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Abstract

The diameter of a disc filling a loop in the universal covering of a Rie-
mannian manifold M may be measured extrinsically using the distance
function on the ambient space or intrinsically using the induced length
metric on the disc. Correspondingly, the diameter of a van Kampen
diagram ∆ filling a word that represents the identity in a finitely pre-
sented group Γ can either be measured intrinsically in the 1–skeleton of
∆ or extrinsically in the Cayley graph of Γ. We construct the first ex-
amples of closed manifolds M and finitely presented groups Γ = π1M
for which this choice — intrinsic versus extrinsic — gives rise to qual-
itatively different min–diameter filling functions.

2000 Mathematics Subject Classification: 53C23, 20F65, 20F10

Key words and phrases: diameter, isodiametric inequality, van Kampen di-

agram

1 Introduction and preliminaries

A continuous map F : D
2 → M̃ from the unit disc D

2 ⊂ R
2 to the universal

cover of a Riemannian manifold M is called a disc–filling for a loop c in
M̃ when the restriction of F to ∂D

2 is a monotone reparameterisation of c.
According to context, one might measure the diameter of such a disc–filling
intrinsically using the pseudo–distance D(a, b) on D

2 defined as the infimum
of the lengths of curves F ◦ p such that p : [0, 1] → D

2 is a path from a to b,
or extrinsically using the distance function d on the ambient manifold:

IDiam(F ) := sup
{
D(a, b) | a, b ∈ D

2
}

and

EDiam(F ) := sup
{
d(F (a), F (b)) | a, b ∈ D

2
}
.

∗The first author was supported in part by fellowships from the EPSRC of Great Britain
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These two options give different functionals on the space of rectifiable
loops in M̃ : the intrinsic and extrinsic diameter functionals IDiamfM

,EDiamfM
:

[0,∞) → [0,∞), defined by

IDiamfM
(l) := sup

c
inf
F

IDiam(F ) and

EDiamfM
(l) := sup

c
inf
F

EDiam(F )

where, in each case, the supremum ranges over loops c in M̃ of length at
most l and the infimum over disc–fillings of c.

There is an obvious inequality IDiam(F ) ≥ EDiam(F ), which passes to
the functionals: IDiamfM

(l) ≥ EDiamfM
(l) for all l. One anticipates that for

certain compact manifolds M , families of minimal intrinsic diameter filling–
discs might fold–back on themselves so as to have smaller extrinsic than
intrinsic diameter, and the two functionals might then differ asymptotically.
However, it has proved hard to animate this intuition with examples. In
this paper we overcome this difficulty.

Theorem 1.1 For every α > 0, there is a closed connected Riemannian
manifold M and some β > 0 such that EDiamfM

(ℓ) � ℓβ and IDiamfM
(ℓ) �

ℓα+β .

[For functions f, g : [0,∞) → [0,∞) we write f � g when there exists
C > 0 such that f(l) ≤ Cg(Cl + C) + Cl + C for all l ∈ [0,∞), and we say
f ≃ g when f � g and g � f . We extend these relations to accommodate
functions with domain N by declaring such functions to be constant on the
half–open intervals [n, n+ 1).]

Our main arguments will not be cast in the language of Riemannian
manifolds but in terms of combinatorial filling problems for finitely pre-
sented groups. There is a close correspondence, given full voice by M. Gro-
mov [7, 8], between the geometry of filling–discs in compact Riemannian
manifolds M and the complexity of the word problem in π1M . Most fa-
mously, the 2–dimensional, genus–0 isoperimetric function of M has the
same asymptotic behaviour as (i.e. is ≃ equivalent to) the Dehn function
of any finite presentation of π1M . (See [3] for details.) But the correspon-
dence is wider: most natural ways of bounding the geometry of filling–discs
in a manifold correspond to measures of the complexity of the word problem
in π1M . The following theorem, proved in Section 2, says that it applies
to IDiamfM

and EDiamfM
, and their group theoretic analogues IDiamP and

EDiamP (as defined below).
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Theorem 1.2 If P is a finite presentation of the fundamental group of a
closed, connected, Riemannian manifold M then

IDiamP ≃ IDiamfM
and EDiamP ≃ EDiamfM

.

Let P = 〈A | R〉 be a finite presentation of a group Γ. The length
of a word w in the free monoid (A±1)∗ is denoted ℓ(w). Let d denote the
word metric on Γ associated to A. If w = 1 in Γ (in which case w is called
null–homotopic) then there exist equalities in the free group F (A) of the
form

w =
N∏

i=1

ui
−1riui,

where ri ∈ R±1 and ui ∈ (A±1)∗. Ranging over all such products w0 freely
equal to w, define IDiamP(w) to be the minimum of max1≤i≤N ℓ(ui), and
define EDiamP(w) to be the minimum of

max { d(1, p) | p a prefix of w0 }

where p denotes the element of Γ represented by p. Define IDiamP , EDiamP :
N → N by letting IDiamP(n) and EDiamP(n) be the maxima of IDiam(w)
and EDiam(w), respectively, over all null–homotopic words w with ℓ(w) ≤ n.

As we will explain in Section 2, one can reinterpret IDiamP(w) and
EDiamP(w) using “combinatorial filling–discs” (van Kampen diagrams) for
loops in the Cayley 2–complex of P. Then relating the Cayley 2–complex
of P to M̃ will lead to a proof of Theorem 1.2.

In Section 3 we describe an infinite family of finite presentations whose
diameter functionals exhibit the range of behaviour described in the follow-
ing theorem.

Theorem 1.3 For every α > 0, there is a group with finite presentation P
and some β > 0 such that EDiamP(n) � nβ and IDiamP(n) � nα+β.

Theorem 1.1 is an immediate consequence of Theorems 1.2 and 1.3 be-
cause, as is well known, every finitely presentable group is the fundamental
group of a closed connected Riemannian manifold.

Our results prompt the following questions. What is the optimal upper
bound for IDiamP in terms of EDiamP for general finite presentations P?
How might one construct a finite presentation P for which EDiamP(n) is
bounded above by a polynomial function and IDiamP(n) is bounded below
by an exponential function?
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1.1 A sketch of the proof of Theorem 1.3

We prove Theorem 1.3 by constructing a novel family of groups Ψk,m. They
are obtained by amalgamating auxiliary groups Γm and Φk along an infinite
cyclic subgroup generated by a letter t.

For each positive integer n, one finds an edge–loop in the Cayley 2–
complex of Γm that has length roughly n and intrinsic diameter roughly
nm. And the reason for this large intrinsic diameter is that in any filling
(that is, any van Kampen diagram), there is a family of concentric rings of
2–cells (specifically t–rings, as defined in Section 4) that nest to a depth of
approximately nm.

Let us turn our attention to the role of Φk. For each integer n there
are “shortcut words” of length roughly nm/k that equal tn

m

in Φk. In the
Cayley 2–complex of Ψk,m these mitigate the effect of the nested t–rings
and cause our large intrinsic–diameter diagrams to have smaller extrinsic
diameter. This is illustrated in the leftmost diagram of Figure 1.

However there remains a significant problem. In the Cayley 2–complex of
Φk, the path corresponding to tn

m

and the path of its shortcut word, together
form a loop. This loop can be filled. We call any filling-disc for this loop a
shortcut diagram — ∆ of the middle diagram of Figure 1 is an illustration.
One could insert two back–to-back copies of the shortcut diagram to get a
new filling–disc for our original loop, as illustrated in the rightmost diagram
of the figure. The danger is that this lowers intrinsic diameter and thereby
stymies our efforts to separate the two diameter functionals of Ψk,m. But
Φk is built in such a way that the shortcut diagrams are fat — that is,
they themselves have large intrinsic diameter (see Section 5.2). So inserting
shortcut diagrams decreases intrinsic diameter far less than the presence of
shortcut words decreases extrinsic diameter.

We would like to say that the upshot is that for Ψk,m, the intrinsic
diameter functional is at least nm and the extrinsic diameter functional
at most nm/k. But, in truth, technicalities make our bounds, detailed in
Theorem 7.3, more complicated.

A noteworthy aspect of the construction of Φk is the use of an asymmetric
HNN extension J (cf. Section 3.1). We anticipate such extensions will prove
useful in other contexts. We build Φk

∼= Θk ∗Z J ∗Z Θ̂k by amalgamating J
with groups Θk

∼= Θ̂k of the form Z
k

⋊ F2. We build Γm by starting with
a finitely generated free group and taking a number of HNN extensions and
amalgamated free products. All of these groups have compact classifying
spaces; Ψk,m has geometric dimension k + 1. The Dehn function of Ψk,m is

at most n 7→ Cn
k

for some constant C > 0 — see Remark 7.5.
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∆

t–arc of

length ∼nm

∼ nm/k

Figure 1: Inserting a shortcut diagram ∆.

1.2 The organisation of this article

In Section 2 we prove Theorem 1.2, establishing the qualitative agreement
of the group theoretic and Riemannian definitions of diameter. In Section 3
we present the groups Ψk,m = Φk ∗Z Γm that will be used to prove Theo-
rem 1.3. Section 4 is a brief discussion of rings and corridors — key tools for
analysing van Kampen diagrams. In Sections 5 and 6 we explain the salient
isodiametric and distortion properties of Φk and Γm. In Section 7 we prove
the main theorem, modulo generalities about the diagrammatic behaviour
of retracts and amalgams, which we postpone to Section 8. Section 9 is ded-
icated to a proof that, up to ≃ equivalence, extrinsic and intrinsic diameter
are quasi–isometry invariants amongst finitely presentable groups.

2 Riemannian versus combinatorial diameter

In this section we reformulate the combinatorial intrinsic and extrinsic diam-
eter filling functions for finitely presented groups Γ in terms of van Kampen
diagrams, and then relate them to their Riemannian analogues.

2.1 Diameter of van Kampen diagrams

Let P = 〈A | R〉 be a finite presentation of a group Γ. Let ∆ be a van Kam-
pen diagram over P with base vertex ⋆ ∈ ∂∆. (We assume that the reader is
familiar with basic definitions and properties of van Kampen diagrams and
Cayley 2–complexes — [3] is a recent survey.) Let ρ be the path metric on
∆(1) in which every edge has length one and let d denote the word metric
on Γ associated to A. Let C be the Cayley graph of Γ with respect to A and
let π : ∆(1) → C be the label–preserving graph–morphism with π(⋆) = 1.
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Define the intrinsic and extrinsic diameter of ∆ by

IDiam(∆) := max
{
ρ(⋆, v) | v ∈ ∆(0)

}
,

EDiamP(∆) := max
{
d(1, π(v) ) | v ∈ ∆(0)

}
.

We shall show that the algebraic definitions of diameter for null–homotopic
words given in Section 1 are equivalent to

IDiamP(w) := min {IDiam(∆) | ∆ a van Kampen diagram for w} , and

EDiamP(w) := min {EDiamP(∆) | ∆ a van Kampen diagram for w} .

Given a van Kampen diagram ∆ for w, one can cut it open along a
maximal tree T in ∆(1) to produce a “lollipop” diagram ∆0 (with a map π0 :
∆0 → C) whose boundary circuit is labelled by a word w0 =

∏N
i=1 ui

−1riui
that equals w in F (A) and has ri ∈ R±1 for all i. There is a natural
combinatorial folding map ϕ : ∆0 →→ ∆ such that π ◦ ϕ = π0.

It follows that max { d(1, p) | p a prefix of w0 }, where p denotes the el-
ement of Γ represented by p, is at most EDiamP(∆), because p corresponds
to a vertex on ∂∆0. Thus the algebraic version of EDiamP(w) is bounded
above by the geometric version. For the opposite inequality, suppose that x
is a word of the form

∏N
i=1 ui

−1riui where ri ∈ R±1 for all i, and x = w in
F (A). Define m := max { d(1, p) | p a prefix of x }. Suppose x minimises
m and is of minimal length amongst all words that minimise m. There is an
obvious lollipop diagram with boundary word x. A van Kampen diagram ∆
for w with EDiamP(∆) ≤ m can be obtained from this by successively fold-
ing together pairs of edges with common initial point and identical labels.
(A concern is that in the course of this folding, 2–spheres might be pinched
off, but minimising ℓ(x) avoids this.)

