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Abstract

We pose some graph theoretic conjectures about duality and the
diameter of maximal trees in planar graphs, and we give innovations
in the following two topics in Geometric Group Theory, where the
conjectures have applications.

(i.) Central Extensions. We describe an electrostatic model con-
cerning how van Kampen diagrams change when one takes a central
extension of a group. Modulo the conjectures, this lead to a new
proof that finitely generated class ¢ nilpotent groups admit degree
¢+ 1 polynomial isoperimetric functions.

(ii.) Filling functions. We collate and extend results about interre-
lationships between filling functions for finite presentations of groups.
We use the electrostatic model in proving that the gallery length fill-
ing function, which measures the diameter of the duals of diagrams, is
qualitatively the same as a filling function DlogA, concerning the sum
of the diameter with the logarithm of the area of a diagram. We show
that the conjectures imply that the space-complexity filling function
filling length essentially equates to gallery length. We give linear upper
bounds on these functions for a number of classes of groups includ-
ing fundamental groups of compact geometrisable 3-manifolds, certain
graphs of groups, and almost convex groups. Also we define restricted
filling functions which concern diagrams with uniformly bounded ver-
tex valence, and we show that, assuming the conjectures, they reduce
to just two filling functions — the analogues of non-deterministic space
and time.
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1 Introduction

We begin by presenting one of the graph theoretic conjectures originating in
our work in Geometric Group Theory.

Suppose G is a finite, connected, undirected graph! embedded? in the 2-
sphere (whence G is planar). Let G* be the dual graph to G (see Section 4).
Given a maximal® tree T' in G, define T* to be the subgraph of G* made up
of edges dual to edges in G \T. Refer to (T,T*) as a complementary pair of
maximal trees on account of the following (easy) lemma.

Lemma 1.1. The graph T* is a maximal tree in G*.

'We allow graphs to have multiple edges between two vertices and to have edges that
meet only one vertex, thereby forming a loop. Thus G may be what is referred to as a
multigraph in [7].

2To avoid pathologies we assume here, and elsewhere without further comment, that
each edge is embedded as a concatenation of finitely many geodesic arcs.

3A mazimal tree (a.k.a. a spanning tree) in a connected graph G is a subtree such that
if one included any further edge of G then the resulting graph would no longer be a tree.



Figure 1 in Section 3 shows two examples of complementary pairs (7', T™)
in a graph GG. The tree T is drawn with heavy lines and 7™ with dotted lines.

We endow G with the combinatorial metric in which each edge has length
1. The diameter Diam(G) is the maximum distance between pairs of vertices
of the graph. It is not hard to construct a maximal tree 7" in a connected
graph G in such a way that 7" has diameter closely related to the diameter
of GG. Specifically, choose a base vertex vy in G and take T' to be a maximal
geodesic tree based at vg. Then Diam(G) < Diam(7") < 2 Diam(G).

Our concern is with the existence of a complementary pair of trees (7', T*)
that both have similarly controlled diameters. The first of our conjectures is
below. Others are listed in Section 2 which is followed by some examples in
Section 3 and then a reformulation in the language of diagrams in Section 4.

Conjecture 2.1. Fix any A > 0. There exists some constant K > 0,
depending only on X\, with the following property. Suppose that G is a finite,
connected graph embedded in the 2-sphere, and that the valence* of each vertex
in G* 1s at most X. Then there is a maximal tree T in G with

Diam(T)
Diam(7™)

K Diam(G), and

<
< K Diam(G”).

A reason we became interested in these questions is that if true they imply
the following, whose applications we will explain.

Conjecture 5.4. The filling functions GLp and DGLp for any given finite
group presentation P are ~-equivalent.

This says that a filling function DGLp for finite presentations of groups
reduces to a simpler filling function GLp called gallery length. Careful def-
initions of these terms can be found in Section 5; what follows is a brief
overview.

Let P be a finite presentation of a group I'. The word problem for P, as
posed by Dehn [6] towards the beginning of last century, asks for a systematic

4The valence A of a vertex v in G is the number of connected components of (G~ v) N
B, (¢), the intersection of G \ v with a small neighbourhood of v. Equivalently, A is the
length of the boundary circuit of the face v* dual to v. (This is different from the number
of edges in the boundary of the face in the event that there is an edge in G that forms a
loop based at v.)



method (since interpreted as an algorithm) to determine, given a word w in
the generators, whether or not w represents 1 in I'. This began a rich seam in
Combinatorial and Geometric Group Theory, remarkably involving not only
issues of undecidability and algorithmic complexity but also geometry and
topology (illuminated most vividly by Gromov in [14]).

Filling functions N — N capture aspects of the geometry of the word prob-
lem for a presentation P of a group I'. They concern van Kampen diagrams,
which are connected, planar 2-complexes that provide graphical demonstra-
tions of how words w that represent the identity in I' are consequences of
the defining relations in P. Filling functions arise from measuring different
aspects of the geometry of van Kampen diagrams. The most well known is
Areap(n) and is referred to as the Dehn function or minimal isoperimetric
function for P. It is the minimum number K such that all words w of length
at most n that represent 1 in I' admit a van Kampen diagram with at most
K 2-cells. The 1-skeleton G of a van Kampen diagram D is a finite, planar
graph and so falls within the scope of our conjectures. The gallery length fill-
ing function GLp(n) measures the diameter of G*. And DGLp(n) measures
the minimal value of Diam(7") 4+ Diam(7™) ranging over all complementary
pairs of maximal trees for G.

If true, the graph theoretic conjectures would allow us to control Diam(T")
in terms of Diam (7). It would follow that DGL(n) is qualitatively the same
function as GL(n), and that is the content of Conjecture 5.4.

A first application is set out in Section 6. It concerns central extensions
[ of groups I'. We give an electrostatic model for obtaining van Kampen dia-
grams with respect to a finite presentation P for I’ by blowing up van Kampen
diagrams for words in a finite presentation P for I'. An analysis of the change
in the geometry of van Kampen diagrams in this procedure leads to Theo-
rem 6.3, which shows how simultaneously realisable bounds on the filling
functions Areap(n) and GLp(n) for P yield simultaneously realisable bounds
on the filling functions Area;(n) and DGLs(n) for P.

Theorem 6.3. Suppose that 1 — A — ' — T' — 1 is a central extension
of the finitely presented group T', and that (f,g) is an (Area, DGL)-pair for
a finite presentation P of T".

o If A =7 then, up to a common multiplicative constant, (f(n)g(n) +
n?, g(n) +n) is an (Area, GL)-pair for the finite presentation P of
Proposition 6.1 for T



o If A = C,, a finite cyclic group of order q, then, up to a common
multiplicative constant, (f(n) +n, g(n)+n) is an (Area, GL)-pair for
the finite presentation P of Proposition 6.2 for T'.

If Conjectureb.4 is true then we can simplify this theorem by replacing
DGLg(n) by GLj(n). This would make the result applicable iteratively, and
therefore we would be able to constrain both the Dehn function and the
gallery length function as one takes successive central extensions. As a corol-
lary we would reproduce the result of [10], [14], [15] that finitely generated
nilpotent groups of class ¢ admit polynomial isoperimetric functions of degree
c+1.

A second application concerns a filling function FLp : N — N known
as the filling length function of a finite presentation P. The filling length
of a diagram D is the minimal upper bound on the length of the boundary
curve in the course of a shelling (combinatorial null-homotopy) of D down
to its base vertex. And FLp(w) for a word w that represents 1 in the group
presented by P is the minimum of FL(D) over all van Kampen diagrams D
for w. And then FLp(n) is the maximum of FLp(w) quantifying over all
words w of length at most n that represent 1 in the group. It is possible to
interpret FLp as the non-deterministic space-complexity of a naive approach
to solving the word problem for P in which relators are applied exhaustively
— see Section 5 or [10] for more details.

We proved in Theorem 7.1 of [13] that FLp ~ DGLp under the technical
hypothesis that P is fat (Definition 5.5), and so these two filling functions
are the qualitatively the same. If DGLp ~ GLp then we deduce (relevant
definitions are given in detail in Section 5):

Theorem 1.2. Let P be a finite fat presentation. Assuming Conjecture 5./
holds, the filling functions FLp, GLp : N — N for P satisfy FLp ~ GLp.

Thus Conjecture 5.4 allows us to re-express FLp (already a ubiquitous
concept as it is both a space-complexity measure and a differential-geometric
invariant controlling the length of curves in null-homotopies) in attractive
and concise geometric/combinatorial terms as a measure of the diameter of
the duals of the 1-skeleta of van Kampen diagrams.

The electrostatic model is used again in Section 7. We show that a filling
function DlogA, that measures the sum of the diameter with the logarithm
of the area of a diagram, is qualitatively the same as GLp:

>



Theorem 7.1. If P is a fat finite presentation then its filling functions GLp
and DlogA, satisfy GLp ~ DlogA,.

This theorem facilitates proofs in Section 8 of the following two results.

Theorem 8.1. Suppose P and Q are finite presentations for quasi-isometric
groups. Then FLp ~ FLg. If, in addition, P and Q are both fat then
GLP >~ GLQ

Theorem 8.2.

8.2.1. The gallery length function of any finite presentation of a group ad-
mitting a polynomial isoperimetric inequality of degree d > 2 admits a
polynomial upper bound of degree d — 1.

8.2.2. The gallery length function of the presentation (x,y,s,t | [x,y] =
1, tot™ = 22, sys™' = y?), due to Bridson, admits a linear upper
bound.

If Conjecture 5.4 holds then the filling length functions admit the same upper
bounds.

In Section 8 we also establish linear upper bounds on the filling length
functions for a number of classes of groups:

Theorem 8.3. Asynchronously combable groups have filling length functions
admitting linear upper bounds. This includes

8.3.1. Fundamental groups of finite graphs of groups with finitely generated
free vertex and edge groups (for example, the Baumslag-Solitar group

BS(p, q) = (z,y | y~'aPy = 27)).
8.3.2. Fundamental groups of compact, geometrizable 3-manifolds.

