Then there is a sequence
x = (xn) in X such that d(Φ(xn), yn) ≤ µ. One readily checks that d(ΦΦΦ(x),y) = 0 and that

d(e,x) ≤ λd (ΦΦΦ(e),ΦΦΦ(x)) = λd (ΦΦΦ(e),ΦΦΦ(y)) < ∞.

So x is a well defined point in Coneω(X, e, s) and is mapped to y by ΦΦΦ.

Here is the reward of this proposition.

Corollary 2.6. Any bi-Lipschitz invariant of the asymptotic cones of a metric space is a
quasi-isometry invariant of metric spaces.

The identity map (Γ, dA) → (Γ, dB) associated to two finite generating sets (and hence
two word metrics) of a finitely generated group Γ = 〈A〉 = 〈B〉 is a (λ, 0)-quasi-isometry for
some λ ≥ 1. Hence we have the following further corollary.

Corollary 2.7. Any topological (bi-Lipschitz) invariant ( e.g. N -connectedness) of the cones
of a finitely generated group Γ is a group invariant, in other words, is independent of the
particular choice of generating set.

Let Γ be a group with finite generating set A with respect to which it has word metric
denoted dA. The Cayley graph C(Γ,A) of Γ, whose definition we will recall in §2.5 is given
the metric in which each edge has length 1. Then (Γ, dA) can be identified with the 0-skeleton
of C(Γ,A), and the inclusion is a (1, 1

2)-quasi-isometry. So here is a further corollary.

Corollary 2.8. The asymptotic cones of a group Γ with word metric associated to some finite
generating set A are the same as those of C(Γ,A).
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2.3 Combinatorial complexes

In order to study homotopy groups of asymptotic cones we would like to relate maps of spheres
into cones to sequences of maps of spheres into the original space X. For example, a sequence
of λn-Lipschitz N -spheres γn : (SN , ⋆) → (X, en) with λn → ∞ yields a 1-Lipschitz map

γ := (γn) : SN → Coneω(X, e,λλλ) ,

where λλλ := (λn). This is because for a, b ∈ SN

d(γ(a), γ(b)) = lim
ω

d(γn(a), γn(b))

λn
≤ lim

ω

λnd(a, b)

λn
= d(a, b).

However we lack control when we pull back a continuous map γ : SN → Coneω(X, e, s) to
a sequence (γn) of maps γn : SN → X such that γ(a) = (γn(a)) for all a ∈ SN . We can
only at best hope for coarse information, and given a set J ⊆ N of ω-measure 0, we can
deduce no constraints on γn for n ∈ J . What is particularly troublesome is that we cannot
get information uniformly constraining the behaviour of any γn over the whole of SN . It is
much easier to pull back finite sets of points: let C be a finite set of points and let τ be a map
C → Coneω(X, e, s); express τ as (τn) for some maps τn : C → X such that each τn is a map
C → X; then for a given error term ε > 0 we can find a set J ⊆ N of ω-measure 1 such that
for all n ∈ J , the distances between pairs of points of τn(C) in (X, 1

sn
d) differ by at most ε

from the distances between respective pairs of points of τ(C).
This discussion leads to work with combinatorial configurations of points – specifically

the 0-skeleta of combinatorial structures for N -spheres and (N + 1)-discs. Thus we give the
following review of definitions.

Combinatorial complexes are defined by recursion on dimension. We follow the def-
inition of Bridson & Haefliger [9, page 153]. Define a 0-dimensional combinatorial complex
just to be a set with the discrete topology, each point being termed both an open cell and
a closed cell .

Next we define a continuous map C1 → C2 between combinatorial complexes to be com-
binatorial if its restriction to each open cell of C1 is a homeomorphism onto an open cell of
C2.

To complete the definition we explain how we use combinatorial maps to provide the
attaching maps necessary to obtain N -dimensional combinatorial complexes from those of
dimension N − 1. An N -dimensional combinatorial complex is a topological space C that
can be obtained in the following way. Take the disjoint union U of an (N − 1)-dimensional
combinatorial complex C(N−1) and a family (eλ)λ∈Λ of closedN -discs. Suppose the boundaries
∂eλ of the eλ have combinatorial structures: that is, for each eλ there is an (N−1)-dimensional
combinatorial complex Sλ for which there is a homeomorphism ∂eλ → Sλ. Further suppose
there are combinatorial maps Sλ → C(N−1). The attaching maps are the compositions ∂eλ →
Sλ → C(N−1). Then C is obtained from U by quotienting via the attaching maps in the usual
way (and is given the quotient topology). The open cells of C are defined to be the (images
of) open cells in C(N−1) and the interiors of the eλ. The closed cells of C are defined to
be the closed cells of C(N−1) together with the N -discs eλ, equipped with their boundary
combinatorial structures ∂eλ → Sλ. So a closed N -cell is a combinatorial complex in its own
right, having one open N -cell eλ together with the combinatorial structure Sλ for an (N −1)-
sphere on its boundary. (However a closed N -cell of C need not embed as a subcomplex in
C on account of the identifications that may occur under the attaching map Sλ → C(N−1).)
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It is often only the combinatorial type of a complex that we are interested in. Therefore
define two combinatorial complexes to be combinatorially equivalent (or of the same
combinatorial type) when there exists a combinatorial isomorphism between them –
that is, a homeomorphism which is combinatorial and has combinatorial inverse.

A combinatorial structure for a topological space V is a combinatorial complex

C together with a homeomorphism V
∼=
→ C. It is common to suppress the homeomorphism

and regard the cells of C as subsets of V . Two combinatorial structures φ1 : V
∼=
→ C1 and

φ2 : V
∼=
→ C2 are said to be equivalent when φ2◦φ

−1
1 : C1 → C2 is a combinatorial isomorphism.

We use the notation #N (C) to denote the number of open N -cells in a combinatorial
complex.

A combinatorial complex is triangular5 when the combinatorial structure on each at-
taching sphere is always that of the boundary of a simplex (of the appropriate dimension). A
triangulation of a topological space is a combinatorial structure for the space in which the
combinatorial complex used is triangular.

More generally, given a sequence R = (RN ) such that each RN ∈ N∪{∞} and RN ≥ N+2,
define an R-combinatorial complex to be a combinatorial complex in which, for all N ,
all the combinatorial structures SN ∼= Sλ for N -spheres used to attach (N + 1)-cells eλ
(via combinatorial maps ∂eλ → Sλ) have #N (Sλ) ≤ RN . (Note that this implicitly forces
the combinatorial structures Sλ to be R-combinatorial also.) The reason we insist that
RN ≥ N+2 for each N is to ensure that the R-combinatorial complexes include the triangular
combinatorial complexes.

We will find R-combinatorial complexes particularly useful (in the proofs in §2.3) be-
cause the combinatorial type of an R-combinatorial complex is restricted: if the entries
R0, R1, . . . , RN−1 are all finite then in an N -dimensional R-combinatorial complex there are
only finitely many possible combinatorial structures for the (N − 1)-spheres used to attach
N -cells (up to combinatorial equivalence); so given an integer M > 0 there are only finitely
many N -dimensional non-equivalent combinatorial complexes C such that #N (C) ≤M .

A refinement of an N -dimensional combinatorial structure V
∼=
→ C on a topological

space V is, roughly speaking, another combinatorial structure V
∼=
→ C̄ for V which can be

obtained from C by subdividing the cells in C in a way that is matches up across shared
i-cells in the boundaries of two (i + 1)-cells. We produce C̄ by refining first the 1-cells in C
then the 2-cells and so on, until finally the N -cells.

For example consider the combinatorial structure C ∼= D2 where C is made up four 2-
cells, twelve 1-cells and nine 1-cells assembled to make a 2-by-2 chessboard complex. If we
subdivided each of the four 2-cells into 2-by-2 chessboard complexes (say) we would have
a 4-by-4 chessboard and this would be a refinement of C. However if we subdivided some
2-cell in C into a 2-by-2 chessboard complex and an adjacent 2-cell into a 3-by-3 chessboard
complexes then the result would fail to be a refinement of C because the subdivision would
not agree across the common edge.

Formally, refining a combinatorial structure C for a space V is an inductive process. First
we define C̄0 := C(0). Then for k = 1, 2, . . . ,N we shall explain how to refine the k-skeleton
C(k) of C subject to C̄k−1 to produce C̄k. Then a refinement C̄ of C is defined to be any

5This definition is not the same as that of a simplicial triangulation because two N-cells can meet across
multiple (N − 1)-cells.
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C̄N that can be obtained from a sequence C̄0, C̄1, . . . , C̄N in which each C̄k is the result of
refining C(k) subject to C̄k−1.

Recall from the definition of a combinatorial complex C that each closed k-cell ek of C has

a combinatorial structure ∂ek
∼=
→ S on its boundary and a combinatorial map S → C(k−1) such

that composing gives the attaching map fek : ∂ek → C(k−1). The refinement C̄k−1 induces

a refined attaching map f̄ek : ∂ek
∼=
→ S̄ → C̄k−1. Now suppose we have any combinatorial

structure ek
∼=
→ D on ek (so D is a combinatorial complex which is topologically a k-disc) such

that ∂D = S̄ as combinatorial complexes and ek → D restricts to ∂ek → S̄ on the boundary.
Then D can be attached to C̄k−1 via f̄ek . So our k-complex C̄k is obtained by attaching any
such combinatorial k-discs to C̄k−1 in place of the k-cells of C. Any C̄k that can be obtained
in this way is referred to as a refinement of the k-skeleton C(k) of C subject to C̄k−1.

We will also need singular combinatorial maps and singular combinatorial com-
plexes. Their definition, which is due to Bridson in [8], is similar to that of combinatorial
complexes – using recursion on dimension. A continuous map C1 → C2 between singular
combinatorial complexes is a singular combinatorial map when, for all N , each open N -cell
of C1 is either mapped homeomorphically onto an N -cell of C2, or collapses. In saying an
N -cell “collapses” we mean that it maps into the image of its boundary (and hence into the
(N − 1)-skeleton of C2). Then singular combinatorial complexes are built up through the
dimensions similarly to combinatorial complexes: the boundary N -spheres of (N + 1)-discs
are given (non-singular) combinatorial structures and are glued to an N -dimensional complex
via singular combinatorial attaching maps.

2.4 Geodesic metric spaces

We say that a metric space X is a geodesic metric space when, given a, b ∈ X, there is an
isometrically embedded continuous path γ : [0, d(a, b)] → X with γ(0) = a and γ(d(a, b)) = b.
Such an isometrically embedded continuous path is referred to as a geodesic from a to b.

Any Cayley graph (defined in §2.5) is an example of a geodesic metric space. More
generally the same can be said of the 1-skeleton of a combinatorial complex that has been
equipped with the combinatorial metric (that is, each 1-cell has uniformly been given length
1).

2.5 The geometry of the word problem

The word problem for a finite presentation P (defined below) of a group Γ asks for an algorithm
which, on input of a word w in the generators, decides whether or not w = 1 in Γ. (It is
straight-forward to show that the existence of the algorithm does not depend on the finite
presentation.) In the 1950s celebrated examples of groups with undecidable word problem
were constructed by Novikov [33] and Boone [3]. However this is by no means the end of the
story as far as Geometric Group Theory in concerned.

It turns out that complexity measures associated to naive approaches to solving the word
problem provide such invariants. The most well known is called the minimal isoperimetric
function (a.k.a. the Dehn function). Moreover, through insights of Gromov in [24] and [25],
these invariants can really be seen to capture information about the geometry of Γ.

Here are some of the standard basic definitions.
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Let A be an alphabet , that is, a set of symbols (letters). A word w in A is a finite
string of letters from A and their formal inverses – that is, w is an element of the free monoid
(A ∪ A−1)⋆. Denote the length of w by ℓ(w). For a word w = a1

ε1a2
ε2 . . . as

εs , where each
ai ∈ A and each εi = ±1, the inverse word w−1 is as

−εs . . . a2
−ε2a1

−ε1.

We say that a group Γ is generated by a subset A when the natural map (A∪A−1)⋆ → Γ
is surjective. (So Γ is said to be finitely generatable when it admits some finite generating
set.) We say that a word w in A is null-homotopic when w = 1 in Γ.

A presentation P consists of a set A (the alphabet) and a set of words R (relators)
and is denoted by writing P = 〈A | R〉. The group presented by P is F (A)/〈〈R〉〉, the quotient
of the free group on A by the normal closure 〈〈R〉〉 in F (A) of the elements represented by
words in R. A presentation is finite when both A and R are finite sets. We say a group is
finitely presentable when it is isomorphic to the group presented by some finite 〈A | R〉.

The Cayley graph C(Γ,A) associated to a group Γ finitely generated by a set A is the
graph defined as follows. The vertex set of C(Γ,A) is Γ, and, for each a ∈ A and u ∈ Γ,
there is an oriented edge labelled by a from u to ua. The Cayley graph in equipped with the
combinatorial metric d, in which each edge is uniformly given length 1. The restriction of
this metric to the 0-skeleton agrees with the word metric on Γ, which is the left-invariant
metric d such that d(1, u) is the minimal length of words that evaluate to u in Γ.

The Cayley 2-complex C(P) associated to a finite presentation P = 〈A | R〉 of a group

Γ is the universal cover K̃2 of the finite 2-complex K2 constructed as follows. Start with
a rose: this is a 1-complex with one vertex ⋆ and one edge-loop for each element a of A,
oriented and labelled by a. Then for each relator r ∈ R attach a ℓ(r)-sided 2-cell to the rose
using r to describe the attaching map. The fundamental group of this finite 2-complex is Γ
(by the Seifert-van Kampen theorem – see [41] for example). The Cayley graph C(Γ,A) is
the 1-skeleton of C(P).

2.5.1 Van Kampen diagrams

The terminology used above of a “null-homotopic” word w in a finitely presented group is, with
good reason, borrowed from algebraic topology. If one starts at some vertex v in the Cayley
2-complex C(P) (the homogeneity of C(P) renders the particular choice of v unimportant)
and follows successive edges in such a way as to reads a null-homotopic word w, then one will
finish at v. In this way null-homotopic words define edge-circuits in C(P). A van Kampen
diagram Dw for a null-homotopic word w can be considered to be a combinatorial homotopy
disc for an edge-circuit associated to w in the Cayley 2-complex for P.

More formally, a van Kampen diagram Dw for w is a finite, planar, contractible,
combinatorial 2-complex; its 1-cells are directed and labelled by generators, the boundary
labels of each of its 2-cells are cyclic conjugates of relators or inverse relators, and one reads
w (by convention anticlockwise) around the boundary circuit from a base vertex ⋆.

Here is an equivalent definition of a van Kampen diagram that is intuitively closer to the
notion of a homotopy disc for a loop in C(P) defined by a null-homotopic word w. Say that
Dw := S2 r e∞ is a van Kampen diagram for w whenever S2 is a combinatorial cell structure
on the 2-sphere with a distinguished 2-cell e∞ and a combinatorial map f from S2 r e∞ to
C(P) such that the attaching map of e∞ is then mapped by f to w. (The orientation and
labelling of the edges of Dw is then inherited from C(P) via f .)

Note that a van Kampen diagram can, in general, be a singular disc – it is convenient to
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think of a van Kampen diagram as a planar tree-like arrangement of topological discs and
topological arcs as displayed in Figure 1.

It is an immediate corollary of the forthcoming Lemma 2.5.4 (“van Kampen’s Lemma”)
that a word w in P is null-homotopic if and only if it admits a van Kampen diagram.

2.5.2 ≃-equivalence of functions

We recall a well known equivalence relation on functions [0,∞) → [0,∞). Given two functions
f1, f2 : [0,∞) → [0,∞) we say f1 � f2 when there exists M > 0 such that f1(ℓ) ≤Mf2(Mℓ+
M) +Mℓ+M , for all ℓ ≥ 0. Then f1 ≃ f2 if and only if f1 � f2 and f2 � f1.

Similarly we can define f1 � f2 and f1 ≃ f2 for functions f1, f2 : N → N.

2.5.3 Filling functions for finite presentations of groups

We give the 1-skeleton of a van Kampen diagram the combinatorial metric: each 1-cell has
length 1. An insight of Gromov [25] is to pursue parallels with filling null-homotopic loops
in Riemannian manifolds and define group invariants (“filling functions”) that concern
different measurements one can make of the geometry of van Kampen diagrams. In particular
we will be concerned with:

• the area , Area(Dw), which is the number of 2-cells,

• the diameter6, Diam(Dw), which is the maximal distance (in the combinatorial metric
on the 1-skeleton) of vertices in Dw from the basepoint ⋆,

• and the filling length , FL(Dw), which is the minimal bound on the length of the
contracting boundary curve amongst shellings of Dw.

The third of these, the filling length, requires further explanation. A shelling of Dw is the
combinatorial analogue of a null-homotopy: the boundary circuit of a singular combinatorial
2-disc D is homotoped to the basepoint ⋆. More precisely, we have a sequence of van Kampen
diagrams:

Dw = D0,D1, . . . ,Dm = ⋆

in which Di+1 is obtained from Di by one of the following three types of moves:

• A 1-cell collapse. Remove a pair (e1, e0) such that e0 ∈ ∂e1 is a 0-cell in Di which is
not the base point ⋆ ∈ Di, and e1 is a 1-cell only attached to the rest of the diagram at
one 0-cell which is not e0.

• A 1-cell expansion. Suppose (e1, e0) is a pair such that e1 is a 1-cell in the interior of
Di and e0 ∈ ∂e1 ∩∂Di. Make a cut along e1 starting from e0, so two copies of e0 and e1

are found in Di+1. This has the effect of introducing two new 1-cells into the boundary
of the diagram.

• A 2-cell collapse. Remove a pair (e2, e1) where e2 is a 2-cell of Di with e1 a 1-cell of
∂e2 ∩ ∂Di (note that the 0-skeleton of Di is the same as that of Di+1).

6It is conventional in this context to define diameter to be the maximum distance to the basepoint, rather
than the maximum distance between two vertices. Obvious inequalities relate the two alternatives.
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The filling length of the shelling D0,D1, . . . ,Dm of Dw is defined to be

max {ℓ(∂Di) | 0 ≤ i ≤ m} .

The filling length FL(w) of Dw is defined to be the minimal filling length amongst all shellings
of Dw.

The area (resp. diameter, filling length) of a null-homotopic word w is the
minimal area (resp. diameter, filling length) of all van Kampen diagrams filling w.

For M = Area, Diam and FL we define M(n) to be the maximum of M(w) amongst all
null-homotopic words w of length at most n. Thus we have defined three functions:

• the Dehn function Area : N → N,

• the minimal isodiametric function Diam : N → N,

• and the filling length function FL : N → N.

Any function f : N → N such that f(n) ≥ Area(n) for all n is referred to as an isoperi-
metric function for P. Thus the Dehn function can alternatively be referred to as the
minimal isoperimetric function . Similarly, any function that is an upper bound for
Diam is referred to as an isodiametric function .

We say that functions f(n), g(n) and h(n) that are upper bounds for Area(n), Diam(n)
and FL(n) are realisable simultaneously when, for any given null-homotopic word w of
length n there is a van Kampen diagram Dw with

Area(Dw) ≤ f(n)

Diam(Dw) ≤ g(n)

FL(Dw) ≤ h(n).

It is important to note that Area, Diam and FL are defined with respect to a fixed finite
presentation for Γ. However they are group invariants in the sense that if P and Q are two
finite presentations for Γ then the respective functions are ≃-equivalent (see Definition 2.5.2).
This is proved in [20] for Area and Diam and in [18] for FL.

There is an extensive literature concerning isoperimetric functions and isodiametric func-
tions – see, for example, [4], [7], [16], [35] and [42] and references therein. Filling length is
less well known; some of its properties are discussed in [18]. There is increasing evidence of
its importance – in particular it plays a pivotal role in a recent proof of a long-standing open
question about isoperimetric functions for nilpotent groups (see [17] and §5.7 of this article).

Another approach to the definition of Area and FL is via null-sequences. Suppose, as
before, that w is a null-homotopic word in the presentation P. Then a null-sequence for w
is a sequence

w = w0, w1, . . . , wm = 1

of words (where 1 denotes the empty word) in which wi+1 is obtained from wi by applying
a relator, inserting an inverse pair, or removing an inverse pair. The filling length of a null-
sequence is the length of the longest of the words wi. An equivalent definition of the filling
length FL(w) of w is as the minimal filling length amongst all null-sequences for w. Similarly
the Area of a null-sequence is the number of application of a relator moves it involves, and
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Area(w) is the minimal area amongst all null-sequences for w. For a carefully treatment of
this please refer to [18, Proposition 1].

One sees that Area and FL are non-deterministic space and time complexity measure, re-
spectively, for the word problem working within the limited context of null-sequences (some-
times called the Dehn proof system) – more details can be found in [17], [18] and [40].

2.5.4 Van Kampen’s Lemma

An alternative definition of the area Area(w) a null-homotopic word w in a finite presentation
P = 〈A | R〉 is as the minimal N such that there is an equality

w =

N∏

i=1

u−1
i riui

in the free group F (A) for some ri ∈ R±1 and words ui. That this formulation agrees with
the definition given in §2.5.3 follows from van Kampen’s Lemma with Rw = R below. (In
fact, van Kampen’s Lemma is often given with Rw = R for all w, however we will need a
slightly more general version.) First we need the following definition of a diagram (compare
Definition 2.5.1).