IDiamP(w), as defined above, differs from IDiamP(w) of Section 1 by at
most 1

2 max {ℓ(r) | r ∈ R}+ℓ(w). This can be shown by an argument similar
to the one above, expect that for the first inequality the tree T should be
chosen to be a maximal geodesic tree based at ⋆, and when proving the
reverse inequality one must specify first that x minimises maxi ℓ(ui) and
then that it has minimal length subject to this constraint. This discrepancy
is of no great consequence for us since it has no effect on the ≃–class of the
resulting functional.

We will use the van Kampen–diagram interpretations of IDiamP(w) and
EDiamP(w) in the remainder of this article.
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2.2 Generality

With an eye to future applications and to highlight the essential ingredients
of our arguments, in this subsection and the next we will work in a more
general setting than that of Riemannian manifolds.

Definition 2.1 Define the intrinsic and extrinsic diameters of a disc–filling
F : D

2 → X in a metric space (X, dX ) by

IDiam(F ) := sup
{
dF (a, b) | a, b ∈ D

2
}
, and

EDiam(F ) := sup
{
dX(a, b) | a, b ∈ D

2
}

where dF is the pseudometric

dF (a, b) := inf
{
ℓ(F ◦ p) | p a path in D

2 from a to b
}

on D
2. Define IDiamX ,EDiamX : [0,∞) → [0,∞) by

IDiamX(l) := sup
c

inf
F

{ IDiam(F ) | disc–fillings F of loops c with ℓ(c) ≤ l } ,

EDiamX(l) := sup
c

inf
F

{ EDiam(F ) | disc–fillings F of loops c with ℓ(c) ≤ l } .

[In closer analogy with the definitions in the previous subsection, one
could deal instead with based loops and discs and define diameter functions
in terms of distance from the basepoint. This makes little difference: the
resulting functions [0,∞) → [0,∞) are ≃.]

Lemma 2.2 Let X be the universal cover of a compact geodesic space Y
for which there exist µ,A > 0 such that every loop of length less than µ
admits a disc–filling of intrinsic diameter less than A. Equip X with the in-
duced length metric. Then IDiamX and EDiamX are well–defined functions
[0,∞) → [0,∞).

Proof. First observe that every rectifiable loop in X admits a disc–filling of
finite intrinsic diameter: given a disc–filling F : D

2 → X of a rectifiable loop
one can triangulate the disc so that the image of each edge has diameter at
most µ/3, and then one can modify F away from ∂D

2 and the vertex set so
that its restriction to each internal edge is a geodesic and every triangle has
intrinsic diameter at most A.

Next, suppose c is a loop in X of length l. Shrinking µ if necessary, we
may assume that balls of radius µ in Y lift to X. Cover Y with a maximal
collection of disjoint balls of radius µ/10 > 0; let Λ ⊂ X be the set of lifts
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of their centres. Partition c into m ≤ 1 + 10ℓ/µ arcs, each of length at
most µ/10 and with end points v0, v1, . . . , vm. Each vi is a distance at most
µ/10 from a point ui ∈ Λ, and the distance from ui to ui+1 is less than µ/2
(indices modulo m+1). The loops made by joining vi to ui, then ui to ui+1,
then ui+1 to vi+1 (each by a geodesic), and then vi+1 to vi by an arc of c,
each have total length at most µ. So, by hypothesis, they admit disc–fillings
with intrinsic diameter at most A. Such disc–fillings together form a collar
between c and a piecewise geodesic loop formed by concatenating at most
1 + 10ℓ/µ geodesic segments, each of length at most µ/2 with endpoints in
Λ. Modulo the action of π1Y , there are only finitely many such piecewise
geodesic loops, and by the argument in the previous paragraph each one
admits a filling of finite intrinsic diameter. It follows that IDiamX and
(hence) EDiamX are well–defined functions.

Remark 2.3 If X = M̃ , the universal cover of a closed connected Rieman-
nian manifold M , then it satisfies the conditions of Lemma 2.2. Indeed, the
required µ and A exist for any cocompact space X that is locally uniquely
geodesic, for example a space with upper curvature bound in the sense of
A.D. Alexandrov — i.e. a CAT(κ) space [5]: by cocompactness, there ex-
ists η > 0 such that geodesics are unique in balls of radius η, and any loop
in such a ball can be filled by coning it off to the centre of the ball using
geodesics.

2.3 The Translation Theorem

Theorem 1.2 is a special case of the following result.

Theorem 2.4 Suppose a group Γ with finite presentation P acts properly
and cocompactly by isometries on a simply connected geodesic metric space
X for which there exist µ,A > 0 such that every loop of length less than
µ admits a disc–filling of intrinsic diameter less than A. Then IDiamP ≃
IDiamX and EDiamP ≃ EDiamX.

We shall first establish the assertion concerning extrinsic diameter and
the relation IDiamX � IDiamP .

Map the Cayley graph of Γ to X as follows: fix a basepoint p ∈ X,
choose a geodesic from p to its translate a · p for each generator a of P, and
then extend equivariantly. Following [3], a path in X is called word–like if
it is the image in X of an edge–path in the Cayley graph.

Each 2–cell in the Cayley 2–complex Cay2(P) is attached to the Cayley
graph by an edge–loop labelled by one of the defining relations r of P.
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For each r we choose a filling disc Fr of finite intrinsic diameter for the
corresponding word–like loop in X based at p. We then map Cay2(P) to X
by the Γ–equivariant map that sends each 2–cell with boundary label r to
a translate of Fr.

Using a collar between an arbitrary rectifiable loop in X and a word–like
loop, as in the proof of Lemma 2.2, one can show that there is no change in
the ≃ classes of either IDiamX or EDiamX if one takes the infima in their
definitions to be over fillings of word–like loops only. Having made this
reduction, the relation IDiamX � IDiamP becomes obvious, since one gets
an upper bound on the intrinsic diameter of discs filling a word–like loop
simply by taking the image inX of a minimal intrinsic diameter van Kampen
diagram ∆ for the appropriate word. A technical concern here is that ∆
need not be a topological 2–disc, but rather may be a finite planar tree–
like arrangement of topological 2–discs and 1–dimensional arcs. This can
be overcome by extending ∆ → X to a small regular neighbourhood V of
∆ ⊂ R

2 by a map that is constant on the slices {x} × [0, 1) of the annulus
V r ∆ ≈ ∂V × [0, 1).

The same argument yields EDiamX � EDiamP , and the converse is an
easy approximation argument (the details of which are included in Lemma
2.5). Briefly, noting that the map of the Cayley graph of Γ to X is a quasi–
isometry, we need only show that a disc–filling F : D

2 → X of a word–like
loop gives rise to a van Kampen diagram for the corresponding word that is
C0–close to F . Such an approximating disc is obtained by simply taking a
fine triangulation of D

2, and then labelling it as in the proof of Lemma 2.5.

The remainder of this section is devoted to the most difficult relation in
Theorem 2.4, namely IDiamP � IDiamX. Like the argument sketched above,
the proof of this assertion involves constructing a suitable combinatorial
approximation to a Riemannian filling of a word–like loop. The control
required in this approximation is spelt out in the following lemma.

Lemma 2.5 To prove IDiamP � IDiamX , it suffices to exhibit constants
L0, L1, λ such that, given a filling F : D

2 → X of intrinsic diameter δ for a
word–like loop c, one can construct a combinatorial cellulation ∆ of D

2 and
a map f : ∆(0) → X with the following properties:

(1 ) the attaching map of each 2–cell of ∆ has combinatorial length at most
L0,

(2 ) adjacent vertices in ∆ are mapped by f to points that are a distance
at most L1 apart in X,
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(3 ) from each vertex of ∆, one can reach ∂∆ by traversing a path consisting
of at most λ(δ + 1) edges, and

(4 ) the vertices ∂∆(0) on ∂∆ are mapped by f to points on c, and their
cyclic ordering is preserved; moreover, every vertex of c is in f(∂∆(0)).

Proof. In light of Theorem 9.1, we may take P to be a finite presentation
well adapted to the geometry of X. Thus we fix ξ > 0 so that X is the
ξ–neighbourhood of Γ · p, and as generators of Γ we take the set A of those
γ such that d(p, γ(p)) ≤ L1 +2ξ. As relations R we take all words of length
at most L0 in the letters A that equal the identity in Γ. The remainder of
our proof shows that these relations suffice; cf. [5, page 135].

Given a word w in the generators A that equals 1 in Γ, we consider the
corresponding word–like loop c in X. By construction, there are constants
α, β such that the length of c is at most αℓ(w) + β. So we will be done
if, given a disc–filling of c with intrinsic diameter δ, we can exhibit a van
Kampen diagram for w with intrinsic diameter bounded above by a linear
function of δ.

Let ∆ be as described in the statement of the lemma and label each
vertex v ∈ ∆(0)

r∂∆ by a group element γv such that γv(p) ∈ Γ · p is within
ξ of f(v). Label an edge from a vertex v to a vertex v′ by γ−1

v γv′ , which is
in A. For vertices v of ∂∆, we choose γv to be one of the endpoints of the
edge of the word–like loop c in which (the image of) v lies.

By hypothesis, the boundary of each 2–cell in the cellulation is then
labelled by a word that belongs to R. This process does not quite yield a
van Kampen diagram for the original word w, but rather for a word w′ that
is equal to w modulo the cancellation of edge–labels 1. (Our convention on
the choosing of γv for vertices on ∂D

2 ensures this equality.) Collapsing such
edges yields the desired diagram.

Continuing the proof that IDiamP � IDiamX , we concentrate on a disc–
filling F : D

2 → X of intrinsic diameter δ for a word–like loop c with
basepoint F (⋆) = p. We will construct f and ∆ satisfying the conditions of
Lemma 2.5 with L0 = 6, L1 = 5/2 and λ = 1 in three steps.

(i) Constructing the tree of a fine triangulation.

Since F is continuous and D
2 is compact, D

2 admits a finite triangulation
∆̂ such that F maps each triangle to a subset of X of diameter at most 1/2.
Fix ε > 0. Fix an ordering v0, v1, v2, . . . on the vertices V of ∆̂ r ∂∆̂
and, proceeding along the list, choose an embedded arc σv in D

2 joining
v to ⋆ as follows so that T :=

⋃
v∈V σv is a tree. Having defined σvi

for
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each i < m, to define σvm first choose an embedded arc from vm to ⋆ of
length at most ε + dF (⋆, vm), and arrange that it pass through no vertices
in V r {vm, ⋆} (more on this in a moment) and finally replace its terminal
segment beginning at the first point x it meets in

⋃
i<m σvi

, with the arc
in

⋃
i<m σvi

between x and ⋆. By construction V is the set of leaves of T .
Were it not for the ε–error terms, the diameter of T would be at most 2δ.
We choose ε small enough so that the diameter is no more than 2δ + 1.

[Technicalities: We introduced ε to avoid a discussion of the existence
of geodesics in the pseudometric space (D2, dF ). We can arrange that σvm

not pass through V r{vm, ⋆} by replacing F with a map F ′ that is constant
on a small disc about each v ∈ V and which, on the complement E of the
union of these disjoint discs, is F ◦h where h : E → D

2 is a homeomorphism
stretching an annular neighbourhood of each deleted disc to a punctured disc
with the same centre. The distances between distinct vertices in (D2, dF )
and (D2, dF ′) are the same and, in the latter, a path can take a detour near
any vertex without adding any length.]

We intend to combine T and ∆̂ to give a cellulation ∆ with the properties
required for Lemma 2.5. However, as things stand, the intersection of T
with the cells of ∆̂ could be extremely complicated. To cope with this we
introduce a hyperbolic device to extract the essential features of the pattern
of intersections.

(ii) Taming the intersection of T with ∆̂.

As above, V is the set of vertices of ∆̂ that lie in the interior of D
2. We

impose a complete hyperbolic metric on D
2

rV in such a way that ∂D
2 is a

regular geodesic polygon and the 1–cells of ∆̂ are geodesics in the hyperbolic
metric. For each v ∈ V let τv be the unique geodesic in the same homotopy
class of ideal paths from v to ⋆ in D

2
rV as σv. To aid visualisation, we are

going to talk of these τv arcs as being red.
The point of what we have just done is that it vastly simplifies the pattern

of intersections of the σv with ∆̂(1): the pattern of intersections of the τv
with a triangle is the simple pattern shown in Figure 2 (except if the triangle
has ⋆ as one of its vertices then some of the red edges can meet ⋆, indeed
the sides of the triangle may be red). Moreover, the larger–scale geometry
has been retained in a way that allows us to construct a cellulation with
combinatorial diameter at most a linear function of δ, as we will explain.