8.3.3. Split extensions of a hyperbolic or abelian groups by an asynchronously
combable groups.

Theorem 8.4. The filling length function of any group I that has a finite
presentation P = (A | R) satisfying Cannon’s almost convexity condition
AC(2) admits a linear upper bound.

And we ask questions about uniform bounds on the Dehn function and filling
length function in larger classes of groups.
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In Section 9 we collate the known results about the bounds that exist
between filling functions for arbitrary finite presentations, and we explain
the simplifying impact of Theorem 1.2 (modulo Conjecture 4.3 or 5.4).

In Section 10 we introduce and examine the theory of restricted filling
functions. These concern measurements of van Kampen diagrams that have
uniformly bounded vertex valences — i.e. diagrams whose curvature is uni-
formly bounded away from —oo. In the course of the proof of Theorem 7.1
in Section 7 we show that every word that represents the identity in a fat
presentation admits a van Kampen diagram in which every vertex has va-
lence at most 12. Moreover, we have considerable control on the geometry
of this diagram. This enables us to understand how the restricted analogues
of the filling functions interrelate. We set out the results in Theorem 10.3.
If Conjecture 4.3 holds then all the filling functions we consider collapse to
just two — the (restricted analogues of) space and time complexity filling
functions FLp and Areap.

This is the second article in a series that began with [13], in which we
showed some of the ways in which duality considerations impact the study of
diagrams and filling functions. We hope® to complete the series with a third
article containing proofs of the conjectures in Section 2.

2 The graph theoretic conjectures

Four conjectures are set out below, using the notation established in Sec-
tion 1. Two further conjectures appear in this paper. One, in Section 4, is
phrased in the langauge of diagram measurements and the another, in Sec-
tion 5, and concerns filling functions. Proposition 2.5 summarises the known
interrelationships.

Conjecture 2.1. Fiz any A > 0. There exists some constant K > 0, de-
pending only on X\, with the following property. Suppose that G is a finite,

5 Remark added August 2004. The conjectures remain resistant to resolution more than
three years after a version was first publicised by the first author talking in the Workshop
on Geometric Group Theory at the CRM in Montreal, July 2001. Indeed it is unknown
whether the following statement, which is Conjecture 2.1 with reference to A removed,
is true: there exists K > 0 such that if G is a finite, connected graph embedded in the
2-sphere then there is a maximal tree T in G such that Diam(T) < K Diam(G) and
Diam(T*) < K Diam(G*).



connected graph embedded in the 2-sphere, and that the valence of each vertex
i G* is at most \. Then there is a mazimal tree T in G with

Diam(7) < K Diam(G), and
Diam(7*) < K Diam(G").

Conjecture 2.2. Fiz any A > 0. There exists some constant K > 0 such
that, with the same hypotheses as Conjecture 2.1, we can find a mazximal tree
T in G with

max { Diam(7"), Diam(7™)} < K Diam(G*)+ K.

Conjecture 2.3. The conclusion of Conjecture 2.1 holds if we additionally
require the valence of every vertex in both G and G* to be at most \.

Conjecture 2.4. Fiz any A > 0. There exists some constant K > 0, de-
pending only on X, with the following property. Suppose that G is a finite,
connected graph embedded in the 2-sphere and that the valence of every vertex
in G is at most X\ with the possible exception of one vertex e . Define n to
be the valence of e, in G*. Then there is a maximal tree T in G with

max { Diam(7"), Diam(7™)} < K (Diam(G*)+n). (1)

Proposition 2.5. The following implications between the conjectures hold.

2.1 = 22= 23

f
2.4 & 4.3= 5/

Proof. If G is a graph as per Conjecture 2.1 then we can find a path in G
between given vertices a and b by taking @ and b to be vertices of G* dual to
2-cells that have a and b (resp.) on their boundaries, and then follow a path
in the 1-skeleton of the union of 2-cells dual to the vertices on a geodesic
in G* from @ to b. So Diam(G) < A (Diam(G*) + 1). Thus Conjecture 2.1
implies Conjecture 2.2.

All the other implications are immediate from the definitions. n

It is not hard to verify that Conjectures 2.1-2.4 hold when A < 3. It
would seem that the full intricacy of these conjectures is contained in the
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case A = 3. Establishing Conjecture 2.4 for A\ = 3 is sufficient for the group
theoretic applications in this article on account of the well-known technique
of triangulating a finite presentation P = (A|R) of a group I': obtain a new
finite presentation for I' in which every relator has length at most three by a
finite sequence of the following operations. If some r € R is a concatenation
wiwy of two words w; and ws both of length at least 2, then add a new
generator a to A, and in R replace r by the two words a~'w; and aws.

3 Examples

Figure 1 shows the fourth of a family G,, of planar graphs that have 2™ + 1
vertices. The vertex valences of the dual graphs GG,,* are at most three. So
G, falls under the scope of Conjectures 2.1 and 2.2. In the left-hand figure
we show 7™, a maximal geodesic tree in G,* based at the vertex at infinity,
(drawn with dotted lines). The diameter of 7™ is 2n. The complementary
maximal tree 7" in G,, (drawn with heavy lines) has diameter 2". The right-
hand diagram shows a different complementary pair of maximal trees (7', 7*).
Here Diam(7') = 2n — 1 and Diam(7*) = 2n. Thus this family of examples
shows that in order to satisfy the demands of Conjectures 2.1 and 2.2, it does
not suffice to take the maximal trees in the dual graphs to be geodesic trees.

Figure 1: Two complementary pairs of maximal trees for a planar graph Gj,.



The fourth graph of a related family G, is shown in Figure 2. In G,
each vertex has valence at most 5 and in the dual G% the vertex valences are
at most 4. So this family (and their duals) are within the scope of Conjec-
ture 2.3. Like the case of the graphs G,,, taking 7™ to be a maximal geodesic
tree in CNJ:L based at the vertex at infinity does not produce a pair of com-
plementary maximal trees that satisfy the requirements of Conjecture 2.3.
However taking T' to be the maximal tree shown with heavy lines, we get a
complementary pair with Diam(7T") ~ Diam(7™) ~ n.

( )

Figure 2: A maximal tree in the diagram G,.

An example from a family within the scope of Conjecture 2.4 is shown in
Figure 3 in Section 5. These graphs are 1-skeleta of van Kampen diagrams
(defined in Section 5) for the words [b™, a™!][b", a] over {a,b | b~ ab = a?). All
horizontal edges are labelled by a and all vertical edges by b. The left-hand
figure shows a choice of maximal trees that gives complementary pairs that
fail the conjecture. The right-hand diagram shows a maximal tree T" such
that Diam(7") ~ Diam(7T*) ~ n.

4 Singular disc diagrams

Definition 4.1. A singular disc diagram D = S \ ey is a combinatorial
2-complex that can be obtained from some finite combinatorial 2-complex S
homeomorphic to the 2-sphere by removing the interior of a 2-cell e.

So D is a finite, planar, contractible, combinatorial 2-complex; in general
D need not be a topological 2-disc but rather is a tree-like arrangement of
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b4 b4 b4 b4
a a
a a
b4 b4 b4 b4
a * a *

Figure 3: Maximal trees in the 1-skeleton of a van Kampen diagram Dy.

topological discs connected by 1-dimensional arcs. For brevity, we refer to D
as a diagram.

A finite, connected, undirected graph® G embedded in the 2-sphere in-
duces a combinatorial 2-complex structure S with 1-skeleton G. Associated
to S is the dual 2-complex S* that has a face dual to each vertex of S, an edge
dual to each edge of S, and a vertex dual to each face of S. The 1-skeleton
of S* is G*, the dual graph of G.

Definition 4.2. (Diagram measurements.) A diagram measurement M
assigns a real number M(D) to a diagram D. We will be concerned with the
following diagram measurements.

We define a number of measurements that capture aspects of the geometry
of a diagram D with a base vertex vy in 9D,

e The area Area(D) is the number of 2-cells in D.

5Or “multigraph” — see the footnote in Section 1.
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e The diameter Diam(D) := Diam, (G) = max {d(vy,a)|a € G},
where G := DV,

e The perimeter Perimeter(D) is the length of the boundary circuit of
D. This equals the valence of the vertex eX  at infinity in G*.

e The gallery length GL(D) is the diameter of the dual graph G*, and so
is essentially the dual concept to Diam.

e The measurement DGL(D) is an upper bound for both diameter and
gallery length. It is defined to be the minimum of Diam(7") + Diam(7™)

as (T,T*) ranges over all complementary pairs of maximal trees for
G = D).

e DlogA(D) is defined to be Diam(D) + log,(Area(D) + 1).

e The filling length FL(D) is the minimum filling length FL(S) amongst
all shellings S of D.

The precise definition of a shelling as well as more details about filling
length can be found in [11] or [13]. Roughly speaking, a shelling in a combi-
natorial null-homotopy of D down to the base vertex vy.

It is a simple consequence of the definitions that Conjecture 2.4 can be
reformulated in terms of the diagram measurements GL(D) and DGL(D):

Conjecture 4.3. Fiz A > 0. There exists K > 0 such that if D is a diagram
in which every face has boundary circuit of length at most \, then

GL(D) < DGL(D) < K (GL(D) + Perimeter(D) ).

(The inequality GL(D) < DGL(D) is not conjectural; it follows immediately
from the definitions.)

5 Filling functions for finite presentations

Here we present some of the notions of Geometric Group Theory that we
need before we can explain the applications of the conjectures.

Filling functions for a finite presentation P = (A | R) of a group I are
defined using measurements of diagrams D, associated to a proof that a

12



word” w represents 1 in I'. So a filling function captures an aspect of the
geometry of the word problem for P. The diagrams in question are called
van Kampen diagrams and we recall their definition below.

