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Abstract

This is an account of a series of lectures of Graham Higmgarararials namely
coset graphs for actions of triangle groups which bec@nf@ce mapsvhen em-
bedded in orientable surfaces.

Spilt Milk The Nineteenth Century and After
We that have done and thought,
That have thought and done,
Must ramble, and thin out

Like milk spilt on a stone.

Though the great song return no more
There’s keen delight in what we have:
The rattle of pebbles on the shore
Under the receding wave.

from The Winding Stair and Other PoenW.B.Yeats, 1933

1 Preamble

Graham Higman gave the lectures on which this article isdagseOxford in 2001.
They are likely to have been the final lectures he gave; heidiédgril 2008, at the
age of 91. He introduced them with the quotes from W.B. Yegptsaduced above, and
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described the work in preparing them as “justifying my olé’agnd “keeping me rel-
atively sane.” The second author attended the lectureghanfitst author remembers
Higman’s work on related topics some years earlier; thioantis developed from
recollections and from notes taken at the time. As such, amysare ours, and the
presentation and the prooféfered may not be as Higman had in mind. At various
points, and as indicated, we have extended Higman'’s treafiwe also include some
of our own observations in an afterword.

Januarials, which we will define in Secti@are 2-complexes with two distinguished
faces, that result from embedding coset graphs for theretib triangle groups into
compact orientable surfaces. They can be viewed as beiegasd from two sub-
surfaces (essentially those two distinguished faces); me appropriate definitions
and tools to explore the complexity of this assembly in &3 In Sectiond we give
sufficient conditions for actions of PSL(R) on projective lines to give rise to januari-
als. This leads to a number of examples presented in Se&tiBimally Sections, our
afterword, contains some remarks on the coset graph apgearNorman Blamey'’s
1984 portrait of Higman, and some further examples of jaialsar

It appears that Higman's study of januarials was sparked ibywork on Hurwitz
groups which are non-trivial finite quotients of the,@ 7)-triangle group. Higman
used coset diagrams to show that for affimiently largen, the alternating group Alt)
is a Hurwitz group, and his work was taken further by the fitghar to determine ex-
actly which Alt(n) are Hurwitz, in [L].
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2 Coset graphs, face maps, januarials, and surfaces

Supposss is a set endowed with an actien— s? by a groupG, andA is a generating
set forG. Definel to be the graph with vertex s8t and with an oriented edge labelled
by a € A (called ana-edge from vertexu to vertexv whenever® = v. We will
be concerned with situations whe@acts transitively or, so thatl" is connected.
In that event we can identif§ with the right coset§ Hg: g € G} of the stabiliser
H = Gs = Staly(s) of any particulars € S, and for this reasor, is known as aoset
graphor Schreier graphor sometimegoset diagramfor the action ofG on S with



respect toA. When the action o6 on S is also regular, we can identifg with the
underlying set of3, in which casd’ is theCayley graphof G with respect toA.

Paths in the coset graph may be labelled with words on thergeng setA (which can
be thought of as an alphabet). Suppose that a wooth A*! representg € G, and
thats € S. Lety be the path il" obtained by concatenating the unique edge-paths in
from s¥ to 9", for eachi € Z, along which one reads. This tours an orbit ofg) and

is a (closed) circuit precisely when that orbit is finite. Tdé& one such path for each
orbit.

Figure 1: A coset graph arising from an action of the group 25L3) onFi3 U {0},
with X : Zz+— —-zandy : z+— (z- 1)/z and its companion graph. This results in a
3-januarial of genus 0 and simple type @10).

Figure 2: A coset graph arising from an action of the group 25L7) onFy7 U {0},
with X : Zz+— —-zandy : z— (z- 1)/z and its companion graph. This results in a
3-januarial of genus 1 and simple type 110).

A mapis a 2-cell embedding of a connected (multi)graph in somseadaurface, with
its faces(the components of the complement of the graph in the syrfagiag home-
omorphic to open disks iit?. Examples include triangulations and quadrangulations
of the torus, and the Platonic solids (which may be viewedigisij)\symmetric maps



on the sphere), with all vertices having the same valencetifaces having the same
size.

A januarial is a special instance of a map constructed from embeddinget goaph
for an action of the the (X, 1) triangle group

ARk = (xy | ¥ =y<=(xy) = 1),

with A = {x,y}. Becausex’ = 1, thex-edges in such a coset graprcoming from
non-trivial cycles ofx occur in pairs: whenever there is aredge fromu to v, there is
an x-edge fromv to u. We may identify each such pair, so as to leavauaariented
x-edge between andv. Then for each fixed poirgof x, we attach a 2-cell (which we
will call an x-monogohalong thex-edge which forms a loop & Similarly, for each
orbit of ¢y), we attach a polygon (which we callaface along the path given by(y)

as described above. This gives a 2-complex, many examplekioh appear in this
article; see Figures, 2, 6, 7, 8, 9, and10. These and similar figures can be displayed
without labels on the edges, because we may shadg-fthees so thay-edges are
identifiable as those in the boundariesyeaices, while all the remaining edges are
edges. We need not indicate orientations on the edges:¢lges for the reason given
above, and thg-edges because we may adopt a convention thgteades are oriented
anti-clockwise around the correspondipifpces. Note that the length (the number of
sides) of eacly-face divide.