(iii) Constructing the good cellulation ∆ and map f .

We begin by taking the cellulation ∆0 consisting of ∆̂ overlaid with
T̂ :=

⋃
v∈V τv. That is, the vertices are the vertices of ∆̂ and the points of
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Figure 2: The intersections of
⋃
v∈V τv with a triangle of ∆̂.

intersection of T̂ with edges of ∆̂, and the edges come in two types: black
edges which are edges of ∆̂ (which may be partitioned into multiple edges by
vertices on T̂ ), and red edges, which are arcs in T̂ between vertices. Define
f0 : ∆0

(0) → X to be the restriction of F to ∆0
(0).

We will alter ∆0 (and f0) and the paths τv until we can control their
combinatorial lengths in terms of the lengths of the σv and thereby get an
upper bound on the intrinsic diameter of ∆0.

It will be convenient if whenever v, v′ ∈ V are distinct, τv and τv′ meet
only at ⋆. Achieve this by doubling (τv ∩ τv′) r {⋆}, and joining doubled
vertices by a new black edge — see Figure 3. Call the new combinatorial
disc ∆1 and define f1 : ∆1

(0) → M̃ by letting f1(u) be f0(u) where u is the
image of u under the obvious combinatorial retraction of ∆1 onto ∆0.

vv

v′v′
⋆⋆

Figure 3: Doubling along the intersection of two paths τv and τv′ .

Repeat the following for each v ∈ V such that τv has combinatorial
length at least 2. As τv is in the same homotopy class of ideal paths from v
to ⋆ of ∆̂rV as σv, the sequence of edges τv crosses is also crossed by σv in
the same order, except σv may make additional intersections en route. That
is, if {xi}

k
i=0 are the points of intersection of τv with ∆̂ numbered in order

along τv with x0 = ⋆, xk = v and all other xi on so a black edge ei, then
there are points {yi}

k
i=0 occurring in order along σv with y0 = x0, yk = xk

and yi on ei for all other i. For all i let ni be the integer part of the length
of the segment of σv from yi to ⋆. Note that i 7→ ni increases monotonically
from 0 to ⌊ℓ(σv)⌋, and takes all possible integer values in that range because

12



of the condition that the diameters of the images of the triangles in ∆̂ are
at most 1/2. For each n ∈ N, collapse to a single vertex the minimal arc of
τv that includes all red vertices xi such that ni = n. Note that as each arc
is collapsed the complex remains topologically a disc since the arc does not
run between two boundary vertices.

The result is the desired cellulation ∆ of D
2 and we define f : ∆(0) → M̃

by setting f(u) to be f(u) for any choice of preimage u of u under the
quotient map ∆1 →→ ∆. All that remains is to explain why ∆ and f satisfy
the conditions of Lemma 2.5 with L0 = 6, L1 = 5/2, and λ = 1.

The faces of ∆ each have at most six sides since this was the case for
∆1 (six being realised when red edges cut across each of the corners of a
triangle of ∆̂) and the subsequent collapses of edges can only decrease the
number of sides, which proves (1 ).

For (2 ), first suppose x and x′ are vertices in ∆ joined by a red edge.
Then they are images of vertices xi and xi′ on the some path τv in ∆1

such that f(x) = f1(xi), f(x′) = f1(xi′) and |ni − ni′ | = 1. But then, as
|ni − ni′ | = 1,

d(f(x), f(x′)) = d(f1(xi), f1(xi′)) ≤ 2.

Next suppose x and x′ are vertices in ∆ joined by a black edge. Assume
they are images of vertices xi and xi′ on paths τv and τv′ in ∆1 such that
xi and xi′ are joined by a black edge. Then d(f1(xi), f1(xi′)) ≤ 1/2 and
there are xj and xj′ on τv and τv′ such that f(x) = f1(xj), f(x′) = f1(xj′),
ni = nj, and ni′ = nj′. So

d(f(x), f(x′)) = d(f1(xj), f1(xj′))

= d(f1(xj), f1(xi)) + d(f1(xi), f1(xi′)) + d(f1(x
′
i), f1(xj′))

≤ 1 +
1

2
+ 1 =

5

2
.

The remaining possibility is that x and x′ are joined by a black edge but one
or both is in ∂∆r {⋆} and so is not on any τv in ∆1. Similar considerations
to the previous case yield d(f(x), f(x′)) ≤ 1 + 1/2.

By construction, for all v ∈ V , the combinatorial length of the images in
∆ of τv is at most the length of σv, and so at most δ + 1 and we have (3 ).
And finally, (4 ) is immediate from the way we constructed f and ∆.

13



3 The groups for Theorem 1.3

The groups that we use form a 2–parameter family

Ψk,m = Φk ∗Z Γm,

where m > k > 1 are integers.

3.1 The “Fat–Shortcuts” Groups Φk

We construct Φk by amalgamating J , a double HNN–extension of Z, with
two isomorphic copies of Θk = Z

k
⋊ F2, where the action of F2 is chosen

so that a certain cyclic subgroup 〈sk〉 of Z
k is distorted in a precisely con-

trolled manner as will be required in Lemma 5.2. The two copies of Θk are
amalgamated with J along the cyclic subgroups 〈sk〉. [The distortion of a
finitely generated subgroup S of a finitely generated group G measures the
difference between the word metric on S and the restriction to S of the word
metric of G — see [5], page 506.]

We first take a presentation Ok of Θk = Z
k

⋊ F2 by choosing a basis
s1, . . . , sk for Z

k and specifying the action of F2 = 〈f, g〉:

generators s1, . . . , sk, f, g

relations f−1skf = sk, and ∀ i < k, f−1sif = sisi+1

g−1skg = sk, g
−1sk−1g = sk−1, and ∀ i < k − 1, g−1sig = sisi+1

∀ i 6= j, [si, sj ] = 1 .

Let Θ̂k be a second copy of Θk with corresponding presentation Ôk in which
the generators are ŝ1, . . . , ŝk, f̂ , ĝ.

We define J to be the amalgam along 〈b〉 ∼= Z of the asymmetric HNN
extension 〈b, t, s | t−1bs = b3, s−1bt = b3〉 with the standard HNN extension
〈b, ŝ | ŝ−1bŝ = b3〉. [This is obtained from 〈b, t | t−1b2t = b6〉 by the Tietze
move introducing s = b−1tb3.] Thus J has presentation

〈b, t, s, ŝ | t−1bs = b3, s−1bt = b3, ŝ−1bŝ = b3〉.

Finally, we define
Φk := Θk ∗Z J ∗Z Θ̂k,

where the amalgamations identify s, ŝ ∈ J with sk ∈ Θk and ŝk ∈ Θ̂k, respec-
tively. Thus, writing Ok = 〈Σk | Υk〉 and Ôk = 〈Σ̂k | Υ̂k〉, a presentation
for Φk is

Pk := 〈b, t,Σk, Σ̂k | Υk, Υ̂k, t
−1bsk = b3, sk

−1bt = b3, ŝk
−1bŝk = b3〉.
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The asymmetric nature of the quasi–HNN presentation of 〈b, s, t〉 ⊂ J
will be important in Section 5.1 when we wish to force shortcuts to be fat
— see Figure 5 for an example and Section 5.4 for the general argument.
As we indicated in the introduction, this fatness is the key to forcing the
behaviour of the intrinsic and extrinsic diameter functionals to diverge.

3.2 The t–rings groups Γm

The groups Γm, whose presentations Qm we give below, are 2–fold HNN
extensions of the free–by–free groups Bm = Fm ⋊ F2. By deleting from Qm

the generator T and the defining relations in which it appears, one recovers
the groups constructed by the first author in [2]; these have isodiametric
properties that prevent their asymptotic cones from being simply connected.

We define Bm := Fm ⋊F2, where the first generator σ of F2 = 〈σ, t〉 acts
on Fm as an automorphism with polynomial growth of degree m− 1, and t
acts trivially. Specifically, Bm has presentation

Bm := 〈Am, σ, t | σ
−1amσ = am ; ∀ i < m, σ−1aiσ = aiai+1;∀ j, [t, aj ] = 1〉,

where Am := {a1, . . . , am}. We then obtain Γm by taking two successive
HNN extensions of Bm: in the first, the stable letter τ commutes with a
skewed copy of Fm and, in the second, the stable letter T commutes with
τ and t. Thus, abbreviating Bm = 〈Am, σ, t | R〉, we define Γm to be the
group with (aspherical) presentation

Qm := 〈Am, σ, t, τ, T | R, [t, T ] = 1, [τ, T ] = 1, [τ, amt] = 1; ∀ i < m, [τ, ai] = 1〉.

3.3 Preliminary lemmas

The following two lemmas are self–evident.

Lemma 3.1 Γm retracts onto Bm = Fm ⋊ 〈σ, t〉 and hence onto 〈t〉.

Lemma 3.2 The groups Θk and Θ̂k are retracts of Φk via

Θk
ι
→֒ Φk

ψ
։ Θk

Θ̂k
ι̂
→֒ Φk

bψ
։ Θ̂k,

where ι and ι̂ are the obvious inclusions, ψ kills b, f̂ , ĝ, ŝ1, . . . , ŝk, maps t
to sk, and f, g, s1, . . . , sk to themselves, and ψ̂ kills b, t, f, g, s1, . . . , sk and
maps f̂ , ĝ, ŝ1, . . . , ŝk to themselves.
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Since Ok is the obvious presentation of the semidirect product Θk =
Z
k

⋊ F2 we have:

Lemma 3.3 If w ∈
{
s1

±1, . . . , sk
±1

}⋆
is null–homotopic in Ok, then it is

also null–homotopic in

〈s1, . . . , sk | ∀i 6= j, [si, sj ]〉 ∼= Z
k.

Since 〈b〉 and 〈s1, . . . , sk−1〉 ∼= Z
k−1 do not intersect the amalgamated

subgroups of Φk,m = Θk ∗Z J ∗Z Θ̂k, they generate their free product. In
more detail:

Lemma 3.4 If w ∈
{
b±1, s1

±1, . . . , sk−1
±1

}⋆
is a null–homotopic word in

Pk, then it is also null–homotopic in the subpresentation

〈b, s1, . . . , sk−1 | ∀i 6= j, [si, sj]〉 ∼= Z ∗ Z
k−1.

Lemma 3.5 For all n ∈ N, there exists a (positive) word wn ∈ {s1, . . . , sk}
⋆

such that wn = f−ns1
nfn in

Fk ⋊ Z ∼= 〈 s1, . . . , sk, f | f−1skf = sk ; ∀i < k, f−1sif = sisi+1 〉

and

wn =

k∏

i=1

si
n

„

n

i − 1

«

in Z
k = 〈s1, . . . , sk | ∀i 6= j, [si, sj ]〉.

Proof. Let wn be the unique positive word in the si such that wn = f−ns1
nfn

in Fk ⋊ Z. The stable letter f acts on the abelianisation Z
k of Fk as left

multiplication by the k×k matrix with ones on the diagonal and subdiagonal
and zeros elsewhere. So the result follows from the calculation




1
1 1

1
. . .
. . . 1

1 1




n

=




1
„

n

1

«

1
„

n

2

« „

n

1

« . . .

...
...

. . . 1
„

n

k − 1

« „

n

k − 2

«

· · ·
„

n

1

«

1




.
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4 t–corridors and t–rings in van Kampen diagrams

The use of t–corridors and t–rings for analysing van Kampen diagrams is
well established. Suppose P = 〈A | R〉 is a presentation, ∆ is a van Kampen
diagram over P and t ∈ A. An edge in ∆ is called a t–edge if it is labelled by
t. Let ∆⋆ denote the dual graph to the 1–skeleton of ∆ (including a vertex
v∞ dual to the region exterior to ∆).