Definition 2.9. A diagram is a finite, planar, contractible, combinatorial 2-complex. One
can think of a diagram as a planar tree-like arrangement of topological 2-discs and 1-dimensional
arcs.

Lemma 2.10 (van Kampen’s Lemma). Let w be a null-homotopic word in a generating
set A of a group Γ with Cayley graph C(Γ,A). Let Rw be a set of null-homotopic words and
let K ∈ N. The following are equivalent:

(i). There is an equality

w =

K ′∏

i=1

uiwiu
−1
i (1)

in the free group F (A), for some K ′ ≤ K, and some words ui and wi such that the wi

are in Rw
±1.

(ii). There exists a diagram Dw (depicted in Figure 1) together with a combinatorial map

Φ : D
(1)
w → C(Γ,A) satisfying:

• the number of 2-cells of Dw is at most K;

• Φ maps ∂Dw (reading from a basepoint ⋆) to the edge circuit defined by w;

• the boundary circuit of each 2-cell of Dw is mapped by Φ to an edge circuit around
which one reads a word from Rw (reading in one direction or the other from some
starting vertex).

Proofs of van Kampen’s Lemma can be found in Bridson [7], Lyndon and Schupp [31], or
Ol’shanskii [34].
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Figure 1: The diagram Dw of van Kampen’s Lemma.

3 Filling functions in a coarse geometric setting

Let X be a metric space.
In the forthcoming definitions of filling functions for X, the appropriate notion of a coarse

N -sphere in a space X will be a map γ : C(0) → X of the 0-skeleton of certain combinatorial
structures C for SN into X. Roughly speaking, a filling (a “partition”) will be an extension
γ̄ : C̄(0) → X of γ, where C̄ is a combinatorial structure for the (N + 1)-disc and ∂C̄ is a
refinement of C. What will make such a filling effective is that we restrict the combinatorial
type of C̄ and the mesh, which we now define, decreases (approximately halves, in fact).

Definition 3.1. Suppose X is a metric space, C is a (possibly singular) combinatorial com-
plex and γ : C(0) → X is a map from the 0-skeleton of C to X. Then we define the mesh of
the pair (C, γ) by

mesh(C, γ) := max {d(γ(a), γ(b)) | a and b are the end vertices of a 1-cell in C} .

3.1 The definition of the 1-dimensional filling function Fill1µ1

Fix any µ1 ≥ 0. We shall define the 1-dimensional function

Fill1R,µµµ = Fill1µ1
: [0,∞) → N ∪ {∞}

for our metric space X.
In general the k-filling function FillkR,µµµ will be defined with reference to the entries

R1, R2, . . . , Rk−1 of the sequence R = (Ri) and the entries µ1, µ2, . . . , µk of the sequence
µµµ = (µi). But this means that Fill1R,µµµ only depends on µ1 and hence we adopt the more

concise notation Fill1µ1
.

Definition 3.2. We define Fill1µ1
(ℓ) to be the least integer K such that given any a, b ∈ X with

d(a, b) ≤ ℓ, there are a0, a1, . . . , aK with a0 = a and aK = b, such that for i = 0, 1, . . . ,K − 1

d(ai, ai+1) ≤
ℓ

2
+ µ1.
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But if no such least K exists or if for some a, b ∈ X no such sequence exists then Fill1µ1
(ℓ) := ∞.

Examples 3.3.

1. A metric space X is bounded if and only if there exists µ1 ≥ 0 such that Fill1µ1
≡ 1. If

X is bounded then, in fact, its asymptotic cones each consist of just one point.

2. In any finitely generated group Γ with a word metric, each pair of points a0, a2 has a
mid-point a1 modulo a possible error term of 1

2 : that is,

max
{
d(a0, a1), d(a1, a2)

}
≤

1

2
d(a0, a2) +

1

2
.

So Γ satisfies Fill11
2

(ℓ) = 2 for all ℓ > 0. In the Cayley Graph of Γ, as indeed in any

geodesic metric space, we have Fill10(ℓ) = 2 for all ℓ ∈ (0,∞).

Figure 2: Coarse Koch Snowflake Curve.

3. Suppose there are µ1 ≥ 0 and K1 ∈ N such that for a metric space X we have Fill1µ1
(ℓ) ≤

K1 for all ℓ ≥ 0. If we iteratively partition as constrained by Fill1µ1
then we obtain a

coarse path between any two points a, b ∈ X. Let ℓ := d(a, b). At worst this coarse path
resembles a coarse Koch snowflake curve (see Figure 2): after r iterations we have a
chain of at most K1

r +1 points starting at a and ending at b with the distance between
adjacent points at most

ℓ

2r
+ µ1 +

µ1

2
+ . . .+

µ1

2r−1
.

So when r is the least integer greater than or equal to log2 ℓ, the distance between
adjacent points is reduced to at most 2µ1 +1. We say the chain of points is an (2µ1 +1)-
coarse path between a and b. The number of points making up this coarse path is at
most K1

1+log2 ℓ = K1ℓ
log2 K1, a bound which is polynomial in ℓ. Also note that we can

find a linear bounded in ℓ on the diameter of this coarse path by summing the series:

K1

r∑

i=1

(
ℓ

2i
+ µ1 +

µ1

2
+ . . .+

µ1

2i−1

)
≤ K1( ℓ+ 2µ1(1 + log2 ℓ) ).
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(The bounds in this paragraph anticipate the higher dimensional isoperimetric and
isodiametric functions we will prove in Theorem D.) If µ1 = 0 then the limit one
obtains is a genuinely continuous but possibly non-rectifiable path (see the proofs of
Proposition 4.1).

In anticipation of the forthcoming higher dimensional definitions we pause to express
Definition 3.2 in alternative terms. Define C to be the combinatorial structure for the 1-disc
that has just one 1-cell and has 0-skeleton S0 = {−1, 1}. Let γ be a map C → X. A partition
of the pair (C, γ) is a pair (C̄, γ̄) such that C̄ is any finite combinatorial structure for the
1-disc (i.e. a concatenation of 1-cells), and γ̄ : C̄(0) → X is an extension of γ. In this case
Definition 3.1 declares mesh(C, γ) to be d(γ(−1), γ(1)) and mesh(C̄, γ̄) to be the maximum
distance between the images under γ̄ of the two vertices at the ends of each 1-cell in C̄.

For γ : C → X and for c ≥ 0 let P(γ, c) denote the set of all partitions (C̄, γ̄) of γ such
that mesh(C̄, γ̄) ≤ c.

If P(γ, c) is non-empty then define

F(γ, c) := min

{
#1(C̄)

∣∣∣∣ (C̄, γ̄) ∈ P (γ, c)

}
,

and if P(γ, c) is empty then define F(γ, c) := ∞. (Recall that #1(C̄) denotes the number of
1-cells in C̄.)

Fill1µ1
(ℓ) = sup

{
F(γ,

ℓ

2
+ µ1)

∣∣∣∣ γ : C → X with mesh(C, γ) ≤ ℓ

}
.

We remark that the choice of the factor 1
2 in the decrease of the mesh in the definition of

the filling function is essentially arbitrary for our purposes: we will be concerned with when
Fill1µ1

is a bounded function and this property is independent of the choice of factor from the

interval (0, 1). The same comment applies to the factor of 1
2 in the forthcoming definitions of

the 2-dimensional and then the higher dimensional filling functions FillNR,µµµ.

3.2 The definition of the 2-dimensional filling function Fill2
R,µµµ

We now define the 2-dimensional filling function Fill2R,µµµ : [0,∞) → N ∪ {∞}, with respect
to real numbers µ1, µ2 with 0 ≤ µ1 ≤ µ2 and an integer R1 ≥ 3. Recall that the notation
R = (Ri) and µµµ = (µi) anticipates the forthcoming higher dimensional generalisation, but
R2, R3, . . . and µ3, µ4, . . . are redundant for the purposes of Fill2

R,µµµ.

Definition 3.4. Define Sph1
R to be the set of pairs (C, γ) such that C ∼= S1 is a combinatorial

complex homeomorphic to the 1-sphere with #1(C) ≤ R1, and γ : C(0) → X is a map with
domain the 0-skeleton of C.

It will be important later that the complexes used in the definition are also involved in the
definition of R-combinatorial complexes: they provide combinatorial structures for S1 when
giving the maps for attaching 2-cells. Also notice that because R1 ≥ 3 these combinatorial
1-complexes may be the boundary of a 2-simplex. Roughly speaking Fill2R,µµµ measures how

readily such γ can be extended to some γ̄ : C̄(0) → X in a controlled manner, where C̄ is a
combinatorial structure for the 2-disc.
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Consider (C, γ) ∈ Sph1
R. For each (closed) 1-cell e of C the 1-dimensional filling function

tells us about extending γ |e . If Fill1
R,µµµ(mesh(C, γ)) <∞ then we can refine each such e into

a 1-complex ē consisting of at most Fill1R,µµµ(mesh(C, γ)) 1-cells, in such a way that there is an

extension γē : ē(0) → X of γ |e with

mesh(ē, γē) ≤
mesh(C, γ)

2
+ µ1. (2)

An essential edge partition of (C, γ) ∈ Sph1
R is any pair (Ĉ, γ̂) such that Ĉ is a refinement

of C obtained by refining all the edges e of C into 1-complexes ē as above, and γ̂(0) : Ĉ → X
is the extension of γ such that γ̂ |ē = γē for every ē. Note that

mesh(Ĉ, γ̂) = max
e

{mesh(ē, γē) | e is a 1-cell of C}

and so also satisfies the bound (2).

A partition of (C, γ) subject to an essential edge partition (Ĉ, γ̂) is defined to
be any pair (C̄, γ̄) for which C̄ is an R-combinatorial decomposition of the 2-disc D2 with
∂C̄ = Ĉ (as 1-complexes) and γ̄ : C̄(0) → X is an extension of γ̂.

For each (C, γ) ∈ Sph1
R

, for each essential edge partition (Ĉ, γ̂) of (C, γ), and for each
c ≥ 0, let

P
(
(C, γ), (Ĉ, γ̂), c

)

denote the set of those partitions (C̄, γ̄) of (C, γ) subject to (Ĉ, γ̂) that have mesh(C̄, γ̄) ≤ c.

If P
(
(C, γ), (Ĉ, γ̂), c

)
is non-empty then define

F
(
(C, γ), (Ĉ, γ̂), c

)
:= min

{
#2(C̄)

∣∣∣∣ (C̄, γ̄) ∈ P
(
(C, γ), (Ĉ, γ̂), c

)}
,

and if P
(
(C, γ), (Ĉ, γ̂), c

)
is empty then define F

(
(C, γ), (Ĉ, γ̂), c

)
:= ∞.

The function Fill2R,µµµ(ℓ) : [0,∞) → N ∪ {∞} controls the number of 2-cells required to

produce a partition (C̄, γ̄) of any (C, γ) ∈ Sph1
R

with mesh(C, γ) ≤ ℓ (subject to any essential
edge partition), in such a way that the mesh is halved modulo the additive error term µ2.

Definition 3.5. If Fill1R,µµµ(ℓ) = ∞ then define Fill2R,µµµ(ℓ) := ∞. Otherwise any (C, γ) ∈ Sph1
R

with mesh(C, γ) ≤ ℓ admits an essential edge partition and we define

Fill2R,µµµ(ℓ) := sup

{
F

(
(C, γ), (Ĉ, γ̂), ℓ/2 + µ2

)∣∣∣∣(C, γ) ∈ Sph1
R with mesh(C, γ) ≤ ℓ,

and (Ĉ, γ̂) is an essential edge partition of (C, γ)

}
.

In §5.2 we will reinterpret what the function means in the context of finitely generated
groups. For a more ad hoc example of Fill2R,µµµ in action consider the space X obtained by
removing from the Euclidean plane an infinite collection of disjoint open balls Bn whose radii
are n and whose centres are on the x-axis. This space, given the path metric, is a geodesic
space and so has Fill10(ℓ) = 2 for all ℓ ∈ (0,∞). However if µ1 := 0 and R1 := 3 then we
find that Fill2

R,µµµ(ℓ) = ∞ whenever ℓ is sufficiently larger that µ2. For instance take C to be
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a triangle and the image of γ : C(0) → C to be three equally spaced points on the boundary
of one of the holes Bn. Then the image of γ̂, for any essential boundary partition (Ĉ, γ̂)
of (C, γ), is six equally spaces points on the boundary of Bn. Then, assuming n >> µ2, no
partition (C̄, γ̄) of (C, γ) subject to (Ĉ, γ̂) exists.

For a more elaborate example start with the Euclidean plane with an infinite collection
of disjoint open balls Bn,i removed for all n, i ∈ N r {0} with i ≥ n, where each Bn,i has
radius n and is centred on some vertical line x = ci. Let So

n,i be a Euclidian 2-sphere of radius
i with a disc removed by cutting along a circle of perimeter 2πn. Obtain the space Y by
attaching each So

n,i in the obvious way to the boundary of the hole where Bn,i was removed.
The space Y with the path metric is a geodesic space and it turns out that we can draw
the same conclusions about Fill1R,µµµ and Fill2R,µµµ as we did for the space X. However on this

occasion the reason Fill2R,µµµ takes infinite values is not the non-existence of partitions (C̄, γ̄)
but rather that there is no bound on the number of 2-cells in the C̄.

3.3 The definition of the higher dimensional filling functions FillN
R,µµµ

The definition of 2-dimensional filling functions as set out above, readily generalises to higher
dimensions. The N -dimensional filling function FillN

R,µµµ : [0,∞) → N ∪ {∞} is defined re-
cursively and is given with reference to real numbers 0 ≤ µ1 ≤ . . . ≤ µN and integers
R1, R2, . . . , RN−1 such that each Ri ≥ i + 2. It is convenient to use the sequence notation
R = (Ri) and µµµ = (µi), but the entries RN , RN+1, . . . and µN+1, µN+2, . . . are redundant.

Let us suppose we have defined the functions Fill1R,µµµ, . . . ,FillN−1
R,µµµ : [0,∞) → N∪ {∞} and

explain how then to define FillN
R,µµµ. First we need:

Definition 3.6. Let SphN−1
R

be the set of pairs (C, γ) such that C ∼= SN−1 is an R-
combinatorial complex homeomorphic to the (N − 1)-sphere with #N−1(C) ≤ RN−1, and
γ is a map C(0) → X.

Note that the C referred to in this definition are precisely the complexes which provide
the combinatorial structures for the (N − 1)-spheres that are used to attach N -cells in R-
combinatorial structures. The insistence that each Ri ≥ i + 2 ensures that the C of Defini-
tion 3.6 include the boundary of an N -simplex.

Consider (C, γ) ∈ SphN−1
R

and suppose that

Fill1R,µµµ(mesh(C, γ)), Fill2R,µµµ(mesh(C, γ)), . . . , FillN−1
R,µµµ (mesh(C, γ)) < ∞.

An essential boundary partition of (C, γ) is any pair (Ĉ, γ̂) := (CN−1, γN−1) that can be
obtained from any sequence of pairs

(C, γ) = (C0, γ0), (C1, γ1), . . . , (CN−1, γN−1) = (Ĉ, γ̂)

in the following way. Each Ck will be a refinement of Ck−1 and each γk : C
(0)
k → X is an

extension of γk−1; further

mesh(Ck, γk) ≤
mesh(C, γ)

2
+ µk.

Let (C0, γ0) := (C, γ). For each (closed) 1-cell e1 of C0, take any refinement of e1 into
a 1-complex e1 with #1(e1) ≤ Fill1

R,µµµ(mesh(C0, γ0)) such that there is an extension γ
e1 :
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e1
(0)

→ X of γ0 |e1 with

mesh(e1, γ
e1) ≤

mesh(C0, γ0)

2
+ µ1. (3)

Let C1 denote the resulting refinement of C0 and γ1 : C
(0)
1 → X the resulting extension of γ0.

Next we refine each (closed) 2-cell e2 of C1 into any 2-complex ē2 with #2(e2) ≤

Fill2R,µµµ(mesh(C, γ)) in such a way that there is an extension γ
e2 : e2

(0)
→ X of γ1 |e2 with

mesh(e2, γ
e2) ≤

mesh(C, γ)

2
+ µ2. (4)

Let C2 be a refinement of C1 obtained by refining all the 2-cells e2 of C1 in this way and let

γ2 : C
(0)
2 → X be the resulting extension of γ1. Note that ∂e2 = ∂e2 because the refining of

e2 to produce e2 is subject to the previously performed 1-cell refinements. Therefore it makes
sense to build C2 by assembling the refinements of the 2-cells of C1. For a similar reason the
definition of γ2 makes sense.

Similarly we can produceC3 by refining the 3-cells of C2, each into at most Fill3
R,µµµ(mesh(C, γ))

3-cells, and we can extend γ2 to γ3 : C
(0)
3 → X. Continuing in the same manner through the

dimensions we eventually arrive at a pair (CN−1, γN−1) with

mesh(CN−1, γN−1) ≤
mesh(C, γ)

2
+ µN−1.

Now a partition of (C, γ) subject to an essential boundary partition (Ĉ, γ̂) is
defined to be any pair (C̄, γ̄) for which γ̄ : C̄(0) → X is an extension of γ̂ and C̄ is an
R-combinatorial decomposition of the N -disc DN with ∂C̄ = Ĉ as (N − 1)-complexes.

For each (C, γ) ∈ SphN−1
R

, for each essential boundary partition (Ĉ, γ̂) of (C, γ), and for
each c ≥ 0, let

P
(
(C, γ), (Ĉ, γ̂), c

)

denote the set of all partitions (C̄, γ̄) of (C, γ) subject to (Ĉ, γ̂) that have mesh(C̄, γ̄) ≤ c.

When P
(
(C, γ), (Ĉ, γ̂), c

)
is non-empty define

F
(
(C, γ), (Ĉ, γ̂), c

)
:= min

{
#N (C̄)

∣∣∣∣ (C̄, γ̄) ∈ P
(
(C, γ), (Ĉ, γ̂), c

)}
,

and if P
(
(C, γ), (Ĉ, γ̂), c

)
is empty then define F

(
(C, γ), (Ĉ, γ̂), c

)
:= ∞.

We can now define FillNR,µµµ(ℓ).

Definition 3.7. If FillkR,µµµ(ℓ) = ∞ for some k ∈ {1, 2, . . . ,N − 1} then define FillNR,µµµ(ℓ) := ∞.

Otherwise any (C, γ) ∈ SphN−1
R

with mesh(C, γ) ≤ ℓ admits an essential boundary partition
and we define

FillNR,µµµ(ℓ) := sup

{
F

(
(C, γ), (Ĉ, γ̂), ℓ/2 + µN

)∣∣∣∣(C, γ) ∈ SphN−1
R

with mesh(C, γ) ≤ ℓ,

and (Ĉ, γ̂) is an essential boundary partition of (C, γ)

}
.
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4 Characterising metric spaces with highly connected asymp-

totic cones

Here is the characterisation:

Theorem A. Let X be a metric space, let ω be a non-principal ultrafilter, and N ≥ 0. The
following are equivalent.

• The asymptotic cones Coneω(X, e, s) are N -connected for all e and s.

• There exist R, µµµ such that the filling functions Fill1R,µµµ,Fill2R,µµµ, . . . ,FillN+1
R,µµµ are bounded.

We will prove this theorem by induction on N , presenting first the case N = 0, which gives
a characterisation of metric spaces with path-connected asymptotic cones. We will prove the
case N = 1 in §4.2; that is, we will characterise metric spaces with 1-connected asymptotic
cones. Then in §4.3 we will generalise the argument to higher dimensions, giving the induction
step and thus completing the proof.

The condition of Theorem A that the Coneω(X, e, s) are N -connected is a quasi-isometry
invariant. Consequently, by Corollary 2.6, the property of

Fill1R,µµµ, Fill2R,µµµ, . . . , FillN+1
R,µµµ

being bounded for some R and µµµ is also a quasi-isometry invariant for metric spaces.
The approach we use in this section builds on [37] which, in turn, has origins in [25].

4.1 Characterising path connectedness

The first step towards Theorem A is the following characterisation of metric spaces with path
connected cones. Recall that we use the notation Fill1µ1

to denote the 1-dimensional filling

function Fill1R,µµµ, as this function is defined only with reference to one constant, i.e. a number
µ1 ≥ 0.

Proposition 4.1. Let X be a metric space and ω be a non-principal ultrafilter. The following
conditions are equivalent.

• There exist K1 ∈ N and µ1 ≥ 0 such that in X:

∀ℓ ≥ 0, Fill1µ1
(ℓ) ≤ K1.

• The asymptotic cones Coneω(X, e, s) are path connected for all e and s.

Proof. First let us prove that boundedness of Fill1µ1
implies that the asymptotic cones of X

are path connected. Suppose we are given f : {−1, 1} → Coneω(X, e, s) with f(−1) = e.
Let ℓ := mesh(f) = d(f(−1), f(1)). We seek to extend f to a continuous map f̄ : D1 →
Coneω(X, e, s).