Next, attach a polygon (which we call ag-face) around each orbit ¢ky). As shown
by the following lemma, the resulting 2-compléxs homeomorphic to a closed ori-
entable surface. We may call the corresponding embeddiigiofn-face mapwhere
mis the number of orbits ofxy).

A januarial (and more precisely, k-januarial) is the instance whem = 2 and the
orbits of (xy) have the same siZe5| /2. Two examples of 3-januarials are given in
Figure3.

Lemma2.1. The 2-complex J defined above is homeomorphic to a compacitabile
surface without boundary.

Proof. In the construction ofl we identified oppositely orientededges in pairs. For
this proof, however, it is convenient to revert to the pafrsrientedx-edges, and insert

a digon (which we call a-digor) between each pair. We will show that the resulting
complex gives an orientable surface without boundary. litfeilow that the same is
true of a januarial, because we have an embedding in the safaeeswhen the digons
(any two of which have nx-edge in common) are successively collapsed to single
edges.

Now in this complex, each vertex has valence four: it has laotincoming and an
outgoingx-edge (coming from an edge-loop in the event théikes the vertex), and
both an incoming and an outgoilyeedge (which, similarly, may come from a loop).
Eachx-edge is incident with exactly oneface (that is, arx-monogon or arx-digon),
and onexy-face. Eacly-edge is incident with exactly oneface and oney-face. It
follows that the complex gives a surface without boundarprédver, the surface is



Figure 3: The 3-januarials arising from the coset graphsgnres1 and2. The unori-
ented edges areedges and oriented edges gredges.

orientable because the directions of the edges give censistientations around the
perimeters of all the faces. Finally, singés finite, the surface is compact. O

3 Thetopological complexity of januarials

Higman gave a notion of topological complexity which we ithple typebelow. It
concerns how a januaridl is assembled from the subspa&sand S, that are the
closures of its twoy-faces. He recognised that some januarials are beyond dipe sc
of this notion; indeed, he made some ad hoc calculationfiéoexamples in Figure®
and 10 which show as much. Accordingly, below, we define a more gdmestion
which we calltype which applies to all januarials, and we explain how to caltuit

in general.

Topological features of, S; andS, come into clearer focus when we collapse each
x-monogon and eacfiface inJ to a point. Any twoy-faces in a januarial are disjoint.
The same is true of any twemonogons. And ax-monogon can only meetyaface

at a single vertex. So these collapses do not change the moongbism types o, S1
orS,.

Let " be the 1-skeleton od — that is, the coset graph. Lét S;, S, andT be the
images of], S;, S, andI” under these collapses. We cBla companion graphThen
J =S;US, is a closed surface obtained by some identificatioS0fndS, along
their boundaries. Taking another perspectiés the result of adding two faces Iy
via attaching mapg; andp, induced by the maps that attach thyefaces tal".

Examples of sucli andT" appear in Figureg, 2, 7, 8, 10, 12, and13. Each one is
drawn in such a way that the cyclic order in which edges enesfinain vertices agrees
with that in which x-edges meey-faces inl'. So, as they-edges inl" are oriented



anti-clockwise around thgfaces, one can readi; by following successive edges in
T in such a way that on arriving at a vertex, one exits along igtgtimost of all the
remaining edges (except if the vertex has valence one, inhnddase one exits along
the edge by which one arrived).

As (xy) yields exactly two orbits when acting @& togetherp; andp, traverse each
edge inI twice, once in each direction. The edges comprising the rayihgs :=
S1n'S;, shown in blue in the figures, are traversecpbyn one direction ang, in the
other. Those traversed by (resp.,o,) in both directions are shown in red (resp. green).

The collapses carrying to J leave only the twaxy-faces, those-edges which are
not loops, and one vertex for eagface inJ. These collapses do not alter the Euler
characteristic. Sincé is a closed orientable surface, we find that the genus isf
readily calculated as follows.

Lemma 3.1. Twice the genus of a januarial equals the number of x-edgéshvere
not loops minus the number of y-faces.

For example, this is & 6 = 0 in the left-hand example of FiguBand is 8- 6 = 2 in
the right-hand example, giving genera 0 and 1, respectively

Now we turn to genera assomatedSQ andS,, or their |mage§1 andS,. Defining
these requires care, sinBg andS, may fail to be sub-surfaces df(and likewiseS;
andS; fail to be sub-surfaces df): they are closed surfaces from which the interiors of
some collection of discs have been removed, but the boweslafithose discs need not
be disjoint. (Figure8 and10 provide such examples.) But if we take a small closed
neighbourhoodR of S in J, we get a genuine sub-surface which serves as a suitable

Proxy:

Lemma3.2. R; and R are orientable surfaces, and they retract3pandS,, respec-
tively.

Proof. A small closed neighbourhood gf(or indeed of any subgraph of the 1-skeleton
of a finite cellulation of a closed surface) is a sub-surfagh woundary and retracts
to G. Similarly R;, which is the union o8; with a small closed neighbourhood@f is
orientable and retracts 8. It is orientable becausgis orientable. O

We define thaypeof J to be the pair ({1, 91), (2, g2)), whereg; andh; are the genus
of R and the number of connected components of the bounddRyrekpectively, for
i = 1,2. We will not distinguish between type${(g,), (h2, 92)) and (2, g2), (h1, 91)).

The most straightforward way in whid® andR, can be assembled to maB@ccurs
whenR; N Ry is a disjoint union oth annuli, whereh = h; = hy, or in other words,
whenJ is homeomorphic to a join dR; andR; in which the boundary components
are paired & and identified. In this case, we say that the januakial of simple type
(h, g1, g2). We do not distinguish between the simple tyges(, g2) and f, g2, 91).