Denote the length of w by ¢(w). Let K? be the compact 2-complex with
fundamental group I' associated to P: to construct K? take a wedge of | Al
circles, label each circle by an element of A and orient them, and then attach
a {(r)-sided 2-cell for each r € R with r describing its attaching map. Let

C(P) = K? denote the Cayley 2-complez associated to P. The Cayley graph
of P is the 1l-skeleton of C(P), and the O-skeleton is identified with I' so
that the combinatorial metric on C'(P) agrees with the word metric dp on
I'. Each edge of the Cayley graph inherits an orientation from K? as well as
a label by an element of A.

A word w in I" such that w = 1 in I' is said to be null-homotopic, or is
referred to as an edge-circuit, because it defines a loop in C(P)M) based at 1

(say).

Definition 5.1. Suppose w is a null-homotopic word. Then a diagram D,, =
S\ e with base vertex vy is a P-van Kampen diagram® for w when there
is a combinatorial’ map ® : (D,,v9) — (C(P),1) such that ® |sp, is the
edge-circuit w.

Each edge of D, inherits a direction from its image in C(P)") and a
labelling by an element of A. So the word one reads around the boundary
of each of the 2-cells of D,, is a cyclic conjugate of an element of R UR™?,
and starting at the base vertex vy one reads w (by convention anticlockwise)
around 0D.

For an edge-circuit w define
M(w) := min{M(D,) | D, is a van Kampen diagram for w},

where M is a diagram measurement (see Definition 4.2). We write Mp(w)
when we wish to stress the finite presentation concerned.

We mention some equivalent definitions of Area(w), Diam(w) and FL(w).
It is a consequence of van Kampen’s lemma (see [5], [17] or [18]) that Area(w)

"Words are strings on letters in A and their formal inverses, that is, words are the
elements of the free monoid (AU A~1)*.

8We omit the P when there is no potential ambiguity.

9A combinatorial map sends n-cells homeomorphically onto n-cells for all n.
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is the least N such that there is an equality

N
=1

in the free group F(A) for some r; € R*! and u; € A*. Similarly, up
to the additive constant max {{(r) | r € R}, the diameter Diam(w) is the
minimal bound on the length of the conjugating elements u; in equalities
(2). Proposition 1 in [11] says that FL(w) is the minimal bound on the
length of words one encounters in the process of applying defining relators'®
to reduce w to the empty word. There is another interpretation of Area(w)
in this context: it is the number of times relators are applied in the course if
the reduction. These formulations of the definitions of Area(w) and FL(w)
are particularly significant because they reveal the resulting filling functions
Area : N — N and FL : N — N, defined below, to be the non-deterministic
complexity measures of the crude method of attacking the word problem in
P by exhaustively applying relators.

Now we come to the definition of the filling functions.

Definition 5.2. (Filling functions.) For a diagram measurement M we
define a filling function M : N — N for P by

M(n) := max {M(w) | edge-circuits w with {(w) < n}.
In particular,
e Area: N — N is known as the Dehn function,
e Diam : N — N is the minimal isodiametric function ,
e GL : N — N is the gallery length function, and

e FL : N — N is the filling length function.

An isoperimetric (resp. isodiametric) inequality for P is provided by any
function f : N — N such that Area(n) < f(n) (resp. Diam(n) < f(n)) for
all n.

0Tn a presentation P = (A | R), a word ufBv is obtained from a word uav by applying
a defining relator when a cyclic conjugate of the word a1 is in R*!.
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There are many references to isoperimetric functions, Dehn functions and
isodiametric functions in the literature; [5] and [8] are surveys. The filling
length function is discussed extensively in [11] and has an important appli-
cation in [10]. We introduced GL and DGL in [13], and DlogA, which will
play an important role in Section 7, is new.

The word problem for P is solvable if and only if any one (and hence all
— see Section 9) of the filling functions Area, GL, DGL, DlogA and FL is
bounded above by a recursive function — see [§].

The following equivalence relation on functions N — N is well-known.

Definition 5.3. (~-equivalence.) For two functions f,¢g : N — N we say
that f < g when there exists C' > 0 such that f(n) < Cg(Cn+C)+Cn+C
for all n, and we say f ~ ¢ if and only if f < g and g =< f.

For example, for p,q > 1 we have n” ~ n? if and only if p = q.

Recall that Conjecture 2.4 about planar graphs was reformulated in terms
of diagram measurements GL and DGL in Conjecture 4.3. Conjecture 4.3 is
true then so is the following.

Conjecture 5.4. The filling functions GLp and DGLp for any given finite
group presentation P are ~-equivalent.

It is important to note that the filling functions are defined for specific
finite presentations for groups. However, up to ~-equivalence, Area and FL
depend only on the group. Indeed both are quasi-isometry invariants up to
~-equivalence — see [1] and Theorem 8.1 of this article. The situation for
GL is a little more complicated. One needs the following notion of fattening
a presentation P = (A | R) by adding to A an extra generator z which
represents 1 in the group, and adding a number of extra relations involving
z to R.

Definition 5.5. (Fat presentations.) One obtains a fat presentation P’
from a presentation P = (A | R) by adjoining an extra generator z to A as
follows:

P o= (AU{z} |RU{z,2% 227" 2%, %27 U {[a,2] 1 a € AU{2}}).
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It is proved in [13] that if P and Q are two finite presentations for the
same group [" then the gallery length functions GLps and GLg of the fat pre-
sentations P’ and Q' are ~-equivalent. This result is shown in Theorem 8.1
of this article to continue to hold under the weaker hypothesis that P and Q
present quasi-isometric groups.

In our study of central extensions, we will need to monitor not only how
the gallery length functions of two finite presentations of the same groups are
related, but also how simultaneous area and gallery length bounds change.
The following definition gives us the appropriate notation and the subsequent
proposition, which is [13, Scholium 4.7], gives us the control we will require.

Definition 5.6. We say that a pair (f, g) of functions f, g : N — N is an
(Area, GL)-pair for the finite presentation P when, for every edge-circuit
w in the Cayley graph of P, there exists a van Kampen diagram D, with
Area(D,,) < f(¢(w)) and GL(D,) < g(¢(w)).

Proposition 5.7. Suppose that P and Q are two finite presentations for
the same group I', and that P’ and Q' are their fattenings. If (fp:, gp:) is an
(Area, GL)-pair for P’ then there is an (Area, GL)-pair (for, gor) for Q' such
that fp/ >~ fQ/ and gpr = gg -

6 The geometry of central extensions

We begin an examination of the geometry of central extensions I' of finitely
presentable groups I' with the case where the central abelian kernel is Z:

170 =T —1.

If P = (A|R) is a presentation for I’ then there is a presentation for I' of
the form

P=(A|R)=(AU{z} |r=2"forreR; [z,aforallaec A).
Define M := max{|n,| | r € R}.

Proposition 6.1. (Infinite cyclic kernel case.) Suppose w is a word in
(AEY)* that represents 1 in T, and so represents 2™ in L for some integer
m. Assume D is a P-van Kampen diagram for an edge-circuit w. Let T be
a mazimal tree in G = DW . As usual, the base vertex of D is called vy.
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There is a P-van Kampen diagram D for wz=™ such that

Diam(G*) <
Area(D) <

2 Diam,, (T") + Diam(7™), (3)
M Diam,, (T") Area(D) + Area(D), (4)

where G* is the graph dual to G = DO,

Proof. We will inflate D to produce a P-van Kampen diagram D for wz"™.
The defining relators r in R are expanded to relators rz—" in R and the
resulting introduction of the z-edges in the boundaries of the corresponding
2-cells prevent them fitting together in the same arrangement as in D to make
a P-van Kampen diagram. The remedy is to use the electrostatic model as
explained in the following three steps and illustrated in Figures 4 and 5.

1. Charge the diagram D.

Fix an embedding of D in the plane. Each 2-cell e in D has its boundary
labelled by some r € R*! read from a base vertex v, € de. Inscribe a planar
wedge of |n,| 2-discs in e; each of these 2-discs has boundary made up of one
directed 1-cell whose initial and terminal vertices are both identified with v,.
Refer to each of these 2-discs as charges; each has boundary loop labelled
by z and is directed in such a way that around the boundary loop of the
(now altered) 2-cell e one reads the relator (rz="")*!. We say that a charge
is positive or negative depending on whether one reads z in a clockwise or
anticlockwise direction. Call the charged diagram D°.

The left-hand diagram of Figure 6 is an example of a charged diagram.
Here charges are inserted to inflate the relators [z, y] to [z, y]z~".

2. Discharge along the maximal tree T

To get a van Kampen diagram for w from D¢ a natural approach is to
blow up each vertex and then to fold together edges labelled z. However for
this to work it is necessary that the charge at each vertex v is electrostatically
neutral — that is, there are the same number of positive charges as negative
charges attached to v. The way we achieve this is to discharge the diagram
along T'. At each vertex pair off the positive charges with the negative charges
and refer to the remaining unpaired charges as the excess charges. We now
discharge the excess charge to vy as follows. We transfer all the excess charge
at each vertex v in D¢ along a path p in T to vy using a string of digons.
Each 1-cell in p is doubled to create a digon (one of the two resulting edges
is chosen to be in the maximal tree of the new diagram), and then a positive
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Figure 4: Discharge of excess charge along a maximal tree 7" in a van Kampen
diagram to vy.

charge is added at one end of the digon and a negative charge at the other.
The charged digons are aligned along p in such a way that at every vertex
on p apart form v and vy, one positive charge and one negative charge is
added. The effect is then that the net charge at v is altered by one at the
expense of the charge at vy. The net charge at each of the other vertices is
left unchanged.