Lemma 4.2. Assume K1 <∞ is a bound on Fill1µ1
. Let γ be a map C(0) → Coneω(X, e, s),

where C(0) = C := S0 = {−1, 1}. Then there is an extension γ̄ : C̄(0) → Coneω(X, e, s), where
C̄ is some combinatorial decomposition of D1 with K1 1-cells and mesh(C̄, γ̄) ≤ 1

2mesh(γ).
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Proof of Lemma 4.2. We can express γ : C(0) → Coneω(X, e, s) as (γn), say, where each γn

is a map C(0) → X. By hypothesis there exist K1 ∈ N and µ1 > 0 such that we can find

partitions γ̄n : C̄
(0)
n → X of γn, with #1(γ̄n) ≤ K1 and mesh(C̄n, γ̄n) ≤ 1

2mesh(γn) + µ1. For
simplicity we can take each C̄n to have exactly K1 1-cells. So each C̄n may as well be C̄,
the unique (up to combinatorial isomorphism) combinatorial complex homeomorphic to D1

which has K1 1-cells. Then γ̄ := (γ̄n) is a well-defined map C̄(0) → Coneω(X, e, s) because
for all v ∈ C̄(0)

d(e, γ̄(v)) ≤ d(e, γ̄(v0)) + d(γ̄(v0), γ̄(v)),

where v0 ∈ C(0), and

d(γ̄(v0), γ̄(v)) = lim
ω

1

sn
d(γ̄n(v0), γ̄n(v)) ≤ lim

ω

1

sn
K1 mesh(C̄n, γ̄n)

≤ lim
ω

1

sn
K1

(
1

2
mesh(γn) + µ1

)
=

K1

2
mesh(γ).

The final equality follows from the definition of distance in the cone as do the outer equalities
in the following.

mesh(C̄, γ̄) = lim
ω

mesh(C̄n, γ̄n)

sn
≤ lim

ω

1

sn

(
1

2
mesh(γn) + µ1

)
=

1

2
mesh(γ).

This completes the proof of the lemma.

Thus between any two points a,b ∈ Coneω(X, e, s) we can find a chain of K1 + 1 points
a0,a1, . . . ,aK1, where a0 = a, aK1 = b and each d(ai,ai+1) ≤ 1

2d(a,b). We iterate this
procedure, and use the completeness of asymptotic cones to construct a path between e =
f(−1) and f(1).

Let T0 := D1 with the obvious cell structure of one 1-cell and two 0-cells. We successively
refine the cell structure of T0 to produce cellular structures T1,T2, . . . for D1 as follows. Obtain
Tn from Tn−1 by refining every 1-cell of Tn−1 into K1 1-cells. So Tn is a cell decomposition of
D1 with K1

n 1-cells.7

Define f0 : T
(0)
0 → Coneω(X, e, s) by f0 := f . Then using Lemma 4.2 inductively define

fn : T
(0)

n → Coneω(X, e, s) to be an extension of fn−1 : T
(0)

n−1 → Coneω(X, e, s) such that
mesh(Tn, fn) ≤ 1

2mesh(Tn−1, fn−1). Then mesh(Tn, fn) ≤ 1
2n ℓ.

We now define f̄ : D1 → Coneω(X, e, s). Given x ∈ D1 choose xn ∈ T
(0)
n such that

x and xn are in the same 1-cell of Tn. Then define f̄(x) := lim
n→∞

fn(xn). Observe that

d(fn(xn), fn+1(xn+1)) ≤ K1
ℓ

2n+1 , and so for m > n

d(fm(xm), fn(xn)) ≤

m−1∑

k=n

K1
ℓ

2k+1
≤ K1

ℓ

2n
.

Thus the sequence (fn(xn)) is Cauchy, and since Coneω(X, e, s) is complete, the limit limn→∞ fn(xn)
exists. A similar argument shows f̄(x) to be independent of the choice made in selecting each
xn.

7It would seem natural to take the 1-cells of Tn to correspond to intervals of equal length 2/K1
n in D1.

In fact this is not necessary and in the higher dimensional arguments we will not be able to assume such
regularity.
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Clearly f̄
∣∣
{−1,1} = f . To complete the proof that Coneω(X, e, s) is path connected, all

that remains to check is the continuity of f̄ . The following lemma suffices.

Lemma 4.3. Suppose C ⊂ D1 is one of the 1-cells of Tn. Then diam f̄(C) ≤ (2K1 + 1)ℓ/2n.

Proof of Lemma 4.3. Consider x, y ∈ C. Then f̄(x) = limm→∞ fm(xm) and f̄(y) =
limm→∞ fm(ym) where (xn) and (yn) can be taken to be sequences in C ⊂ D1. For m > n we
find

d(fm(xm), fm(ym)) ≤ d(fm(xm), fn(xn)) + d(fn(xn), fn(yn)) + d(fn(yn), fm(ym))

≤ K1
ℓ

2n
+

ℓ

2n
+K1

ℓ

2n
.

Thus d(f̄(x), f̄ (y)) ≤ (2K1 + 1)ℓ/2n as required.

We now come to the proof of the reverse implication; so suppose that the asymptotic
cones Coneω(X, e, s) are path connected for all e and s. Let us assume that for all µ1 ≥ 0
the function Fill1µ1

is, in fact, unbounded. Then recalling the definition of Fill1µ1
from §3.1 we

find that for all n ∈ N there exist an, bn ∈ X for which there are no a0
n, a

1
n, ..., a

n
n ∈ X such

that

a0
n = an and an

n = bn, and

d(ai
n, a

i+1
n ) ≤

1

2
d(an, bn) + n, for i = 0, ..., n − 1. (5)

Now we seek a contradiction.
Define a sequence of base points e = (en) by en := an and scalars s = (sn) by sn :=

d(an, bn). Each sn is at least n as otherwise the error term “+n” in (5) would render the
existence of the a0

n, a
1
n, ..., a

n
n trivial. So sn → ∞ as n → ∞. By hypothesis, Coneω(X, e, s)

is path connected, and so there exists a continuous path γ : [−1, 1] → Coneω(X, e, s) with
γ(−1) = e := (en) and γ(1) = b := (bn). (Note that b is a well-defined point in Coneω(X, e, s)
because of our definition of s.) By uniform continuity on the compact set [−1, 1], there exists
K ∈ N such that when we subdivide the interval [−1, 1] into K intervals Ii of equal length
2/K, we find that diam(γ(Ii)) ≤ 1/4 for each i. Define ai := γ(−1+i2/K) for i = 0, 1, . . . ,K.
Choose representatives ai = (ai

n) with a0 = (an) = (en) and aK = (bn). By definition

lim
ω

1

sn
d(ai

n, a
i+1
n ) = d(ai,ai+1)

and so for ω-infinitely many n
∣∣∣∣d(a

i,ai+1) −
1

sn
d(ai

n, a
i+1
n )

∣∣∣∣ ≤
1

4
. (6)

The intersection of finitely many sets of ω-measure 1 itself has ω-measure 1. Thus there
is an infinite set J of ω-measure 1 such that for all n ∈ J the inequality (6) holds for
i = 0, 1, . . . ,K − 1. Now, since sn = d(an, bn) and d(ai,ai+1) ≤ 1/4, we can deduce that for
n ∈ J , and for i = 0, ...,K − 1

d(ai
n, a

i+1
n ) ≤

1

2
d(an, bn).

Hence, referring back to 5), we see have a contradiction and the proof is complete.
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Remark 4.4. When there exists µ1 ≥ 0 such that Fill1µ1
(ℓ) ≤ 2 for all ℓ ≥ 0 it turns out that

each Coneω(X, e, s) is a geodesic space. The path between a and b constructed in the proof
of Proposition 4.1 is a geodesic. Indeed if the Tn in this proof are constructed from K1

n equal
intervals then the resulting path will also be parametrised proportional to arc length.

4.2 Characterising 1-connectedness

Next we characterise metric spaces with 1-connected asymptotic cones. Recall that the 2-
dimensional filling function Fill2

R,µµµ is defined with reference to the constants 0 ≤ µ1 ≤ µ2 and
R1 ∈ N.

Proposition 4.5. Let X be a metric space and ω be a non-principal ultrafilter. Suppose the
asymptotic cones Coneω(X, e, s) are path connected for all e and s. Fix µ1 ≥ 0 and K1 ∈ N

such that in X,
∀ℓ ≥ 0, Fill1µ1

(ℓ) ≤ K1.

(Proposition 4.1 tells us that such µ1 and K1 exist.) The following are equivalent.

• There exists R1,K2 ∈ N (with R1 ≥ 3) and µ2 ≥ µ1 such that in X:

∀ℓ ≥ 0, Fill2R,µµµ(ℓ) ≤ K2.

• The asymptotic cones Coneω(X, e, s) are 1-connected for all e and s.

Moreover we can, in fact, take R1 = 1 +K1.

Proof. Let us assume X is an unbounded metric space, else the asymptotic cones are points
rendering the theorem trivial.

First we suppose there are R1 ≥ 3 and µ2 ≥ µ1 such that Fill1µ1
(ℓ) ≤ K1 for all ℓ ≥ 0 and

we prove that the asymptotic cones of X are then all 1-connected. So we fix e and s and
consider a closed loop f based at e in Coneω(X, e, s). This can be viewed as a continuous map
f : (∂D2, ⋆) → (Coneω(X, e, s) , e). The set f(∂D2) is compact and so has finite diameter L.
Our objective is to show that f can be extended to a continuous map D2 → Coneω(X, e, s).

We take a tessellation T0 of D2 by triangles whose vertices all lie in ∂D2. This is constructed
by regarding the interior of D2 as the Klein model of the hyperbolic plane, inscribing an ideal
triangle and then reflecting repeatedly in its edges to cover the plane – see the leftmost
diagram of Figure 3. Let ∆i ⊂ D2 be the triangles obtained from the ideal triangles by
including their ideal vertices. Then T0 is the tessellation of

⋃
i ∆i of D2. (Note that the

tessellation only includes a countable dense subset of ∂D2.) We will appeal to the following
properties of T0.

• The vertices T
(0)
0 of T0 are dense in S1.

• With respect to the usual Euclidean metric d on D2, we find that for all κ > 0 only
finitely many triangles ∆ ⊂ D2 of the tessellation T0 have diam(∆) > κ.

Each triangle ∆ in the tessellation T0 admits the combinatorial structure ∆ ∼= C of a 2-
simplex C. And T0 is an infinite combinatorial structure, built up by joining the combinatorial
structures admitted by the triangles across common edges. Now f restricts to the vertices of

T0 to give a map f0 : T
(0)
0 → Coneω(X, e, s). If, for any ∆ in T0, we define γ∆ : ∆(0) → X
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Figure 3: Tessellations T0,T1,T2.

to be the restriction of f to the vertices of ∆ then we find mesh(∆, γ∆) ≤ L because L =
diamf(∂D2). Furthermore (in the notation of §3.2) the pair (∆, γ∆) ∈ Sph1

R since R1 ≥ 3.
We will now produce successive refinements8 T1,T2, . . . of T0, as depicted in Figure 3 (in the

case R1 = 4). At the same time we shall define a sequence of maps fn : T
(0)

n → Coneω(X, e, s)
such that each fk+1 extends fk, and each 2-cell C of Tk is refined to some combinatorial 2-
complex C̄ in Tk+1, in such a way that

mesh(C̄, fk+1 |C̄(0) ) ≤
1

2
mesh(C, fk |C(0) ).

We define

mesh(Tk, fk) := sup {d(fk(a), fk(b)) | a and b are endpoints of an edge of Tk} .

Then mesh(T0, f0) ≤ L, and it will be the case that for all k ≥ 0

mesh(Tk+1, fk+1) ≤
1

2
mesh(Tk, fk)

and so it will follow that mesh(Tn, fn) ≤ L/2n for all n ≥ 0.
Fix k ≥ 0. It suffices to describe the process of producing (Tk+1, fk+1) from (Tk, fk).

Choose a sequence of maps fk,i : T
(0)

k → X so that (fk,i)i∈N = fk. First we make essential

edge partitions (T̂k,i, f̂k,i) of (Tk, fk,i). By hypothesis there are µ1 ≥ 0 and K1 ∈ N such that
Fill1µ1

(ℓ) ≤ K1 for all ℓ ≥ 0. So each 1-cell of Tk can be refined into at most K1 1-cells to

produce T̂k,i with

mesh(T̂k,i, f̂k,i) ≤
1

2
mesh(Tk, fk,i) + µ1.

Next suppose that C is one of the 2-cells forming the tessellation Tk, and Ĉi is its refinement
in T̂k,i. Then we can define a pair (C, γi), where γi : C(0) → X is fk,i |C(0) , and we consider

its essential edge partition (Ĉi, γ̂i), where

γ̂i := f̂k,i

∣∣∣
Ĉ

(0)
i

: Ĉ
(0)
i → X.

8The closure of any 2-cell of the tessellation Ti is a finite combinatorial complex in the sense of §2.3. A
refinement Ti is produced by refining (as defined in §2.3) all the 2-cells of Ti in a way that agrees across common
1-cells.

27



The assumption that Fill2R,µµµ is bounded by K2 allows us to deduce there we can find a

partition (C̄i, γ̄i) of (C, γi) subject to (Ĉi, γ̂i) satisfying:

#2(C̄i) ≤ K2, and

mesh(C̄i, γ̄i) ≤
1

2
mesh(Ci, γi) + µ2.

This process of partitioning is repeated for all of the 2-cells in Tk,i, producing f̄k,i : T̄
(0)

k,i →
X. The refinements of the 2-cells agree across common boundaries of 2-cells in Tk,i, as do the
functions γ̄i. Hence we can collect them all together and produce (T̄k,i, f̄k,i). It is reasonable

to refer to (T̄k,i, f̄k,i) as a partition of (Tk, fk,i) subject to (T̂k,i, f̂k,i).

We would now like to define fk+1 : T
(0)
k+1 → Coneω(X, e, s) to be the ω-limit of (f̄k,i).

To make sense of this we should first explain how we refine Tk to produce Tk+1. This is a
two-stage process: we first refine the 1-cells and then refine the 2-cells. Recall that a 1-cell e
of Tk is refined in T̂k,i into a bounded number of 1-cells, and hence into one of finitely many
combinatorial structures up to combinatorial equivalence; it follows that (up to combinatorial
equivalence) exactly one of these combinatorial structures on e occurs for all i in some set
of ω-measure 1. Define T̂k to be the refinement of Tk obtained by refining all the 1-cells
accordingly. Similarly for a 2-cell C of Tk and γ = (γi) : C(0) → Coneω(X, e, s) we find that
Ĉi = Ĉ up to combinatorial equivalence for ω-infinitely many i, where Ĉi is the refinement
of C in T̂k,i. Further the C̄i are R-combinatorial 2-complexes with at most K2 2-cells and so
there exists C̄ such that for ω-infinitely many i, the 2-complex C̄ = C̄i up to combinatorial
equivalence, and ∂C̄ = Ĉ. Refine each Ĉ to C̄ to produce Tk+1 from T̂k. By construction

fk+1 := (f̄k,i)i∈N : T
(0)

k+1 → Coneω(X, e, s)

is well defined, and

mesh(C̄, fk+1 |C̄(0) ) ≤
1

2
mesh(C, fk |C(0) )

as required (cf. the proof of Lemma 4.2).

We are now ready to define f̄ : D2 → Coneω(X, e, s). On the boundary ∂D2 = S1 we let
f̄ := f . For x ∈ D2 r ∂D2, let xn ∈ D2 be a 0-cell of one of the 2-cells of Tn containing x, and
then define f̄(x) := limn→∞ fn(xn).

Let us check that f̄ is well defined. We prove that (fn(xn)) is a Cauchy sequence - then
as the asymptotic cone is complete this sequence converges. The observation we use is

d(fn(xn), fn−1(xn−1)) ≤ 2K2R1
L

2n
.

This holds because R1 L/2
n is a bound on the distance between the images under fn of any

two vertices of any 2-cell in Tn, and at most K2 such 2-cells are used to fill a 2-cell in Tn−1.
The remaining factor of 2 on the right hand side of the inequality accounts for the possible
non-uniqueness of the 2-cell in Tn−1 from which xn−1 can be chosen. It follows that (fn(xn))
is Cauchy: for m > n we find

d(fm(xm), fn(xn)) ≤

m∑

i=n+1

2K2 R1
L

2i
< 2K2R1

L

2n
. (7)
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A similar argument tells us that f̄ is independent of the choice of xn.

It remains to check that f̄ is a continuous extension of f . This, in part, is the purpose of
the following lemma.

Lemma 4.6. Suppose C ⊂ D2 is one of the 2-cells of the tessellation Tn. Then

diam f̄(C) ≤ R1 (4K2 + 1)mesh(C, fn |C(0) ).

Proof. Let κ := mesh(C, fn |C(0) ) and take x, y ∈ C. Then

f̄(x) := lim
n→∞

fn(xn)

and f̄(y) := limn→∞ fn(yn) for some sequences (xn) and (yn) of points in C ⊂ D2. For k ≥ n

mesh(C, fk |C ) ≤
1

2k−n
mesh(C, fn |C(0) ),

and so for m > n

d(fm(xm), fn(xn)) ≤

m∑

k=n+1

2R1K2 mesh(C, fk |C )

< 2R1K2

(
1

2
+

1

22
+ . . .

)
κ

= 2R1K2 κ.

(cf. (7) for the first inequality.) Therefore for m > n,

d(fm(xm), fm(ym)) ≤ d(fm(xm), fn(xn)) + d(fn(xn), fn(yn)) + d(fn(yn), fm(ym))

< 2R1K2 κ+R1 κ+ 2R1K2 κ

= R1 (4K2 + 1)κ.

The statement of the lemma then readily follows.

We now use Lemma 4.6 to prove continuity of f̄ . We treat the three cases x ∈ D2 − ∂D2,

x ∈ ∂D2 − T
(0)
0 and x ∈ T

(0)
0 separately. In the following, D2 is equipped with its usual

Euclidean metric. Take ε > 0.

Case x ∈ D2−∂D2. Note the bound mesh(C, fn |C(0) ) ≤ L/2n and apply Lemma 4.6 with
n sufficiently large so that R1(4K2 + 1)L/2n < ε. For all y in the 2-cells of Tn that contain
x, we find d(f̄(x), f̄(y)) < ε.

Case x ∈ ∂D2 − T
(0)
0 . Uniform continuity of f tells us that there exists δ > 0 such that

for all a, b ∈ ∂D2 with d(a, b) < δ,

d(f(a), f(b)) <
ε

2R1(4K2 + 1)

(whence in particular d(f(a), f(b)) < ε/2). We say that a 2-simplex ∆ ⊂ D2 of the tessellation
T0 is δ-small if diam(∆) < δ. It follows that any δ-small 2-simplex ∆ of T0 satisfies

mesh(∆, f |∆(0) ) ≤
ε

2R1(4K2 + 1)
,
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and so by Lemma 4.6 satisfies diamf̄(∆) < ε/2.
Only finitely many 2-simplices of the tessellation T0 fail to be δ/2-small. So if x ∈ ∂D2 −

T
(0)
0 then we can find a δ′ < δ/2 such that the δ′-neighbourhood B(x; δ′) of x in D2 meets

only δ/2-small 2-simplices of T0. So if y ∈ B(x; δ′) then there is a δ/2-small 2-simplex ∆ of
T0 such that y ∈ ∆. If v is a 0-cell of ∆ then v ∈ ∂D2 and

d(x, v) ≤ d(x, y) + d(y, v) ≤ δ′ + δ/2 ≤ δ.

It follows that

d(f̄(x), f̄(y)) ≤ d(f̄(x), f̄(v)) + d(f̄(v), f̄(y)) <
ε

2
+
ε

2
= ε,

establishing continuity of f̄ at x ∈ ∂D2 r T
(0)
0 .

Case x ∈ T
(0)
0 . Continuity of f̄ for x ∈ T

(0)
0 follows from continuity of f and f̄

∣∣∣
D2rT

(0)
0

.

We now come to proving that if the asymptotic cones of X are 1-connected then Fill2
R,µµµ

is bounded. So assume that the asymptotic cones Coneω(X, e, s) are 1-connected for all e, s.
In particular the cones are path connected and so (by Proposition 4.1) there are µ1 ≥ 0 and
K1 ∈ N such that Fill1µ1

(ℓ) ≤ K1 for all ℓ ≥ 0. We seek to show that there are R1 ∈ N and

µ2 ≥ µ1 such that Fill2
R,µµµ is bounded. We will in fact show that we can take R1 to be any

integer greater than or equal to 1 +K1 (thereby justifying the coda of the statement of the
proposition). Note that K1 ≥ 2 because we assumed X to be unbounded, and therefore R1

will be at least 3 as is required in the definition of Fill2R,µµµ.
Fix R1 := 1 +K1 and suppose (for a contradiction) that for all µµµ in which µ2 ≥ µ1, the

function Fill2R,µµµ fails to be bounded. Then for all n ∈ N there exists (Cn, γn) ∈ Sph1
R with an

essential edge partition (Ĉn, γ̂n) satisfying: if there is a partition (C̄n, γ̄n) of (Cn, γn) subject
to (Ĉn, γ̂n) such that

mesh(C̄n, γ̄n) ≤
1

2
mesh(Cn, γn) + n, (8)

then #2(C̄n) ≥ n.
Since #1(Cn) ≤ R1 for all n, one combinatorial structure C amongst the Cn must occur

(up to combinatorial isomorphism) for all n is some set J of ω-measure 1. We may as well
take Cn actually to be C for all n ∈ J .