Maps in which the graph is embedded in a suitably non-patiicéd manner (for in-
stance as a subgraph of the 1-skeleton of a finite cellulatidghe surface) have the



property that a small neighbourhood is a disjoint union afidnif and only if the
graph is a collection of disjoint simple circuits. So,Rsn R, is a small neighbour-
hood ofG, one can recognise simple type from the gréph

Lemma3.3. Jis of simple type if and only@ is a collection of disjoint simple circuits.
In that case, if J has simple ty|fl, g1, g2) then h is the number of circuits.

The genus of a januarial (equivalently, ofJ) of simple type is present in the data
(h, g1, 92). When the handles (that is, thennuli fromR; N R,) that connecR; andR;
are severed one-by-one, the genus falls by 1 each time wmiinly have one handle
connecting?; andRy, and hence a surface of germs+ go. SinceJ hash handles to
begin with, this gives the following:

Lemma 3.4. The genus of a januarial J of simple type is#gg, + h— 1.

Figuresl, 2, 7 and12 show examples of coset graphs which give januarials of @mpl
type, and Figure8, 10 and 13 show examples which give januarials that are not of
simple type. In each case, the caption indicates the gentisegfinuarial and the
details of the type. The genus of the januarial can be estaddliin each case via an
Euler characteristic calculation (as per Lem8aéfor those of simple type).

For the examples of simple typejs immediately evident from the companion grdph

on account of Lemma.3. For those not of simple type, our next lemma gives a means
of identifying h, andh, fromT. Examples opartitions ofG into circuitsin the sense

of this lemma can be seen in Figu&s0and13.

Lemma 3.5. Let® be the set of all paths that traverse successive edggsiinthe
directions they are traversed by (resp.p2), in such a way that whenever such a path
reaches a vertex, it continues along the right-most of theioedges ing incident
with that vertex. (The next edge is necessarily traversegh lfsesp.p2) in that direc-
tion.) All such paths close up into circuits, aipartitions G, in the sense that the
union of the circuits ig7 and no two share an edge. The cardinalityos h, (resp. h).

Proof. We will prove the result fop;. The same argument holds foy with the sub-
scripts 1 and 2 interchanged.

By construction, the portion of the circyit that falls inG runs close alongside the
boundaries of thé, holes inR,. Consider the situation wherg is traversing an edge
ein G, and letB denote the boundary of the hole that runs alongside — seed<igu
At the terminal vertex of e, because of our convention for drawing companion graphs,
p1 Will continue along the right-most of the other incident edgnT. If that edgee’

is in G, it also runs alongsid8. (This happens at in the figure.) Suppose, on the
other hand, that’ is not inG. Thenp; does not run alongsidg, but rather heads into
the interior ofR,. (This happens atin the figure.) At some later tim@y must return
alongé€’ in the opposite direction (perhaps visiting another part6B in the interim)
since the edgeps; traverses exactly once are precisely thosginHencep; arrives
back atv and then continues along the (new) right-most edge — whidheitiner be
alongsideB, or take it back into the interior d®,, again to return eventually along that



same edge. Repeating this, we eventually find the next edgarioident withv that
continues alongsidB. It follows that however many detours into the interior Ry
are required, it is theight-most of the edges i@ incident withv (aside frome) that
continues alongsidB. So the circuits traversed as explained in the statemeriteof t
lemma are those that run alongside the boundaries of the oRy. The remaining
claims easily follow from this. O

Figure 4: Tracking the boundary of one of the hole®jn

Givenh; (fori = 1 or 2), one can determirgg fromT via the following observation:

Lemma 3.6. The genusgof R satisfie2 — 2g = Vi — Ej + hj + 1 where Vand E
denote the number of vertices and edges, respectivelygiauthgraph of" visited by
the attaching map of the face &f.

Proof. By Lemma3.2, filling the h; holes inR; with discs gives a closed orientable
surface of genug; which is homotopic t&S; with h; discs attached along circuits in its
1-skeleton. Hence the Euler characteristic 2g; of R is the same as that & with
theh; discs attached, namely — E; + h; + 1. O

Questions 3.7. Higman asked the following questions concernirignuarials of sim-

ple type. For a giveR, what are the possible values for and interrelationshipsden

01, 92 andh? Are there arbitrarily large values bfor which there exist examples with

h = 1? How large carn be, for givenk? Similar questions can be asked also about
januarials that are not of simple type.

4 Januarialsfrom PSL(2 Q)

4.1 PGL(2Qq), PSL(2 q) and the classical modular group

The projective linear grougPGL(n, F) over a fieldF is the quotient GL{, F)/Z of the
group of invertiblen x n matrices by its centr& = {al, | a < F \ {0}}. Its subgroup,
the projective special linear groupPSL(n, F), is the quotient of Sk, F), the group of



all n x n matrices oveif of determinant one, by its subgroup of all scalar matrices of
determinant one.

There is a natural isomorphism between PGEjand a group of Mobius transforma-

b . az+c
corresponds to the transformatiam> ———,
d bz+d

when multiplication of transformations is read from leftright. This gives actions of
PGL(2 F) and PSL(2F) on the projective line PIK) = F U {co}. Also if F is finite, of
orderq, then PGL(2F) and PSL(2F) are denoted by PGL(®) and PSL(20).

tions, under which the matri(%1

A search for 3-januarials may begin with tblassical modular group
PSL2Z) = (xy|X¥ =y’ =1)

which acts onQ U {oo} by Mobius transformations wit : z — —-1/zandy : z —
(z— 1)/z Notice thatxy : z+ z+ 1. A portion of the resulting coset diagram is shown
in Figureb5.