Suppose σ is either a simple edge–loop in ∆⋆ and that the edges of σ
are all dual to t–edges in ∆. Then the subdiagram C of ∆ consisting of all
the (closed) 1–cells and 2–cells of ∆ dual to vertices and edges of σr {v∞},
is called a t–ring if σ does not include v∞ and a t–corridor in it does. Let
e1, . . . , er be the duals of the edges of σ, in the order they are crossed by σ,
and such that in the ring case e1 = er and in the corridor case e1 and er
are in ∂e∞. The length of the t–ring or t–corridor is r− 1 (which is zero for
t–corridors arising from t–edges not lying in the boundary of any 2–cell). In
the corridor case, e1 and er are called the ends of the corridor.

Let c1, . . . , cr−1 be the 2–cells of C numbered so that ei and ei+1 are
part of ∂ci for all i. Refer to one vertex of ei as the left and the other as the
right, depending on where it lies as we travel along σ. The left (right) side
of C is the edge–path in ∆ that follows the boundary–cycle ∂c1 from the left
(right) vertex of e1 to the left (right) vertex of e2, and then ∂c2 from the left
(right) vertex of e2 to the left (right) vertex of e3, and so on, terminating at
the left (right) vertex of er. Note that the sides of C need not be embedded
paths in ∆(1). In the case of the ring, orienting σ anticlockwise in ∆, we
call the left side is the inside and the right side is the outside.

The following lemma contains the basic, crucial observations about t–
rings and t–corridors.

Lemma 4.1 Suppose each r ∈ R contains precisely zero or two letters t±1.
Then every t–edge of ∆ lies in either a t–corridor or a t–ring, and the
interiors of distinct t–rings/corridors are disjoint.

In the case of the presentation Pk of Section 3.1 it will be profitable
to have more general definitions: we define an sk t–corridor or sk t–ring
in a Pk–van Kampen diagram ∆ by allowing the duals of edges in σ to
be sk– or t–edges and allowing σ to be a simple edge–path whose initial
and terminal vertices are either v∞ or dual to 2–cells with boundary label
f−1sk−1fsk

−1sk−1
−1. So an end of an sk t–corridor is either in ∂∆ or in the

boundary of a 2–cell labelled f−1sk−1fsk
−1sk−1

−1.
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5 Salient features of Φk

5.1 How to shortcut powers of t in Φk

We fix a positive integer k. The following proposition concerns the existence
of shortcut diagrams that distort 〈t〉 in Pk.

Proposition 5.1 There is a constant C, depending only on k, such that
for all m > 0 there is a word um of length ℓ(um) ≤ Cm1/k + C and a
van Kampen diagram ∆m for tmum

−1 over Pk with IDiam(∆m) ≤ Cm+C.

Before proving this proposition we establish a similar result about the
distortion of 〈sk〉 in Ok.

Lemma 5.2 There is a constant C, depending only on k, such that for all
m > 0 there is a word vm of length ℓ(vm) ≤ Cm1/k + C and a van Kampen
diagram Σm for sk

mvm
−1 over Ok with every vertex of Σm a distance (in

the 1–skeleton of Σm) at most Cm+C from the portion of ∂Σm labelled vm.

Proof. Lemma 3.5 tells us that over the sub–presentation

〈 s1, . . . , sk, f | f−1skf = sk ; ∀i < k, f−1sif = sisi+1 〉

of Ok, the word f−ns1
nfn equals a (positive) word wn ∈ {s1, . . . , sk}

⋆ such

that wn =
∏k
i=1 si

n
„

n

i − 1

«

in 〈s1, . . . , sk〉 ∼= Z
k. Fix m > 0 and let n be the

least integer such that n
„

n

k − 1

«

≥ m. Then (n − k + 1)k < (k − 1)!m

because

(n− 1)

(
n− 1
k − 1

)
=

1

(k − 1)!
(n− 1)2(n− 2) . . . (n− k + 1) < m.

And so

n < (k − 1)!1/km1/k + k − 1 < km1/k + k. (1)

LetDn be the van Kampen diagram for f−ns1
nfnwn

−1 obtained by stacking
f–corridors n high, embedded in the plane as illustrated in Figure 4. Let
wnm be the shortest prefix of wn in which the letter sk occurs m times. Let ρ
be the edge–path from the vertex of ∂Dn at which wnm ends, to the portion
of ∂Dn labelled by f−ns1

nfn , that proceeds by travelling up where possible
and left otherwise. As ρ never travels left twice consecutively, its length is
at most 2n. Cutting Dn along ρ we obtain two diagrams; one, Dnm (which
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s1
n

Dnm

Dnm

Dn

ρfn fn

wn

wnm

wnm

vm

Σm

sk
m

D̂nm

ŵnm

Figure 4: The Ok–van Kampen diagrams Dn and Σm.

appears shaded in Figure 4), shows that wnm is equal in Θk to a word of
length at most 4n.

Next we use the relations [si, sk] to gather all the letters sk in wnm to
the left and produce a word sk

mŵnm. Diagrammatically, this is achieved by
attaching sk–corridors to Dnm. (These fill the triangular region in Figure 4.)
Then we use the second stable letter g of Θk, which acts on 〈s1, . . . , sk〉 thus:

g−1sk−1g = sk−1, g−1skg = sk and g−1sig = sisi+1,∀i < k − 1 .

The word g−ns1
ngn and the word obtained from wn by removing all letters

sk represent the same element in Fk−1 ⋊ 〈g〉. This equality is exhibited by a
van Kampen diagram D̂n obtained by retracting Dn in the obvious manner,
and a subdiagram D̂nm (a retraction of Dnm) of D̂n portrays an equality in
Fk−1 ⋊〈g〉 of ŵnm with a word of length at most 4n. Attach D̂nm along ŵnm
to get a diagram Σm short–cutting sk

m to a word vm of length at most 8n as
shown in Figure 4. Because Dnm and D̂nm are stacks of O(m1/k) corridors,
it is possible to reach the portion of ∂Σm labelled by vm from any vertex of
Dnm or D̂nm by traversing O(m1/k) edges of Σ(1). The triangular region is a
stack of O(m) corridors which can be crossed to reach ∂Dnm. The assertion
of the lemma then follows from the hypothesis that ℓ(vm) ≤ Cm1/k +C and
the inequality (1).
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Proof of Proposition 5.1. Using stacks of sk t–corridors and ŝk–corridors
in the obvious way, one can construct van Kampen diagrams demonstrat-
ing that t−mbsk

m = b3
m

and ŝk
−mbŝk

m = b3
m

over the subpresentations
〈b, sk, t | t−1bsk = b3, sk

−1bt = b3〉 and 〈b, ŝk | ŝk
−1bŝk = b3〉 of Pk, re-

spectively. Join these diagrams to give a diagram that demonstrates that
ŝk

−mbŝk
m = t−mbsk

m in Φk and that has intrinsic diameter at most a con-
stant times m. Then obtain ∆m as shown in Figure 5: attach the Ok–
van Kampen diagram Σm of Lemma 5.2 along sk

m, and attach a copy of
the corresponding Ôk–van Kampen diagram Σ̂m and its mirror–image along
ŝk
m and ŝk

−m.
The asserted bound on IDiamPk

(∆m) holds for the following reasons.
Every vertex in the t−mbsk

m = b3
m

and ŝk
−mbŝk

m = b3
m

subdiagrams is a
distance O(m) from Σm or from one of the copies of Σ̂m, or from the portion
of ∆m labelled tm. The distance from any vertex of a subdiagram Σm or
Σ̂m to ∂∆m is O(m) by Lemma 5.2. Thus one can reach ∂∆m from any of
its vertices within the claimed bound. As ℓ(∂∆m) = O(m), one can then
follow the boundary circuit to the base point.

b b

tm

um

sk
m

ŝk
m

ŝk
m

Σm

Σ̂m

Σ̂m

∆m

b3
m

Figure 5: The Pk–van Kampen diagram ∆m shortcutting tm.

Remark 5.3 The area of the diagram ∆m in the above proof is exponential
in m.
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5.2 Diagrams short–cutting powers t in Φk are fat

A key feature of the diagram ∆m constructed in the previous section is
that it contains a path labelled by a large power b3

m

of b. In the following
proposition we will show that such behaviour is common to all Pk–diagrams
∆ that greatly shortcut tm and we will deduce that all such ∆ have large
extrinsic (and hence intrinsic) diameter — that is, are fat. This means
that such shortcut diagrams cannot be inserted to significantly reduce the
intrinsic diameter of a van Kampen diagram.

For a word w and letter t, we denote the exponent sum of letters t in w
by ht(w).

Proposition 5.4 There exists a constant C, depending only on k, with the
following property: if u and w are words such that u = w in Pk and w ∈{
t, t−1

}⋆
, and ∆ is a Pk–van Kampen diagram for wu−1, homeomorphic to

a 2–disc, then

IDiam(∆) ≥ EDiamPk
(∆) ≥

C |ht(w)|

1 + ℓ(u)
.

Proof. We may assume, without loss of generality, that ht(w) ≥ 0. Let γw
and γu be the edge–paths in ∂∆ labelled w and u, respectively, such that the
anticlockwise boundary circuit ∂∆ is γw followed by γu

−1. Let ⋆ and ⋆′ be
the initial and terminal vertices of γw, respectively — see the left diagram
of Figure 6.

The essential idea in this proof is straightforward: the sk t–corridors (de-
fined in Section 4) emanating from γw stack up with the length of the corri-
dors growing to roughly 3ht(w) at the top of the stack; taking the logarithm
of this length gives a lower bound on extrinsic diameter of ∆. However,
fleshing this idea out into a rigorous proof requires considerable care.

The first complication we face is that sk t–corridors need not run right
across ∆, but can terminate at an edge in the side of an f– or g– corridor or
ring. As every letter in w is t±1, the edges of ∂∆ connected in pairs by f–
and g–corridors all lie in γu. Thus γw lies in a single connected component
∆0 of the planar complex obtained by deleting from ∆ the interiors and
ends of all the f– and g–corridors. (In the left diagram of Figure 6, ∆0 is
shaded.) Note that EDiamPk

(∆) ≥ EDiamPk
(∆0). Thus it suffices to prove

that EDiamPk
(∆) ≥ C |ht(w)| /(1 + ℓ(u)). We will do so by considering

a further Pk–van Kampen diagram ∆1 obtained from ∆0 by removing the
interiors of a collection of 2–disc subdiagrams Di and gluing in replacement
diagrams Ei.
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u0
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wi

w
w

w0

w1

w2

Ai

f

f

f

f

f

f

f

g

g

g

g

⋆⋆

⋆′

⋆′

∆ ∆0 ∆1

C1

C2

Figure 6: Corridors in the van Kampen diagrams ∆ and ∆1.

Let γu0 be the edge–path in ∂∆0 from ⋆ to ⋆′ such that γw followed by
γu0

−1 is the anticlockwise boundary circuit of ∆0.
Suppose Ai is an f– or g–ring in ∆0 that is not enclosed by another f–

or g–ring. The outer boundary circuit γi of Ai is labelled by a word wi in{
s1

±1, . . . , sk
±1

}⋆
. The retraction ψ : Φk →→ Θk of Lemma 3.2 maps wi to

itself and satisfies the hypotheses of Lemma 8.2. So ψ induces a distance
decreasing singular combinatorial map from Di, the diagram enclosed by γi,
onto an Ok–van Kampen diagram. Therefore, without increasing extrinsic
diameter, we may assume Di to be an Ok–diagram. By Lemma 3.3, wi is
null–homotopic in the subpresentation 〈s1, . . . , sk | ∀i 6= l, [si, sl]〉 of Pk.

Let Ei be a topological 2–disc van Kampen diagram for wi in 〈s1, . . . , sk |
∀i 6= j, [si, sj]〉.

We will show that there is an sk t–corridor in ∆1 with one side labelled
by a word wT such that |hb(wT )| is large. Recall that each sk t–corridor in a
Pk–van Kampen diagram connects two edges that are either in the boundary
of the diagram or the boundary of a 2–cell with label f−1sk−1fsk

−1sk−1
−1.
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But every such 2–cell is part of an f–corridor, and as ∆1 contains no f–
or g–corridor, each of its sk t–corridors C connects two edges in ∂∆1. Each
t–edge in γw is part of an sk t–corridor that must either return to γw or end
on γu0 . An sk t–corridor of the former type connects two oppositely oriented
t–edges in γw. Consider ∆1 with γu0 and γw running upwards with γu0 on
the left and γw on the right (as in Figure 6). So sk t–corridors of the latter
type are horizontal, stacked one above another.