Let sn := mesh(Cn, γn). Now we claim that sn → ∞ as n → ∞. This is true because if
we obtain (C̄n, γ̄n) by coning off Ĉn to one of its 0-cells then

mesh(C̄n, γ̄n) ≤M mesh(Ĉn, γ̂n) ≤M

(
1

2
mesh(Cn, γn) + µ1

)
,

for some constant M > 1. But #2(C̄n) is bounded and so it must be the case that for large
n,

M

(
1

2
mesh(Cn, γn) + µ1

)
>

1

2
mesh (Cn, γn) + n

to avoid (8) holding, whence it follows that sn → ∞.
Define e = (en) by making some arbitrary chooses of en ∈ Im(γn). Then we define γ :=

(γn) which is a map (C(0), ⋆) → (Coneω(X, e, s) , e) for some ⋆ ∈ C(0), and mesh(C, γ) = 1.
The reason this definition makes sense is that Cn = C for all n in the set J that has ω-measure
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1. Note that the images γ(e) of vertices e ∈ C are a finite distance from e in Coneω(X, e, s)
for the same reason as in the corresponding part of the proof of Proposition 4.1.

Similarly γ̂ := (γ̂n) is a well defined map Ĉ(0) → Coneω(X, e, s) with mesh(Ĉ, γ̂) ≤ 1
2 ,

where Ĉ is a refinement of C that is combinatorially equivalent to Ĉn for all n in some set
J1 ⊆ N of ω-measure 1.

Now in the manner of the proof of path connectedness of the asymptotic cones in Proposi-
tion 4.1 we can extend γ̂ to a continuous map f : (C, ⋆) → (Coneω(X, e, s) , e). The 1-complex
C is homeomorphic to the 1-sphere S1 and so, by hypothesis, we can extend f to a continuous
map f̄ : D → Coneω(X, e, s) of f , where D is a 2-cell with ∂D = C.

We look for an R-combinatorial refinement C̄ of D with ∂C̄ = Ĉ as combinatorial com-
plexes, such that we can express f̄ |C̄(0) : C̄(0) → Coneω(X, e, s) as f̄ |C̄(0) = (γ̄n) for a
sequence of maps γ̄n : C̄(0) → X with the following properties. For ω-infinitely many n, the
pair (C̄, γ̄n) will be a partition of (Cn, γn) subject to its essential edge partition (Ĉn, γ̂n) and
will satisfy mesh(C̄, γ̄n) ≤ 1

2mesh(C, γn). And every interior 1-cell e in C̄ will satisfy

mesh(e, f |e ) ≤
1

2
−

1

8
.

This will lead to a contradiction as we now explain. By definition of distance in Coneω(X, e, s),

lim
ω

1

sn
mesh(e, γ̄n |e ) = mesh(e, f |e ).

So for all ν > 0

ω

{
n

∣∣∣∣∣
1

sn
mesh (e, γ̄n |e ) <

1

2
−

1

8
+ ν

}
= 1,

and thus taking ν < 1
8

ω

{
n

∣∣∣∣ mesh (e, γ̄n |e ) ≤
1

2
sn

}
= 1.

But sn = mesh(C, γn) and there are only finitely many 1-cells e in the interior of C̄. So there
will be a set J2 ⊆ N of ω-measure 1 such that for all 1-cells e in the interior of C̄,

∀n ∈ J2, mesh (e, γ̄n |e ) ≤
1

2
mesh(C, γn).

The remaining 1-cells e of C̄ are in ∂C̄ and satisfy

∀n ∈ J1, mesh(e, γ̄n |e ) = mesh(e, γ̂n |e ) ≤ mesh(Ĉ, γ̂n) ≤
1

2
mesh(C, γn) + µ1.

So for n ∈ J1 ∩ J2, which will be a set of ω-measure 1 and hence will be infinite, we will find
mesh(C̄, n) ≤ 1

2mesh(C, γn) + µ1. Therefore when n is greater than #2(C̄) and µ1, we will
have our contradiction with (8).

It remains to explain how to find such a C̄. Via a choice of homeomorphism between D
and the standard Euclidean 2-disc, D inherits a metric d. Uniform continuity allows us to
find an ε > 0 such that for a, b ∈ D

d(a, b) < ε ⇒ d(f̄(a), f̄ (b)) ≤
1

2
−

1

8
.
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This would make it easy to find our R-combinatorial refinement C̄ of D if we overlooked the
requirement that ∂C̄ = Ĉ. We give a special care to the construction of C̄ in a neighbourhood
of the boundary of D to remedy this.

We fix a constant α > 0 such that 3α ≤ ε and for a, b ∈ D

d(a, b) < α ⇒ d(f̄(a), f̄ (b)) ≤
1

16
.

Again such α exists by uniform continuity of f̄ on D.

The idea is to repeatedly take essential edge partitions (as is the proof of Proposition 4.1),
refining the boundary of D into 1-cells of length at most α. Roughly speaking, these 1-cells
are then projected a distance at most α into the interior of D as depicted in Figure 4. The
resulting innermost edges then have length at most ε. The innermost region of D can then be
triangulated and then the construction close to the boundary together with this triangulation
form C̄.

More explicitly we first recall that f : C → Coneω(X, e, s) is constructed by the means used
in the proof of path-connectedness of the asymptotic cones in Proposition 4.1 . This amounts
to repeatedly partitioning (e, γ |e ) for every 1-cell e in C. (Recall that we achieve this by
expressing γ |e as an ω-limit of maps ρn : e(0) → X, then partitioning each (e, ρn) within the
constraints of Fill1µ1

(mesh(e, ρn)), and then retrieving a map into the cone by taking an ω-

limit). The first partition of the 1-cells refines C to Ĉ and extends γ : C(0) → Coneω(X, e, s)
to γ̂ : Ĉ(0) → Coneω(X, e, s). We define (C0, γ0) := (C, γ) and (C1, γ1) := (Ĉ, γ̂). Subsequent
partitions of all the 1-cells give us (C2, γ2), (C3, γ3), . . . such that each 1-cell of Ci is refined
in Ci+1 into at most K1 1-cells (where K1 is the minimal upper bound on Fill1µ1

) and γi+1 is

an extension of γi. Recall that mesh(C0, γ0) = 1 and mesh(Ci+1, γi+1) ≤ 1
2mesh(Ci, γi) for

i ≥ 0, so in particular mesh(Ck, γk) ≤ 1/2k for all k ≥ 0.

The Ci provide combinatorial structures φi : Ci
∼=
→ ∂D for ∂D. For i = 1, 2, . . . , r − 1 the

2-complex Ci+1 is a refinement of Ci. So there is a natural homeomorphism Ci → Ci+1 that

embeds the 0-skeleta Ci,(0) into Ci+1,(0), and is such that the composition Ci → Ci+1 φi+1
→ ∂D

is equal to the homeomorphism Ci φi
→ ∂D. Recall that f is then defined to be a limit (which

is proved to exist using an appeal to the completeness of the cone) of the sequence of maps
γi ◦ φ−1

i (restricted to φi(C
i,(0))), and is, in fact, an extension of each of these maps.

The images under φi of the 1-cells of Ci are subsets of ∂D and hence define rectifiable
paths with respect to the metric d. So we can assume (for simplicity) that in each of the
successive refinements Ci to Ci+1, any 1-cell e in Ci is refined into 1-cells ej in Ci+1 with
length(ej) ≤

1
2 length(e). It follows that there is some r such that the 1-cells of Cr have length

at most α.

We construct (singular) annular 2-complexes A1, A2, . . . , Ar such that, with respect to
some embedding in the Euclidean plane, the outer boundary of Ai is combinatorially isomor-
phic to C1 and the inner boundary is combinatorially isomorphic to Ci. We define A1 := C1

and construct each Ai+1 from Ai as follows.

Let e1 be a 1-cell in Ci, the inner boundary of Ai. Then e1 is refined to a 1-complex

e1 in Ci+1, and #1

(
e1

)
≤ K1. Let e2 be a 2-cell whose boundary is given a combinatorial

structure with one more 1-cell than e1 (so #(∂e2) ≤ K1 + 1 = R1). Attach e2 to e1 by
identifying one of the 1-cells of e2 with e1. Attach 2-cells in this way to every 1-cell in the
inner boundary of Ai to produce Ai+1.
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Now, by construction, the 1-skeleton A
(1)
r of Ar can be regarded as

⋃r
i=1 C

i with Ci

meeting Cj (i 6= j) only at 0-cells. Also recall from above that there are homeomorphisms
φi : Ci → ∂D. Now we can find an embedding ψ : Ar → D in such a way that ψ |C1 = φ1

and

d(φi(x), ψ(x)) ≤ α

for all i = 2, 3, . . . , r and all points x ∈ Ci ⊆ Ar. In effect, we are pushing Ci a distance at
most α away from ∂D. An example of the result is illustrated in Figure 4.

Figure 4: Partitioning γ at the boundary (with K1 = 3, R1 = 4 and r = 3).

Consider a 1-cell e in Ci ⊆ Ar when 2 ≤ i ≤ r. Let a and b be the endpoints of e. Then

max { d(ψ(a), φi(a)), d(ψ(b), φi(b)) } ≤ α, and

d(f̄(φi(a)), f̄ (φi(b))) ≤ mesh(Ci, γi) =
1

2i
≤

1

4
,

and we can now deduce that

d(f̄(ψ(a)), f̄ (ψ(b))) ≤ d(f̄(ψ(a)), f̄ (φi(a))) + d(f̄(φi(a)), f̄ (φi(b))) + d(f̄(φi(b)), f̄ (ψ(b)))

≤
1

16
+

1

4
+

1

16

=
1

2
−

1

8
.
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Moreover, if e is a 1-cell in Cr then

d(ψ(a), ψ(b)) ≤ d(ψ(a), φr(a)) + d(φr(a), φr(b)) + d(φr(b), ψ(b))

≤ 3α

≤ ε.

So we can now triangulate D r Imψ with 2-simplices of diameter at most ε in such a way
that we produce the combinatorial structure C̄ for D that we seek. As discussed earlier this
leads to a contradiction as required.

4.3 Characterising higher connectedness

In this section we complete the proof of Theorem A. We establish the characterisation given in
that theorem by presenting the two implications separately. Our arguments are generalisations
to higher dimensions of those used in §4.2. Recall that to prove 1-connectedness of the
asymptotic cones in Proposition 4.5 we used a tessellation of the 2-disc D2 by 2-simplices
whose vertices are all in ∂D2. We will need a higher dimensional analogue: a tessellation
T0 of an (N + 1)-disc DN+1 by (N + 1)-simplices with vertices in ∂DN+1. For N ≥ 3 the
ideal tessellation of DN+1 (viewed as the Klein disc model of HN+1) cannot be constructed by
repeated reflection in the faces of an ideal (N +1)-simplex as we did in dimension 2. However
we do not require such regularity. All we need is the following property defined with respect
to the standard Euclidean metric on DN+1.

Given δ > 0, only finitely many (N + 1)-simplices ∆ ⊂ DN+1 in the tessellation
T0 have diam(∆) > δ.

It is possible to provide some ad hoc argument to demonstrate the existence of such
tessellations. Alternatively, the following results about hyperbolic manifolds suffice. The
existence of open, complete, hyperbolic (N + 1)-manifolds of finite volume in all dimensions
follows from results of Millson [32] for example (see also [39, page 571]). Then Epstein and
Penner prove in [15] that such a manifold is obtained from a finite collection of ideal polyhedra
by identifying faces. The lifts of these polyhedra give a tessellation of the universal cover HN+1

by finitely many types of ideal polyhedra. Identify DN+1 with the Klein model for HN+1. We
can decompose the ideal polyhedra into ideal simplices in a consistent manner (although not
necessarily into hyperbolic ideal simplices else some may have zero volume), to produce T0.

A compactness argument tells us that only finitely many of the ideal (N + 1)-simplices
meet a ball of a given radius R > 0 about the origin in DN+1 = HN+1. Thus the condition
displayed above is satisfied.

Now recall that the (N + 1)-dimensional filling function FillN+1
R,µµµ is defined with reference

to the constants 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µN+1 and R1, R2, . . . , RN ∈ N (with each Ri ≥ i+ 2).
We are ready to prove one direction of Theorem A.

Proposition 4.7. Let X be a metric space, let ω be a non-principal ultrafilter, and N ≥
0. Suppose there exist R, µµµ such that the filling functions Fill1R,µµµ,Fill2R,µµµ, . . . ,FillN+1

R,µµµ are
bounded. Then the asymptotic cones Coneω(X, e, s) are N -connected for all e and s.

Proof. We fix e and s and prove that under the hypotheses of the proposition, πNConeω(X, e, s) =
0. We follow closely the method used in the two dimensional case – that is, in the proof of
Proposition 4.5 .
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Consider a continuous map f : (SN , ⋆) → (Coneω(X, e, s) , e) from the boundary SN =
∂DN+1 of a Euclidean (N + 1)-disc DN+1 to X. Let L := diamf(SN ), which is finite
because f(SN) is compact. We seek to extend f to a continuous map f̄ : (DN+1, ⋆) →
(Coneω(X, e, s) , ⋆).

As described at the start of this section, take a tessellation T0 of DN+1 by (N+1)-simplices

whose vertices all lie in ∂DN+1. The vertices T
(0)
0 of T0 form a dense subset of ∂DN+1. Define

f0 : T
(0)
0 → Coneω(X, e, s) to be f

∣∣∣
T

(0)
0

. So mesh(T0, f0) ≤ L.

The number of N -cells in the boundary of an (N + 1)-simplex ∆ is N + 2. By definition
RN ≥ N + 2 and so it follows that the standard combinatorial structure of ∂∆ is amongst
the structures of N -spheres that can be used to attach (N + 1)-cells when constructing R-
combinatorial (N + 1)-complexes. Therefore for each (N + 1)-simplex ∆ of T0 it is the case
that (∆, f0 |∆(0) ) ∈ SphN

R
.

Generalising the 2-dimensional argument (i.e. the proof of Proposition 4.5) we now pro-

duce successive refinements T1,T2, . . . of T0, and define a sequence maps fn : T
(0)
n → Coneω(X, e, s)

such that each fk+1 extends fk. In the manner allowed by FillN
R,µµµ, each N -cell C of Tk will

be refined to some combinatorial N -complex C̄ in Tk+1, and

mesh(C̄, fk+1 |C̄(0) ) ≤
1

2
mesh(C, fk |C(0) ).

So in particular mesh(Tk+1, fk+1) ≤
1
2mesh(Tk, fk), from which it will follow that mesh(Tn, fn) ≤

L
2n for all n.

Fix k ≥ 0. It suffices to describe the process of refining fk : T
(0)
k → Coneω(X, e, s) to

fk+1 : T
(0)

k+1 → Coneω(X, e, s). Choose fk,i : T
(0)
k → X so that (fk,i)i∈N = fk.

First for each fixed i we make essential boundary partitions (as defined in §3.3 above) of
(eN+1, fk,i |eN+1 ) for all the closed (N+1)-cells eN+1 of Tk. Recall that an essential boundary
partition of (eN+1, fk,i |eN+1 ) is made by first partitioning the 1-cells, then the 2-cells (subject
to the partitions of the 1-cells), then the 3-cells (subject to the partitions of the 2-cells), and
so on until finally partitioning the N -cells. It follows that we can take essential boundary
partitions of the (eN+1, fk,i |eN+1 ) in a way that agrees on any j-cell (j = 1, 2, . . . ,N) common

to two (N+1)-cells of Tk. The result is a refinement T̂k,i of T and an extension f̂k,i : T̂
(0)

k,i → X
of fk,i. This satisfies

mesh(T̂k,i, f̂k,i) ≤
1

2
mesh(Tk, fk,i) + µN .

It follows from the hypothesis that Fill1R,µµµ,Fill2R,µµµ, . . . ,FillNR,µµµ are all bounded, that each

N -cell of Tk is refined into a bounded number of N -cells to produce T̂k,i.

Suppose C is one of the (N + 1)-simplices forming the tessellation Tk. Let Ĉi be its
refinement in T̂k,i. Consider the pair (C, γi), where γi := fk,i |C(0) and consider its essential

boundary partition (Ĉi, γ̂i), where γ̂i := f̂k,i

∣∣∣
Ĉ

(0)
i

: Ĉ
(0)
i → X. By hypothesis we can find a

partition (C̄i, γ̄i) of (C, γi) subject to (Ĉi, γ̂i), where C̄i is some R-combinatorial (N + 1)-disc
with Ĉi = ∂C̄i, with #(C̄i) ≤ KN+1, and mesh(C̄i, γ̄i) ≤

1
2mesh(C, γi) + µN+1.

This process of refinement is repeated over all of the (N + 1)-cells in T̂k,i, producing

f̄k,i : T̄
(0)

k,i → X. The partition agrees across N -cells common to two (N + 1)-cells of T̂k,i

because the partitions of the (C, γi) are constructed subject to essential boundary partitions.
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We would now like to define fk+1 : T
(0)
k+1 → Coneω(X, e, s) to be an ω-limit of (f̄k,i). The

tessellation Tk+1 is obtained by refining Tk: first refining the 1-cells, then the 2-cells and so on
through the dimensions until finally refining the (N+1)-cells. A given 1-cell e1 of Tk is refined
in T̂k,i into one of finitely many combinatorial structures. So, up to combinatorial equivalence,
one of these combinatorial structure occurs for all i in some set of ω-measure 1. Refine all
the 1-cells of Tk accordingly. For a given 2-cell e2 in Tk, there is a set Se2 of ω-measure 1 such
that for all i ∈ Se2 there is one combinatorial structure (up to combinatorial equivalence)
into which e2 is refined in T̂k,i, and further this refinement agrees with the refinements of the
boundary 1-cells. So next refine all the 2-cells of Tk accordingly. Proceed similarly through
the dimensions until finally the (N + 1)-cells have been refined.

Thus
fk+1 := (f̄k,i)i∈N : T

(0)
k+1 → Coneω(X, e, s)

is well defined. Also, as required, we see that for every (N+1)-cell C of Tk, mesh(C̄, fk+1 |C̄(0) ) ≤
1
2mesh(C, fk |C(0) ) where C̄ is the refinement of C in T k+1.

We are now in a position to define f̄ : DN+1 → Coneω(X, e, s). On the boundary ∂DN+1 =
SN we set f̄ := f . Given x ∈ DN+1 − ∂DN+1, let xn be a 0-cell on the boundary of one of the
(N + 1)-cells of Tn containing x. Define f̄(x) := limn→∞ fn(xn).

Since the asymptotic cone is complete, to prove limn→∞ fn(xn) exists it is enough to
show that (fn(xn)) is a Cauchy sequence. The argument we use is the same as that of the
2-dimensional case. The key observation is that

d(fn(xn), fn−1(xn−1)) ≤ 2KN+1.R
L

2n
,

where R :=
∏N

i=1Ri. Note that R bounds the number of 1-cells in a combinatorial structure
for an N -sphere used in attaching (N +1)-cells in an R-combinatorial complex. We also note
that f̄ is independent of the choice of (xn).

The following lemma will be useful for proving continuity of f̄ .

Lemma 4.8. Suppose C ⊂ DN+1 is one of the closed (N + 1)-cells constituting Tn. Then

diam f̄(C) ≤ R(4KN+1 + 1).mesh(C, fn |C(0) ).

The proof of this lemma runs just as that of Lemma 4.6 . Continuity of f̄ can also be
proved by a similar means to the 2-dimensional argument. The case that requires attention
is proving continuity at x ∈ ∂DN+1. But notice that the observation discussed at the start
of this section (that given δ > 0, the tessellation T0 of DN+1 includes only finitely many
(N + 1)-simplices that fail to be δ-small) is precisely what is required for the argument to go
through with the dimension increased from 2 to N + 1.

The following proposition provides the other implication required to complete the proof
of Theorem A.

Proposition 4.9. Let X be a metric space, let ω be a non-principal ultrafilter, and N ≥ 0.
Suppose the asymptotic cones Coneω(X, e, s) are N -connected for all e and s. Then there
exist R and µµµ such that the filling functions Fill1R,µµµ,Fill2R,µµµ, . . . ,FillN+1

R,µµµ are bounded.
Moreover we can, in fact, take R = (Rk) to be any sequence satisfying the following

recursive condition. Assume R1, R2, . . . , Rk−1 are defined and there are µk ≥ µk−1 ≥ . . . ≥
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µ1 ≥ 0 and Kk ∈ N such that FillkR,µµµ(ℓ) ≤ Kk for all ℓ > 0. Then Rk can be any integer
greater than or equal to:

max

{
k + 2, 1 +Rk−1 +Kk, 1 +Rk−1 +

k+1∏

i=1

i, 1 +Rk−1 +

k−1∏

i=1

Ri

}
.