Figure 5: The coset graph arising from the action of the madgtoup PSL(2Z) =
(Xy|¥¥=y*=1)onQU{co}viax:z+ —1/zandy: z+ (z—-1)/z

Suppose is a prime. Then the group PSL () is a homomorphic image of

A2,3,p) = (xy | ¥ =y =(xyP =1),

wherebyA(2, 3, p) acts orfpU{co} viax : z+— —1/zandy : z+— (z—1)/z with product
Xy : z+ z+ 1. The resulting coset diagramsre quotients of the diagram in Figusg
for example, the diagrams for PSL.(&3) and PSL(217) are shown in Figuré. But,
these coset diagrams do not immediately yield januarisdseghe orbits ofxy) have
lengths 1 ang rather than bothg + 1)/2.



Figure 6: Coset graphs arising from actions\¢2, 3, 13) onF13 U {0} andA(2, 3,17)
oNnF;7U {oo}, both viax: z— —-1/zandy: z— (z-1)/z

4.2 Associates

Here is a potential remedy for the failure of the coset diagraonstructed above from
PSL(2 p) to produce januarials. It applies in the general setting ifite groupG
acting on a se$ and containing elementsandy satisfyingx’ = y* = (xy)' = 1 for
somel € Z. LetT be the resulting coset graph for the actiom@®, k, ) on S, via G,
with respect to the generating $&ty}.

Supposes has an elemerttof order 2 with the property that'xt = x* (= x) and
t~lyt = y~1. Conjugation by such an elemereverses every cycle gfand preserves
every cycle of the involutiorx, and hencé induces a reflection of the coset grdph

Note that t)? = x(txt) = xx = 1, which allows us to consider the pait,y) in place of
(x,y). If I”is the order ot y, then we have an action 82, 3,1’) on S via (xt,y). The
resulting coset graplt is called amassociateof I'. This graph also admits a reflection
via the same involutiot, sincet™(xf)it = x "1t = xt = (xt)~! (andt~tyt = y1). For
more details about the correspondence/(t) — (xt,y,t), see p]. The associate graph
I gives a new candidate for a januarial.

Examples 4.1. WhenG is PSL(2 p) for some primep = 1 mod 4, andk : z+— —-1/z
andy : z— (z- 1)/z, we can take to be the transformation— 1/z, which has order
2 and satisfies xt = x"* andt~lyt = y, as required. [The conditiop = 1 mod 4
ensures that1 is a square mog, so that the transformatidr(and hence alsat) lies
in PSL(2 p).] In this casext is the transformatioz — —z Hence, in particular, the
associates of the coset graphs in the cgsesl3 and 17 from Figuré are precisely
those in Figure4 and2. The transformationty : z— (z+1)/zhas two cycles of equal
length, and so in both cases the associates are januarigieeifisally those depicted
in Figure3.
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Like T, the associate can fail to yield a januarial if the sizes ef(tty)-orbits are not
the requisitéS| /2, but it succeeds in many cases. In Sectidawe will explore when
it can be successfully applied to the examples from P3b)(2But first we need the
following study of conjugacy classes in PGL.

4.3 Classifying conjugacy classesin PGL(2 Q)

Some of the details of the analysis in this section are simdahat carried out by
Macbeath in §].

a b
c

Let g be any odd prime-power greater than 3, gay pS. ForM = ( d) e GL(2,0),

we may define
(trM)?2  (a+d)?
detM — ad-bc’

o(M) =

The characteristic polynomial of is detl, — M) = x? —tr(M)x + det(M), and tr(V)
and detM), and therefore als6(M), are invariant under conjugacy within GL®.
Sinced(M) is invariant under scalar multiplication ®, it follows that this gives us

a well-defined functior® : PGL(2 g) — Fq that is constant on conjugacy classes of

PGL(2 ).

In fact, the functiord parametrises the conjugacy classes of PGa2s follows.

Proposition 4.2. Let g and h be elements BIGL(2 q). If 8(g) = 6(h) ¢ {0, 4}, then

g and h are conjugate iRPGL(2 ). In the exceptional cases, there are precisely two
conjugacy classes on whiéh= 0, namely the class of involutionsRSL(2 g) and the
class of involutions ilPGL(2 q) \ PSL(2 ), and two classes on whic¢h= 4, namely
the class containing the identity element and the classefrdnsformation z» z+ 1.

This proposition can be proved using rational canonicah&rbut also we can give a
direct proof for the generic case.

Proof for the case wherg(g) ¢ {0,4}. Suppose the transformatigre PGL(2, q) is in-
duced by the matrid € GL(2, g), with tr(M) # 0. Then we can choose a vectoe ]qu
such thau anduM are linearly independent ov&. The matrix forg with respect to

the basiqu, uM} is the of the for S :‘ , but since the trace is non-zero and a conju-

gacy invariant, we can change the basis if necessary, sthéhatatrix forg has entry
1 in the lower-right corner. The matrix fgrthen becomes

, (0 1
v (5 )

whereA is the determinant. But thefi(g) = 9(M’) = 1/A, soA = 1/6(g), and it
follows thatd(g) determines the matrix. Since matrices representing thee dmear

11



transformation with respect toftierent bases are conjugate within GLqp we find
thatd(g) determines the conjugacy classgf O

The utility of the parametef is enhanced by the following lemma, which gives a
number of cases in which the order of an elemeatPGL(2 g) determines(y).