Define a horizontal corridor to be an up– or down–corridor according to
whether the edge it meets on γw is oriented upwards or downwards. And
call an up–corridor a last–up–corridor when it meets an edge on γw that
is labelled by the final letter of a prefix w1 of w with the property that
ht(w2) ≥ ht(w1) for all prefixes w2 of w with ℓ(w2) ≥ ℓ(w1). Note that
there are exactly ht(w) last–up–corridors in ∆1. In the right diagram of
Figure 6 the up– and down–corridors are shaded and the last–up–corridors
are darker. That figure also depicts the scenario addressed in the following
lemma.

Lemma 5.5 Suppose that C1 and C2 are two horizontal corridors running
from γw to γu0 in ∆1, that C1 is below C2, and that there are no horizontal
corridors between C1 and C2. Assume that the subarc γu1 of γu0 connecting,
but not including, the two edges where C1 and C2 meet γu0 is labelled by a
word u1 ∈

{
s1

±1, . . . , sk
±1

}⋆
. Let w1 and w2 be the words read right to left

along the top of C1 and along the bottom of C2, respectively. Then we have
equality of the exponential sums hb(w1) = hb(w2).

Proof of Lemma 5.5. Let γw0 be the subarc of γw connecting, but not
including, the two edges where C1 and C2 meet γw. Let w0 be the subword
of w that we read along γw0 .

Edges labelled by sk
±1 in γu1 and by t±1 in γw0 are the start of sk t–

corridors that must return to γu1 or γw0 , respectively, because there are no
horizontal corridors between C1 and C2. So hsk

(u1) = ht(w0) = 0 and w0

freely reduces to the empty word. Moreover in Pk we find that u1 = u2 where
u2 is obtained from u1 by removing all occurrences sk

±1. Also, w1u2w2
−1 is

null–homotopic.
Now w1, w2 ∈

{
b±1, s1

±1, . . . , sk−1
±1

}⋆
as they are the labels of the sides

of sk t–corridors and u2 ∈
{
s1

±1, . . . , sk−1
±1

}⋆
. So by Lemma 3.4, w1u2w2

−1

is null–homotopic in

〈b, s1, . . . , sk−1 | ∀i 6= j, [si, sj]〉 ∼= Z ∗ Z
k−1.

As b±1 does not occur in u2, we deduce that hb(w1) = hb(w2).
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Returning to our proof of Proposition 5.4, we note that edges that are
part of γu0 but not of γu are labelled by letters in

{
s1

±1, . . . , sk
±1

}
because

they are in the sides of f– or g–corridors. So Lemma 5.5 applies to adjacent
horizontal corridors that meet γu0 at edges connected by an arc of γu0 that
does not include edges from γu. By the pigeonhole principle, there must be
a stack S of H := ht(w)/(1 + ℓ(u)) last–up–corridors that all meet a fixed
subarc of γu0 that includes no edges from γu. (The stack may also include
horizontal corridors that are not last–up–corridors.)

If C is a horizontal sk t–corridor and c1 and c2 are the words along the
top and bottom sides of C, then |hb(c1)| = 3 |hb(c2)| when C is an up–
corridor, and 3 |hb(c1)| = |hb(c2)| when C is a down–corridor. Let K 6= 0
be the exponent sum of the letters b in the word along the bottom edge
of the lowest last–up–corridor in S. Note that K is non–zero because the
sk t–corridor’s two ends are labelled differently. The number of up–corridors
minus the number of down corridors in S is H and so by Lemma 5.5, defining
wT to be the word we read along the edge–path γwT

along the top of the
highest corridor in S, we find hb(wT ) = K 3H .

Suppose w′ and w′′ are prefixes of wT . If w′ = w′′ in Pk then w′ = w′′ in
〈b, s1, . . . , sk−1 | ∀i 6= j, [si, sj ]〉 by Lemma 3.4, and so hb(w

′) = hb(w
′′). So

if hb(w
′) 6= hb(w

′′), then the vertices v′, v′′ of γwT
reached after reading w′

and w′′ map to different vertices in Cay1(Pk). So, because ha(wT ) = K 3H

and |K| ≥ 1, the number of vertices in the image of ∆1 in Cay1(Pk) is at
least 3H . But we must say more: there are 3H prefixes w′ of wT that all
end b±1 and for which hb(w

′) are all different. The vertices v′ at the end of
the arc labelled by these w′ are not in the interior of any of the diagrams Ei
defined prior to Lemma 5.5 (as Ei contain no b–edges) — so the number of
vertices in the image of ∆0 r (

⋃
IntDi) = ∆1 r (

⋃
IntEi) in Cay1(Pk) is at

least 3H .

The number of vertices in a closed ball B(r) of radius r in Cay1(Sk,m) is
at most cr for some constant c depending only on the valence of the vertices
in Cay1(Sk,m), and hence on the number of defining generators in Sk,m.
Thus

EDiamPk
(∆) ≥ EDiamPk

(∆0) ≥ logc 3
H =

ht(w)

1 + ℓ(u)
logc 3.
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5.3 An upper bound for the distortion of 〈t〉 in Φk

One conclusion of Proposition 5.1 was that it is possible to express tm ∈ Φk

as a word of length � m1/k. The main result of this section, Proposition 5.7,
is that no greater distortion of 〈t〉 is possible; this will be crucial in Section 7
when we come to analyse Sk,m–van Kampen diagrams by breaking them
down into Pk– and Qm–subdiagrams meeting along arcs labelled by powers
of t.

Lemma 5.6 If u0 is a word in the generators of Θk that equals sk
m in the

group, then

|m| ≤

k∑

i=1

(
c+ k − 1 − i

c− 1

)
ℓsi

(u0),

where c := (ℓf (u0) + ℓg(u0))/2.

Proof. If we represent elements of 〈s1, . . . , sk | ∀ i, j, [si, sj]〉 ∼= Z
k as

column–vectors, then the actions of f and f−1 by conjugation are given
by left multiplication by the k × k matrices




1
1 1

1
. . .
. . . 1

1 1




and




1
−1 1

1 −1
. . .

−1 1
. . . 1

...
...

. . . −1 1




,

respectively. Similarly, we can give matrices for the actions of g and g−1.
We will inductively obtain words u1, . . . , uc, all of which equal sk

m in Ok,
as follows. In every van Kampen diagram for uisk

−m, the letters f±1, g±1 in
ui occur in pairs f, f−1 or g, g−1 connected by f–corridors and g–corridors.
The geometry of these corridors necessitates that ui have a subword of the
form f∓1vf±1 or g∓1vg±1, where v ∈

{
s1

±1, . . . , sk
±1

}⋆
. Obtain ui+1 from

ui by replacing every letter sj (j = 1, 2, . . . , k) in v by a word of mini-
mal length in Z

k that equals f∓1sjf
±1 or g∓1sjg

±1, as appropriate. Let
A be the k × k matrix with ones in every entry on and below the diag-
onal and zeros elsewhere. Comparing A with the four matrices discussed
above we see that ℓsi

(ui+1) is at most the i–th entry in the column vector
A (ℓs1(u0), . . . , ℓsk

(u0))
tr.

Using the identity
r∑

n=0

(
n
j

)
=

(
r + 1
j + 1

)
,
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we calculate that

Ac =




„

c − 1
c − 1

«

„

c

c − 1

« „

c − 1
c − 1

«

...
„

c

c − 1

« . . .
„

c + k − 3
c − 1

« ...
. . .

„

c − 1
c − 1

«

„

c + k − 2
c − 1

« „

c + k − 3
c − 1

«

. . .
„

c

c − 1

« „

c − 1
c − 1

«




.

Now |m| = ℓsk
(uc) and so is at most the k–th entry inAc (ℓs1(u0), . . . , ℓsk

(u0) )tr.
The asserted bound follows.

Recall that ht(w) denotes the exponent sum of letters t±1 in w.

Proposition 5.7 Suppose w is a word equalling tm in Pk. Let n := ℓ(w)−
ℓt(w). Then

|m| ≤ K nk + ht(w),

where K is a constant depending only on k.

Proof. The retraction ψ : Φk →→ Θk of Lemma 3.2 maps w, letter–by–letter,
to a word u equalling sk

m in Θk. Each t is mapped by ψ to sk which is central
in Θk. So if we define w0 to be the word obtained from w by removing all
letters t±1 and u0 to be the word obtained by applying ψ, letter–by–letter,
to w0 then u0 = sk

m−ht(w) in Ok.
By Lemma 5.6

|m− r| ≤

k∑

i=1

(
n+ k − 1 − i

n− 1

)
ℓsi

(u0) ≤

(
n+ k − 2
n− 1

)
n.

The asserted bound then follows because, for a suitable constant K depend-

ing only on k, one has

(
n+ k − 2
n− 1

)
n ≤ K nk for all n ∈ N .

5.4 The intrinsic diameter of diagrams for Φk

The results in this section culminate with an upper bound on the intrinsic
diameter functional of Φk. This will be used in Section 7.1, when we establish
the upper bound on the extrinsic diameter of Ψk,m.

Lemma 5.8 If w is a length n word in Pk representing an element of the
subgroup Z

k ∼= 〈s1, . . . , sk〉 or Z
k ∼= 〈ŝ1, . . . , ŝk〉 of Φk, then there is a word u

in
{
s1

±1, . . . , sk
±1

}⋆
or in

{
ŝ1

±1, . . . , ŝk
±1

}⋆
, respectively, such that w = u

in Φk and ℓ(s) ≤ K nk, where K depends only on k.
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Proof. The retracts of Lemma 3.2 mapping Φk onto Θk and Θ̂k mean that
it is enough to prove this lemma for Θk instead of Φk. The result for Θk

can be proved in the same manner as Lemma 5.6.

Define

P̂k := 〈 b, t, s1, . . . , sk, ŝ1, . . . , ŝk | t
−1bsk = b3, sk

−1bt = b3,

ŝk
−1bŝk = b3; ∀i 6= j, [si, sj ] = 1, [ŝi, ŝj ] = 1 〉,

a subpresentation of Pk. Note that the 2–dimensional portions of every
P̂k–van Kampen are comprised of intersecting sk t–, si–, and ŝj– rings and
corridors (where 1 ≤ i < k and 1 ≤ j ≤ k).

Lemma 5.9 If ∆ is a minimal area P̂k–van Kampen diagram for a word w
then

(i) amongst the corridors and rings in ∆, no two cross twice,

(ii) ∆ contains no si– or ŝi–rings (1 ≤ i < k),

(iii) ∆ contains no ŝk–rings,

(iv) ∆ contains no sk t–rings, and

(v) the length of each si– and ŝi–corridor (1 ≤ i < k) in ∆ is less than
ℓ(w)/2.

Proof. For (i), first suppose that for some i 6= j with 1 ≤ i, j < k, there is
an si–corridor or si–ring Ci that crosses an sj–corridor or sj–ring Cj twice,
intersecting at two 2–cells e and e′. Let C̃i and C̃j be portions of Ci and Cj
between (but not including) e and e′, as shown in Figure 7. By an innermost
argument we may assume that no sj–corridor or sj–ring intersects C̃i twice
and that no si–corridor or si–ring intersects C̃j twice. Removing e and e′,
relabelling all the si–edges in C̃i by sj and all the sj–edges in C̃j by si, and
then gluing up as shown in Figure 7, would produce a van Kampen diagram
for w of lesser area than ∆. This would contradict the minimality of the
area of ∆. (Topologically, the effect of the surgery on ∆ is to collapse to
points arcs running through e and e′ between opposite vertices in ∂e and
∂e′. This does not spoil planarity because no opposite pair of vertices were
identified in ∆.)

Next suppose that for some 1 ≤ i < k, an sk t–corridor or ring C crosses
an si–corridor or ring Ci twice at 2–cells e and e′. Let C̃ and C̃i be portions
of C and Ci between (but not including) e and e′. We may assume that
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Ci

Cj

C̃i

C̃j sisisisi

sj sjsj sj

e e′

Figure 7: Removing twice–crossing corridors.

no sk t–corridor or sk t–ring intersects C̃i twice and that no sj–corridor or
sj–ring (1 ≤ j < k) intersects C̃ twice. Let R be the subdiagram between C
and Ci. For reasons we are about to explain we may assume C̃ includes no
2–cells labelled by t−1bskb

−3, (equivalently, ∂R contains no b–edge). This
leads to a contradiction, as above.

