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Abstract

There is a family of hyperbolic groups known as hyperbolic hydra which contain heavily distorted free
subgroups. We prove the existence of Cannon–Thurston maps (that is, maps of the boundaries induced
by subgroup inclusion) for these free subgroups. It is known that Cannon–Thurston maps between hyper-
bolic space boundaries can exist even in the presence of arbitrarily heavy (even non-recursive) distortion.
The hyperbolic hydra examples show that Cannon–Thurston maps can exist even between hyperbolic
group boundaries in the presence of arbitrarily heavy primitive recursive distortion.

2010 Mathematics Subject Classification: 20F67
Key words and phrases: Cannon–Thurston map, hyperbolic group, subgroup distortion, hydra, Acker-
mann’s function

1 Introduction

An isometry of hyperbolic n-space Hn induces a homeomorphism on ∂Hn = S n−1, the sphere at infin-
ity. More generally, an isometric embedding Hm ,→ Hn induces an embedding S m−1 ,→ S n−1; a quasi-
isometric embedding X → Y of (Gromov-)hyperbolic spaces induces an embedding ∂ X ,→ ∂ Y of the Gro-
mov boundaries. Remarkably, many natural embeddings which are far from being isometric nonetheless
induce maps on the boundaries. These are known as Cannon–Thurston maps in honor of the researchers
who gave the first exotic example: let M be a hyperbolic 3-manifold fibering over the circle with hyperbolic
surface fiber S and pseudo-Anosov monodromy. The inclusion S ,→M of a fiber induces an embedding
f : H2 = S̃ ,→ M̃ = H3 of the universal covers, which they showed induces a (surjective!) map f̂ : S 1 → S 2

[12].
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Cannon & Thurston’s example can be viewed as a map ∂ π1S = S 1 → S 2 = ∂H3 induced by an orbit map
π1S →H3 of the surface Kleinian group π1S . Thus one way of generalizing the Cannon–Thurston example
involves replacingπ1S with an arbitrary finitely generated Kleinian group. In a series of papers culminating
in [27], Mahan Mj (formerly Mitra) showed that for any finitely generated Kleinian group G , the orbit map
G →H3 always extends continuously to the the boundary, inducing a Cannon–Thurston map ∂G → S 2.

Another interpretation of Cannon & Thurston’s example is as a map ∂ π1S = S 1→ S 2 = ∂ π1M induced by
the inclusion of (Gromov)-hyperbolic groups π1S ,→π1M . (Section 2 contains background on hyperbolic
groups and their boundaries.) This leads to another direction of generalization: Let Λ ≤ Γ be hyperbolic
groups. If the inclusion map f : Λ ,→ Γ extends to a continuous map f : Λ ∪ ∂ Λ → Γ ∪ ∂ Γ of the Gro-
mov compactifications, then f (or its restriction f̂ : ∂ Λ→ ∂ Γ ) is called a Cannon–Thurston map. When a
Cannon–Thurston map exists, it is unique.

Mj showed this map exists when Λ is an infinite hyperbolic normal subgroup of a hyperbolic group Γ [23].
He also showed it exists when Γ is a hyperbolic group which is a finite graph of hyperbolic groups, with
Λ one of the (infinite) vertex- or edge-groups, under the assumption that the edge inclusions are quasi-
isometric embeddings [24]. We gave the first example of a hyperbolic group with hyperbolic subgroup, for
which there is no Cannon–Thurston map [1]. Matsuda & Oguni showed our example leads to examples
where the subgroup in question can be any non-elementary hyperbolic group or, even, relatively hyper-
bolic group [20].

The fact that the original Cannon–Thurston map f̂ : S 1→ S 2 of [12] is surjective (space-filling) stems from
the difference between the intrinsic metric of the hyperbolic surface fiber S and the ambient metric from
the hyperbolic 3-manifold M . That is, from the fact that S̃ ,→ M̃ (or π1S ,→π1M ) is distorted.

For a finitely generated subgroup Λ of a finitely generated group Γ , define the distortion function

DistΓΛ(n ) := max{dΛ(e , h ) | h ∈Λ, dΓ (e , h )≤ n } ,

where dΓ and dΛ are word metrics with respect to some finite generating sets. We say that f � g for f , g :
N→Nwhen there exists C > 0 such that f (n )≤C g (C n+C )+C n+C for all n ≥ 0. We say f ' g when f � g
and g � f . Up to ', DistΓΛ(n ) does not depend on the choices of finite generating sets. A similar definition
applies in the Kleinian groups context:

DistH
3

G (n ) := max
{

dG (e , g ) | g ∈G , dH3 (x0, g · x0)≤ n
}

.

IfΛ is an undistorted subgroup in a hyperbolic group Γ (that is, DistΓΛ(n )� n), thenΛ is also hyperbolic (e.g.
[8, page 461]) and the Cannon–Thurston map ∂ Λ→ ∂ Γ is readily seen to exist and be injective.