3. Blow-up and fold.

From a diagram where all vertices apart from vy are electrically neutral,
we produce a diagram over the presentation 75, that is, a diagram in which
all the 2-cells have boundaries labelled by words in R*L. The wedge of 2-disc
charges at each vertex v # vq is blown up into a 2-cell with boundary word
made up of z and 2~ !’s. The exponent sum of the z*!’s comprising this word
is zero as the net charge at v is neutral. Adjacent zz~! or 27! z pairs are
then folded together until the blown-up 2-cell is entirely eliminated. (This
process of folding does not need to be specified uniquely.)

The blow-up procedure at vy differs in that we cut out the charges at vg
so as to introduce a subword u made up of z and z~'’s into the diagram’s
boundary word. So the boundary word of the new diagram is uw. But then
uw=z""1in I because w = z™ in I'. Thus the exponent sum of the letters
2 comprising u is —m and folding together adjacent z z=! or 27! 2 pairs in u
gives a diagram D with boundary circuit =" w for some m’. And because
w= 2" = 2" we have m = m’.

The 3-dimensional integral Heisenberg group (z,y, z | [z,y] = 2, [z, 2] =
1,[y,z] = 1) is an example of a central extension with kernel Z = (z). The
effect of charging a diagram for the word [z73, y~%][y3, 2] over (z,y | [z,v]),
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Figure 5: The effect of blowing up and then folding the diagram from Fig-
ure 4.

discharging along a maximal tree T' (depicted using heavier lines), blowing-
up and then folding is illustrated in Figure 6. In this case each relator [z, ]
is inflated to include one z-edge and the discharge procedure collects nine
positive charges and nine negative charges at vy. Blowing up at vy inserts a
subword 2?2z~ into the boundary word, which is then folded into the interior
of the final diagram.

We now prove the bounds (3) and (4) for D. A copy of the maximal tree
T* in G* can be found in G*, and this can be reached from any vertex in
G* by following a path along one of the z-corridors. These z-corridors have
length at most Diam,,(7), hence the bound (3). For the area bound (4), let
Q(D°) denote the total charge > _|n, |, summed over the Area(D) 2-cells
e of the D, where r, is the relator that is the boundary word for e. Then
Q(D) < M Area(D) is an upper bound for the total number of z-corridors
introduced into D when making D. Each of these corridors is made up of at
most Diam,,(7") 2-cells. So the first term on the right-hand-side of (4) is an
upper bound on the total contributions made by the z-corridors to the area
of D. The remainder of D is the inflated Area(D) 2-cells from D, and thus
we deduce (4). n

The methods above can be adapted to the case where the central abelian
kernel is a finite cyclic group Cj:

1-C,—»T =T 1.

If P = (A|R) is a presentation for I’ then there is a presentation for ' of
the form

P=(A|R)=(AU{z}|r=z"forr e R; [z,aforallaec A; 27).

19
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Figure 6: A van Kampen diagram for the word [z73,y73][y3, 2%] over (z,y |
[z, y]) charged and then inflated to a diagram over the 3-dimensional integral

Heisenberg group (z,y, z | [z,y] = 2, [z, 2]

= 1,[y, 2] = 1). In the right-hand

diagram the edges whose directions have been marked are the z-edges.
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We can assume that 0 < n, < ¢ for all » € R. The conclusion of the following
proposition differs from that of Proposition 6.1 in the bound on the area of
D.

Proposition 6.2. (Finite cyclic kernel case.) Suppose w is a word in

(AEY)* that represents 1 in T, and so represents 2™ in L for some non-

negative integer m < q. Assume that D is a P-van Kampen diagram for an

edge-circuit w. Let T be a mazimal tree in G = DY, Let C := max {{(r) | r € R}.
There is a P-van Kampen diagram D for wz=™ such that

Diam(G*) < 2Diam,,(T) + Diam(T™), (5)

Area(D) < 2Area(D)+ (¢ —1)(C Area(D) + {(w)), (6)
where G* is the dual graph to G =DW.

Proof. We adapt the electrostatic model of the proof of Proposition 6.1 as
follows. We charge the diagram (this time all the charges are positive because
0 < n, < qforall r € R) and then discharge to vy along the mazimal tree
T as before. But then before blowing-up and folding the diagram we remowve
digons as follows. Let v, if it exists, be an edge a maximal distance from
vp in T such that there are at least ¢ digons along the first edge e on the
geodesic v in T from v to vg. Then there are at least ¢ digons along every
edge of v. We remove ¢ digons from each edge of . Perform this removal of
digons repeatedly until no v can be found. In this way arrive at a diagram in
which the number of digons along each edge is no more than ¢ — 1, and the
net charge at each vertex is 0 mod g. We then produce the diagram D by
blowing up and folding as before, except that this time if a vertex v # vy has
total charge kq then k faces labelled z~¢ will be inserted into the diagram. A
word 2! will be inserted into the boundary of the diagram at vy with [ = m
mod ¢, and we reduce this to z™ by attaching k faces labelled z7¢ where
| = kq+ m. The result is a diagram D for wz"'.

The inequality (5) on Diam(G*) is proved in the same way as (3). The
area bound (6) arises from considering the following three contributions to
faces in D — the Area(D) faces in D are inflated to faces in D; cach edge in
T, of which there are at most C' Area(D) + {(w), is fattened to no more than
(¢—1) digons before the blowing-up and folding procedure, and each of these
digons gives a face in D with boundary label [a, 2]*! for some a € A; and the
number of 279 faces in D is at most Area(D) because at most (¢—1) Area(D)
z-edges are introduced when D is charged. n
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The propositions above allow us to formulate results that give restric-
tions on how the geometry of the word problem of a group can change
when one moves to a central extension. These results are framed in terms of
“(Area, GL)-pairs” (see Definition 5.6) and the related notion of “(Area, DGL)-
pairs” which are identically defined except with the filling function DGL
(defined in Section 5) replacing GL.

Theorem 6.3. Suppose that 1 — A — ' — ' — 1 is a central extension of
the finitely presented group ', and that (f,g) is an (Area, DGL)-pair for a
finite presentation P of T".

o If A = Z then, up to a common multiplicative constant, (f(n)g(n) +
n®, g(n)+n) is an (Avea, GL)-pair for the finite presentation P of
Proposition 6.1 for I

o If A = C,, a finite cyclic group of order q, then, up to a common
multiplicative constant, (f(n)+n, g(n)+n) is an (Area, GL)-pair for
the finite presentation P of Proposition 6.2 for T'.

Proof. Suppose w is a word in (/lil)* that represents 1 in the group r
presented by P = (A | R). Let n := £(w) and let w be the word obtained
from w by removing all instances of the generator z of the cyclic central
kernel A. Then w represents 1 in I and 2™ in I" for some integer m (with
0 < m < ¢ in the case of A = (). Let D be a P-van Kampen diagram for
w exhibiting the Area and DGL bounds on the (Area, DGL)-pair for P. Let
D be the P-van Kampen diagram for wz~" of Proposition 6.1 in the case of
A = Z and of Proposition 6.2 in the case of A = Cj,.

We attach a planar annular diagram A around the boundary of D to
affect a transformation of w to wz™™ and thereby produce a van Kampen
diagram for w as follows.

In the case A = Z, the exponent sum of the occurrences of z in w equals
m, and A consists of z-corridors that collect the letters z*! in @ together so
that after cancelling zz~! pairs we have wz~™. The length of each z-corridor
is at most n and so the increase in gallery length when A is attached to D
is at most 2n. The area of A is at most n? since each letter z is moved a
distance at most n using commutator relations.

When A = (), the exponent sum of the occurrences of z in w equals
m mod q. We let A be the annular diagram with outer boundary w and
inner boundary wz~"™ that is obtained by moving letters z around w using
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commutator relations as follows. We start at the left-hand end of the word w
and read along the word from left to right. Each time we come to a letter z*!
we move it to the right until we either come to a z¥!, in which case we cancel
the two letters, or we come to a z*!, in which case we carry this letter along
also. As we progress through the word we pick up more and more letters z**
in this way, and if the number of letters we are carrying reaches ¢ we apply
the relator z¢ = 1 to cancel them all. When we reach the right-hand end of
the word we have transformed the word to wz="™ or wz~™"%. In the latter
case we use a relator z¢ =1 to get the word wz="™.

The total number of 29 = 1 relations we use is at most 1 + (n/q) and
at any stage in the above process we are moving at most ¢ — 1 letters z*!
through the word, so we use at most (¢ — 1)n commutator relations. Thus
the area of A is at most n, up to a multiplicative constant. It follows that
attaching A to D does not increase the gallery length by more than n, up to
a multiplicative constant. [

Recall that Conjecture 4.3 claims a close relationship between the diagram
measurements GL and DGL.

Corollary 6.4. Assuming Conjecture 4.3 holds, Theorem 6.3 is true under
the weaker hypothesis that (f,g) is a (Area, GL)-pair.

Having considered the cases of a central extension with kernel Z or C, one
is ready for the general case of a central extension with kernel an arbitrary
finitely generated abelian group A.

Theorem 6.5. Assume Conjecture 4.3 holds. Let
A>T —>T—1

be a central extension of the finitely presented group I' with finitely generated
abelian kernel A. Let P = (A | R) be a finite presentation for I' and let (£, g)
be an (Area, GL)-pair for P. Then there is a finite presentation P for I such
that, up to a common multiplicative constant, (f(n)g(n) +n?, g(n)+n) is
an (Area, GL)-pair for P.