Elements with trace 0 give involutions in PGL (), and conversely, while elements
with trace—1 and determinant 1 give elements of order 3 in PGg)2and parabolic

elements (which are the conjugates of the m %ix 2 , or equivalently, the elements

with trace 2 and determinant 1), give elements of ogar PGL(2 g). We also note
that every element of ordeq & 1)/2 in PGL(2 p) is the square of an element of order
g+1in PGL(2 g), and hence lies in PSL(®) and is the product of two cycles of length
(g+ 1)/2 in the natural action of PGL(8) onFg U {co}.

Lemma4.3. Ifyis an element of ordet, 2, 3,4 or 6in PGL(2 q), thend(y) = 4,0, 1,
2 or 3, respectively. Also if y has order p (the prime divisor oftigrid(y) = 4.

Proof. Supposey is induced by the elemem = 2 g € GL(2,q). Then the first

three cases are easy consequences of the respective dibsarifeat in those casels|
is scalar, oM has trace 0, oM has minimum polynomiat® + x + 1.

a+bc ba+d)

For the next two cases, we note tHdf = (c(a+ d) d?+bc

) and therefore
tr(M?) = a?+d?+2bc = (a+d)>—2(ad—-bc) = (tr M)? — 2 detM.

If g has order 4, theM? has order 2, and so 8 tr(M?) = (tr M)? — 2 detM, which
givesd(y) = (M) = (tr M)?/detM = 2. Similarly, if y has order 6, then sindé?
induces an element of order 3 in PGL{R2 we know that

((tr M)2 — 2detM)? = (tr(M?)? = det(M?) = (detM)?,

and thereforeg(M) — 2)> = 1. But sincey does not have order 3, we know that
O(M) # 1, and s®(M) — 2 = 1, which gives)(y) = §(M) = 3.

Finally, if y has orderp, theny is parabolic and therefore induced by some conjugate

of the matrix(i 2) which implies that(y) = (1 + 1)?/1 = 4. O

4.4 How many 3-januarialsarisefrom PSL(2 p)?

We can now proceed further, to consider 3-januarials ¢lie¢ Euler’s totient function
— that is, let¢(n) be the number of integers {4, . . ., n} that are coprime to.

12



Lemma 4.4. The number of conjugacy classes of element®@L(2 q) of order
(q+1)/2is %cp((q +1)/2). Moreover, if z is any element of ord@r+ 1)/2in PGL(2 q),
then every one of these conjugacy classes intersects tlygosybgenerated by z in
{z‘, Zi} for exactly one i coprime t(g + 1)/2.

Proof. This follows easily from the observation that every elenftrder @+ 1)/2in

I
SL(2 q) is conjugate in GL(29°) to one of the form(/é /19‘)’ whereA is an element

of order @+ 1)/2 in the fieldF, and the traces' + 1~ are distinct inFy. O

Lemma 4.5. For any given conjugacy class C of element$&L(2 q) of order | ¢
{1, 2, p}, there exists a tripl€x, y, xy) of elements dPSL(2 q) such that x has orde?,
and y has ordef, and xy is in C. Moreover, this triple is unique up to conjugat
PGL(2 q) whenever k 6.

Proof. Every element of order 3 in PSL(§) is conjugate in PGL(Z)) to the element

while any element of order

y:ze (z-1)/z induced by the matri¥ = (j (1) ,

2 in PSL(2q) is induced by a matriX of the formX = (a b), with trace 0 and

c -a
determinant-a® — bc = 1. Now observe that for any such choiceXfandY, we
have XY = _::E i , which has trace tXY) = —a — b + ¢ and determinant

det(X) = det(X)det(y) = 1.

This can be turned around: we can show that for any given eoo-zacer, there
exista,b andc in Fq such that-1 = a® + bcandr = —a - b + ¢, and hence there
exists a matrixX of trace zero such thatY has trace, giving a triple .y, xy) of the
required type. Note that we need- b = r + aandbc = —(1 + @), and therefore
(c+b)? = (c - b)? + 4bc = r? + 2ar — 3a% — 4. Now if p # 3, then we can multiply
this by 3 and it becomes 8¢ b)? = 4r2 — 12— (3a—r)?; and then since iif, there are
(9 + 1)/2 elements of the form# and @ + 1)/2 elements of the forrs — v2 for any
givens e Fq, and any two subsets of sizg { 1)/2 in Fq have non-empty intersection,
the latter equation can be solvedtinfor ¢ + b and & - r, and hence foc + b anda
(andc — b = r — a), and hence fog, b andc (sinceq is odd). On the other hand, if
p = 3, then the equation becomesH b)? = r? + 2ar — 38 — 4 = r? + 2ar — 1, which
is even easier to solve fat b, ¢, provided that # 0.

The main assertion now follows easily. Uniqueness up tougmagy in PGL(2q) when
| # 6 is left as an exercise. O
Since the automorphism group of PSL{2 is PGL(2 p) for every odd primep, we

obtain the following:

Corollary 4.6. For any prime p> 3, the number of distin@-januarials constructible
from PSL(2 p) in the way described in sub-sectiodsl and4.2is %qﬁ((p +1)/2).
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For example, whep = 37 the number of 3-januarialsd§19)/2 = 9, and wherp = 53
the number i$(27)/2 = 9 as well. A further attractive property is as follows:

Lemma 4.7. For every triple(x,y, xy) as in Lemma4.5with | # 6, there exists an
involution t inPGL(2 q) such that t'xt = x 1 and tlyt = y 1.