No 2–cell of R labelled t−1bskb
−3 lies in an sk, t–corridor, as such a

corridor would intersect C̃i twice. Also R includes no 2–cell that is part of
an sk, t–ring — such a ring could intersect C̃i and so would have to be entirely
in R; but then, by another innermost argument, this sk, t–ring would only
contain 2–cells labelled by t−1bskb

−3 as otherwise it would twice intersect
an sj–corridor for some 1 ≤ j < k. So R includes no 2–cells labelled by
t−1bskb

−3, and for similar reasons, no 2–cells labelled by ŝk
−1bŝkb

−3. So
all b–edges in ∂R are identified in pairs and are amongst the 1–dimensional
portions of R. It follows that there are no b–edges in R, or there is a b–edge
in R that is connected to the rest of R at only one vertex, or there is a 2–disc
component of Rr ∂R that does not adjoin Ci.

The second case is impossible because it would imply that ∆ was not
reduced. The third case cannot happen because for some 1 ≤ j < k, an
sj–corridor would have to cross C, travel through this 2–disc portion and
then cross C again. Thus R has no b–edges.

The same arguments tell us that for all 1 ≤ i, j ≤ k, no ŝi– and ŝj–
corridors or rings in ∆ can cross twice. No other combination of rings and
corridors can cross even once.

Now (ii) follows immediately from (i), as do (iii) and (iv) in the cases
where the rings include 2–cells other than those labelled by t−1bskb

−3 or
ŝk

−1bŝkb
−3. In the remaining cases the outer boundary of the ring is labelled

by a freely reducible word in
{
b±1

}⋆
, which contradicts the minimality of

the area of ∆.
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For (v), suppose C is an si– or ŝi–corridor. The boundary circuit of ∆ is
comprised of the two ends of C and two edge–paths, one of which, call it α,
must have length less than ℓ(w)/2. By (i)–(iv) a different corridor connects
each on a side of C to α. So C has length less than ℓ(w)/2.

Lemma 5.10 There exists a constant K such that IDiamP̂k
(n) ≤ Kn for

all n ∈ N.

Proof. Suppose ∆ is a minimal area P̂k–van Kampen diagram for a word
w. All sk t–corridors in ∆ are embedded: if a portion (of non–zero length)
of the path along the side of an sk t–corridor formed an edge–loop then that
would have to enclose a zero area subdiagram (by the results of Lemma 5.9)
and therefore be labelled by a non–reduced path — but then ∆ would not be
a minimal area diagram as there would be an inverse pair of 2–cells on the
corridor. So from any given vertex in ∆, travelling across sk t–corridors at
most n/2 times, we meet either an si–corridor (1 ≤ i < k), or an ŝi–corridor
(1 ≤ i < k), or ∂∆. In the former two cases one can follow a path of length
at most n/4 along a side of the si– or ŝi–corridor to ∂∆. From any point on
∂∆ one can reach the base vertex by following the boundary circuit.

Proposition 5.11 IDiamPk
(n) = O(nk).

Proof. Suppose w is a null–homotopic word in Pk and ∆ is a van Kampen
diagram for w. We will construct a new van Kampen diagram ∆′ for w that
satisfies the claimed bound on intrinsic diameter. We begin the construction
of ∆′ by taking an edge–circuit ξ of length ℓ(w) in the plane to serve as ∂∆′.
We direct and label the edges of ξ so that one reads w around it.

The occurrences of f and f−1 in w are paired so that the corresponding
edges of ∂∆ are joined by corridors in ∆. For each such pair, there must be
a subword f−1w0f in some cyclic conjugate of w or w−1 such that both w0

and f−1w0f represent elements of the subgroup Z
k = 〈s1, . . . , sk〉. Join the

pairs of f– and f−1–edges in w by f–corridors running through the interior
of ξ. It follows from Lemma 5.8 that the lengths of both sides of these
f–corridors are at most a constant times (2 + ℓ(w0))

k.
Likewise, insert corridors into the interior of ξ joining pairs of g– and

g−1–edges, of f̂– and f̂−1–edges, and of ĝ and ĝ−1–edges. There is no
obstruction to planarity in the 2–complex because we are mimicking the
layout of corridors in ∆.

To complete the construction of ∆′, we shall fill the 2–disc holes inside
ξ. The boundary circuit η of each hole is made up of the sides of corridors
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C1, . . . , Cr and a number of disjoint subarcs of ξ. The length of η is at most
nk, up to a multiplicative constant, because these disjoint subarcs contribute
at most n and the lengths of the sides of C1, . . . , Cr each contribute at most
a constant times ni

k, where
∑r

i=1 ni ≤ n. By Lemma 5.10, these circuits

can be filled by P̂k–van Kampen diagrams with intrinsic diameter at most
a constant times nk. And, as the corridors have length at most a constant
times nk, we deduce that IDiamPk

(∆′) = O(nk), as required.

Remark 5.12 Let us consider why the Dehn function of Pk is at most
n 7→ Knk

for some constant K > 0.
Lemma 5.9 implies that the Dehn function of P̂k is at most K1

n for
some K1 > 0: the total contribution of the 2–cells labelled by [si, sj] or
[ŝi, ŝj ] for some i 6= j is at most n2; removing all si– and ŝi–corridors (for
all 1 ≤ i < k) leaves components with linear length boundary circuits filled
by minimal area van Kampen diagrams over

〈b, t, sk, ŝk | t
−1bsk = b3, sk

−1bt = b3, ŝk
−1bŝk = b3〉,

and a standard corridors argument shows the Dehn function of this subpre-
sentation is bounded above by an exponential function. The construction of
diagrams in Proposition 5.11 then establishes that the Dehn function of Pk
is at most n 7→ Knk

for some K > 0.

6 Diameter in Γm

In this section we establish an upper bound on the intrinsic, and hence
extrinsic, diameter of null–homotopic words w in the presentation Qm for
Γm. Also we show how the shortcuts of Proposition 5.1 lead to an improved
bound on extrinsic diameter when we regard w as a word in the presentation
Sk,m for Ψk,m.

Proposition 6.1 Fix integers n > 0 and 1 < k < m. Suppose w is a null–
homotopic word in the presentation Qm for Γm, that ℓ(w) − ℓt(w) ≤ n, and
that ℓt(w) = O(nk). Then there is a Qm–van Kampen diagram ∆ for w with
IDiamQm(∆) = O(nm+1). Moreover, as an Sk,m–van Kampen diagram,

EDiamSk,m
(∆) = O

(
nmax{1+ m

k
, k}

)
.

To prove this result we will need some purchase on the geometry of τ–
and σ–corridors. This is provided by the following two lemmas.
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Lemma 6.2 Suppose ∆ is a minimal area Qm–van Kampen diagram ∆ for
a null–homotopic word w and that C is a τ–corridor in ∆. Let w0 be the
word along the sides of C. If w1 is a subword of w0 and w1 6= t±1 then
w1 cannot represent the same group element as a non–zero power of t. In
particular, C is embedded; that is, the sides of C are simple paths in ∆.

Proof. As ∆ is of minimal area, w0 is freely reduced as a word in
{
a1

±1, . . . , am−1
±1, (amt)

±1, T±1
}⋆
.

Killing t and τ retracts Qm onto

Um := 〈a1, . . . , am, σ, T | σ−1amσ = am, ∀i < m, σ−1aiσ = aiai+1〉,

in which a1, . . . , am, T generate a free subgroup. This retraction sends w1 to
a word in

{
a1

±1, . . . , am−1
±1, am

±1, T±1
}⋆

that is freely reduced and there-
fore non–trivial. The result follows.

The analogue of this result for σ–corridors is more complex.

Lemma 6.3 Suppose ∆ is a minimal area Qm–van Kampen diagram ∆
for a null–homotopic word w and that C is a σ–corridor in ∆. Then C
is a topological 2–disc subdiagram of ∆ with boundary label σ−1w0σw1

−1,
where w0 and w1 are freely reduced words in

{
a1

±1, . . . , am
±1

}⋆
. Moreover,

defining ρ0 and ρ1 to be the arcs of ∂C along which one reads w0 and w1,
there exists K > 0, depending only on m, such that from any point on
ρi (i = 0, 1) there is a path in C(1) of length at most K to ρ|1−i|. Also, no
subword of w0 or w1 represents the same group element as a non–zero power
of t.

Proof. That w0 is reduced, that ρ0 is a simple path in ∆(1), and that
no subword of w0 or w1 represents the same group element as a non–zero
power of t, are all proved as in Lemma 6.2. And C is a topological 2–disc by
a similar argument involving the retraction Um.

So w1 is obtained from w0 by replacing each ai
±1 by (aiai+1)

±1 for all
i < m, and then freely reducing. The constant K exists by the Bounded
Cancellation Lemma of [6].

Proof of Proposition 6.1. Let ∆ be a Qm–van Kampen diagram for w that
is of minimal area. Note that ∆ contains no t–, τ– or σ–rings. Removing
the τ– and σ–corridors from ∆ leaves a disjoint union of subdiagrams ∆i

over
〈a1, . . . , am, t, T | ∀j, [t, aj ] = 1 ; [t, T ] = 1〉.
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Since there are no t–rings in ∆i and the words along the sides of the t–
corridors are reduced, from any vertex in ∆i one can reach ∂∆i by following
at most ℓ(∂∆i)/2 t–edges across successive t–corridors.

We claim that if C is a τ– or σ–corridor in ∆ and u is the word along a
side of C then ℓ(u) ≤ O(min {n1

m, n2
m}), where n1 and n2 are the lengths

of the two arcs that together comprise ∂∆ and have the same end points as
one side of C. This is because killing t and τ retracts Qm onto Um, and the
calculation used in the proof of Proposition 5.6 shows that the conjugation
action of the stable letter σ is an automorphism of polynomial growth of
degree m−1. And on page 452 of [4] the first author shows that the growth
of the inverse automorphism is also polynomial of degree m− 1.

It follows that ℓ(∂∆i) ≤ O(nm) because the boundary of ∆i consists of
portions of ∂∆, and the sides of σ– and τ–corridors.

We are now ready to estimate IDiamQm(∆). Suppose v is a vertex of
∆. In the light of Lemmas 6.2 and 6.3, there is no loss of generality in
assuming v is not in the interior of a τ– or σ–corridor. Move from v to
∂∆ by successively crossing σ– and τ–corridors as follows. When located
on a σ– or τ–corridor that has not just been crossed, follow at most K (the
constant of Lemma 6.3) edges to cross to the other side; otherwise follow a
maximal length embedded path of t–edges across some ∆i. Finally follow
∂∆ to the base vertex ⋆. Let ρ denote the resulting edge–path from v to ⋆.

It must be verified that we can indeed reach ∂∆ by moving in the manner
described and that ℓ(ρ) = O(nm). First note that there are no embedded
edge–loops in ∆ labelled by words in

{
t±1

}⋆
because the interior of such

a loop could be removed and the hole glued up (as Qm retracts onto 〈t〉),
reducing the area of ∆. Next observe that ρ does not cross the same τ–
or σ–corridor twice, for otherwise there would have to be an innermost
τ– or σ–corridor that ρ crosses twice, contradicting either Lemma 6.2 or
Lemma 6.3.

So crossing the σ– and τ–corridors, of which there are at most n/2,
contributes at most Kn/2 to the length of ρ. We have already argued
that each section of ρ between an adjacent pair of σ– or τ–corridors has
length O(nm). So these sections together contribute at most (n/2)O(nm) =
O(nm+1) to the total length. The final section of ρ is part of ∂∆ and so has
length at most O(nk) < O(nm). The total is O(nm+1) as required.

For the bound on EDiamSk,m
(∆), we note that in the word metric (i.e.

measured in the Cayley graph) the distance from the initial to the terminal
vertex of each arc of ρ whose edges are all labelled by t±1, is O(n

m
k ) by

Proposition 5.1. Therefore EDiamSk,m
(∆) = O(n)O(n

m
k ) = O(n1+ m

k ), as
required.
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Remark 6.4 The proof of Proposition 6.1 also shows that the Dehn func-
tion of Γm is O(n2m+1) (cf. Theorem 3.4 of [2]).