Proof. We express A as a direct product Z* x Cy, x Cyy X -+ X Cy, of cyclic

groups and choose a basis 21, 2y, . . ., 2; for the factor Z*, and generators zj;
for the Cy, fori =1,2,...,7.
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Tz}kethepresentationﬁforf‘tobe (A|R) where A = AU{z |1<i<j+k}
and R is
{r=wu | rerR}
U {[a,z] | ac A 1<i<j+k}
U {lz,20] | 1<6,d <j+k}
U {zeu® | 1<i<j},

with u, a word in the generators zi, 2o, ..., zx4;. Suppose w is a word in
the generators of P such that & = 1 in T, and let w be obtained from @ by
deleting all letters z;*! for all 3. Then w =1 in I

Choose a P-van Kampen diagram D for w according to the (Area, GL)-
pair for P.

We construct intermediate central extensions by adding one central basis
element z; at a time: that is we pass from f/(zl, Zoy ..., 2i) tO f/(zl, 29y Zi1)-
On adding each z; we inflate the van Kampen diagram as per Corollary 6.4 to
produce a van Kampen diagram for a word in which letters z;%! are returned
to their places in w.

Inductively we see that the gallery length of the diagrams remains bounded
by g(¢(w)) +n up to a multiplicative constant. However the bound we get
on the area of these diagrams from Corollary 6.4 increases by a factor of the
gallery length with each successive central extension. But, looking back at
(4) we see that the dominant term in the area estimate is the product term
Diam,, (T") Area(D) that comes from the contributions of the corridors that
move central elements (“charges”) along the tree T' when we blow up relators
from R.

The total amount of charge moved throughout the j+ k successive central
extensions is at most MArea(D), where M is the maximum length of the
words u,. The diameter of the trees T (and hence the length of the resulting
corridors) remains bounded in terms of g(£(w)). So the area of the final P-

van Kampen diagram is controlled by f(¢(w)) g(¢(w)). m

Recall that a group I' is nilpotent of class ¢ when the lower series is a
central series, defined inductively by I'y :=I" and I';;, := [[';, '], terminates
at FCJ’_l = {1}

I=Ty>0>...>0 ={1}.

For each 7, the group I'; is a central extension of I';,1, and the presentation
(x | =) of the trivial group admits the (Area, GL)-pair (n,2). So repeated
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application of Corollary 6.4 starting at the trivial group, together with Propo-
sition 5.7, gives:

Corollary 6.6. Assume Conjecture 4.3 holds. If P is a finite fat presenta-
tion for a finitely generated nilpotent group I' of class ¢ then, up to a common
multiplicative constant, (n“™' n) is an (Area, GL)-pair for P.

The isoperimetric function n¢™! (up to a multiplicative constant) would
reproduce the result of [10], [14], [15]. If Conjecture 4.3 holds then by Theo-
rem 1.2 the linear bound on the gallery length would also recapture the linear
bound on filling length of [10], [20].

7 Controlling gallery length using DlogA

The main result of this section is Theorem 7.1 in which we give a convenient
method of controlling the gallery length filling function. We prove that for
a null-homotopic word w in a fat finite presentation (see Definition 5.5),
the sum of upper bounds for the diameter and the logarithm of the area,
realisable simultaneously on one van Kampen diagram for w, can be used to
estimate GL(w).

The theorem will be useful in Section 8 in which we give upper bounds
on the gallery length of a number of different classes of groups. Also the
results and constructions in this section contribute to the theory of how
filling functions interrelate (see Section 9) and to understanding restricted
filling functions (which we introduce in Section 10).

We use the filling function DlogA : N — N that arises from the diagram
measurement:

DlogA(D) := Diam(D) + log,(Area(D) + 1).
(See Definitions 4.2 and 5.2.)

Theorem 7.1. If P is a fat finite presentation then its filling functions GL
and DlogA satisfy GL ~ DlogA.

We set out the construction used in proving the bound GL =< DlogA
in the following proposition. (Conclusion (iii) is not used in the proof of
Theorem 7.1 but will be used to establish Proposition 7.5 and (C') of Theo-
rem 10.3.)
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Proposition 7.2. Suppose P is a fat finite presentation for a group I'.

There exists a constant M > 0, depending only on P, that satisfies the
following. Suppose that D is a P-van Kampen diagram for an edge-circuit w
and that T is a mazimal tree in DY . There is a P-van Kampen diagram D
for w in which every vertex has valence at most 12 and there is a maximal
tree T in DY such that

(i). Area(D) < M Area(D) (1 + Diam(T)),

(ii). Diam(7T") < M (1 + Diam(T") + log,(Area(D) + 1)),
(iii). Diam(7*) < M (Diam(T) 4+ Diam(T*) 4+ n),
where n = L(w).

Proof. As P is fat, A includes some letter z such that the words z, 22, zz7 1, 23, 22271

and [a, z] for all a € AU {z} are in R. It will be convenient to have some
further defining relators at our disposal for the construction of D. For a
word r = ajas . ..a, define ¥ := ayzasz . . . a,z. Then let P = <.»Zl | 7@) where
A := A and R is defined to be the union of R with the set of words in
{2,271} of length four or five and with {7 | r € R*'}.

In what follows we show that there is a P-van Kampen diagram D for
w with the properties listed above save that the valence bound is 6 rather
than 12. Then we will show that the use of these extra relations can be
circumvented and D can be converted into a P-van Kampen diagram for w
with the valence bound increasing to no more than 12, and without destroying
the bounds (i), (ii) and (iii).

Define C' := max {ﬁ(r) | re 7@}, the length of the longest of the defining

relators for P.

We explain a four-step process of obtaining a P-van Kampen diagram
D for w from D. In the first three steps we invoke the methods of the
electrostatic model of Section 6.

1. Charge the diagram D.

We charge every 2-cell e of D as follows. We inscribe one 2-cell e, (called
a charge) into e at each vertex v on de. The boundary of e, is a single edge
and its initial and terminal vertices are both identified with v. It is directed
clockwise!! and is labelled by z.

'We mean clockwise with respect to a fixed orientation of the plane and a fixed em-
bedding of D in the plane.
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Figure 7: The effect of charging at a vertex v, then discharging along a
maximal tree, and then blowing-up.

2. Discharge along the maximal tree T'.
Transfer every charge to vy along a string of digons as described in Sec-
tion 6.

3. Blow-up the diagram.

Inflate the charges so as to produce a labelled diagram D’. The inflation
introduces a z-edge at each vertex of the boundary circuit of each of the
2-cells in D, changing the boundary word of each 2-cell (read anticlockwise
from some vertex) from some r € R*! to 7. Furthermore, the strings of
digons inflate to give z-corridors along the course of geodesics in T' towards
vg. The effect at vy is to insert an extra edge path 7 into the boundary
circuit, so that one reads z™ along 7. Thus the boundary word is extended
from w to wz"™ and D’ is a P-van Kampen diagram for wz""".

Notice that m is the total number of charges inserted into D in step I
and

m < C Area(D) (7)

because at most C' charges are inserted into each 2-cell of D.

Figure 7 illustrates the effect of charging a vertex v in the interior of D,
then discharging along a geodesic in T', and then blowing-up. The five charges
arranged around v result in five z-edges being inserted into the boundary of
the diagram at vy. A charge at a vertex beyond v in T is also shown, and
this contributes a sixth z-edge to the boundary of the diagram.

4. Attach a van Kampen diagram B_,, reducing 2™ to the empty word.
This step involves P-van Kampen diagrams B_,, for words 27" whose
construction we now explain. If m < 5 then B_,, is one 2-cell with ¢(u)
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Figure 8 The P-van Kampen diagram B_;5. All edge-labels are z.

directed boundary edges labelled in such a way that the boundary word is
27™. Assume m > 5. Let k be the least integer such that m < 2¥. The
diagram B_,, has k — 2 concentric annular z-corridors, arranged around a
four-sided 2-cell. All the 2-cells in the annuli are five-sided with the exception
of 28 —m in the outermost ring which are four-sided. All the edges in B_,,
are labelled by z. The boundary edges are directed in such a way that one
reads u anticlockwise around the boundary (from some starting vertex). The
directions of the interior edges are chosen arbitrarily.

Figure 8 illustrates A,-1s. Notice that three cells in the outermost annulus
are four-sided on account of k =4 and 2% — 13 = 3.

We note that B_,, is a van Kampen diagram over P and Area(B_,,) < m.
Attach B_,, to D’ along 7. The result is a P-van Kampen diagram D for w.

Now we examine the geometry of D and prove the upper bound of 6 on
the valence of its vertices. The valence of every vertex v in the interior of D’
after blowing-up is at most 4 — the effect of the blowing-up procedure on an
interior vertex is illustrated in Figure 7. All vertices on 0D’ after blowing up
have valence at most 3. Vertices on dB_,, also have valence at most 3 and
those in the interior of B_,, have valence at most 4. So when B_,, is glued
onto D" along 7, no vertices of valence greater than 4 are introduced, except
possibly at the identified vertices v; and vy at the start and finish of the 2™
subword of 0D — there is a valence 2 vertex u on 0B_,, for all m, and we
can assume « is identified with v; and v, ; as v; and vy have valence at most
3 in D', the resulting vertex has valence at most 6 in D’.
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The bound (i) on Area(D) arises from summing the following contribu-
tions.

e Area(D) 2-cells that originate in D.

e The number of 2-cells arising from blowing-up the strings of digons is
at most C Area(D)Diam(7). This is because there is one string for
each charge and there are at most C' Area(D) charges. Each string has
length at most Diam(7).

e The diagram B_,, has area at most m, which is at most C' Area(D) by
(7).

There is a natural surjection ® : D" — D that collapses the z-corridors
introduced in step 3. A maximal tree 77 in D’ comprises all the edges e
that have a single pre-image in T, all the sides of the z-corridors that were
inserted in step 3, and the edge path 7.

We specify a maximal tree U in the interior of the diagram B_,,. Refer
to the boundary components of the concentric annuli in B_,, as rings and
refer to the remaining edges not in rings as radial. We chose U in such a
way that it includes all the radial edges, all but one edge in the innermost
ring, and alternate edges on every other ring except the outermost, in which
we do not include any edges from the four-sided 2-cells. An example of U is
depicted with heavy lines in Figure 8.