Proof. We may suppose that andy are induced by the matrices andY as in the

_égf ((;;) 2:::), which has the property

thatXT = TX L while YT = TY-L. The determinant of is

proof of Lemma4.5. In that case, leT = (

—(b+¢)?>-(2a+b)(2a—c) = —4a® - b? - c? - 2ab+ 2ac- bc,

which equals 3deXY) — (tr(XY))?, since detkY) = —a? — bcwhile tr(XY) = —a -
b + ¢, and thereford is invertible if and only ifg(XY) = (tr(XY))?/det(XY) # 3, or
equivalently XY does not have order 6. Finally, note thaTifs invertible, then since
its trace is zero, we haté = 1. O

4.5 Necessary conditionsfor associatesto yield januarials

For any positive integat, defined, to be the set of all values @fg) for elementgy of
ordern in the group PGL(2q). Consider the fect of the mapping — (r — 1)? on the
elements of this se&%,, for somen, as follows.

Suppose that € 6,, wheren is coprime tog, and letg be an element of order in
PGL(2 q) with 6(g) = r. By taking a conjugate df if necessary in PGIf), we may
assume thag is the transformatiom — pzinduced by the matrix

_(p O
(o 3
wherep is a primitiventh root of 1 inFq or Fe. In this case, til) = p + 1 while
det(M) = p, and so

It follows that ¢ — 2)? = (o + p1)? = p? + p~2 + 2. Butr is of ordern and sop will

be a primitiventh root of unity. In particular, ifis odd then alsp? is a primitiventh
root of unity, in which caser(— 2) = p? + p~2 + 2 = 6(M?), which also belongs t6,.
Iterating the procedure then yields further elementg,piintil we reach a stage where
p? =p*t andthen? + p2 +2=p+pt+2=r.

We now derive two necessary conditions on the valueggfin 4, in the special case
wheren = (q+ 1)/2.

Lemma4.8. If g is an element of orddig + 1)/2in PSL(2 q), thend(g) is a square in
Fq while6(g) — 4 is not a square in F.

14



2
Proof. First, g is conjugate in PGL(2) to the projective image oM = (/“6 Cl))

wherey is a primitive @ + 1)th root of unity inFg, and this gives

_ My @1, 2
0(g) = et - : = pu+2+u"

In particularf(g) = u?+2+p~2 = (u+u~t)?, which is a square ifiy (sinceu+u! € Fy).
On the other hand)(g) — 4 = y? - 2+ =2 = (u — u~1)?, which is not a square iFg,
sincey —u ™t =2u— (u+ut) ¢ Fy, O

Corollary 4.9. Suppose g PSL(2 p) has order(p + 1)/2.
(@) If 8(g) = -1, then p= 130r 17 mod20.
(b) If 6(g) = -2, then p= 17 or 19 mod24.
(c) If 6(g) = -3, then p=13,190r 31 mod42.

Proof. In case (a), by Lemmad.8 we require that-1 = 6(g) is a square mog while

-5 = 64(g) — 4 is not, and hence also 5 is not. Thpss 1 mod 4, and by quadratic
reciprocity, alsop = 2 or 3 mod 5, givingp = 13 or 17 mod 20. Similarly, in case (b)
we require that-2 is a square mog@ while 3 is not. It follows thafp = 1 or 3 mod 8,
while alsop # +1 mod 12, and therefone= 17 or 19 mod 24 (since we are assuming
p > 3). Finally, in case (c) we require thaB is a square mog while —7 is not, and
hence thap is a square mod 3 and a non-square modulo 7, gipirg 10, 13 or 19
mod 21, and therefong = 13, 19 or 31 mod 42. O

Next, we give what Higman described as the ‘Pythagorean L&m@®ne motivation
for this choice of name is that for an elemeftitof SO(3), we could definé(X) to
be 4 cod(¢/2), where¢ is the angle of rotation oK. Now leta, b andc be half-
turns about the three co-ordinate axes, andllbe a half-turn about any unit vector
(cosa, cosB, cosy). Then the angle of rotation @fd is twice the angle between the
axes ofa andd, namely 2, and similarly the angles of rotation bfl andcd are 23
and 2. Thusd(ad) + 6(bd) + 6(cd) = 4 cof a + 4cogB + 4cosy = 4.

Lemma 4.10 (Pythagorean Lemma)Suppose a, b and c are the non-identity elements
of a subgroup oPSL(2 q) isomorphic to the Kleid-group. If d is any element of order
2in PSL(2 q), then

6(ad) + 6(bd) + 6(cd) = 4.

Proof. One can take a quadratic extensigp of the ground fieldFy, and then in
PSL(2 Fg), all copies of the Klein 4-group are conjugate, since weaasiming that
qis odd. (See the classification of subgroups of PSh(in [4] for example.) Hence
we may assume that our Klein 4-group in PGldpis generated by

1 1
a:ze -z b:ZH—E, and C:ZO—)E.