Observe that, in the statement of this proposition, Rk is at least k + 2, which is the
number of k-cells in the boundary of an (k+1)-simplex. So the k-dimensional R-combinatorial
complexes include the triangular complexes. Also Rk is at least 1 + Rk−1 greater than each
of the following:

• Kk,

•
∏k+1

i=1 i, that is, the number of k-simplices in the first barycentric subdivision of a k-
simplex,

•
∏k−1

i=1 Ri, which is, a sufficient number of k-simplices to triangulate any closed k-cell ek

in an R-combinatorial structure (i.e. any k-cell ek whose boundary ∂ek is a (k − 1)-
combinatorial complex and #j−1(∂e

j) ≤ Rj−1 for every closed j-cell ej in ∂ek (for
j = 2, 3, . . . , k).)

Notice that Rk is defined in terms of k and the constantsK1,K2, . . . ,Kk and R1, R2, . . . , Rk−1,
so it makes sense to define Fillk+1

R,µµµ : [0,∞) → N ∪ {∞} with respect to the sequence R (and
µµµ).

Proof of Proposition 4.9. We prove the proposition by induction on N . We have established
the cases N = 0, 1 in Propositions 4.1 and 4.5. (We appeal here to the observation made in
the proof of Proposition 4.5 that R1 can be taken to be any integer such that Fill1µ1

(ℓ) ≤ R1−1
for all ℓ ≥ 0.) Let us now address the induction step.

Suppose Coneω(X, e, s) is N -connected for all e and s. In particular Coneω(X, e, s) is
(N − 1)-connected for all e and s. So by induction hypothesis we can assume that there
are some R1, R2, . . . , RN−1 satisfying the recursive condition in the proposition, and µN ≥
µN−1 ≥ . . . µ1 ≥ 0 such that Fill1R,µµµ,Fill2R,µµµ, . . . ,FillNR,µµµ are bounded. Take any integer RN

satisfying the condition in the proposition. Suppose that, for all choices of µN+1 ≥ µN , the
(N +1)-dimensional filling function FillN+1

R,µµµ fails to be bounded. Then given any n ∈ N, there

exists (Cn, γn) ∈ SphN
R with an essential boundary partition (Ĉn, γ̂n) satisfying: if there is a

partition (C̄n, γ̄n) of (Cn, γn) subject to (Ĉn, γ̂n) such that

mesh(C̄n, γ̄n) ≤
1

2
mesh(Cn, γn) + n, (9)

then #N+1(C̄n) ≥ n.
There is some combinatorial complex C that is combinatorially equivalent to Cn for ω-

infinitely many n, because Cn can only take one of finitely many combinatorial types by virtue
of (Cn, γn) being in SphN

R.
Let sn := mesh(Cn, γn). Then sn → ∞ for the same reason as given in the proof of

Proposition 4.5. Let en be chosen in Im(γn). Then γ := (γn) is a well defined map (C(0), ⋆) →
(Coneω(X, e, s) , e) for some vertex ⋆ of C, and mesh(C, γ) = 1.

Also there is a Ĉ such that Ĉn is a combinatorial structure equivalent to Ĉ for ω-infinitely
many n. So γ̂ := (γ̂n) is a well defined map Ĉ(0) → Coneω(X, e, s) with mesh(Ĉ, γ̂) ≤ 1

2 .
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Now because of the hypothesis that Coneω(X, e, s) is N -connected, we can extend γ
along first the 1-cells then the 2-cells and eventually the (N − 1)-cells to a continuous map
f : C → Coneω(X, e, s). And because C ∼= SN we can extend f to a continuous map
f̄ : D → X where D is an (N + 1)-cell with ∂D = Ĉ. As we will discuss later it will
be important that the extensions of γ producing f are made by the methods used to prove
(N−1)-connectedness of the cones. That is, we use repeated refinements of 1-cells, the 2-cells,
etc. , in the manner constrained by the bounds on Fill1R,µµµ,Fill2R,µµµ, . . . ,FillNR,µµµ.

As in the 2-dimensional argument (the proof of Proposition 4.5) we produce an R-
combinatorial decomposition C̄ of D with ∂C̄ = Ĉ in a way that pulls back to produce par-
titions of ω-infinitely (Cn, γn) subject to (Ĉn, γ̂n), with mesh(Ĉn, γ̄n) ≤ 1

2mesh(Cn, γn) + µN .
This will then provide the required contradiction. Again it will be enough to find C̄ with
mesh(C̄, f̄ |C̄(0) ) ≤ 1

2 − 1
8 .

We give D a metric d inherited from a choice of homeomorphism to the Euclidean (N+1)-
disc DN+1 and then uniform continuity of f̄ : D → Coneω(X, e, s) tells us that there exists
ε > 0 such that

d(a, b) < ε ⇒ d(f̄(a), f̄(b)) ≤
1

2
−

1

8
.

Further, we shall need a constant α > 0 such that 3α ≤ ε and for a, b ∈ D

d(a, b) < α ⇒ d(f̄(a), f̄ (b)) ≤
1

16
;

again such an α exists by uniform continuity of f̄ on D.
The obvious approach is to exploit ε to produce C̄. However as in the 2-dimensional

case we have to do some work to ensure we can find C̄ with ∂C̄ = Ĉ. In the 2-dimensional
case we needed annuli A1, A2, . . . , Ar. In this more general setting the A1, A2, . . . , Ar will be
(N + 1)-complexes that topologically are non-uniform thickenings of SN .

In the construction of f : C → Coneω(X, e, s) above we used the hypothesis that Coneω(X, e, s)
is (N − 1)-connected. But more particularly we extend γ to f by repeated use of the filling
functions Fill1

R,µµµ,Fill2
R,µµµ, . . . ,FillN

R,µµµ, via the same means as are used to show that the bound-
edness of these filling functions imply the cones are (N − 1)-connected. It is necessary for us
to monitor exactly how this works.

Recall that γ : C(0) → Coneω(X, e, s) was expressed as γ = (γn) where each γn is a map

C
(0)
n → X. In the first place the essential boundary partitions (Ĉn, γ̂n) of each of the (Cn, γn)

give (in the ω-limit) a refinement Ĉ of C and an extension γ̂ of γ. Define (C0, γ0) := (C, γ)
and (C1, γ1) := (Ĉ, γ̂). Successive refinements Ck and extensions γk : Ck,(0) → Coneω(X, e, s)
are produced as follows. Given Ck and γk, express γk as (γk

n)n∈N, where each γk
n is a map

Ck,(0) → X. Then for every closed 1-cell e1 of Ck partition (e1, γk
n |e1 ) as allowed by Fill1R,µµµ.

So e1 is refined into at most Fill1R,µµµ(mesh(Ck, γk
n |e1 )) 1-cells. Next partition the 2-cells as per

Fill2R,µµµ, and then the 3-cells and so on until the N -cells have been partitioned. The result is a

refinement Ck+1 of Ck, where Ck+1 is the combinatorial structure that occurs for ω-infinitely
many n. Also this produces γk+1 : Ck+1,(0) → Coneω(X, e, s), an extension of γk. It will be
the case that mesh(Ck+1, γk+1) ≤ 1

2mesh(Ck, γk) and thus

mesh(Cr, γr) ≤
1

2r
mesh(C, γ) =

1

2r
.

The Ci provide combinatorial structures φi : Ci
∼=
→ ∂D for ∂D. The N -complex Ci+1

is a refinement of Ci. So there is a homeomorphism Ci
∼=
→ Ci+1 such that the composition
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Ci
∼=
→ Ci+1 φi+1

→ ∂D is the homeomorphism Ci φi
→ ∂D. Then f is defined using a limit and is

an extension of each of each of the maps γi ◦ φ−1
i (restricted to φi(C

i,(0)) ).

The approach we would now like to take is to find r sufficiently large that the N -cells of
Cr have diameter (with respect to d) at most ε. This method worked in the 2-dimensional
case. However in higher dimensions there is a small added complication. Recall that in the
2-dimensional argument as we refined each 1-cell of Ck, we were able to assume that its
length was at least halved. But in higher dimensions, as we produce C1, C2, . . ., we cannot
assume that the N -cells (in the successively refined combinatorial structure for ∂D) decrease
in diameter.

However Lemma 4.8 applies to the N -cells of C1, C2, . . . and allows us to deduce that if
eN is an N -cell of Cr then

diamf(eN ) ≤ R(4KN + 1).mesh(Cr, γr) ≤ R(4KN + 1).
1

2r
.

Take r sufficiently large that R(4KN + 1)/2r ≤ 1/4. Then for every N -cell of Cr we find
diamf(eN ) ≤ 1/4. Now

#N (Cr) ≤ #N (C).KN
r ≤ RNKN

r.

Each N -cell of Cr can be triangulated. This can be achieved by first triangulating its 2-cells,
then the 3-cells, etc. , and then finally the N -cells. This requires fewer than

∏N−1
i=1 Ri N -

simplices. Let Cr+1 be the resulting refinement of Cr. This is a combinatorial structure for ∂D

via a homeomorphism φr+1 : Cr+1
∼=
→ ∂D. The images φr+1(∆

N ) of each of the N -simplices
∆N of Cr+1 are bi-Lipschitz homeomorphic to a standard N -simplex. Repeated barycentric
subdivision decomposes a standard Euclidean N -simplex into N -simplices of arbitrarily small
diameter. Let Cr+2, Cr+3, . . . be refinements of Cr+1 obtained through successive barycentric

subdivision. Again these are combinatorial structures for ∂D via maps φr+i : Cr+i
∼=
→ ∂D.

Further there will be some s ≥ 1 such that the N -simplices that make up Cr+s each have
diameter at most α.

Now we construct the (N + 1)-complexes Ai for i = 1, 2, . . . , r + s with outer boundary
C1 and inner boundary Ci. Define A1 := C1 and obtain Ai+1 by attaching cells to inner
boundary of Ai as follows. A 1-cell e1 in Ci ⊂ Ai is refined to some 1-complex e1 in Ci+1.
Let e2 be an abstract closed 2-cell with #1(∂e

2) = #1(e1) + 1. Attach e2 to e1 by identifying
one of the 1-cells of ∂e2 with e1 ⊂ Ai. In this way attach 2-cells to all 1-cells of Ci ⊂ Ai.
Next consider how a 2-cell e2 of Ci ⊂ Ai is refined to some 2-complex e2 in Ci+1. A copy of
∂e2 can be found in the boundary of the 2-cells we attached to the 1-cells in ∂e2 ⊆ Ai. We
can therefore glue in a copy of e2 accordingly; this leaves a 3-cell hole which we fill by gluing
in a 3-cell e3 with

#2(∂e
3) = 1 + #1(e

2) + #2(e2).

Repeat this process for every two cell of Ci ⊂ Ai. Then a similar operation is performed for
every refinement of a 3-cell in Ci ⊂ Ai, and so on. The general step is that a j-cell ej of
Ci ⊂ Ai is refined to some j-complex ej in Ci+1. We find a copy of ∂ej in the boundary of the
j-cells attached during the previous stage. Attach ej accordingly. this leaves a (j + 1)-disc
hole which is filled by gluing in a (j + 1)-cell ej+1 with

#j(∂e
j+1) = 1 + #j−1(e

j) + #j(ej).
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Now

#j−1(e
j) ≤ Rj−1, and

#j(ej) ≤ max

{
Kj ,

j+1∏

i=1

i,

j−1∏

i=1

Ri

}
.

So for j = 1, 2, . . . , N the number of j-cells in the boundary of any (j + 1)-cell of Ar+s is at
most Rj, and therefore Ar+s is an R-combinatorial complex.

Now there exists an embedding ψ : Ar → D such that ψ |C1 = φ1 and

d(φi(x), ψ(x)) ≤ α

for i = 2, 3, . . . , r+ s and for all x ∈ Ci ⊆ Ar. Roughly speaking this embedding is the result
of projecting the Ci a distance at most α away from ∂D towards the centre of D. (Recall
that the metric on D was inherited from a choice of homeomorphism of D to the standard
Euclidean (N + 1)-disc.)

Consider a 1-cell e in Ci ⊆ Ar+s when 2 ≤ i ≤ r + s. Let a and b be the endpoints of e.
Then just as in the proof of Proposition 4.5

max { d(ψ(a), φi(a)), d(ψ(b), φi(b)) } ≤ α,

d( f̄(φi(a)), f̄(φi(b)) ) ≤
1

4
, and

d( f̄ (ψ(a)), f̄(ψ(b)) ) ≤ 1 −
1

8
.

And if e is a 1-cell in Cr+s then
d(ψ(a), ψ(b)) ≤ ε.

So we can now triangulateDrImψ with (N+1)-simplices of diameter at most ε. This produces
the R-combinatorial complex C̄ with ∂C̄ = Ĉ, that provides a combinatorial structure for D
and leads to a contradiction we seek.

5 Groups with simply connected asymptotic cones

In 5.F′′
1 of [25] Gromov proved that a necessary condition for a group Γ to have simply

connected asymptotic cones is that Γ satisfies a polynomial isoperimetric inequality. (See also
Druţu [10]; in addition R. Handel [27] did some early work pertaining to this – essentially he
proved the implication 1 ⇒ 2 of Theorem B of this article.) Gromov asked in 5.F2 of [25]
whether this was a sufficient condition, a question which Bridson answered in the negative
in [5] by giving examples of groups that satisfy polynomial isoperimetric inequalities but not
linear isodiametric inequalities – in Theorem C we will see that satisfying a linear isodiametric
inequality is another necessary condition for the asymptotic cones of a group to be simply
connected.

Known examples of groups with simply connected asymptotic cones include nilpotent
groups (Pansu [36]) and groups with quadratically bounded Dehn functions (Papasoglu [37]).
Groups with quadratically bounded Dehn function include: hyperbolic groups, finitely gener-
ated abelian groups, automatic groups, fundamental groups of compact non-positively curved
spaces, SLn(Z) for n ≥ 4, certain nilpotent groups including integral Heisenberg groups of
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dimension greater than 3 (see [1]), some non-uniform lattices in rank 1 Lie groups that have
these nilpotent groups as cusp groups – including lattices in SO(n, 1) and for n > 2 in SU(n, 1)
(this list is taken from [6]; see also [7]). Recently Guba [26] has proved that Thompson’s group
F has a quadratic Dehn function.

In this section we will interpret the 2-dimensional filling function Fill2R,µµµ in the context of
finitely generated groups Γ. This will lead to a characterisation of finitely generated groups
with simply connected asymptotic cones in Theorem B. The approach is to partition null-
homotopic words in Γ into null-homotopic words of at most half the length. (Recall from §2.5
that null-homotopic words are those that evaluate to 1 in Γ, or equivalently are those that
define edge-circuits in the Cayley graph C(Γ) of Γ.)

5.1 Interpreting Fill2
R,µµµ for geodesic metric spaces

When X is a geodesic metric space (defined in §2.4) pairs of vertices have midpoints and
so Fill10(ℓ) = 2 for all ℓ > 0 (as already observed in Examples 3.3). The purpose of the
following proposition is to reinterpret the condition of Proposition 4.5 that concerns Fill2R,µµµ

being bounded, in the particular circumstance when X is a geodesic space. We will be able
to do away with the notion of an essential edge partitions used the definition of Fill2R,µµµ in §3.2
and in its place will make choices of geodesics between vertices.

Proposition 5.1. Suppose X is a geodesic metric space. Let ∆ be a 2-simplex. The following
condition is necessary and sufficient for all the asymptotic cones of X to be simply connected.

There exist K ′
2 ∈ N and µ′2 ≥ 0 such that: for all ℓ > 0, and for all geodesic

triangles γ : ∂∆ → X with edge lengths at most ℓ, there is a partition γ̄ : ∆̄(1) → X
of γ, with mesh(∆̄, γ̄) ≤ ℓ

2 + µ′2, and #2(∆̄) ≤ K ′
2.

Here, by a partition γ̄ : ∆̄(1) → X of γ we mean an extension of γ where ∆̄ is a finite
triangulation of ∆. For each edge e of ∆̄ the map γ̄ |e defines a geodesic in X. The mesh of
(∆̄, γ̄) is the length of the longest of these geodesics.

Proof of Proposition 5.1. It is possible to prove this proposition by adapting the proof of
Proposition 4.5. We take the alternative route of fixing R1 := 1 +K1 and showing that the
condition in this proposition is equivalent to the existence of K2 ∈ N and µ2 ≥ µ1 = 0 such
that Fill2R,µµµ(ℓ) ≤ K2 for all ℓ ≥ 0. Proposition 4.5 tells us that this will suffice.

Firstly we show that if there exist R1,K2 ∈ N (R1 ≥ 3) and µ2 > 0 such that Fill2
R,µµµ(ℓ) ≤

K2 for all ℓ ≥ 0, then the condition of the proposition holds. Suppose we have a geodesic
triangle γ : ∂∆ → X. The pair (∆, γ |∂∆(0) ) is in Sph1

R because R1 = 3. An essential edge
partition (∆̂, γ

∣∣
∂∆̂(0) ) of (∆, γ |∂∆(0) ) is obtained by splitting each of the sides of the geodesic

triangle into two 1-cells, the extra vertices being added at the midpoints of the geodesic
edges. The hypothesis that Fill2R,µµµ is bounded by K2 then gives us a partition (∆̄, γ̄) subject

to (∆̂, γ
∣∣
∂∆̂(0) ). Now, ∆̄ is a triangular complex since R1 = 3. Extend γ̄ : ∆̄(0) → X to a

map ∆̄(1) → X by that restricts to γ on ∂∆̄ and by mapping the 1-cells in the interior of ∆̄
to (choices of) geodesics between the images of their end vertices. Deduce that the condition
of the proposition holds with K ′

2 = K2 and µ′2 = µ2.

To prove the converse we assume the condition of the proposition holds and we show that
if we take R1 = 3, µ1 = 0 and µ2 = µ′2 then Fill2

R,µµµ(ℓ) ≤ 4K ′
2 for all ℓ ≥ 0.
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So suppose we have (∂∆, γ) ∈ Sph1
R. As R1 = 3 we may take ∆ to be a 2-simplex (the

mono-gon and bi-gon being degenerate cases). Further, suppose we have an essential edge
partition (∆̂, γ̂): that is, in effect, just (choices of) midpoints m1,m2,m3 ∈ X between γ(eιi)
and γ(eτi ) for the each of the three edges e1, e2, e3 of ∆ (with eιi and eτi denoting the two
end vertices of ei). Extend γ̂ to a map ∂∆ → X by choosing geodesics edges through these
midpoints. Then let γ̄ : ∆̄(1) → X be a partition as per hypothesis. In Figure 5 the darker
shaded 2-complex depicts ∆̄.

One might now try to conclude the argument by restricting γ̄ to the 0-skeleton ∆̄(0) and
thereby provide the partition required for Fill2R,µµµ. However this overlooks the requirement

that ∂∆̄ = ∆̂ as complexes. The 1-cells e1, e2, e3 of ∆ are each split into two 1-cells in ∆̂, but
their refinements ē1, ē2, ē3 in ∂∆̄ can be completely different combinatorial complexes to their
refinements in ∆̂ – in the definition of a partition following the statement of Proposition 5.1
there is no restriction on the location of 0-cells in ∂∆̄. This technicality can be overcome by
enlarging the complex ∆̄ to a complex ∆∆∆ by attaching the lighter shaded 2-cells as shown in
Figure 5. We add 0-cells v1, v2, v3, one for each of ē1, ē2, ē3, and we cone off each ēi to vi:
that is we have a 1-cell from vi to each vertex of ēi and 2-cells as shown.

Figure 5: Converting between two types of partition.

Define a map γγγ : ∆∆∆(0) → X by making γγγ equal to γ̄ |∆̄(0) on ∆̄(0) and by mapping v1, v2, v3
to m1,m2,m3 respectively. Notice that the distance between the images of two vertices of ∆∆∆
at the end of an edge in ∆∆∆ r ∆̄ is at most 1

2mesh(∆, γ), because the mi are midpoints of the
geodesics γ̂(ei). So mesh(∆∆∆,γγγ) ≤ 1

2mesh(∆, γ) + µ′2.

The number of 2-cells in this enlarged complex is at most 4K ′
2 as estimated as follows.

The number of 2-cells in ∆̄ is at most K ′
2. As each 2-cell is triangular, the number of 1-cells

in ∆̄ is at most 3K ′
2, which is therefore an upper bound for the number of 2-cells in ∆∆∆r∆̄.

5.2 Interpreting Fill2
R,µµµ for finitely generated groups

We now give a characterisation of finitely generated groups with simply connected asymptotic
cones. The implication 1 ⇒ 2 of Theorem B was proved by R. Handel in [27] and subsequently
by Gromov [25], §5.F. There is an exegesis of Gromov’s proof by Druţu [10]. The reverse
implication is used by Papasoglu [37, page 793] in showing that groups satisfying a quadratic
isoperimetric inequality have simply connected asymptotic cones. Our arguments here and
in §4 are developments of those given by Gromov, Papasoglu and Druţu.
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Note that it follows from Corollary 2.7 that condition 1 in this theorem does not depend
on the choice of generating set A. Also notice that we specify the sequence of base points to
be 111, the constant sequence at 1 ∈ Γ. This does not represent a serious restriction since we
learnt in Lemma 2.2 that the choice of sequence of basepoints is immaterial in the definition
of an asymptotic cone of a quasi-homogeneous space. Also recall Corollary 2.8 that tells us
that the asymptotic cone Coneω(Γ,1, s) of a group Γ with finitely generating set A is the
same as the asymptotic cone Coneω(C(Γ,A),1, s) of its Cayley graph C(Γ,A).