Since D consists of B_,, and D’ joined along 7, the subgraph T of D that
consists of all edges in T” or U but not in 7 is a maximal tree.

If Area(D) = 0 then D = D and T = T, and therefore T* = T* consists
only of the vertex at infinity. So in this case (ii) and (iii) hold with M = 1.
Assume henceforth that Area(D) > 0. It follows that m > 0.

The maximum distance in 7" of vertices from 7 is at most Diam(7"). Fix
a vertex u of the innermost 2-cell in B_,,. If k is the least integer greater
than log, m then there are (k — 2) z-annuli in B_,, and so

Diam,(U) < 4(k—1) < 4logym < 4 log,(C Area(D)),
the final inequality being a consequence of (7). So

Diam(T") < 2( Diam(7") + 4 log,( C Area(D) ) ).

Finally we bound Diam(7™). From any vertex dual to a 2-cell of B_,, in D
one can reach a vertex dual to a 2-cell of D’ within distance k—1 < log, m <
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log,(C Area(D)) along a path in T* by successively moving outwards from
one annulus to the next. From any vertex dual to a 2-cell of one of the 2-cells
inserted in step 3 one can reach a vertex dual one of the 2-cells originating in
D by following a path of length at most Diam(7’) in 7* through a corridor.
The complementary tree T* of T is a subtree of T*. So from any vertex dual
one of the 2-cells originating in D one can reach the vertex dual to the 2-cell
at infinity along a path of length at most Diam(7™). Therefore

Diam(7T™) < 2(log,(C Area(D)) + Diam(T) + Diam(T™)). (8)

But each vertex other than that dual to the 2-cell at infinity in T* has valence

at most C' and so Area(D) < n cDiam(T™) e deduce that log,(C Area(D))
K Diam(7T™*) + Kn + K for some constant K, and in combination with (8)
we have (iii).

To complete the proof we show that D can be converted into a P-
van Kampen diagram in such a way that the bounds (i), (ii) and (iii) continue
to hold (with a suitable change in the constant M) and without increasing
the valence bound from 6 to more than 12. The idea is to replace the 2-cells
with boundary words from R ~ R with P-van Kampen diagrams as follows.

We triangulate the 2-cells with boundary words in {z, z7'}" of length
four or five as illustrated in the left-hand and middle diagrams in Figure 9
in the cases 2! and 2°. The remaining words in R ~ R are of the form
F = ajzasz...a,z for some r = ajay...a, in R*!. We replace 2-cells with
such a boundary word 7 by a P-van Kampen diagram made up of ¢(7) + 1
2-cells following the pattern of the example illustrated in the right-hand
diagram of Figure 9. Of the 2-cells in this diagram ¢(7)/2 have commutators
la;, z] as boundary words, one has boundary word r, and the remaining ¢(7) /2
have boundary words 22271,

In this procedure the valences of vertices are increased from at most 6
to at most 12 because in the diagrams for words in R ~ R constructed in
the previous paragraph, all the boundary vertices have valence at most 3.
The area is increased by no more than a constant factor, and one can obtain
a maximal tree by extending T and in doing so one does not increase its
diameter by more than an additive constant or change the diameter of the
complementary tree T* by more than a multiplicative constant. n

Lemma 7.3. Let D be a diagram and G := DY, Assume that the valences
of all vertices in D are at most K. Then

Diam(G™) < K (Diam(G) + 1).
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In particular, GL(D) < K (2Diam(D) + 1).

Proof. Suppose a* and b* are vertices in G*. Let a and b be vertices of GG in the
boundaries of the 2-cells dual to a* and b* respectively. Let v be a geodesic
in G from a to b. The number of vertices on v is (¢(y) + 1) < Diam(G) + 1.
Let 7 be the subdiagram of the dual diagram to D consisting of the 2-cells
dual to vertices on 7. There is a path in in 5 (and hence in G*) from a*
to b*. As the total number of edges in (V) is at most K (Diam(G) + 1), we
get the required bound. [

Proof of Theorem 7.1. Suppose w is a length n edge-circuit in P and that D
is a P-van Kampen diagram for w for which DlogA(D) = DlogA(n). Take
T to be a maximal geodesic tree in D). Then by Proposition 7.2 there is a
constant M > 0, depending only on P, such that there is a P-van Kampen
diagram D for w whose vertices have valence at most 12 and that satisfies

Diam(D) < M (1 + Diam(D) + logy(Area(D) + 1)) = M (1 + DlogA(n) ).

Via Lemma 7.3 this leads to a bound on GL(D) from which we can conclude
that GL < DlogA.

The reverse bound DlogA < GL is more straight-forward and is the sub-
ject of the next proposition (and does not require the hypothesis that the
presentation P be fat). n

Proposition 7.4. The filling functions GL and DlogA for a finite presen-
tation P satisfy DlogA < GL.

31



Proof. This follows from the inequalities (1) and (5) of Proposition 2.4 in
[13] since the length of the longest defining relator bounds the valence of all
the vertices in the dual van Kampen diagram, with the possible exception of
the vertex at infinity. Inequality (1) is used to bound the diameter term in
DlogA by gallery length. Inequality (5) exploits the bounded valence of the
dual graph and leads to a bound on the log-area term in DlogA by gallery
length. n

A further consequence of the diagram constructions of Proposition 7.2 is
that in a fat finite presentation we can bound DlogA in terms of FL.

Proposition 7.5. For fat finite presentations P we have DlogA < FL.

Proof. Since FL. ~ DGL for fat finite presentations by Theorem 7.1 of [13],
it suffices to proves that DlogA < DGL.

Let B be the maximum length of the defining relators in P. Suppose
that D is a van Kampen diagram for w and T is a maximal tree in D" for
which DGL(w) = DGL(D) = Diam(7') + Diam(7™*). Then for the diagram
D of Proposition 7.2 we can use (iii) to give: Diam(7*) < M(DGL(D) + n),
where n := {(w). It follows that Diam(D) < B M(DGL(D) + n) + n/2.

Now the area of D is at most M Area(D)(1 + Diam(T)) by (i). But

Area(D) < n(B — I)Diam(T*)

by (5) of Proposition 2.4 of [13]. So log,(1+Area(D)) < K DGL(D)+Kn+K
for some constant K > 0. Deduce that for some constant K’ > 0,

DlogA(D) = Diam(D) + logy(1 + Area(D) ) < K’ DGL(D) + K'n + K'.

So DlogA < DGL. [

8 Estimates on gallery length and filling length

A first application of Theorem 7.1 is a concise proof of the second half of the
following result.

Theorem 8.1. Suppose P and Q are finite presentations for quasi-isometric
groups. Then FLp ~ FLg. If, in addition, P and Q are both fat then
GLP >~ GLQ
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Proof. We will briefly recall the well known proof [1] that Area is a quasi-
isometry invariant of finitely presented groups up to ~-equivalence, and we
will then adapt it to prove our theorem.

Define F : C(P)© — C(Q)© to be a quasi-isometry from the 0-skeleton
of C(P) to that of C(Q) and let G : C(Q)» — C(P)® be a quasi-inverse
for F. Suppose w is an edge-circuit in C'(P). Join the images under F' of
adjacent vertices of w by geodesics to form an edge-circuit w in C(Q). Given
a van Kampen diagram ® : D — C(Q) for i, use G o ® |50 to map the
vertices of D to C(P)©®. Joining the images of end points of edges in D
by geodesics, and then filling the faces with minimal area diagrams makes a
van Kampen diagram D — C(P) for an edge-circuit w in C(P). An annular
diagram A of bounded width is then attached to the boundary of D to make
a van Kampen diagram D for w. Comparing the area of D with that of D
leads to the proof that Area is a quasi-isometry invariant.

To show that FL is a quasi-isometry invariant, one induces a shelling of
D from a shelling of D in the way we now sketch. Shell D by first radially
shelling the annulus A, leaving only a path p (of length depending only on
P and Q) from the base point of D to D, then shell D mimicking a shelling
of D, and finally shell p.

Similarly, the methods of [1] can be extended to (Area, Diam)-pairs. Thus
one sees DlogA to be a quasi-isometry invariant. We then use Theorem 7.1
to show that GL is a quasi-isometry invariant of finite fat presentations up
to equivalence, which completes the argument. [

Theorem 7.1 is used to calculate upper bounds on gallery length in the
following theorem.

Theorem 8.2.

8.2.1. The gallery length function of any finite presentation of a group ad-
mitting a polynomial isoperimetric inequality of degree d > 2 admits a
polynomial upper bound of degree d — 1.

8.2.2. The gallery length function of the presentation (x,y,s,t | [x,y] =
1, tet™! = 22, sys™! = y?), due to Bridson, admits a linear upper
bound.

If Conjecture 5.4 holds then the filling length functions admit the same upper
bounds.
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Proof. For 8.2.1 and 8.2.2 we apply Theorem 7.1 to the (Area,Diam)-pairs
(nd,n4"1) and (E™, n) for P (up to common multiplicative constants) respec-
tively. This (Area,Diam)-pair for 8.2.1 is [11, Theorem 2] and that for 8.2.2
is a consequence of the computations in §5 of [12].

The coda follows from Theorem 1.2. m

In the context of 8.2.1 we mention that it is proved in [20, Corollary 5.5]
that finitely presented groups that admit quadratic isoperimetric functions
also admit linear upper bounds on their filling length functions. This adds
credence to Conjecture 5.4. We also note that in the case when d = 2, the
linear bound of 8.2.1 applies in particular to Thompson’s group F' on account
of the recent result of Guba [16].