15



. . . z+
Now any involutiond has trace zero and hence is of the fodm z — aztp

yZ—-a’
From this we find that
ad:z— —az+ﬂ’ bd:z— _a+’82, and cd:z+—>a+ﬂz,
—yZ—« -y —aZ Y —azZ
and therefore
2 )2 2
oad) + o(bd) + o(cd) = =, B=N" BN,
a?+By  —Py-o*  Py+a?
as required. O

Lemma4.3, the Pythagorean Lemma and Corolldr$ combine to give us necessary
conditions for associates formed as in SectoRto yield januarials. The scope of
this result is limited tdk equal to 3, 4 or 6, since these are the only orders for which
Lemmad4.3applies.

Corollary 4.11. ConsiderA(2,k,p) = (xy | ¥* = y¢ = (xy)? = 1) acting on
Fp U {oo} via PSL(2 p) in such a way that xy is the transformatiorzz+ 1. Lett be
an involution inPGL(2 p) such that t*xt = x* and 'yt = y %, and suppose that the
resulting associate coset diagram found by replacing x byieltls a k-januarial for
PSL(2 p) or PGL(2 p), depending on whether or not t liesBSL(2 p). Then

(a) ifk = 3, then p= 130r 17mod20;
(b) ifk = 4, then p= 170r 19mod24;
(c) ifk = 6, then p= 13,19 or 31 mod42.

Proof. Whenk = 3, 4 or 6, Lemmal.3gives usi(y) = 1, 2, 3, respectively, and in all
three caseg(xy) = 4, sincexy s the transformatiom — z+ 1. Apply the Pythagorean
Lemma, by taking, b, candd as the four involutions x, xt andty respectively, to give
6(y) + 6(xty) + (xy) = 4. Note thatd(xty) = (xyt) because(xty)t = (t"Ixt)yt = xyt
Thus we findd(xyt) = 6(xty) = 4 — 6(y) — 8(xy) = —6(y), which equals-1, -2, or-3,
respectively, whelk is 3, 4, or 6. Finally, for the associate to be a januarial wedne
xytto have order(f + 1)/2, and so the constraints @follow from Corollary4.9. o

5 Examples

In this section we explore a number of exampleskgénuarials guided by Corol-
lary4.11

We begin withk = 3. The eight smallegt satisfying the conditions of Corollad.11
are 13, 17, 37, 53, 73, 97, 113 and 137. We have already seethbavasep = 13
andp = 17 yield the 3-januarials depicted in Figu8e The cases wherpis 37, 53,
73, 97 or 137 all yield januarials. On the other hand, thedsteshconstruction (with
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Figure 7. The associate of the standard action of PS13RonF,3 U {0}, giving an
action ofA(2, 3,37) viaz+— —zandz— (z- 1)/z This yields a 3-januarial of genus 5
and simple type (2, 1).

X:zZ+— =1/zandy : z+ (z- 1)/z) does not yield a januarial in the cape= 113,
since in that casgty : z+ (z+ 1)/z which has order 19, rather than (1£3)/2 = 57.

The action of PSL(273) onF;3 U {oo} viaXx : z+ —1/zandy : z+— (z- 1)/zgives
a coset graph, the associate of which is depicted togethieritwicompanion graph in
Figure?.

The number oik-edges which are not loops agdaces in the associate are 36 and 26,
respectively, so the genus is (386)/2 = 5 by Lemma3.1 The type of the januarial
is apparent front'. The blue subgraph (which is the common boundar$0&ndS)
consists of three disjoint simple closed curves, anll sa3 by Lemma3.3. There are
22 vertices orB; and 21 onS,; there are 26 edges @y (coloured green and blue),
and 27 edges 0B, (coloured red and blue); and boBy andS, have 1 face and 3
holes. Hence by Lemm&.6, the genera 08, andS; are (2- 22+ 26-3-1)/2=1
and (2- 21+ 27- 3 - 1)/2 = 2, respectively. Accordingly, the 3-januarial is of type
(3,2,1), and this gives an alternative means of identifying theugeas 2 1+3-1=5,

by Lemma3.4.
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We now turn to 4-januarials.

For the standard construction (with: z — —-1/zandy : z — (z- 1)/z) to give a

4-januarial for PSL(2p), Corollary4.11requiresp = 17 or 19 mod 24. The eight
smallest values for the primp satisfying this condition are 17, 19, 41, 43, 67, 89,
113 and 117. But also if we want to lie in PSL(2 p), we need : z — 1/zto lie
in PSL(2 p), and then we needl to be a square mop, and sop = 1 mod 4. The
casesp = 17, 89, 113 and 117 all give simple 4-januarials for PSipjdn this way,
while the caseg = 41 fails, since in that casey has order 7 rather than the required
(41+1)/2 = 21.

On the other hand, if we are happy to construct 4-januar@PGL(2 p) instead
of PSL(2 p), we can relax the requirements and allgwy or t to lie in PGL(2 p) \

PSL(2 p). When we do that, we get simple 4-januarials for PSpj2n the cases
p = 19 and 43 (but not fop = 67). We consider the cage= 43 in more detail below.

™
K X ™
15 11 2 33 0 o D

38
6 18

25 31

16
17 10

7 36 35 8 3 40

27

25 37 19

41 12 9 32

Figure 8: A coset diagram for the action&(2, 4, 22) onF43U{co} given byz — 21z/22
andy : z+— (2z-1)/2z, its companion graph, and two partitions of the subgr@jitito
circuits. This yields a 4-januarial of genus 5 and genera (4 3), (2, 2)).