Theorem B. Let Γ be a group with finite generating set A. Fix any non-principal ultrafilter
ω. The following are equivalent.

1. The asymptotic cones Coneω(Γ,1, s) of Γ are simply connected for all s = (sn) with
sn → ∞.

2. There exist K,L ∈ N such that for all null-homotopic words w of length ℓ(w) ≥ L there
is an equality

w =

K∏

i=1

uiwiu
−1
i (10)

in the free group F (A) for some words ui and wi such that the wi are null-homotopic
and ℓ(wi) ≤ ℓ(w)/2 for all i.

Proof. First, take Rw to be the set of null-homotopic words of length at most ℓ(w)/2 in
Lemma 2.10 (van Kampen’s Lemma) to prove the following.

Lemma 5.2. Condition 2 of Theorem B is equivalent to:

3. There exist K,L ∈ N such that for all null-homotopic words w of length ℓ(w) ≥ L there
exists a diagram Dw with at most K 2-cells and with the boundary circuit of each 2-cell
of Dw labelled by a null-homotopic word of length at most ℓ(w)/2.

LetDw be the diagram of the lemma above. Call a point v of the diagramDw a branching
vertex if a small neighbourhood of the 1-skeleton of Dw about v has at least three connected
components when we remove v. Arcs connect the branching vertices and Dw has at most
K faces. We may assume that a word read along any edge in the interior of Dw represents
a geodesic in C(Γ,A) – otherwise we could replace some of the wi in (1) by shorter null-
homotopic words. The following is essentially a lemma of Papasoglu in [37].

Lemma 5.3. Let V and F be the number of branching vertices and of faces (respectively) in
any topological disc portion of the diagram Dw. Then V ≤ 2(F − 1).

Proof. This is an Euler characteristic calculation. At least 3 arcs meet at each vertex (here
we use the hypothesis that the we have a topological disc) and so the number of arcs E in
the topological disc satisfies E ≥ 3V

2 . So, as V −E + F = 1, we find V − 3V/2 + F ≥ 1, and
thus V ≤ 2(F − 1) as required.

To complete the proof of Theorem B it is enough to show that for the Cayley graph
C(Γ,A) of Γ (which is a geodesic metric space) the condition of Proposition 5.1 is equivalent
to condition 3 of Lemma 5.2.
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Figure 6: Constructing a van Kampen diagram Dw for w.

First we prove that the condition of Proposition 5.1 implies condition 3. We are given
a null-homotopic word w and (provided ℓ(w) is sufficiently large) we shall explain how to
produce a diagram Dw for w in which each 2-cell has boundary length at most ℓ(w)/2. The
method is illustrated in Figure 6.

Let n := ℓ(w). We start by expressing the word w as the concatenation of five subwords
w = v1v2v3v4v5 in such a way that each word vi has length between (n/5)− 1 and (n/5) + 1.
Choose geodesic words v̄i in Γ that equal the vi. Thus we produce a diagram with boundary
label w (read anticlockwise from a base point ⋆), by inscribing a geodesic pentagon in a n-
sided polygon. When n ≥ 4 the five outermost loops in this diagram have length at most
n/2. We now partition this geodesic pentagon. Start by adding two diagonal geodesics to
triangulate the pentagon. The mesh (i.e. the length of the longest side) of the three resulting
geodesic triangles is at most 2((n/5) + 1), which is less than n/2 when n ≥ 4. The condition
of Proposition 5.1 allows us to repeatedly partition these geodesic triangles, each time halving
the mesh modulo a possible error µ′2. One partition reduces the mesh to at most (n/4) + µ′2
and then a second reduces it to at most (n/8) +µ′2/2 +µ′2. It is enough to partition until the
mesh is n/6 as then the circumference of the triangles will be at most n/2 as required. So
provided n/8 + µ′2/2 + µ′2 ≤ n/6 (that is, n ≥ 36µ′2) two partitions, and therefore 5 + 3K2

2

triangles, will suffice.

The result is a diagram Dw having at most 5 + 3K2
2 2-cells.

We now prove that if there are K,L ∈ N such that any null-homotopic word w admits a
diagram Dw as per condition 3 of Lemma 5.2, then the criterion displayed in Proposition 5.1
holds. We take µ̂2 = 4L/3. We aim to prove that there exists K̂2 such that all geodesic
triangles can be partitioned into K̂2 geodesic triangles, achieving a halving of the mesh modulo
a possible error µ̂2.

First observe that it is sufficient to restrict our attention to geodesic triangles in C(Γ,A)
with vertices at 0-cells of C(Γ,A). Such a geodesic triangle ∆ of mesh ℓ defines a null-
homotopic word w ∈ Γ of length at most 3ℓ. Apply condition 3 of Lemma 5.2 to w to
give a diagram for w in which the boundary words of the faces each have length at most
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max {3ℓ/2, L}. Applying condition 3 twice more produces a diagram Dw for w in which the
edge-circuits wi of the 2-cells have length ℓ(wi) ≤ max {3ℓ/8, L}, and the number of 2-cells
in Dw is at most K3.

We can assume these 2-cells to be non-singular polygons with arcs between adjacent
branching vertices labelled by geodesic words. Recall that Dw is a tree-like arrangement
of topological discs and 1-dimensional arcs. Thus the number of sides of such each polygon
is bounded by the number of vertices in any topological disc portion of Dw. By Lemma 5.3
this is at most 2(K3 − 1)+3 (that is, at most 2(K3 − 1) branching vertices and the 3 original
vertices of ∆).

Now triangulate the polygons by adding choices of geodesics for the diagonals, partitioning
each m-sided polygon intom−2 geodesic triangles. The resulting geodesic triangles have mesh
at most the circumference of the polygons and so less than ℓ/2. Further m ≤ 2(K3 − 1) + 3.
So (2(K3 − 1) + 1)K3 such geodesic triangles are used to partition the faces.

The diagram Dw consists of (at most K3) 2-dimensional discs joined by 1-dimensional
arcs. We have shown above that the 2-dimensional discs can be decomposed into at most
(2(K3 − 1) + 1)K3 geodesic triangles. The 1-dimensional arcs are part of the sides of the
original geodesic triangle ∆. So they are all geodesic arcs of length at most ℓ, except one
which may have a single branching point. There are at most K3 + 1 such geodesic arcs, each
of which can be considered to be two (degenerate) geodesic triangles of mesh at most ℓ/2.
The possible tripod section can be considered to be at most six such degenerate triangles.

Conclude that the condition of Proposition 5.1 holds with K̂2 := (2(K3 − 1) + 1)K3 +
2(K3 + 1) + 6 and µ̂2 := L.

5.3 Upper bounds for filling functions

In this section we show that Theorem B leads to bounds on three important invariants (“filling
functions”) of finitely presentable groups. We will see that if Γ is a finitely generated group
with simply connected asymptotic cones then Γ is finitely presentable and we will give upper
bounds for the (first order) Dehn function Area : N → N, the minimal isodiametric function
Diam : N → N and the filling length function FL : N → N. These were all defined and
discussed in §2.5.3.

The polynomial bound (11) of the following theorem is the result of Gromov (5F ′′
1 in

[25]) which sparked off this whole area of investigation. Druţu, in Theorem 5.1 of [10], has
also provided a proof that Area is polynomially bounded. The isodiametric inequality (12)
appears as a remark of Papasoglu at the end of [37]. The constants K and L in this theorem
are those arising in Theorem B.

Theorem C. Suppose that the asymptotic cones Coneω(Γ,1, s) of a finitely generated group
Γ are simply connected for all sequences of scalars s with sn → ∞. Then there exists a finite
presentation 〈A | R〉 for Γ with respect to which, for all n ∈ N the Dehn function, the minimal
isodiametric function, and the filling length function satisfy

Area(n) ≤ Knlog2(K/L), (11)

Diam(n) ≤ (K + 1)n, (12)

FL(n) ≤ 2(K + 1)n, (13)

for some constants K,L > 0. Further given a null-homotopic word w with ℓ(w) = n, there is
a van Kampen diagram Dw on which these three bounds are realised simultaneously.
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Proof. First notice that the bound (12) follows immediately from (13) since for any finitely
presentable group Diam ≤ 1

2FL. This is proved in by noting that for any shelling of a
van Kampen diagram D and for any vertex v of D, at some stage the contracting boundary
loop of the shelling passes through v; this loop provides two paths from v to the basepoint.

Let A be a generating set for Γ. (It follows from Corollary 2.7, that 1-connectivity of the
cones of Γ does not depend on the choice of generating set.)

Let w be any null-homotopic word in Γ. By Lemma 5.2, there exist K,L ∈ N such that if
ℓ(w) ≥ L then we can find a diagram D1 for w with at most K 2-cells with boundary words
wi of length ℓ(wi) ≤ ℓ(w)/2. This procedure can be iterated.

Next each wi for which ℓ(wi) > L has a (possibly singular) 2-disc diagram Cwi
with

boundary wi. This provides a means of producing a new diagram D2 from D1: each 2-cell
e2wi

in D1 is replaced by Cwi
. Repeating we get diagrams Dk for k = 1, 2, . . ., with boundary

word w and with at most Kk 2-cells.

Take k sufficiently large that ℓ(w)/2k ≤ L and define R to be the finite set

R := {words r | r = 1 in Γ and ℓ(r) ≤ L} .

When ℓ(w)/2k ≤ L we have a diagram Dk = Dw for w in which every 2-cell has boundary
circuit in R. So Dw is a van Kampen diagram for w over the finite presentation 〈A | R〉 and
it follows that Γ = 〈A | R〉.

Now for ℓ(w)/2k to be less than or equal to L, it is enough for k to be the least in-
teger greater than or equal to log2(ℓ(w)/L). So the number of 2-cells in Dw is at most
K1+log2(ℓ(w)/L). Thus we have the bound on the Dehn function:

Area(n) ≤ K1+log2(n/L) = Knlog2(K/L)

as required.

The 1-skeleta of the diagrams D1,D2, . . . do not necessarily embed in D
(1)
w because the

diagrams inscribed in the 2-cells of Di to produce Di+1 may be singular. However to each
Di we can associate a 2-disc diagram D′

i whose 1-skeleton is the image of the natural map of

D
(1)
i into Dw.

Claim. For any open 1-cell e1 in the boundary of a diagram Dw constructed as above, there
exists a shelling ofDw to ∂Dwre1 in which the boundary circuit has length at most 2(K+1)n.

Proof by induction on n = ℓ(w). When n ≤ L the diagram Dw is just a 2-cell with boundary
label w and the result is immediate.

For the induction step, take e1 in the boundary of a diagram Dw for a null-homotopic word
w with ℓ(w) = n > L. Let us describe the shelling of Dw. Start with any shelling of D′

1 to
∂D′

1re1. The total number of 1-cells in D′
1 is at most (K+1)ℓ(w)/2, that is, at most Kℓ(w)/2

in the 2-dimensional portions of D′
1 and at most ℓ(w)/2 in the 1-dimensional portions. So

the contracting boundary loop in the shelling of D′
1 has length at most (K + 1)ℓ(w).

Now we see that a shelling of Dw to ∂Dw r e1 can be made from the shelling of D′
1

together with shellings of the subdiagrams Dwi
of Dw that fill the 2-cells of D′

1. The shellings
of the Dwi

are performed one at a time in the order dictated by the collapsing of 2-cells in the
shelling of D′

1. Now, the boundary word wi on each of the Dwi
has length ℓ(wi) ≤ ℓ(w)/2. So

by induction hypothesis each Dwi
can be shelled to ∂Dw re1wi

and the boundary circuit in the
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shelling of Dwi
has length always less that or equal to 2(K+1)ℓ(w)/2. Deduce that length of

the boundary circuit the shelling of Dw always remains at most (K + 1)ℓ(w) + (K + 1)ℓ(w)
and the claim is proved.

To complete the shelling of Dw all that is required is to collapse ∂Dw r e1 to the base
vertex ⋆, and this involves no increase in filling length. We deduce that FL(n) ≤ 2(K + 1)n
as required.

Open problems 5.4. In 5.F2 of [25] Gromov asked whether satisfying a polynomial isoperi-
metric function was a sufficient condition for a group to have simply connected asymptotic
cones, and this was answered negatively by Bridson. One can now ask whether the bounds
found in Theorem C are sufficient.

It is actually not known whether the polynomial bound on the Dehn function together with
the linear isodiametric function are sufficient. It is possible that the linear upper bound on
the filling length function follows from these other two bounds. Indeed, it is an open problem
due to Gromov [25, page 100], whether for a general finitely presented group FL � Diam.

5.4 Applications

Certain families of groups are known to have simply connected cones. Here we draw attention
to the significance of the inequalities of Theorem C for these groups.

As we mentioned earlier, in [37] Papasoglu proves that the asymptotic cones of a group
satisfying a quadratic (first order) isoperimetric inequality are all simply connected. So it
follows that:

Corollary 5.5. If the Dehn function of a finitely presented group Γ admits a quadratic bound
then there is a linear bound on its filling length.

The use of asymptotic cones would appear a circuitous route to this result – it would seem that
an analysis of Papasoglu’s methods in [37] would yield a direct proof. One reason this is of
interest is because it tells us that the filling length function FL and the optimal isodiametric
function Diam for Γ are ≃-equivalent, answering Gromov’s question (mentioned in Open
Questions 5.4 above) positively for one important class of groups.

A particular instance of this is Thompson’s group F , which was recently proved by
Guba [26] to have a quadratic minimal isoperimetric function. (The author is grateful to
Steve Gersten for drawing his attention to this result.)

Corollary 5.6. The filling length function of Thompson’s group F admits a linear bound.

Pansu proves in [36] that virtually nilpotent groups have simply connected (indeed con-
tractible) asymptotic cones. Therefore another corollary is

Corollary 5.7. The filling length function of a finitely generated virtually nilpotent group
admits a linear upper bound (and hence so does the optimal isodiametric function).

This linear bound is observed by Gromov [25, page 101] for simply connected nilpotent Lie
Groups, by analysing the geometry of Carnot-Caratheodory spaces.

We mention that Corollary 5.7 precipitated a further result of the author in collaboration
with Gersten and Holt in [17]. A search was made for a direct combinatorial proof of Corol-
lary 5.7, and this turned out to be possible via a induction argument on the nilpotency class c
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of the group. A crucial feature of this induction argument is to keep track of an isoperimetric
function at the same time as a linear bound on the filling length function. The result is that
we learn that a null-homotopic word of length n admits a van Kampen diagram that not
only has filling length bounded linearly in n but also has area bounded by a polynomial in
n of degree c + 1. Thus, in particular, we proved that finitely generated nilpotent groups
admit a polynomial isoperimetric function of degree one greater than their class, resolving a
long-standing conjecture.

6 Higher order isoperimetric and isodiametric functions of

groups

In §2.6 we will prove Theorem D, which supplies N -th order isoperimetric and isodiametric
functions of groups Γ whose asymptotic cones are N -connected. In this section we supply the
requisite definitions: the finiteness properties Fk, the notion of k-presentations, the higher
order combinatorial isoperimetric functions (also known as higher order Dehn functions) and
the higher order isodiametric functions.

6.1 Type Fk+1 and k-presentations

Our account in this section draws heavily on that of Bridson in [8], where in particular k-
presentations are introduced. The following definition amounts to saying that a group Γ is of
type Fk when it admits an Eilenberg-MacLane space K(Γ, 1) with finite k-skeleton. (See [9,
page 470].)

If a group Γ is finitely generated it is said to be of type F1. Given a finite generating set A
for such a Γ (with A∩A−1 = φ), we can construct its rose : the wedge K1 :=

∨
a∈A(S1, ⋆) of

finitely many oriented circles, each labelled by a generator. The group Γ is said to be of type
F2 when it is finitely presentable. Recall from 2.5 that given a finite set of defining relations we
can attach finitely many 2-discs to the rose (using the relators to describe the attaching maps)
to produce the standard compact 2-complex K2 such that π1K

2 = Γ. The universal cover of
K2 is the Cayley 2-complex associated to the given presentation (or “1-presentation” in the
terminology used below) of Γ, and the 1-skeleton of the Cayley complex is its Cayley graph.

Higher finiteness properties concern enlarging K2 to make its universal cover highly con-
nected. We say that Γ is of type F3 when π2K

2 is finitely generated as a Γ-module. In this
event there is a finite set of continuous maps f2

i : (S2, ⋆) → (K2, ⋆), whose homotopy classes
generate the Γ-module π2K

2. These f2
i attach 3-discs to K2, killing π2 of its universal cover

K̃2.

The homotopy class of a continuous map (S2, ⋆) → (K2, ⋆) necessarily includes a singular
combinatorial map (Si, ⋆) → (K2, ⋆) where Si

∼= S2 is some combinatorial complex. So
the f2

i can, in general, be taken to be singular combinatorial maps (as defined in §2.3). (We
cannot, in general, take the f2

i to be combinatorial maps.) A choice of 1-presentation together
with the singular combinatorial attaching maps f2

i : (Si, ⋆) → (K2, ⋆) is referred to as a 2-
presentation for Γ. Let K3 be the complex arrived at by attaching the Si to K2 via the
singular combinatorial attaching maps f2

i .

The process of enlarging the complex K3 further, through successive dimensions, leads us
to a recursive definition of Fk+1 and of k-presentations as follows. Suppose Γ is of type Fk

and we have a (k − 1)-presentation. Consider attaching (k + 1)-discs to Kk to kill πkK
k. If

48



finitely many (k+1)-discs suffice (that is, πkK
k is finitely generated as a Γ-module) we say Γ is

of type Fk+1. Call the resulting (k+1)-complex Kk+1; by construction its universal cover K̃k+1

is k-connected. The finite set of singular combinatorial attaching maps fi : Sk
i → Kk, where

each Sk
i is a combinatorial structure for the k-sphere, together with a (k − 1)-presentation

then make up a k-presentation.

Observe that for k ≥ 2, the 0-skeleton of K̃k can be identified with Γ and so inherits the

word metric. This metric agrees with the path metric on the 1-skeleton of K̃k where each
1-cell is given length 1.

We say Γ is of type F∞ when it is of type FN for all N .

6.2 Higher order isoperimetric and isodiametric functions

The filling functions defined in this section concern the combinatorial volume and diameter
of fillings of combinatorial N -spheres. Suppose Γ is of type FN+1 and so admits a finite N -
presentation. Construct a compact singular combinatorial (N+1)-complex KN+1 as described

above. Consider a singular combinatorial map γ : (SN , ⋆) → (K̃N , ⋆), where SN ∼= SN

is some combinatorial structure on the N -sphere. Since K̃N+1 is N -connected, we can fill

γ : (SN , ⋆) → (K̃N , ⋆) by giving a singular combinatorial extension γ̄ : DN+1 → K̃N+1 with
respect to some combinatorial decomposition DN+1 ∼= DN+1 of the (N + 1)-disc such that
SN = ∂DN+1 as N -complexes.

We define the combinatorial N-volume (or mass) of γ as follows: let VolN (γ) be the
number of N -cells eN in CN such that γ |eN is a homeomorphism. Similarly define VolN+1(γ̄)
to be the number of (N + 1)-cells eN+1 in DN+1 such that γ |eN+1 is a homeomorphism. We
define the filling volume FVol(γ) to be the minimum amongst all VolN+1(γ̄) such that γ̄
fills γ.

Incidentally, this definition has an algebraic interpretation. It is explained in §5 of [8] that
FVol(γ) can be reinterpreted as being the least M such that there is an equality

[γ] =
M∑

i=1

gi · [∂e
N+1
j(i) ]

in the Γ-module πN (KN , ⋆), where ∂eN+1
j(i) are the attaching maps of the (N + 1)-cells eN+1

j(i)

used to enlarge KN to KN+1.

Similarly we can define the diameter and the filling diameter of γ : (SN , ⋆) → (K̃N , ⋆).
We endow the 1-skeleton of SN with a pseudo metric by giving each edge that collapses to a
single vertex under γ length 0, and length 1 otherwise. Then the diameter of γ is defined
by

Diam(γ) := max
{
d(⋆, v) | v ∈ SN,(0)

}
.

If γ̄ : DN+1 → K̃N+1 is a filling function for γ then we define the diameter of γ̄ in the same
way, via a pseudo-metric on DN+1. We define the filling diameter FDiam(γ) of γ to be the
minimum of Diam(γ̄) amongst all γ̄ that fill γ.

Another natural way to define the diameter of γ (and similarly γ̄) is as the diameter of
the image of γ: that is, max

{
d(⋆, γ(v)) | v ∈ SN,(0)

}
, where d is the combinatorial metric on
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the 1-skeleton of K̃N . Our definition of the previous paragraph is an upper bound for the
diameter of the image of γ.

We now give the definitions of some higher order filling functions. Let ΩN be the set

of singular combinatorial maps (CN , ⋆) → (K̃N+1, ⋆) where CN ∼= SN is a combinatorial
structure on the N -sphere.

Definition 6.1. The N-th order (combinatorial) Dehn function δ(N) : N → N is
defined by

δ(N)(n) := sup
γ

{FVol(γ) | γ ∈ ΩN with VolN (γ) ≤ n} .