It is natural to ask whether extreme distortion is an obstacle to the existence of a Cannon–Thurston map.
In the Kleinian group setting, it is not. Cannon–Thurston maps always exist for surface Kleinian groups:
McMullen [21] proved this in the punctured torus case and Mj [27] in the general case. And Mj proved
that distortion functions can be arbitrarily wild in this setting [24, p.160–161], even non-recursive, by a
construction based on ideas of Minsky from [22].

For hyperbolic subgroups of hyperbolic groups, the relation (or lack thereof) between distortion and the
existence of Cannon–Thurston maps is less clear. As we mentioned earlier, Mj proved they exist for infinite
normal hyperbolic subgroups of hyperbolic groups. These are never more than exponentially distorted.
Further, Mj established in [24, p.159–160] that they exist for all k ≥ 1 for certain examples (based on a con-
struction of Bestvina, Feighn, & Handel [4]) which display k -fold iterated exponential distortion. There
are examples of heavier distortion where the existence of the Cannon–Thurston map remains unknown,
specifically Mj’s example where the distortion exceeds a k -fold iterated exponential for all k (but by Corol-
lary 3 of [3] (unpublished) is dominated by the function A4 discussed below), and the closely related CAT(-1)
examples of Barnard, Brady & Dani [2].

In this article we show that arbitrarily fast-growing primitive recursive distortion is no barrier to the exis-
tence of Cannon–Thurston maps for hyperbolic subgroups of hyperbolic groups.
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The hyperbolic hydra Γk (k = 1, 2, . . .) of [7] are a family of hyperbolic groups with finite-rank free sub-
groups Λk exhibiting the fastest-growing distortion functions known for hyperbolic subgroups of hyper-
bolic groups: DistΓkΛk

grows at least like Ak , the k -th of Ackermann’s family of increasingly fast-growing
functions that begins with A1(n ) = 2n , A2(n ) = 2n , and A3(n ) equalling the height-n tower of powers of 2.
Any primitive recursive function is dominated by some Ak (see for example pages 11–21 of [11]). We will
prove in Section 4:

Theorem 1.1. Hyperbolic hydra have Cannon–Thurston maps ∂ Λk → ∂ Γk for all k .

While heavy distortion may fail to obstruct the existence of Cannon–Thurston maps, it is natural to expect
it to manifest as some sort of wildness in the map: witness, for example, how Cannon & Thurston’s original
example is a space-filling curve S 1 →→ S 2 [12]. More generally, wildness manifests in Cannon–Thurston
maps in the relationship between “ε” and “δ” in their continuity (having given the boundaries natural
metrics). This was made precise by Miyachi [25] in the Kleinian group setting when the group is a finitely
generated Fuchsian group of the first kind with bounded geometry and no parabolic elements: Miyachi
[25] gives an upper bound on the modulus of continuity for the Cannon–Thurston map, and shows it is not
Hölder continuous when the group is geometrically infinite.

In this article we will establish the corresponding result for hyperbolic subgroups of hyperbolic groups.
Here are more details. The modulus of continuity ε : [0,∞) → [0,∞] of a function f : U → V between
metric spaces is

ε(δ) := sup{dV ( f (a ), f (b )) | a , b ∈U with dU (a , b )≤δ}.

This notion goes back at least to Lebesgue in 1909 [19]. An upper bound on ε(δ) expresses a degree of good
behaviour: f is uniformly continuous if ε(δ)→ 0 as δ→ 0; is Lipschitz if ε(δ) ≤ Cδ for a constant C > 0;
and isα-Hölder if ε(δ)≤Cδα for a constant C > 0. Wildness manifests in lower bounds on ε(δ), expressing
that ε(δ) is extravagantly larger than δ when δ is close to 0. We will prove:

Theorem 1.2. Suppose Λ ≤ Γ are hyperbolic, Λ is non-elementary, the Cannon–Thurston map ∂ Λ → ∂ Γ
exists, and r, s > 1 are any visual parameters for visual metrics on ∂ Λ and ∂ Γ , respectively. Then there exist
α,β > 0 so that for all n ≥ 0 the modulus of continuity satisfies

ε

Å
β

r DistΓΛ(n )

ã
≥
α

s n
.

While we have not been able to find this theorem elsewhere in the literature, we understand that it is known
to some experts. Indeed, the second author first heard of a suggestion of a relationship between the modu-
lus of continuity of Cannon–Thurston map and subgroup distortion from Mahan Mj. The moduli of conti-
nuity of Cannon–Thurston maps have received attention before in the Kleinian group setting. For a faithful
discrete representation to PSL2(C) of a finitely generated Fuchsian group of the first type with bounded ge-
ometry and no parabolic elements, Miyachi [25] gives an upper bound on the modulus of continuity of the
Cannon–Thurston map.

The reason we insist that Λ be non-elementary (i.e. contains an F2 subgroup; see e.g. [16, Theorem 2.28])
in this theorem is that elementary Λ are not interesting in this context: if Λ is finite, then ∂ Λ is empty; if Λ
is virtually Z, then Λ is quasiconvex in G , its boundary ∂ Λ is two points, and the Cannon–Thurston map
exists and is an embedding.