Lettingy be the transformation— (2z— 1)/2z, we can takenx asz — 21/zand once
more get the producty as the (parabolic) transformatian— z + 1, which fixesco
and induces a 43-cycle on the remaining points. The gengratduces a permutation
with eleven 4-cycles and no fixed points, while the generafixes two points (hamely
8 and 35) and induces 21 transpositions on the remaininggoin

We have not drawn the resulting coset graph, but note thatéfiexible, via the trans-
formationt : z — 22/z Its associate, given by the tripl&t(y, xty), shown alongside
its companion graph in Figu& produces a 4-januarial, singgy is the transformation
Z+ (z+ 22)/z, which has two cycles of length 22.

The genusis (2% 11)/2 = 5 by Lemma3.1 We can use Lemma5to find h; andhs.
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The partition arising from the attaching map (following the green and blue edges)
comprises; = 4 circuits, while the partition fop; (following the red and blue edges)
comprises, = 2 circuits. Both are indicated in the figure. By Lemi3.&, we have
2-201=8-17+4+1and2-29,=11-16+2+1, and s@; = 3 andg; = 2.

Finally in this section, we consider 6-januarials.

In this case, Corollarg.11requiresp = 13, 19 or 31 mod 42. Figuré@ shows a coset
graph for PGL(231). Its associate, which yields a januadalis shown in Figurel0
together with the companion graph. By Lemi34, the genus ofl is (15— 7)/2 =
4. Lemma3.5givesh; andhy: as shown in the figure, we find thit = 1 circuits
comprise the partition of arising from the attaching mag (following the green
and blue edges), arfg = 4 comprise the partition arising from (following the red
and blue edges). Hence by Lemm#®, we find that 2- 2g; = 5- 13+ 1+ 1 and
2-20,=7-12+4+ 1, and thereforg; = 4 andg, = 1.

t:z—1/(32

Figure 9: A coset graph for the action&2, 6, 31) onFsz; U{oo} given byx : z+— 10/z
andy: ze (z+ 10)/z

Figure 10: The associate of Figudegiving an action ofA(2, 6, 16) onFz; U {co} via

X :z+ z/30 andy : z — (z+ 10)/z together with its companion graph, and two
partitions of the subgrap@ into circuits. The resulting 6-januarial is of genus 4 and
general type ((14), (4, 1)).
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6 Afterword

6.1 Higman’'sportrait

Higman delivered the lectures on which this account is baséte Higman Roonof
the Mathematical Institute at Oxford University. As he spoke could see an image
of himself looking on, from his 1984 portrait by Norman Blaynehich is reproduced
below.

3

Yt e B (b s (gt pryty

v X UtH =

Figure 11: Norman Blamey’s 1984 portrait of Graham Higman

The portrait shows Higman beside a coset graph for the aofitire group PSL(211)

on the cosets of a dihedral subgroup of order 10 and index §@iv&ently, it gives
the natural action of PSL(21) on the 66 unordered pairs of points on the projective
line over a field of order 11. The two generatarandy satisfy the relationg® = y° =
(xy)® = 1, but also the diagram is reflexible about a vertical axisyaimetry, and the
reflection is achievable by conjugation by an involutian the same group.

In factx andyt may be taken as involutory generators of the stabilizer@ptir{0, oo},
such ag +— —1/zandz+— 2/z andt as the transformation— (z+ 1)/(z— 1). These
choices makg the transformatioz — (z+ 2)/(2 — 2). The three generatossy andt
then satisfy the relations written on the blackboard in thergit, namely

X o=y = (x)° == () = ()7 = o) = L,

which are the defining relations for the gro®@3>® in the notation of Coxeter2].
Hence in particulaiG>>® is isomorphic to PSL(2L1).
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The diagram does not give a januarial, but rather a 13-fage frtae associated surface
has genus 2, since there are 13 pentagons correspondirg%ecttles ofy), and 28
edges between distinct pairs of such pentagons (from tesitgms ofx), and 13 faces
coming from the 5-cycles afxy), giving Euler characteristic 1328+ 13= -2. The
isomorphism withG>>° also makes PSL(41) the automorphism group ofragular
map of type {5, 5}s5 on a non-orientable surface of Euler characteris88 (see 8]),
and hence also the automorphism group of a regular 3-paydbfype [55].

6.2 Other sourcesof januarials

Many januarials can also be constructed from groups other®sL(2q) and PGL(20).
For example, the alternating group Alt(16) is generatediemnentsx = (2, 4)(3,7)(6,
10)(8 16)(9,13)(11 14) andy = (1,2,3)(4,5,6)(7,8,9) (10 11, 12)(13 14, 15), with
productxy = (1,2,5,6,11,15,13 7)(3,8,16,9, 14, 12 10,4), which has two cycles of
length 8. The resulting coset diagram is shown in Fidize

Figure 12: A coset graph for an action of Alt(16) of degreetb§ether with its com-
panion graph. This gives a 3-januarial of genus 0 and sinyple (1, 0, 0).

Other examples are obtainable from the groups P3)@nd PGL(2q) without taking
the approach that we did in Sectidrwhich hadxy as the transformation+ z + 1.
An example is given in Figur&3.

Figure 13: A coset graph for an action of PSL12) onF;; U {oo}, Viax : z+> —1/z
andy : z+— (8z- 8)/(z+ 1), together with its companion graph, and two partitions of
the subgraplg;. This results in a 6-januarial of genus 1 and general type §(22, 1)).
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