This definition agrees with those in [2] and [8]. However it will not suffice for our purposes
as we now explain.

The way we will obtain bounds on the filling volume of singular combinatorial maps of

spheres γ : (SN , ⋆) → (K̃N , ⋆) will be to cone off to the basepoint ⋆ ∈ SN . This fills SN

with rods, that is, cones over the N -cells of SN . We fill each of these rods in a way that
agrees across common faces. (In fact we only need to fill the rods that arise from the VolN (γ)
non-collapsing N -cells in SN .) It turns out that we can bound the volume of each rod by a
function of the diameter of the image of its 0-skeleton. This length is at most the diameter

of the image of γ in K̃N – that is, max
{
d(⋆, γ(v)) | v ∈ SN,(0)

}
, which is, in turn, at most

Diam(γ). We can then find an upper bound for the (N + 1)-volume of an (N + 1)-disc filling
γ by multiplying the bound on the volume of the fillings of the rods by the combinatorial N -
volume of γ. It follows that we get an upper bound on FVolN+1(γ) in terms of two variables:
diameter ℓ and N -volume n. This motivates us to define a two-variable minimal isoperimetric
function as follows.

Definition 6.2. An N-th order two-variable minimal (combinatorial) isoperimet-
ric function generalises the function δ(N)(n) to take account of diameter. It is a function
(N ∪ {∞})2 → N ∪ {∞} defined by

δ(N)(n, ℓ) := sup
γ

{
FVol(γ)

∣∣∣∣ γ ∈ ΩN with VolN (γ) ≤ n and Diam(γ) ≤ ℓ

}
.

Note that δ(N)(n) = δ(N)(n,∞). This type of isoperimetric function has been used in re-
lated contexts by Epstein et al. [14, Theorem 10.2.1] (“mass times diameter estimate”) and
Gromov [23] (the “cone inequality”).

We will also wish to monitor the filling diameter. So we define a two-variable minimal
isodiametric function as follows.

Definition 6.3. The N-th order minimal (combinatorial) isodiametric function
η(N) : (N ∪ {∞})2 → N ∪ {∞} for Γ is defined by

η(N)(n, ℓ) := sup
γ

{
FDiam(γ)

∣∣∣∣ γ ∈ ΩN with VolN (γ) ≤ n and Diam(γ) ≤ ℓ

}
.
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Remark 6.4. Let us consider how one might attempt to use δ(N)(n, ℓ) to bound δ(N)(n) by
controlling diameter ℓ in terms of N -volume n.

When N = 1 we see max
{
d(⋆, γ(e0)) | e0 ∈ S1,(0)

}
≤ Vol1(γ) and hence δ(N)(n) =

δ(N)(n, n) and η(N)(n) ≤ η(N)(n, n). But when N ≥ 2 it is possible for ℓ to grow arbitrarily
large, independently of n. For example consider filling a singular combinatorial 2-sphere γ in

K2 when Γ is the free abelian group of rank 3. It is possible that the image of γ : S → K̃2

is a dumbbell : two 2-spheres joined by an arc (a concatenation of 1-cells). There is a priori
no bound in terms of n on the length of the path between the two 2-spheres. This allows us

to find γ : S → K̃2 such that S includes 2-cells e2 whose cones e3 in S̄ have mesh(e3, γ |e3,(0) )
growing arbitrarily large, independently of n = Vol2(γ).

The next strategy one might try is to decompose the singular combinatorial map γ :

(SN , ⋆) → (K̃N , ⋆) into a sum of non-singular combinatorial maps. This works in dimension
N = 2: collapse the cells in S2 that collapse under γ, to produce a complex Ŝ2 which is
comprised of combinatorial 2-spheres intersecting along simple paths, or joined by simple
paths (see [38]). Thus we factor γ though Ŝ2:

S2 → Ŝ2 → K2,

and thereby see that to fill γ it is sufficient to fill non-singular (i.e. genuinely cellular) maps

γi : SN
i → K̃N with each SN

i a combinatorial structure for SN . Further
∑

VolNγi = VolNγ
and for each i

max
{
d(⋆, γ(e0)) | e0 ∈ S

N,(0)
i

}
≤ CNVolN (γi),

where CN is the maximum number of 1-cells in (closed) N -cells in KN . It follows that if
n 7→ δ(2)(n, n) is bounded above by a superadditive9 function δ̂2 then for all n

δ(2)(n) ≤ δ̂(2)(n).

The obstacle to this method working in dimension N ≥ 3 is determining whether singular
combinatorial N -spheres can be decomposed into non-singular N -spheres.

In §3.3 of [23] Gromov proves the Federer-Fleming inequality for closed submanifolds V
in RN : for some universal constant CN ,

FillVol(V ⊂ RN ) ≤ CNVol(V )
N+1

N .

His proof uses the cone inequality

FillVol(V ⊂ RN ) ≤
1

N + 1
Diam(V )Vol(V )

together with an estimate DiamV ≤ DN Vol(V )1/N , for some universal constant DN , that
comes from decomposing V into “essentially round pieces”. It is not clear that this can be
adapted to our combinatorial context to express the diameter term ℓ in δ(N)(n, ℓ) in terms of
N -volume n.

We now prove that δ(1) and η(1) agree with the functions Area and Diam of §5.3.

9A function ψ : N → R is superadditive when ψ(r + s) ≥ ψ(r) + ψ(s) for all r, s ∈ N.
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Proposition 6.5. For all n,

δ(1)(n) = Area(n),

η(1)(n,∞) = Diam(n).

Proof. If γ : (C1, ⋆) → (K̃2, ⋆) is a singular combinatorial map then γ defines a null-homotopic

word w of length ℓ(w) = Vol1(γ) in the alphabet A±1. A van Kampen diagram γw : Dw → K̃2

for w can be used to obtain a filling γ̄ : D2 → K̃2 for γ as follows. It is a requirement of the
definition of a filling that D2 be homeomorphic to D2. However Dw can have 1-dimensional
portions. So we thicken the diagram by attaching an annular neighbourhood of ∂Dw to ∂Dw.
That is, we attach ℓ(w) rectangular 2-cells all of which will collapse under γ̄, to produce a
new 2-complex D′

w. Now it is not necessarily the case that ∂D′
w = C1, on account of some of

the 1-cells of C1 collapsing under the map γ; but this is rectified by inserting extra 1-cells into
∂Dw and extra 2-simplices (as necessary) into D′

w all of which will collapse under γ̄. Call the
resulting diagram D2. The number of 2-cells of D2 that do not collapse under γ̄ is #2(Dw).
It follows that δ(1)(n) ≤ Area(n).

We now prove the reverse inequality: Area(n) ≤ δ(1)(n). A null-homotopic word w defines

a combinatorial map γ : C1 → K̃2 where C1 is a combinatorial complex homeomorphic to

S1 with ℓ(w) 1-cells. Let γ̄ : D2 → K̃2 be a filling of γ with at most δ(1)(ℓ(w)) 2-cells. (So
D2 ∼= D2 and γ̄ is a singular combinatorial map.) Collapsing all the cells of D2 that do not
map homeomorphically onto their images produces a van Kampen diagram for w.

The inequalities obtained in the above two paragraphs combine to give δ(1)(n) = Area(n).
Similarly it follows from the constructions above and Remark 6.4 that η(1)(n,∞) = η(1)(n, n) =
Diam(n).

Remark 6.6. The functions δ(N) are referred to as combinatorial Dehn functions to dis-
tinguish them from their geometric counterparts. The N -th order geometric Dehn function
concerns Γ acting properly discontinuously and cocompactly on an N -connected Riemannian
manifold M . It gives the infimal bound on the (N+1)-volume of discs filling maps of Lipschitz
N -spheres into M . Such functions are used in [14, page 221], [23], [28] for example.

One might hope that the combinatorial functions δ(N) are ≃-equivalent to the geometric
functions. It may be necessary to restrict the scope of the geometric Dehn function to fillings
of N -spheres whose Lipschitz constant is within some bound, for otherwise it is not clear that
the higher order geometric Dehn functions take finite values.

6.3 Higher order filling functions and quasi-isometry

It is a consequence of Theorem 1 of Alonso, Wang and Pride in [2] that if Γ is of type FN+1

then δ(N)(n) takes finite values for all n ∈ N. (More particularly, Theorem 1 in [2] that any

K̃N+1 for Γ is “N -Dehn” – see the next paragraph.) It follows that δ(N)(n, ℓ) also takes finite
values for all n, ℓ ∈ N. It is also the case that if Γ is of type FN+1 then η(N)(n, ℓ) takes finite

values for all n, ℓ ∈ N. Essentially the proof relies on the local finiteness of K̃N+1 and the fact
that it admits a cocompact action of Γ ; a careful treatment of the many technical details can
be found in [2].

The definitions of δ(N)(n) and δ(N)(n, ℓ) generalise readily to any singular combinatorial
complex X. In this generality they may take infinite values on account of there being a
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sequence of N -spheres of N -volume at most n with unbounded filling volume. Or δ(N) may
be ill-defined because of X not being N -connected. However the criterion of being “N -Dehn”
defined in [2] precludes these eventualities in all dimensions up to N . Define X to be N-Dehn
when the following all hold.

(a). X is N -connected,

(b). δ(k)(n) <∞ for k = 1, 2, . . . , N and for all n ∈ N,

(c). the (N + 1)-cells are attached to the complex via singular combinatorial maps SN →
X(N); the N -spheres SN must be one of only finite many combinatorial types.

It follows from Theorem 2 in [2] that if two complexes X and Y are N -Dehn and are
quasi-isometric (with respect to the combinatorial metrics on their 1-skeletons) then their

higher order Dehn functions δ
(k)
X (n) and δ

(k)
Y (n) are ≃-equivalent for k = 1, 2, . . . ,N .

One sees that the two-variable isoperimetric and isodiametric functions for X and Y are
similarly related: there exists C > 0 such that for all n and ℓ,

δ
(N)
X (n, ℓ) ≤ C δ

(N)
Y (C n , C ℓ) + C n+ C,

η
(N)
X (n, ℓ) ≤ C η

(N)
Y (C n , C ℓ) + C ℓ+ C.

We will use these inequalities in §8.

Here is an outline of the proof of these inequalities. Our assumptions are that X and Y
are both N -Dehn singular combinatorial complexes and there is a quasi-isometry f between
them. We may as well take f to be a map X(0) → Y (0).

Suppose that we have a singular combinatorial map γX : (SN
X , ⋆) → X with VolN (γX) = n,

where SN
X is a combinatorial N -sphere. Then f ◦γX

∣∣∣
S

N,(0)
X

is a map from the 0-skeleton of SN
X

to the 0-skeleton of Y . The idea is to extend to a singular combinatorial map γY : (SN
Y , ⋆) → Y

where SN
Y is a refinement of SN

X . This map γY is constructed from f ◦ γX

∣∣∣
S

N,(0)
X

by building

through the dimensions. First of all, a filling is made of each f ◦γX |e1 for every 1-cell e1 of SN
X

as per δ
(1)
Y and the 1-cells of SN

X are refined accordingly. Then a filling of the 2-cells is made

as per δ
(2)
Y , and then the 3-cells, and so on. On finally filling the N -cells in accordance with

δ
(N)
Y , the resulting complex SN

Y has N -volume at most C n and diameter at most C n for some

constant C. So the filling volume of SN
Y is at most δ

(N)
Y (C n , C ℓ) and the filling diameter

is at most η
(N)
Y (C n , C ℓ). However we need to pull-back a filling γ̄Y : (DN+1

Y , ⋆) → Y of
γY : (SN

Y , ⋆) → Y to get a filling of γX .

There is a quasi-isometry g : Y (0) → X(0) such that there is a constant k such that

d(gf(v), v) ≤ k for all v ∈ X(0) (see §8.16 of [9]). Now g ◦ γ̄Y |D
N+1,(0)
Y is a map from the 0-

skeleton of DN+1
Y to X(0). Extend this map to a singular combinatorial map γ′X : DN+1

Y → X
(this introduces the multiplicative constant C in the two inequalities). Then homotop γX to
γ′X to get the filling of SN

Y realising the two inequalities (this homotopy is the reason for the
linear terms in the two inequalities).

It follows from Corollary 4 of [2] that, up to ≃-equivalence, the function n 7→ δ(N)(n)

depends only on Γ and not on the choice of K̃N+1. Similarly two different constructions of

K̃N+1 give two different functions δ(N)(n, ℓ) (and similarly η(N)(n, ℓ)) that are related by the

53



two inequalities given above. (Any construction of K̃N+1 admits a cocompact Γ-action and

hence any two choices of K̃N+1 are quasi-isometric.)

7 Groups with highly connected asymptotic cones

In this section we prove type FN+1 finiteness and N -th order isoperimetric and isodiametric
functions for groups Γ with N -connected asymptotic cones. These results are consequences of
the boundedness of the filling functions Fill1R,µµµ,Fill2R,µµµ, . . . ,FillN+1

R,µµµ established in Theorem A
for such groups Γ.

Theorem D. Let Γ be a finitely generated group with a word metric. Suppose that the asymp-
totic cones of Γ are all N -connected (N ≥ 1). Then Γ is of type FN+1.

Further, fix any finite (N + 1)-presentation for Γ. There exist aN , bN ∈ N and αN > 0
such that for all n ∈ N and ℓ ≥ 0,

δ(N)(n, ℓ) ≤ aN n ℓαN , (14)

η(N)(n, ℓ) ≤ bN ℓ, (15)

These bounds are always realisable simultaneously.

Proof. Our proof is by induction on N . The case N = 1 follows from Theorem C, since
δ(1)(n, ℓ) ≤ δ(1)(n) = Area(n) and η(1)(n, ℓ) ≤ η(1)(n, n) = Diam(n) by Proposition 6.5.
(Alternatively the N = 1 case can be proved along the lines of the argument for the induction
step set out below.)

We now prove the induction step. So assume that Γ is a group of type FN . Fix any finite
N -presentation for Γ and let KN be the associated compact N -complex.

Suppose γ : (SN , ⋆) → (K̃N , ⋆) is a singular combinatorial map in which the combinatorial
complex SN is homeomorphic to SN . We seek an extension of γ to a singular combinatorial

map γ̄ : (DN+1,(N), ⋆) → (K̃N , ⋆), in which DN+1,(N) denotes the N -skeleton of a combinato-
rial complex DN+1 that is homeomorphic to DN+1 and has boundary ∂DN+1 = SN . We will
bound the combinatorial type of the (N + 1)-cells in DN+1 (independently of γ) and thereby
show that only finitely many (N + 1)-cells need be attached to KN to produce a complex
KN+1 with N -connected universal cover.

Let n := VolN (γ), the combinatorial volume of γ – that is, the number of open N -cells of
S that map homeomorphically onto their images. Let ℓ := Diam(γ), the diameter of γ.

As the asymptotic cones of Γ are N -connected, Theorem A tells us that there are R, µµµ
and K1,K2, . . . ,KN+1 > 0 such that FillkR,µµµ(ℓ) ≤ Kk for k = 1, 2, . . . ,N + 1. Moreover, as Γ
is a finitely generated group with a word metric, we take µ1 := 1/2 (as in Examples 3.3 (2) ).
Essentially we will produce γ̄ and DN+1 by repeatedly taking partitions of γ known to exist
on account of the upper bounds on the functions FillkR,µµµ. However recall that these functions
concern maps from the 0-skeleta of combinatorial complexes of controlled combinatorial type,
and notice that we have no a priori control on the combinatorial type of SN . So our first step
is to cut up SN into pieces of controlled combinatorial type – we use the cone ŜN of SN : let

ŜN := (SN × [0, 1])/(SN × {1}),

which is a (N + 1)-complex, inheriting a combinatorial structure from SN . So in ŜN there is
one (N + 1)-cell corresponding to each N -cell in SN . Refer to any (k + 1)-cell in ŜN that is
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the cone over a k-cell in SN as a rod. Use γ to define a map γ̂ : ŜN,(0) → K̃N
(0)

= Γ in which
each 0-cell e0 of SN × {0} is mapped to γ(e0) and the cone vertex SN × {1} is mapped to ⋆.
Then mesh(ŜN , γ̂) = ℓ.

As γ : SN → K̃N is a singular combinatorial map, it maps some of the cells ek in SN into
the image of their boundary. Thus we can factor γ

γ : SN → SN/ ∼ → K̃N

through a complex SN/ ∼ where: a ∼ b if and only if a and b are in the same open cell in
SN and γ(a) = γ(b). This collapsing extends across ŜN = (SN × [0, 1])/(SN × {1}), to give
a complex ŜN/ ∼ in which (a, α) ∼ (b, β) if and only if α = β, the points a and b are in the
same open cell in SN , and γ(a) = γ(b).

Filling of the rods in ŜN/ ∼ will be a process that builds through dimensions. We will
first partition (e1, γ̂ |e1 ) for each of the 1-cells in ŜN/ ∼, in accordance with the bound on
Fill1R,µµµ. Then we partition the (e2, γ̂ |e2 ) subject to the partitions of each (e1, γ̂ |e1 ), and in

accordance with the bound on Fill2R,µµµ. We continue through the dimensions until we have

partitioned the (eN+1, γ̂ |eN+1 ) subject to the lower dimensional partitions.

However before we can use the filling functions in this way recall that for Fillk+1
R,µµµ to

apply to a pair (C0, θ0) such that θ0 is a map C
(0)
0 → Γ, the complex C0 must be R-

combinatorial and homeomorphic to Sk. Now the function Fillk+1
R,µµµ is defined with refer-

ence to Fill1R,µµµ,Fill2R,µµµ, . . . ,FillkR,µµµ in that partitions are constructed subject to essential
boundary partitions which are built up through successive dimensions within the bounds on
Fill1R,µµµ,Fill2R,µµµ, . . . ,FillkR,µµµ. Proposition 4.9 gives us some freedom in the values ofR1, R2, . . . , RN :
we can take each Rk to be any integer greater than or equal to

max

{
k + 2, 1 +Rk−1 +Kk, 1 +Rk−1 +

k+1∏

i=1

i, 1 +Rk−1 +

k−1∏

i=1

Ri

}
.

Therefore we are able to ensure that each Rk is also at least the number of k-cells in the
boundary of a cone on a k-cell in Kk. In particular Rk can be taken to be at least the number
of k-cells in the boundary of a rod of a k-cell in ŜN/ ∼. So the pairs (C0, θ0) are then indeed
within the scope of FillN+1

R,µµµ .

We now focus on filling one of the rods of ŜN . Let eN be one of the closed N -cells of SN ,
that is, a closed N -cell whose boundary combinatorial structure is that of the (N − 1)-sphere
of its attaching map to SN,(N−1). Let the (N + 1)-complex C0 be the rod in ŜN that is the

cone over eN , and let θ0 := γ̂
∣∣∣
C

(0)
0

. We will take repeated partitions of the pairs (C0, θ0), in

a manner constrained by the bound on FillN+1
R,µµµ .

A first partition refines C0 to a complex C1 with #N+1(C1) ≤ KN+1, and extends θ0 to

a map θ1 : C1 → Γ = K̃N
(0)

with

mesh(C1, θ1) ≤
1

2
mesh(C, θ0) + µN+1 ≤

ℓ

2
+ µN+1.

Next partitioning each of the (N +1)-cells in C1 produces (C2, θ2). Continuing we get succes-
sive refinements C0, C1, C2, . . . and successive extensions θ0, θ1, θ2, . . . where for each M , the
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map θM : C
(0)
M → Γ = K̃N

(0)
satisfies

mesh(CM , θM ) ≤
1

2M
mesh (C0, θ0) + µN+1 +

µN+1

2
+ . . . +

µN+1

2M−1

≤
ℓ

2M
+ 2µN+1

and #N+1(CM ) ≤ KN+1
M .

However in order that we will be able to assemble the filled rods C0 into a combinatorial
(N +1)-disc DN+1 filling SN it is crucial that the cell eN in C0 is preserved in CM , that is, it
escapes refinement in the partitioning process. Recall that the filling functions FillkR,µµµ concern
a halving of the mesh on partitioning, modulo an error term µk, and these error terms satisfy:
µN+1 ≥ µN ≥ . . . ≥ µ1 = 1/2. The partition (C1, θ1) of (C0, θ0) is constructed subject to
any choice of essential boundary partition. Assume that in the process of taking an essential
boundary partition, the minimal number of cells is used every time a cell is refined. Now
mesh(eN , θ0 |eN,(0) ) = 1 and so when one comes to refining the cells of eN in C0 they can, in
fact, be assumed to be left undisturbed. For the same reason the cell eN is left undisturbed
in the boundary of the subsequent refinements C1, C2, . . . , CM .

Now we give bounds on the number of (N +1)-cells in CM , and the diameter of the image
of θM . Let M be the least integer such that ℓ/2M ≤ 1. So M ≤ 1 + log2 ℓ. Then

#N+1(CM ) ≤ KN+1
M ≤ KN+1

1+log2 ℓ = KN+1ℓ
log2 KN+1. (16)

Further, the observation that for each k

diam(Im θk) ≤ KN+1mesh(Ck, θk) + diam(Im θk−1)

leads us to the bound:

diam(Im θM ) ≤ KN+1 (mesh(C1, θ1) + mesh(C2, θ2) + . . .+ mesh(CM , θM ))

≤ KN+1

((
ℓ

2
+ µN+1

)
+

(
ℓ

22
+ µN+1 +

µN+1

2

)
+ . . .