7 Proof of the main theorem

In this section we prove Theorem 7.3 (modulo some technicalities postponed
to Section 8). Theorem 1.3 then follows because k and m can be chosen so
that the ratio of the intrinsic and extrinsic diameter filling functionals of
Ψk,m grows faster than any prescribed polynomial.

Before stating the theorem we recall the definition of an alternating prod-
uct expression in an amalgam and a well known lemma — see Lemma 6.4
in Section III.Γ of [5] or Section 5.2 of [9] .

Definition 7.1 Let Γ = A ∗C B be an amalgam of groups A and B along
a common subgroup C. Suppose A and B are generating sets for A and B,
respectively. An alternating product expression for w ∈ (A±1 ∪ B±1)⋆ is a
cyclic conjugate u1v1 . . . upvp of w in which for all i we have ui ∈ (A±1)⋆,
vi ∈ (B±1)⋆, and if p 6= 1 then neither ui nor vi is the empty word.

Lemma 7.2 In the notation of Definition 7.1, if w ∈ (A±1 ∪ B±1)⋆ repre-
sents 1 in Γ then in any alternating product expression u1v1 . . . upvp for w,
some ui or vi represents an element of C.

Theorem 7.3 For all integers m > k > 1, the extrinsic and intrinsic di-
ameter filling functions of the group Ψk,m presented by Sk,m, satisfy

EDiamSk,m
(n) = O

(
nmax{1+ m

k
, k}

)
,

nm/3 = O(IDiamSk,m
(n)).

7.1 Proof of the upper bound on EDiamSk,m
(n)

Suppose w is a null–homotopic word in Sk,m. Let u1v1 . . . upvp be an alter-
nating product decomposition for w where each ui and vi is a word on the
generators of Pk and Qm respectively. Take a planar edge–circuit η around
which, after directing and labelling the edges, one reads w. Decompose η
into arcs along which we read the ui and vi, and call the vertices at which
these meet alternation vertices. Say that an edge–path is a t–arc when it is
made up of t–edges orientated the same way.

Repeated appeals to Lemma 7.2, the first of which tells us that some ui
or vi represents a word in

{
t±1

}⋆
, allow us to deduce that t–arcs with the
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following properties can be inserted into the interior of η: each t–arc con-
nects two distinct alternation vertices of η ; any two t–arcs are disjoint; and
the t–arcs partition the interior of η into topological 2–disc regions, whose
boundary loops are labelled by words that are null–homotopic either in Pk
or in Qm. Call these bounding loops Pk–loops and Qm–loops, respectively.

Lemma 7.4 For each t–arc α, let nα be the length of the shorter of the two
subarcs of η that share their two end vertices with α. Then the length ℓ(α)
of α satisfies

ℓ(α) ≤ K nα
k

where K ≥ 1 is the constant of Proposition 5.7, which depends only on k.

α
α1

α2

u1

v1

u2

v2

u3

v3
u4

v4

u5

v5
nα

nα1

nα2

R

⋆

Figure 8: Partitioning η with t-arcs.

Proof of Lemma 7.4. We induct on nα. The base case, nα = 0 holds
vacuously. For the inductive step, of the two regions adjoining α, choose R
to be that which is in the interior of the disc bounded by α and the length nα
subarc of η — see Figure 8. The boundary of R is comprised of α, disjoint
subarcs of η, and some t–arcs that we call α1, . . . , αr. Define n0 to be the
total length of these subarcs of η. Then

nα = n0 +

r∑

i=1

nαi
(2)

By induction hypothesis, ℓ(αi) ≤ K nαi

k for all i. We address two cases.
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Case: ∂R is a Qm–loop. The exponent sum of the occurrences of t in any
null–homotopic word in Qm is zero because Qm retracts onto 〈t〉 ∼= Z via
the map that kills all generators other than t. So

ℓ(α) ≤ n0 +

r∑

i=1

K nαi

k ≤ K nα
k,

with the second inequality following from (2).

Case: ∂R is a Pk–loop. Proposition 5.7 and (2) give

ℓ(α) ≤ K n0
k +

r∑

i=1

K nαi

k ≤ K nα
k .

This completes the proof of the lemma.

Next we fill the Pk– and Qm–loops inside η to produce a van Kampen
diagram that satisfies the asserted bound on extrinsic diameter. Let n :=
ℓ(w). By Lemma 7.4, the length of each of their boundary circuits is at most
O(nk), with the contributions from portions not on η coming entirely from
t–arcs. First we fill the Qm–loops as per Proposition 6.1, with diagrams

each of which meets η and has extrinsic diameter O
(
nmax{1+ m

k
, k}

)
as an

Sk,m–van Kampen diagram.
Next we glue a shortcut diagram along each of the t–arcs as per Propo-

sition 5.1. These diagrams have intrinsic diameter O(nk), measured from
base vertices on η. Finally, fill the remaining Pk–loops — all have length
O(n) and meet η, and by Proposition 5.11 they can be filled by van Kampen
diagrams of intrinsic, and hence extrinsic, diameter O(nk).

The result is an Sk,m–van Kampen diagram that admits the asserted
bound on extrinsic diameter.

Remark 7.5 This proof, together with Remarks 5.3, 5.12 and 6.4 establish
that the Dehn function of Ψk,m is at most n 7→ Cn

k

for some constant C.

7.2 Proof of the lower bound on IDiamSk,m
(n).

Define
wn := [τ, (σ−na1

nσn)T (σ−na1
−nσn)].

Let u = u(a1, . . . , am) be the (positive) word such that σ−na1
nσn = u in

Qm. Define ut := u(a1, . . . , am−1, amt). For some q ∈ Z we have utq = ut.
This plays a key role in the construction of the Qm–van Kampen for wn, an
outline for which is shown in Figure 9.
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T
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u

u
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ut

tqtq

tqtq

⋆

Figure 9: A Qm–van Kampen for wn.

Lemma 7.6 The word wn has extrinsic diameter at least C nm−C in Qm,
where C is a constant depending only on m.

Proof of Lemma 7.6. Our approach builds on the proof by the first author
of Theorem 3.4 in [2]. Suppose π : ∆ → Cay2(Qm) is a Qm–van Kampen
diagram for wn. First we find an edge–path ρ in ∆, along which one reads
a word in which the exponent sum of the letters t is at least C nm − C
for some constant C = C(m). A T–corridor connects the two letters T in
wn, and along each side of this corridor we read a word u in

{
t±1, τ±1

}⋆
that equals (σ−na1

−nσn)τ−1(σ−na1
nσn) in Qm. A τ–corridor joins the τ−1

in this latter word to some τ−1 in u. Let u0 be the prefix of u such that
the letter immediately following u0 is this τ−1, and then let ρ be the edge–
path along the side of the τ–corridor running from the vertex at the end of
σ−na1

−nσn to the vertex at the end of u0. Let v = v(a1, . . . , am−1, amt) be
the word one reads along ρ. Then u0 = (σ−na1

−nσn)v in Qm. Killing T , t
and τ , retracts Qm onto

〈a1, . . . , am, s | ∀ i 6= j, [ai, aj ] = 1 ; σ−1amσ = am, ∀i < m, σ−1aiσ = aiai+1〉,

in which v = σ−na1
nσn, where v := v(a1, . . . , am−1, am). By Lemma 3.5,

the exponent sum of am in v, and hence of t in v, is n
„

n

m − 1

«

, which is at
least C nm − C for some constant C depending only on m.

Killing all generators other than t defines a retraction φ of Γm onto
〈t〉 ∼= Z. The 0–skeleton of Cay2(Qm) is Γm and the existence of ρ shows
that image of φ◦π : ∆ → Z has diameter at least C nm, since the retraction
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φ from the 0–skeleton of Cay2(Qm) to Z decreases distance. This completes
the proof of the lemma.

Let ∆ be a minimal intrinsic diameter Sk,m–van Kampen diagram for
wn. On account of the retraction φ, we may assume ∆ to have the properties
described in Proposition 8.4 (2 ). That is, the Pk–cells within ∆ comprise
a subcomplex whose connected components are all simply connected unions
of topological disc subcomplexes any two of which meet at no more than one
vertex. Refer to these topological disc subcomplexes as Pk–islands. Around
the boundary of each Pk–island we read a word in

{
t±1

}⋆
that freely reduces

to the empty word because t has infinite order in Φk,m.

We obtain a Qm–van Kampen diagram ∆ for wn from ∆ by cutting out
the Pk–islands and then gluing up the attaching cycles by identifying ad-
jacent, oppositely–oriented edges (i.e. successively cancelling pairs tt−1 or
t−1t in the attaching words). The removal of the Pk–islands and subsequent
gluing is described by a collapsing map θ : ∆ →→ ∆ that is injective and
combinatorial except on the Pk–islands. This is depicted in Figure 10. Note
that, no matter what choice of θ we make, ∆ will be planar by Lemma 8.1,
since after cutting out and gluing up a number of the Pk–islands, the bound-
ary circuit of every remaining Pk–island is a simple loop.

Let T be a maximal geodesic tree in the 1–skeleton of ∆, based at ⋆.
Suppose γ is a geodesic in T from a vertex v not in the interior of a Pk–
island to ⋆. Define an edge–path γ in the 1–skeleton of ∆ from θ(v) to θ(⋆)
to follow the arcs of θ ◦ γ outside the interior of Pk–islands, and to follow
the geodesic path in the tree θ(∂I) whenever γ enters a Pk–island I.

It will be important (in Case 2 below) that the arcs of γ defined as
geodesics in the images of the boundaries of Pk–islands follow edge–paths
labelled by reduced words in

{
t, t−1

}⋆
. That is, they must not traverse a

pair of edges labelled by tt−1 or t−1t. The gluing θ involved choices that,
according to the following lemma (illustrated in Figure 10), we can exploit
to ensure that the paths γ satisfy the conditions we require.

Lemma 7.7 The gluing map θ : ∆ →→ ∆ can be chosen so as to satisfy the
following. Suppose γu,v is an edge–path in T from a vertex u to a vertex
v and is an initial segment of some geodesic in T from u to ⋆. Assume,
further, that γu,v lies in some Pk–island I and meets ∂I at u and v and
nowhere else. Define δu,v to be the geodesic in the tree θ(∂I) from θ(u) to
θ(v). Then along δu,v we read a reduced word in

{
t, t−1

}⋆
.

Proof. Start with any choice of gluing map θ. Suppose that I is a Pk–island
in ∆ and that u, v ∈ ∂I are as per the lemma, but that δu,v follows a word in
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u v

û
v̂

θ(u)

θ(v)

θ(û)
θ(v̂)

I

⋆⋆ θ(⋆)

θ

δu,v

δ̂u,v

γu,v

γ̂u,v

∆ ∆

Figure 10: Collapsing the Pk–islands.

{
t, t−1

}⋆
that incudes an inverse pair, tt−1 or t−1t. Then perform a diamond

move as illustrated in Figure 11 to remove the inverse pair. This, in effect,
amounts to changing the choice of θ.

t

t

t

tt

ttt

θ(u)θ(u)θ(u)
θ(v)

θ(v)θ(v)

Figure 11: A diamond move.

Suppose that û, v̂ ∈ ∂I are another pair as per the lemma. We claim
that when we do the diamond move to remove a pair of edges from δu,v
the effect, if any, on the word one reads along δû,v̂ is also the removal of
an inverse pair. Consider the ways in which δû,v̂ could meet the pair of
edges on which the diamond move is to be performed. The danger is that
an inverse pair might be inserted into the word along δû,v̂. But this could
only happen when δû,v̂ crosses δu,v at the vertex between the two edges, and
such crossing is impossible because γu,v and γû,v̂ are both part of geodesic
arcs based at ⋆ in the tree T .

There are only finitely many pairs u, v on ∂I. So after a finite number
of diamond moves, θ is transformed to a map that satisfies the requirements
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of the lemma.

Returning once more to the proof of the theorem, let v be a vertex in ∆
for which ρ(v, ⋆) = IDiam(∆) and let v be a vertex of ∆ such that θ(v) = v.
Let µ be the geodesic in T from v to ⋆. And let µ be the edge–path from
v to ⋆, obtained by connecting up the images under θ of the portions of
µ not in the interior of Pk–islands I with geodesic edge–paths in the trees
θ(I). So µ is a concatenation of two types of geodesic arcs: those that run
through the image under θ of the boundary of some Pk–island (call these
island arcs), and those arcs from µ.