Theorem 8.3. Asynchronously combable groups have filling length functions
admitting linear upper bounds. This includes

8.3.1. Fundamental groups of finite graphs of groups with finitely generated
free vertex and edge groups (for example, the Baumslag-Solitar groups

BS(p.q) = (z,y | y~'aPy = 2%)).
8.3.2. Fundamental groups of compact, geometrizable 3-manifolds.

8.3.3. Split extensions of hyperbolic or abelian groups by asynchronously com-
bable groups.

Proof. Tt is a result of the first author, expressed with the notation LNC H; in
[9, Theorem 3.1], that the filling length functions of asynchronously combable
groups admit linear upper bounds.

That the groups listed are asynchronously combable follows from Theo-
rem F and Corollary E1 of [2] for 8.3.1 and from Bridson [3] for 8.3.2 and
8.3.3. [

Finitely generated nilpotent groups are also known to have filling length
functions that admit linear upper bounds [10], [14], [15]. It is an open ques-
tion whether or not such groups are asynchronously combable.

The filling length functions of groups with presentations that are almost
conver in the sense of Cannon also admit linear upper bounds as we will
now explain. Recall that a finite presentation P satisfies Cannon’s almost
convexity condition AC(2) when there exist integers K and ny with the
following properties. For all vertices a, b in the Cayley graph C(P)®) of P,
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at an equal distance n := d(1,a) = d(1,b) from the identity, if d(a,b) < 2
and n > ng then there is an edge-path from a to b of length at most K that
is contained in the closed ball B, (1) of radius n about the identity. (There
are also conditions AC'(k) for k > 2, in which d(a, b) is allowed to be at most
k rather than at most 2. The proof of the theorem can easily be generalised
to apply to AC(k) presentations.)

Theorem 8.4. The filling length function of any group I' that has a finite
presentation P = (A | R) satisfying Cannon’s almost convexity condition
AC(2) admits a linear upper bound.

Before proving this theorem we adapt a definition of Gromov [14, page
101] to the combinatorial setting of a Cayley 2-complex .

Definition 8.5. Let P be a finite presentation of a group I'. Suppose
wy, wy € (AF)* are words with w; = wy in I and that D is a van Kam-
pen diagram with boundary word wyw; !, read anticlockwise from a base
vertex vy;. Let vy be the vertex of the boundary circuit at the end of the
word wy, as one reads from v;. (So v; = vy precisely when either w; or wsy is
the empty word.)

Roughly speaking, we define F, L(w,ws, D) to be the minimal length L
such that there is a combinatorial homotopy of wy to wy across D through
paths of length at most L that have fixed end points v; and vy. Formally, a
combinatorial homotopy of wy to we across D is a sequence of van Kampen
diagrams H = (Dy, Do, ..., Dy,) such that D; = D and D,, is a simple edge-
path along which one reads ws ; each D,y is obtained from D; by either a 1-
cell collapse, or a 1-cell expansion, or a 2-cell collapse move (see Definition 2.3
in [13]) in such a way that the wy portion of the boundary words 0D; is never
broken'?. Define

L(H) := m?X{ﬁ(ﬁDi) —l(ws) }.

Then F,L(wy,wy, D) is the minimum of L(H) amongst all combinatorial
homotopies H of wy to wy across D. Define

F, L(wy, ws) := min {F+L(w1, wy, D) | van Kampen diagrams D for w2w1_1} )

12That is, the word one reads anticlockwise around the boundary of D; starting from
the base vertex v; begins with an edge-path ¢ along which one reads ws, and each 1-cell
or 2-cell collapse move D; — D; 1 does not collapse an edge of ¢ and each I-cell collapse
move inserts two edges in such a way that an inverse pair is inserted into the boundary
word somewhere after the prefix word ws.
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Finally we define a function F,L : N — N by
F,L(n) := max {F;L(w, wsy) | words wy, we with £(wq), {(ws) < n and wy =p wy} .

The observation that a combinatorial homotopy H of w; to wy across a
van Kampen diagram D can be extended to a shelling of D down to the base
vertex vy leads to the following proposition.

Proposition 8.6. The functions FL and F L for an arbitrary finite presen-
tation are related as follows. For all n,
FL(2n) < F.L(n)
FL2n+1) < F.L(n+1).

In particular, if F. L admaits a linear upper bound then so does FL.
Proof of Theorem 8.4. It will suffice to show that for n > ng + 1,
FE,L(n) <F,L(n—1)+1+C,

where C'is a constant depending only on P, for then it will follow that F, L(n)
admits a linear bound, and therefore so does FL(n) by Proposition 8.6.

Fix n > ng+ 1. Suppose that w;, ws € (AF!)* are two words with lengths
(wq), l(wy) < n such that wy =p wy. We will show that

F_|_L(’UJ1, U)Q) S F+L(n - 1) + 1+ C, (9)

where C':= max { F; L(max {1, K}), FL.L(1+ K) }.
We assume that either £(w;) = n or £(wy) = n, for otherwise Fy L(wy, wsy) <
F.L(n —1) and (9) is immediately satisfied.

Case ((wy) = n. For i = 1,2 write w; = w}a; where a; € A*!, and let w! be
a geodesic word with w] =p w}. Then

E. L(wy, ws)

F, L(w)aq, whas)

max {F, L(wjaq, w]ay), FyL(w{ oy, whas), By L(wh oo, wyas)
max {1 + F, L(w}, w}), B, L(way, wias), 1 + F, L(w), w))}
max {1 + F, L(n — 1), F, L(w{ay, wias)} .

IN A IA

So we may, in fact, assume that w| and w are geodesic words, and then, as
l(w)) =n—1, we find l(w)) € {n — 3,n — 2,n — 1}. These three eventualities
are illustrated in Figure 10 and we will address each one in turn.

36



a1y,
aq 9
V9
p p
%)
wy 5 wy w
— § Lo
— | | \
| W1 o
~ ;3
w
U1 U1 U1

Figure 10: The three cases {(w)) =n—3,n—2,n— 1.

Subcase £(wh) =n — 3. We have
F L(wy, ws) < FyL(w), whasay') < FL(n — 1),

and (9) is satisfied.

Subcase (wh) = n — 2. The length of ws is n — 1 and we may assume it
to be a geodesic word (for it is possible to combinatorially homotop ws to
any word ws with length at most n — 1 and with wy, =p wy through paths of
length at most FyL(n —1)).

Let D be a diagram consisting of one 2-cell with boundary circuit of
{(wy) + £(wsy) edges, and let ® : DY) — C(P) be a combinatorial map with
image the edge-circuit wyw; ! based at the identity ®(v;) = 1. Asn—1 > ny,
the AC/(2) condition allows us to extend ® to a map ® : D) — C(P) where
D is the middle diagram of Figure 10; the image é(p) of the path p shown
is an edge path in B, _1(1) of length at most K, and o maps each of the
edge paths that run from v; to vertices on p (depicted almost vertically) to
geodesic in C(P).

We combinatorially homotop wy to we through paths of lengths within
the bound (9) as follows. We first homotop a; to p across some van Kampen
diagram filling the uppermost 2-cell of the diagram. As ¢(p) < K this can
be done through paths of length at most F,L(max {1, K}) < C. Next we
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homotop across van Kampen diagrams filling each of the vertical 2-cells in
turn working from left to right (in the sense of the depiction of the diagram
in Figure 10) as follows.

If u; and us are the initial and terminal vertices of an edge e of p then

A A A

either d(®(uq), ®(v1)) < n —2 or d(P(us), ®(v1)) < n — 2, for otherwise the
image of the midpoint of e would be outside B,_1(1). Homotop through
paths of length at most FyL(n — 1) with fixed end points uy and v if

d(®(uy),®(v1)) < n — 2 and fixed end points u; and v; otherwise. In the
second case we next collapse e.

Subcase (wh) = n — 1. This is similar to the previous subcase. The images
of the end vertices of w| and w) are mapped by d to points a distance n — 1
from 1 in C'(P)M), and so as n—1 > ng, the AC(2) condition may be invoked
as before. A homotopy that satisfies (9) begins with a homotopy of a; to
pasg, and continues with homotopies across the wvertical 2-cells proceeding
from left to right.

Case £(we) = n. The proof is similar to the case ¢(w;) = n. The problem
is reduced to considering the three subcases ¢(w}) =n —3,n —2,n — 1 and
diagrams that are reflections of those in Figure 10 are examined. So it suffices
to note that the minimal length L of paths in a right-to-left combinatorial
homotopy across the diagrams depicted is within the bound (9). n

Groups with presentations satisfying various weaker forms of the almost
convexity condition are also studied in the literature and their filling length
functions are known to admit quadratic upper bounds [19, Theorem 1].

The results listed above suggest a prevalence of finitely presented groups
whose gallery length functions admit linear upper bounds and begs the ques-
tion of whether there exist finite presentations whose gallery length functions
or filling length functions grow faster. The answer is that there are many
such groups. As we mentioned in Section 5, the word problem for a finite
presentation P is solvable if and only if one of GLp or FLp (and hence both)
is bounded above by a recursive function. It follows that finite presentations
P for groups with unsolvable word problem have GLp and FLp both growing
faster than any recursive function. Also the family

1 2 1 2
Up=(xo,...00 | o m1mg = 217, ..., Tp1 TpTp_1 = Tp,°)

[14, §4.C;] of groups that have Dehn functions ~-equivalent to an n-times
iterated exponential function have filling length and gallery length functions
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growing at least as fast as an (n — 1)-times iterated exponential function on
account of the inequalities relating Area(n) to GL(n) and Area(n) to FL(n)
discussed in §5 of [13]. Bridson’s presentations [4] for groups ®,,, defined for
m > 2 by

<a1, ey Oy S, T ‘ for i < m, s 'a;s = a;a;41,

[t,a;] = [1,a;) = [s,am] = [t,am) = [T, ant] = 1)

are contrasting examples. Bridson proves that these have minimal isodiamet-
ric functions Diamg,, (n) ~ n™ and have Dehn functions Areag,, (n) ~ n*m!.
Their filling length and gallery length functions lie between Diamg, (n) and
Areag,, (n). (This follows from [13, Proposition 2.4].)