+

(
ℓ

2M
+ µN+1 +

µN+1

2
+ . . .+

µN+1

2M−1

))

≤ KN+1(ℓ + 2MµN+1)

≤ KN+1(ℓ + 2µN+1(1 + log2 ℓ)). (17)

Now θM : C
(0)
M → K̃N

(0)
is only a map to the 0-skeleton of K̃N . We need to extend it

to a singular combinatorial map from the N -skeleton of an (N + 1)-complex to K̃N . Let

Ĉ0 := CM and θ̂ := θM : Ĉ
(0)
0 → K̃N . From θ̂ we will obtain a singular combinatorial map

θ̂N : Ĉ
(N)
N → K̃N , where ĈN will be a refinement of Ĉ0 and θ̂N

∣∣∣∂ĈN
= θ.

Firstly, refine every 1-cell e of Ĉ0 as follows. Let ei and et be the two vertices of e. Refine
e into a chain of d(θ̂0(ei), θ̂0(et)) edges. (That is, at most 2µN+1 +1 edges.) Call the resulting

complex Ĉ1. Then extend θ̂0 to a combinatorial map θ̂1 : Ĉ
(1)
1 → K̃N in the natural way.

Now the number of 1-cells in the boundary of each 2-cell of Ĉ0 is at most R1. Define

n1 := ℓ1 := R1(2µN+1 + 1).
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So the length (i.e. 1-volume) of each 2-cell in Ĉ1 is at most n1, and ℓ1 is a bound on the
diameter of the image θ̂2 of the boundary of any 2-cell in Ĉ1.

Next in accordance with δ(1)(n1, ℓ1) extend θ̂1 and refine Ĉ1 to produce a singular com-

binatorial map θ̂2 : Ĉ
(2)
2 → K̃N . So each of the 2-cells e2 in Ĉ1 is refined to a combinatorial

2-disc ē2 in Ĉ2 and the number of 2-cells that do not collapse under the map θ̂2 is at most
δ(1)(n1, ℓ1). Let

n2 := R2 δ
(1)(n1, ℓ1),

which is a bound on the number of non-collapsing 2-cells in the boundary of any 3-cell in Ĉ2.
Further the diameter of each ē2 satisfies

max
{
d(θ2(⋆ē2), θ2(v)) | 0-cells v of ē2

}
≤ η(1)(n1, ℓ1),

where ⋆ē2 is any choice of base vertex in ē2. Let

ℓ2 := R2 η
(1)(n1, ℓ1),

which is a bound on the diameter of the image under θ̂2 of the boundary of any 3-cell in Ĉ2.
Continue similarly through the dimensions inductively defining

nk+1 := Rk+1 δ
(k)(nk, ℓk) and ℓk+1 := Rk+1 η

(k)(nk, ℓk).

Eventually one produces a combinatorial map θ̂N : Ĉ
(N)
N → K̃N . The number of N -cells in

the boundary of each of the (N + 1)-cells in ĈN , that do not collapse under θ̂N is at most
nN and the diameter of their images under θ̂N is at most ℓN . And crucially, both nN and
ℓN are independent of γ. Notice also that the N -cell eN in CM remains undisturbed in the
refinement ĈN .

Let D̂N+1 be the (N + 1)-complex obtained from filling all the rods C0 in ŜN/ ∼ as
described above: that is, each rod C0 in ŜN is refined to an (N + 1)-complex ĈN and
assembled. Note that because the refinements of the rods are built up through the dimensions,
the common faces of adjacent rods can be assumed to agree and hence fit together. Indeed,
for the same reason, the rods can be assumed to fit together to fill not just ŜN but ŜN/ ∼.

Moreover the singular combinatorial maps θ̂N : Ĉ
(N)
N → K̃N for each rod can be assembled to

give a singular combinatorial map D̂N+1,(N) → K̃N . Let DN+1 be the combinatorial (N +1)-

disc obtained from D̂N+1 by pulling back the composition ŜN → ŜN/ ∼
∼=
→ D̂N+1. That is,

DN+1 is the refinement of ŜN in which each cell of ŜN that does not collapse in ŜN is refined
to have the combinatorial structure of the cell it maps to in D̂N+1. We then define a singular

combinatorial map γ̄ : DN+1,(N) → K̃N to be the composition DN+1,(N) → D̂N+1,(N) → K̃(N).

We now claim that only finitely many (N + 1)-cells need to be attached to KN in order

construct a complex KN+1 such that every singular combinatorial map γ : (SN , ⋆) → (K̃N , ⋆)

can be extended to a singular combinatorial map γ̄ : (D̄N+1, ⋆) → (K̃N+1, ⋆). Attach one

(N + 1)-cell to KN for every singular combinatorial maps τ : (SN , ⋆) → (K̃N , ⋆) such that

VolN (τ) ≤ nN and DiamN (τ) ≤ ℓN . There are only finitely many such τ because K̃N has
bounded local geometry. Call the resulting finite complex KN+1. Then filling in each of the

(N + 1)-cells in γ̄ gives an extension DN+1 → K̃N+1 of γ : SN → K̃N with ∂DN+1 → SN .
Deduce that Γ is of type FN+1.
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It remains to prove the bounds on δ(N)(n, ℓ) and η(N)(n, ℓ). From the N -presentation
of Γ form any (N + 1)-presentation. So let KN+1 be any finite complex with N -connected
universal cover, that can be obtained by attaching (N + 1)-cells to KN .

Above we constructed the singular combinatorial map γ̄ : DN+1,(N) → K̃N . We now fill
each of the (N + 1)-cells of DN+1 with δ(N)(nN , ℓN ) (N + 1)-cells, thereby extending γ̄ to a

singular combinatorial map ¯̄γ : D̄N+1 → K̃N+1.

Let

αN := 1 + log2KN+1,

aN := δ(N)(nN , ℓN ), and

bN := b′N η(N)(nN , ℓN ),

where b′N > 0 is sufficiently large that

KN+1(ℓ+ 2µN+1(1 + log2 ℓ)) ≤ b′Nℓ

for all positive integers ℓ ≥ 1.

From (16) we know that each of the rods C0 over one of the n non-collapsing N -cells in

γ : SN → K̃N is refined in CM into at most ℓαN non-collapsing (N + 1)-cells eN+1. Each of
these (N + 1)-cells is then refined further into at most aN (N + 1)-cells in a complex ēN+1.
This proves:

δ(N)(n, ℓ) ≤ aN n ℓαN .

The diameter of the image of each ēN+1 is at most bN so it follows from (17) that

η(N)(n, ℓ) ≤ η(N)(∞, ℓ) ≤ bN ℓ.

Recall that in Remark 6.4 we discussed decomposing singular combinatorial 2-spheres
into combinatorial 2-spheres. Assuming that the number of 1-cells in the boundary of a each
2-cell is bounded above by some constant, then the diameter of each of the combinatorial
2-spheres is bounded above by its volume (up to a multiplicative constant). So our discussion
in Remark 6.4 together with the theorem above give:

Corollary 7.1. Suppose the asymptotic cones of a group Γ are all 2-connected. Then the
second order Dehn function δ(2)(n) admits a polynomial bound.

One would like to draw the same conclusion about δ(N)(n) for N > 2 but it is unclear whether
singular combinatorial N -spheres can be decomposed in a way that allows the same argument
to work. However we do get:

Corollary 7.2. Suppose the asymptotic cones of a group Γ are all N -connected. Let δ̂(N)

be a filling function defined similarly to δ(N), except by quantifying only over combinato-
rial N -spheres rather than over singular combinatorial N -spheres. Then δ̂(N)(n) satisfies a
polynomial bound.
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8 Polycyclic groups

Recall that a group is polycyclic if it admits a normal series terminating at the trivial group
for which all the factor groups are cyclic. A group is virtually polycyclic or virtually
nilpotent when it has a finite index subgroup that is polycyclic or nilpotent (respectively).

Theorem E. Let Γ be a virtually polycyclic group and let ω be any non-principal ultrafilter.
The following are equivalent.

(i). Γ is virtually nilpotent.

(ii). Coneω(Γ,1, s) is contractible for all sequences of scalars s.

Proof. Pansu proves in [36] that the asymptotic cones of a virtually nilpotent group Γ are all
nilpotent Lie Groups with Carnot-Caratheodory metrics and hence are contractible. (Indeed
he proves that the sequence (Γ, 1

sn
d) converges in the Gromov-Hausdorff topology and so the

cone is independent of the sequence of scalars and ultrafilter.) This establishes the implication
(i) ⇒ (ii).

It is a recent result of Harkins [28] that a polycyclic group Γ is automatic if and only if
it is virtually abelian. The strategy of his proof is as follows. Wolf proved in [45] that the
growth function of a polycyclic group is either polynomial or strictly exponential. Gromov’s
famous result (in [25]) that groups of polynomial growth are virtually nilpotent, together
with the fact that a virtually nilpotent group is automatic if and only if it is virtually abelian
(Theorem 8.2.8 of [14]) deal with the polynomial growth case. Harkins shows that if Γ has
strictly exponential growth then one of its higher order geometric10 Dehn functions is strictly
exponential. Hence on account of the polynomial bounds on the geometric higher order Dehn
functions of automatic groups, Γ cannot be automatic – see Theorem 10.2.1 of [14]. We will
adapt Harkins’ argument to show that if Γ has strictly exponential growth then the higher
order isoperimetric and isodiametric inequalities of Theorem D cannot hold. This suffices to
establish the implication (ii) ⇒ (i) because it follows from Theorem D that the asymptotic
cones of Γ cannot all be contractible.

Harkins proves (using results of Mostow) that if Γ is virtually polycyclic then it is quasi-
isometric to a co-compact lattice Γ̂ in some simply connected, connected solvable Lie group G
for any choice of left invariant Riemannian metric on G. Moreover G has the form G = M ]Rn,
an extension of Rn by M , where M � G is the nil radical of G, and G is diffeomorphic to
Rl for some l and hence is contractible. Now assume Γ is not virtually nilpotent. Then Γ
has strictly exponential growth by Wolf [45], whence Γ̂ also has strictly exponential growth.
Harkins then constructs a nilpotent Lie subgroup N of M that is exponentially distorted in
G.

Assume, for a contradiction, that the inequalities of Theorem D for Γ hold in all dimen-
sions. These are combinatorial rather that geometric isoperimetric and isodiametric inequali-
ties so (unlike in Harkins’ argument) we will make use of a Γ̂-invariant simplicial triangulation
τ of G (which exists by Theorem 10.3.1 of [14]). Let σ ⊂ G be a subcomplex of τ that is
a fundamental domain for the action of Γ̂. If we give the 1-skeleton of τ the path metric in
which each edge has length 1 then Γ̂, and hence Γ, are quasi-isometric to τ (1). So, by the
inequalities in §6.3, the two-variable combinatorial isoperimetric and isodiametric functions

10Geometric Dehn functions were discussed in Remark 6.6.
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δ
(k)
τ (n, ℓ) and η

(k)
τ (n, ℓ) for τ also satisfy the bounds of Theorem D for each dimension k (after

the constants ak and bk have been altered suitably).

Now let us focus on the situation in which M = Rp for some p, for then Harkins’ argument
is more straight-forward. In this case N = Rm ≤ Rp for some m, and we will prove that the

bound on δ
(m−1)
τ (n, ℓ) fails.

Define the (m−1)-cycle cm−1 to be the boundary of the standard Euclideanm-dimensional
cube cm := [−ℓ, ℓ]m in N = Rm with vertices having co-ordinates each ±ℓ. Fix a vertex u in
the fundamental domain σ. Given a vertex v of cm−1 there is some (not necessarily unique)
γ ∈ Γ̂ such that v is in the translate γσ of σ. Let vσ = γu, a vertex of γσ. Then d(v, vσ) is
at most the diameter of σ.

We construct another (m−1)-cycle, given by a singular combinatorial map γm−1 : Cm−1 →
τ (m−1) for some combinatorial (m−1)-sphere C as follows. First define C0 to be the standard

combinatorial structure for the boundary of an m-dimensional cube, and define γ0 : C
(0)
0 →

τ (0) by mapping the vertices of C0 to the vertices vσ of τ obtained by perturbing the vertices
v of cm−1 as discussed in the previous paragraph. Then the distance in G between the images
of vertices at the ends of an edge in C is � log ℓ because N is exponentially distorted in G.

Then extend γ0 to a singular combinatorial map γ1 : C
(1)
1 → τ (1) by refining C

(1)
0 so that

edges connecting vertices in C0 are now mapped to geodesics in τ (1). Next extend across

the 2-cells to γ2 : C
(2)
2 → τ (2) by filling in accordance with the bounds on the two-variable

isoperimetric and isodiametric functions δ
(1)
τ and η

(1)
τ , and then extend by filling across 3-cells

similarly, and so on through the dimensions until we have γm−1 : Cm−1 → τ (m−1).

Now we claim that the singular combinatorial (m − 1)-volume of γm−1 is � (log ℓ)Lm−1

for some Lm−1 > 0. One sees inductively that for 1 ≤ k ≤ m− 1, the k-skeleton of the cube
has both singular combinatorial k-volume and diameter � (log ℓ)Lk for some Lm−1 > 0. In
the case k = 1 this is trivially true. For the induction step observe that by Theorem D, the

filling providing the (k + 1)-cells in the cube has (k + 1)-volume � δ
(k)
τ ((log ℓ)Lk , (log ℓ)Lk) �

(log ℓ)Lk ((log ℓ)Lk)αk and diameter � η
(k−1)
τ ((log ℓ)Lk , (log ℓ)Lk) � (log ℓ)Lk .

So the isoperimetric inequality for δ
(m−1)
τ gives us a bound on the combinatorial filling

m-volume of γm of � (log ℓ)Lm for some constant Lm. Combinatorial filling m-volume is
an upper bound for geometric filling volume up to a multiplicative constant equal to the
maximum geometric m-volume of an m-cell in τ . So the geometric filling m-volume of γm is
� (log ℓ)Lm .

Following Harkins we find a lower bound ∼ ℓm on the geometric filling volume of γm−1, and
this differs exponentially from the upper bound � (log ℓ)Lm , whence we will have the required
contradiction. Harkins proves that G admits an exact left-invariant m-form ω = dπ on G.
Exactness implies that the norm ||ω|| is constant. We assemble a filling γm : Cm → τ (m)

of γm−1 : Cm−1 → τ (m−1) by attaching an m-chain filling γm−1 − cm−1 to the standard
cm = [−ℓ, ℓ]m cube in Rm. By Stokes’ Theorem

∫

γm(Cm)
ω =

∫

γm−1(Cm−1)
π

and so the geometric filling volume of γm(Cm) does not depend on the particular construction
of γm. We can construct the m-chain filling γm−1 − cm−1 by assembling pairs of m-chains,
such that the two chains in each pair are related by a translation and their contributions to∫
γm(Cm) ω cancel as they are equal but have different signs due to their opposite orientations.
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So
∣∣∣
∫
γm
ω
∣∣∣ is the volume of the m-cube cm = [−ℓ, ℓ]m, which is ∼ ℓm. Thus, as ||ω|| is

constant, the minimal filling volume of γm(Cm) is at least

1

||ω||

∣∣∣∣
∫

γm

ω

∣∣∣∣ ∼ ℓm.

In the case of general M , Harkins demonstrates the existence of an exponentially distorted
Lie subgroup N in G = M ]Rn and shows that one of the higher dimensional isoperimetric in-
equalities of dimension at most m := dimN/[N,N ] grows strictly exponentially. The method
described above applies to the Lie group M/[M,M ] ]Rn, and Harkins deals with the added
complications of pulling back the constructions to G.

A Non-principal ultrafilters and ultralimits

Let I be a non-empty set. A filter on I is a map ω : P(I) → {0, 1} such that ω−1(1) is
non-empty and:

(i). if ω(A) = ω(B) = 1 then ω(A ∩B) = 1,
(ii). if ω(A) = 1 and A ⊆ B ⊆ I then ω(B) = 1.

The filter is proper if ω(φ) = 0. And a proper filter is an ultrafilter if

(iii). for any A ⊆ I either ω(A) = 1 or ω(I\A) = 1.

Further ω is called non-principal if

(iv). ω(A) = 1 for every cofinite subset A of I.

So (as (iii), (iv) ⇒ ω(φ) = 0) a non-principal ultrafilter is a map ω : P(I) → {0, 1}
satisfying (i), (ii), (iii) and (iv). Axioms (i)-(iv) amount to saying ω is a finitely additive
probability measure taking values 0 and 1.

Filters on I form a partially ordered set via ω � ω̂ if and only if ω−1(1) ⊆ ω̂−1(1). Notice
that a filter is a maximal proper filter if and only if it is an ultrafilter.

Given a set Ω of subsets of I we can form the filter ωΩ generated by Ω:

ω−1
Ω (1) = {A ⊆ I | B1 ∩ . . . ∩Bn ⊆ A for some n ≥ 1 and B1, . . . , Bn ∈ Ω} .

Observe that ωΩ is proper if and only if Ω has the property that any finite intersection of sets
in Ω is non-empty (the finite intersection property). Thus Zorn’s Lemma allows us to deduce:

Proposition A.1. If a set Ω of subsets of I satisfies the finite intersection property then the
filter generated by Ω can be extended to an ultrafilter on I.

In particular, the cofinite subsets of an infinite set I satisfy the finite intersection property,
so there exists a non-principal ultrafilter on I. Notice also that there exists a non-principal
ultrafilter on I if and only if I is infinite, since for a finite I non-principal implies not proper.

Remarks A.2.

1. For a non-principal ultrafilter ω on a set I, permutations of I induce new non-principal
ultrafilters. (But not all non-principal ultrafilters on a countably infinite set I are related

by a permutation of I since there are 2ℵ0 such permutations and 2(2
ℵ0) non-principal

ultrafilters - see [21]).
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2. Restriction: suppose I is a non-empty set and ω is a non-principal ultrafilter on I. If
J ⊆ I with ω(J) = 1, then ω

∣∣
P(J) is a non-principal ultrafilter.

3. Extension: suppose J is a non-empty subset of I and ω is a non-principal ultrafilter on
J . Then by applying Proposition A.1 to the subsets of J of ω-measure 1 together with
the cofinite subsets of I we deduce that there is a non-principal ultrafilter extending ω
to I.

Definition A.3. Take a non-principal ultrafilter ω on N. Given a sequence (an) in R we
say a ∈ R is an ω-ultralimit of (an) when ∀ε > 0, ω {n : |a− an| < ε} = 1. Say ∞ is an
ω-ultralimit of (an) when for all N > 0 we have ω {n | an > N} = 1, and similarly −∞ is an
ω-ultralimit when for all N > 0 we have ω {n | an < −N} = 1.

Remarks A.4.

1. Every ω-ultralimit is also a limit point in the usual sense.

2. Any sequence (an) of reals has a unique ω -ultralimit in R ∪ {∞} denoted limω an.
(Sketch proof. If ∞ or −∞ is an ultralimit then it is the unique ultralimit, else there
is a bounded interval containing ω-infinitely many an; successively halve this interval
always choosing the unique half in which there are ω-infinitely many of the an.)

3. Given a sequence of reals (an) with a limit point a (in the usual sense) there exists a
non-principal ultrafilter on N with limω an = a. This follows from an application of
Proposition A.1, taking Ω to be the cofinites together with the sets formed from the
indices of the an found in neighbourhoods of a.

B Relating the sequence of scalars and the non-principal ul-

trafilter

Here we prove a proposition which relates the role of the sequence of scalars to that of the
non-principal ultrafilter in the definition of an asymptotic cone.

Say that a sequence of scalars s has bounded accumulation when there is a bound on
the size of the sets Sr := {n | sn ∈ [r, r + 1)}. (So, for example, the sequence sn :=

∑n
i=1 1/i

fails to have bounded accumulation.)

Proposition B.1. Let Coneω(X, e, s) be an asymptotic cone of a metric space X, for which
the sequence of scalars s has bounded accumulation. Then there is a non-principal ultrafilter ω′

and a sequence of base points e′ such that Coneω(X, e, s) and Coneω′(X, e′,N) are isometric.

Proof. Use the following sequence of isometries:

Coneω(X, e, s)
1
∼= Coneω(X, e, (⌊sn⌋))
2
∼= Coneω|T (X, (en)n∈T , (⌊sn⌋)n∈T )

3
∼= Coneω̄

(
X, (et)t∈T̄ , T̄

)

4
∼= Coneω′

(
X, e′,N

)
,

where
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1. ⌊sn⌋ denotes the integer part of sn;

2. T ⊆ N is a set with ω(T ) = 1 that contains at most one element of each Sr :=
{n | sn ∈ [r, r + 1)}. Such a set exists because of our hypothesis of bounded accumula-
tion of s;

3. T̄ := {⌊sn⌋ : n ∈ T} ⊆ N. This is in one to one correspondence with T . So ω̄ is obtained
from ω |T by a relabelling;

4. ω′ is an extension of ω̄ in such a way that ω′(T̄ ) = 1. And e′ = (e′t) is obtained by
setting e′t := et when t ∈ T̄ and when t /∈ T̄ the definition of e′t is of no consequence.
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