We fix α ≥ β > 0 and examine the following two cases.

Case 1 ) The island–arcs all have length at most nα.

In place of each island–arc in µ, we find an arc in µ of length at
least one (in fact, this is a crude lower bound) because the word along
each such arc in µ equals some non–zero power of t in Ψk,m. So
ℓ(µ) ≥ ℓ(µ)/nα ≥ C nm−α and therefore IDiam(∆) � nm−α, because
µ is a geodesic in ∆, based at ⋆.

Case 2 ) Some island–arc through θ(∂I), where I is some Pk–island in ∆, has
length more than nα.

Let γ be the corresponding subarc of µ through I. If ℓ(γ) ≥ nβ then
it follows immediately that IDiam(∆) ≥ ℓ(µ) ≥ nβ.

Assume that ℓ(γ) < nβ. Then γ divides I into two subdiagrams each
of which has boundary circuit made up of γ together with a portion of
∂∆ around which we read a word in

{
t, t−1

}⋆
with exponent sum more

than nα. Applying Proposition 5.4 to either of these two subdiagrams
we learn that the intrinsic diameter of I is at least a constant times
nα/(1 + nβ).

So

IDiam(∆) � min

{
nm−α, nβ,

nα

1 + nβ

}
,

and taking α = 2m/3 and β = m/3 we finally have our result.

8 Amalgams and retractions

The main results in this section concern amalgams (that is, free products
with amalgamation). But first we give some technical results on cutting,
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gluing and collapsing operations on 2–complexes. We perform such opera-
tions on van Kampen diagrams and our concern is that planarity should not
be lost.

The proof of the following lemma is straight–forward and we omit it.

Lemma 8.1 Suppose that ∆ is a finite, combinatorial complex embedded in
the plane E

2 and that ρ is the (not necessarily embedded) edge–circuit in
∂∆ around the boundary of the closure C of a component C of E

2 − ∆ for
which C is compact.

1. If Υ is a topological 2–disc combinatorial complex with ℓ(∂Υ) = ℓ(ρ),
then gluing Υ to ∆ by identifying the boundary circuit of Υ with ρ
produces a planar 2–complex.

2. If ρ is simple and Υ is a planar contractible combinatorial 2–complex
with ℓ(∂Υ) = ℓ(ρ), then gluing Υ to ∆ by identifying the boundary
circuit of Υ with ρ gives a planar 2–complex.

3. Identifying two adjacent edges e1 and e2 in ρ, as illustrated in Fig-
ure 12, produces a planar 2–complex unless e1 and e2 together com-
prise the boundary of a subdiagram of ∆ (as in the rightmost diagram
of the figure).

e1e1e1

e2
e2e2

ρ

Figure 12: Identification of adjacent edges.

A singular combinatorial map Θ from one complex to another is a contin-
uous map in which every closed n–cell en is either mapped homeomorphically
onto an n–cell or is mapped onto Θ(∂en).

We leave the proof of the following technical lemma to the reader.

Lemma 8.2 Let Q = 〈A | R〉 and Q0 = 〈A0 | R0〉 be finite presentations.
Suppose θ is a map A → A0

±1 ∪ {1} and let θ : (A±1)⋆ → (A0
±1)⋆ be the

extension of θ defined by

θ(a1
ε1a2

ε2 . . . ar
εr) = θ(a1)

ε1θ(a2)
ε2 . . . θ(ar)

εr .
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Suppose that for all r ∈ R, the word θ(r) is either freely reducible or has a
cyclic conjugate in R0

±1.
If ∆ is a Q–van Kampen diagram for a word w, then there is a singular

combinatorial map Θ : ∆ → ∆ to a Q0–van Kampen diagram for θ(w) that

is distance decreasing with respect to the path metrics on ∆(1) and ∆
(1)

.
Moreover, suppose e is an edge of ∆ labelled by a and Θ(e) is not a single
vertex; if θ(a) ∈ A then Θ preserves the orientation of e and Θ(e) is labelled
by θ(a), and if θ(a) ∈ A−1 then Θ reverses the orientation of e and Θ(e) is
labelled by θ(a)−1.

Corollary 8.3 In addition to the hypotheses of Lemma 8.2 assume that Q0

is a subpresentation of Q. If w is a null–homotopic word in Q0, and if
θ(w) = w, then there is a Q0–van Kampen diagram for w that is of minimal
intrinsic diameter (or radius) amongst all Q–van Kampen diagrams for w.

In the following proposition, the hypothesis that no cyclic conjugate of a
word in R1

±1 is in R2
±1 is mild. It could only fail for freely reducible words

in
{
t±1

}⋆
. It allows the 2–cells of a P–van Kampen ∆ to be partitioned into

R1–cells and R2–cells; that is, 2–cells that have boundary words in R1 or
in R2, respectively. Note that whenever an R1–cell shares an edge with an
R2–cell, that edge is labelled by t.

Proposition 8.4 Let 〈A1 | R1〉 and 〈A2 | R2〉 be presentations of groups
A1 and A2, such that A1 ∩ A2 = {t}, where t has infinite order in both A1

and A2. The amalgam A1 ∗〈t〉A2 has presentation P := 〈A1∪A2 | R1∪R2〉.

Assume that no cyclic conjugate of a word in R1
±1 is in R2

±1.
Suppose that A2 retracts to 〈t〉 via a homomorphism φ that maps t to t

and maps all other a ∈ A2 to 1 or t±1.

1. Suppose w1 is a null–homotopic word in
(
A1

±1
)⋆

. Then w1 has an
〈A1 | R1〉–van Kampen diagram that is of minimal intrinsic diameter
(or radius) amongst all P–van Kampen diagrams for w1.

2. Suppose w2 is a null–homotopic word in
(
A2

±1
)⋆

. Then w2 has a

minimal intrinsic diameter P–van Kampen diagram ∆̂ such that when-
ever γ is a simple edge–circuit in ∆̂ around which we read a word in(
A1

±1
)⋆

, the subdiagram it bounds is an 〈A1 | R1〉–van Kampen dia-
gram.

Proof. The first part is a consequence of Corollary 8.3. For the second part
we take a P–van Kampen diagram ∆ for w2 of minimal intrinsic diameter
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and obtain a P–van Kampen diagram ∆̂ for w2 with the required properties
by repeating the following procedure.

Suppose ρ is a simple edge–circuit in ∆ around which we read a word
in

(
A1

±1
)⋆

. Let wρ be the word we read around ρ, and let ∆ρ be the P–
van Kampen subdiagram bounded by ρ. Glue the 〈A1 | R1〉–van Kampen
diagram ∆ρ for wρ supplied by Lemma 8.2, in place of ∆ρ. This does not
increase intrinsic diameter because the map Θ : ∆ρ → ∆ρ of Lemma 8.2 is
distance decreasing. Also the gluing cannot destroy planarity because ρ is
simple — see Lemma 8.1 (2).

9 Quasi–isometry invariance

A special case of the following theorem is that for any two finite presentations
P1,P2 of the same group, IDiamP1 ≃ IDiamP2 and EDiamP1 ≃ EDiamP2 .

Theorem 9.1 If P1 and P2 be finite presentations for quasi–isometric groups
Γ1 and Γ2, respectively, then IDiamP1 ≃ IDiamP2 and EDiamP1 ≃ EDiamP2 .

Proof. The theorem is proved by keeping track of diameters as one follows
the standard proof that finite presentability is a quasi–isometry invariant [5,
page 143]. The first quantified version of this proof (in the context of Dehn
functions) appeared in [1].

Fix word metrics d1 and d2 for Γ1 and Γ2, respectively, and quasi–
isometries f : (Γ1, d1) → (Γ2, d2) and g : (Γ2, d2) → (Γ1, d1) with constants
λ ≥ 1 and µ ≥ 0, such that for all u1, v1 ∈ Γ1 and all u2, v2 ∈ Γ2,

1

λ
d1(u1, v1) − µ ≤ d2(f(u1), f(v1)) ≤ λd1(u1, v1) + µ, (3)

1

λ
d2(u2, v2) − µ ≤ d1(g(u2), g(v2)) ≤ λd2(u2, v2) + µ, (4)

d(u1, g ◦ f(u1)), d(u2, f ◦ g(u2)) ≤ µ. (5)

Suppose ρ2 is an edge–circuit in the Cayley graph Cay1(Γ2,A2), visiting
vertices v0, v1, . . . , vn = v0 in order. Consider the circuit ρ1 in Cay1(Γ1,A1)
obtained by joining g(v0), g(v1), . . . , g(vn) by geodesics of length at most
λ + µ, using (4). Fill ρ1 with a minimal–intrinsic–diameter van Kampen

diagram π1 : ∆1 → Cay2(P1). Extend f ◦
(
π1

∣∣∣∆1
(0)

)
by joining the images

of adjacent vertices by geodesics in Cay1(Γ2,A2), each of length at most
λ+µ by (3), to give a combinatorial map π : ∆(1) → Cay1(Γ2,A2) from the
1–skeleton of a diagram ∆ obtained by subdividing each of the edges of ∆1.

42



Each 2–cell in ∆ has boundary length at most L1 := (λ+ µ)maxr∈R1 ℓ(r).
Extend π to a map π′2 : ∆2

(1) → Cay1(Γ2,A2) filling ρ2 by joining each
vertex u2 on ρ2 to f ◦ g(u2) on π(∂∆) by a geodesic, which has length at
most µ by (5). So ∆2 is obtained from ∆ by attaching a collar of ℓ(ρ2)
2–cells around its boundary. Adjacent vertices in Cay1(Γ2,A2) are mapped
by g to vertices at most λ+µ apart by (4) and then by f to vertices at most
λ(λ + µ) + µ by (3). So the lengths of the boundaries of the 2–cells in the
collar are each at most L2 := λ2 + λµ+ 3µ+ 1.

It follows that if we define R2 to be the set of all null–homotopic words in
(A2

±1)∗ of length at most L := max {L1, L2} then π2 extends to a van Kam-
pen diagram π2 : ∆2 → Cay2(P2) filling ρ2, where P2 = 〈A2 | R2〉. So P2 is
a finite presentation for Γ2. Now, ℓ(∂∆1) ≤ (λ+ µ)ℓ(ρ2) and so IDiam(∆1)
is at most IDiamP1((λ + µ)ℓ(ρ2)). By (3) we can multiply this by (λ + µ)
to get an upper bound on the intrinsic diameter of ∆. Adding a further 2µ
for the collar, we get

IDiam(∆2) ≤ (λ+ µ) IDiamP1((λ+ µ)ℓ(ρ2)) + 2µ, (6)

which establishes IDiamP2 � IDiamP1 for this particular P2.
However, the theorem concerns arbitrary R2 for which P2 = 〈A2 | R2〉

is a finite presentation for Γ2. The boundary of each 2–cell of ∆2 is mapped
by π2 to an edge–circuit in Cay1(Γ2,A2) of length at most L. So, to make
∆2 into a van Kampen ∆̂2 diagram over P2, we fill each of its 2–cells with a
(possibly singular) van Kampen diagram over P2. But, a technical concern
here is that gluing a singular 2–disc diagram along a non–embedded edge–
circuit of ∆2 could destroy planarity. The way we deal with this is to fill
the 2–cells of ∆2 one at a time. And, on each occasion, if the 2–cell C to
be filled has non–embedded boundary circuit then we discard all the edges
inside the simple edge–circuit σ in ∂C such that no edge of ∂C is outside σ,
and then we fill σ.

Discarding the edges inside all such σ does not stop the estimate (6)
holding. Adding IDiamP2(L) to account for each of the fillings gives an
upper bound on IDiamP2(∆̂2) and so IDiamP2 � IDiamP1 . Interchanging
the roles of P1 and P2, we immediately deduce that IDiamP1 � IDiamP2

and so we have IDiamP1 ≃ IDiamP2 , as required.
That EDiamP1 ≃ EDiamP2 can be proved the same way, except we take

∆1 to be a minimal–extrinsic–diameter filling of ρ1, and then by (3)

EDiam(∆2) ≤ λEDiamP1((λ+ µ)ℓ(ρ2)) + µ+ 2L,

and adding a further constant EDiamP2(L) gives an upper bound on EDiamP2(∆̂2).
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