However, one can speculate about uniform upper bounds on Diam, FL,
GL and Area for particular classes of groups. In this context we mention a
conjecture and a question of the first author. The conjecture has been been
in the public domain for a while but, to our knowledge, is set down in print
for the first time here.

Conjecture 8.7. There is a common recursive upper bound for the Dehn
functions of all finite presentations of linear groups.

Here, by a common upper bound, we mean a function f : N — N such
that all the Dehn functions are < f(n) in the sense of Definition 5.3. The
authors are unaware of any finitely presented linear group with Dehn function
growing faster than exponential. One might begin by trying to answer the
following.

Question 8.8. Do the filling length functions of all finite presentations of
polycyclic groups admit linear upper bounds?

A positive answer is already known in the special case of nilpotent groups
([10, Corollary B.1], [20]) and would imply exponential isoperimetric func-
tions for the presentations in question (by [11, Corollary 2| or [14, 5.C}).

9 Relationships between filling functions

We summarise known relationships between filling functions in the following
theorem.
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Theorem 9.1. For a finite presentation P,
. Diam < DlogA, GL, FL, DGL < Area,
. DlogA < GL,

. FL < DlogA?,

)
)
¢). log(1+ Area) < FL, GL,
)
). log(1 + FL),log(1 + GL) < Diam,
)

. loglog(1 + Area) < Diam.
Moreover, if P is fat then

(9). GL ~ DlogA < FL ~ DGL.
If, in addition, Conjecture 4.3 holds then
(h). GL ~ DlogA ~ FL ~ DGL.

Proof. The bounds on Diam by DlogA and DGL in (a) are immediate
from the definitions, and the bounds by GL and FL follow from (1), (2)
of Proposition 2.4 in [13]. That GL, DlogA, FL, DGL < Area follows from
(3), (4) of Proposition 2.4 in [13] and the easy result that Diam(D) =
B Area(D) + Perimeter(D) for a diagram D whose 2-cells all have at most B
boundary edges.

We proved (b) in Proposition 7.4. The bound log(1 4+ Area) < FL of (¢)
is the space-time bound of [11, Corollary 2] or [14, 5.C]. The corresponding
bound for GL follows from [13, Proposition 2.4 (5)]. Theorem 1 of [11] implies
(d).
The bound log(1 + GL) < Diam of (e) follows from [13, Theorem 5.1].
The Double Exponential Theorem, a recent new proof of which is in §5 of [13]
(cf. references therein), gives (f). The other bound log(1+FL) < Diam of (e)
is obtained by combining the Double Exponential Theorem with Theorem 1
of [11].

It remains to prove (g) and (h). When P is a fat presentation we get
GL ~ DlogA from Theorem 7.1. The equivalence FL. ~ DGL is Theorem 7.1
of [13]. The result DlogA < FL is Proposition 7.5 above. If Conjecture 5.4
holds then by Theorem 1.2 these four filling functions are all ~-equivalent.

u
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10 Restricted filling functions

One of the features of the van Kampen diagrams D for null-homotopic words
w in a fat presentation P constructed in Proposition 7.2 is that they have
uniformly bounded valence. Remark 7.3 in [13] explains that the same is true
of the diagrams D constructed in the proof of Theorem 7.1 in [13]. Thus by
adding a, in one sense, redundant extra generator z and some apparently
innocuous extra defining relators to a finite presentation, we have ensured
that every edge-circuit admits a van Kampen diagram in which every vertex
valence is at most 12. Moreover, both in Proposition 7.2 and in Theorem 7.1
in [13] we have substantial control on the geometry of that diagram. (Several
consequences will be included in Theorem 10.3.) This motivates us to define
what we call restricted filling functions, where we quantify over all diagrams
whose vertices have valence within some specified bounded.

Definition 10.1. Suppose that P is a finite presentation and that F is a
diagram measurement (see Definition 4.2). Fix £ > 0. Suppose w is an
edge-circuit in P. If w fails to admit a van Kampen diagram in which the
valence of every vertex is at most k then Ry F(w) := oo. Otherwise we define
R F(w) to be the minimum of F(D) over all van Kampen diagrams D for
w in which every vertex has valence at most k. Then we define the restricted
filling function R F : N — N U {oo} by

Ry F(n) := sup { Ry F(w) | edge-circuits w with £(w) < n}.

The bounded valence of the diagrams in Proposition 7.2 implies the fol-
lowing. (It is likely that the bound of 12 can be improved.)

Proposition 10.2. If P is a finite fat presentation and F is any diagram
measurement then Ri3F(n) < oo for all n.

Restricted filling functions have geometric significance in the realm of
combinatorial notions of curvature. Suppose we give the corners!® of the 2-
cells in the presentation 2-complex K? (see Section 5) strictly positive weights
(i.e. angles) then the corners of 2-cells in van Kampen diagrams inherit
weights (via the map ® — see Definition 5.1). Then restricted filling functions
concern the geometry of diagrams with curvature uniformly bounded away

13A corner of a 2-cell is one of the subdivision points of its attaching map

41



from —oo ; that is, diagrams for which there is a uniform bound on the sum
of the weights at each corner.

In the following theorem we set out some of the properties of the restricted
forms of the filling functions we have been discussing.

Theorem 10.3. Let P be a fat finite presentation. Fixz k > 12 and define
R = Rk

(A). If F is a filling function for P then F < RF.

(B). If (f,g) is an (Area, Diam)-pair then (f + fg, 1+ g+log,(1+ f)) is an
(RArea, RDiam)-pair for P, up to a common multiplicative constant.

(C). FL ~ RFL ~ DGL ~ RDGL and RDlogA ~ DlogA.
(D). RDiam ~ RGL ~ DlogA.

Moreover, if Conjecture 4.3 is true then RGL ~ RDGL and so all the func-
tions from (C) and (D) are ~-equivalent.

Proof. The explanation for (A) is that for an edge-circuit w, in the defini-
tion of RF(w) one quantifies over a (non-empty) subset of the van Kampen
diagrams that one quantifies over in the definition of F(w).

To prove (B) use Proposition 7.2 with T a geodesic maximal tree in D).
The diagram D has area at most M( f(n) 4+ f(n)g(n)) by (i) and diameter
at most M (1 + g(n) +log,(1+ f(n)) ) by (ii).

For RDGL ~ RFL we note that RFL < RDGL is immediate from the
inequality relating the diagram measurements FL and DGL in Theorem 3.5
of [13]. The reverse inequality RDGL < RFL is a consequence of the con-
structions used to show DGL < FL in the proof of Theorem 7.1 in [13].

We learn from (A) that it suffices to show that RFL < FL and RDlogA <
DlogA in order to establish the remaining equivalences in (C).

We know from (A) that FL. < RFL and DGL < RDGL. In the following
paragraph we prove that RFL < DGL and then in the next paragraph we
explain RDGL < FL. We can then deduce that FL, RFL, DGL and RDGL
are all ~-equivalent.

Suppose w is an edge-circuit in P. Suppose that D is a van Kam-
pen diagram for w and 7T is a maximal tree in D) for which DGL(w) =
DGL(D) = Diam(T)+Diam(7T*). Then for the diagram D of Proposition 7.2
we can use (iii) to bound Diam(7T*) in terms of DGL(D). We bound the
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logy(Area(D)+1) term in (ii) using Diam(7™) (see [13, Proposition 2.4 (5)]),
and the result is Diam(7T") majorised in terms of DGL(D). As vertex valences
in D are at most 12 we deduce that RFL < DGL.

In §7 of [13] we proved that for a fat presentation P one has DGL < FL.
Given a null-homotopic word w we took a minimal filling length van Kampen
diagram D for w and we constructed a new van Kampen diagram D for w for
which DGL(D) could be bound in terms of FL(D). As noted in Remark 7.3
of that article, all vertices in the diagram D had valences at most 11. So, in
fact, our proof amounted to showing that RDGL < FL.

To show RDlogA =< DlogA we suppose that D is a van Kampen diagram
for an edge-circuit w for which DlogA(D) = DlogA(w). Then the diagram
D of Proposition 7.2, with T" a geodesic maximal tree in D™, has all vertex
valences at most 12 and by (i),(ii) respectively

Diam(D) < M(1+ DlogA(D)),
logy(1 + Area(D)) < K log,(Area(D) + 1) + K Diam(D) + K

for some constant K > 0. These two inequalities together give a bound on
RDIogA(D) in terms of DlogA(D), from which RDlogA =< DlogA follows.

Lemma 7.3 and its dual reformulation together imply that RDiam =~
RGL. The result RGL < DlogA comes from analysing our proof of GL =<
DlogA (part of Theorem 7.1): we constructed a diagram D as set out in
Proposition 7.2, and all the vertices of this diagram had valences at most 12.

For the reverse bound DlogA < RGL we exploit (C') that tells us it is
enough to show RDlogA < RGL. The proof of this is the same as that of
Proposition 7.4. This completes the proof of (D).

That Conjecture 4.3 implies RGL ~ RDGL is a direct consequence of the
definitions. -

The final conclusion of the theorem says that (assuming Conjecture 4.3)
the restricted filling functions RDiam, RFL, RGL, RDGL, RDlogA (as well
as FL, DGL and DlogA) for a fat finite presentation are all ~-equivalent.
Thus in the restricted case the universe of the filling functions we have been
considering collapse to just two: RFL (~ FL) and RArea, the restricted
analogues of the (non-deterministic) space and time complexity measures,
respectively, of the crude method of attacking the by word problem by ex-
haustively applying relators. Whether or not the the non-restricted case
simplifies in a similar way is open (cf. §5 of [13]).
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