Theorem 1.1 of [7] says that DistΓkΛk
� Ak . It combines with Theorems 1.1 and 1.2 to give that the Cannon–

Thurston map ∂ Λk → ∂ Γk has the property that for δ incredibly small, ε(δ) is, by comparison, huge. More
precisely, we will prove in Section 5:

Corollary 1.3. Fix k ≥ 3 and any visual metrics on ∂ Λk and ∂ Γk . The modulus of continuity for the Cannon–
Thurston map ∂ Λk → ∂ Γk for hyperbolic hydra satisfies

ε

Å
1

Ak−1(n )

ã
≥

1

n
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for all sufficiently large n. In particular, for any primitive recursive function f there exists a Cannon–
Thurston map between hyperbolic groups satisfying

ε

Å
1

f (n )

ã
≥

1

n

for all sufficiently large n.

(The final part of the corollary follows immediately, since every primitive recursive function is dominated
by some Ak , as we remarked earlier, citing [11].)

A detailed understanding of the Cannon–Thurston Map ∂ Λk → ∂ Γk appears hard to obtain. Whilst ∂ Λk

is a Cantor set (as Λk is free), ∂ Γk is not so readily identified. (I. Kapovich & M. Lustig [17] recently made
advances in the understanding of Cannon–Thurston maps for certain free-by-cyclic groups, but Λk ≤ Γk
do not fall within the scope of their work.) Here is what we can say about ∂ Γk .

Splittings of hyperbolic free-by-cyclic groups F oϕZ are studied in [18] and [9], the former dealing with the
case whereϕ is an irreducible hyperbolic free group automorphism, and the latter withϕ a general hyper-
bolic free group automorphism. The argument preceding Corollary 15 in [18] shows that any hyperbolic
free-by-cyclic group has a one-dimensional boundary: the cohomological dimension of any (finitely gen-
erated free)-by-cyclic group is 2 (see e.g. [10, pp.185–7]), so [5, Corollary 1.4(d)] implies ∂ Γk has dimension
2−1= 1.

The argument of [18, Corollary 15] shows that any hyperbolic free-by-cyclic group has connected, locally
connected boundary without global cut points. To see this, it suffices by [16, Theorems 7.1 and 7.2] to
check that F oϕ Z is freely indecomposable, which is true for any free group automorphism ϕ. Indeed,
the Bass–Serre tree T for any graph of groups decomposition of F oϕ Z admits a minimal action by the
normal subgroup F with quotient a finite graph by Grushko’s Theorem. This shows the edge stabilizers for
the action of F oϕ Z on T are non-trivial, so the decomposition cannot be free.

On the other hand, Γk splits as an HNN-extension over Z for every k , so [16, Theorem 7.2] implies ∂ Γk has
local cut points. Indeed, Γ1 splits overZ as 〈B , a1〉∗〈a−1

1 t 2 ua1=t 2 v−1〉, where B denotes the subgroup generated
by all the defining generators other than a0 and a1 (then a0 appears as t −1a1t ), and for k ≥ 2, Γk splits as
an HNN-extension over Zwith the stable letter ak conjugating t to t a−1

k−1.

For additional background on Cannon–Thurston maps we recommend Mj’s recent survey [26].

The organization of this article. In Section 2 we give background on hyperbolic groups and their bound-
aries. In Section 3 we define Cannon–Thurston maps and prove an embellished version of a lemma of Mitra
giving necessary and sufficient conditions for their existence. In Section 4 we review the construction of
hyperbolic hydra groups and prove Theorem 1.1. In Section 5 we prove Theorem 1.2 and Corollary 1.3.

Acknowledgment. We thank Mahan Mj for conversations which fueled an interest in the relationship be-
tween subgroup distortion and Cannon–Thurston maps. We are grateful to an anonymous referee for a
careful reading and for valuable guidance on the Kleinian-groups literature.

2 Hyperbolic groups and their boundaries

This section contains a brief account of some pertinent background. More general treatments can be found
in, for example, [8, 14, 16, 28] and Gromov’s foundational article [15].

For a metric space X , the Gromov product (a ·b )e (or (a ·b )Xe if there is ambiguity) of a , b ∈ X with respect
to e ∈ X is

(a · b )e =
1

2
(d (a , e ) +d (b , e )−d (a , b )).
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One says X is (δ)-hyperbolic when

(a · b )e ≥ min{(a · c )e , (b · c )e }−δ

for all e , a , b , c ∈ X , and X is hyperbolic when it is (δ)-hyperbolic for some δ ≥ 0. When X is a geodesic
space this is equivalent to other standard definitions of hyperbolicity (such as δ-thin or δ-slim triangles),
although the δ involved may not agree.

When X is (0)-hyperbolic and geodesic—that is, an R-tree—(a · b )e is the distance from e to the geodesic
between a and b . Correspondingly, in a (δ)-hyperbolic geodesic space every pair of geodesics from e to a
and to b , both parametrized by arc-length, 6δ-fellow-travel for approximately (a ·b )e and then diverge (by
the insize characterization of hyperbolicity of [8, page 408]). Indeed:

Lemma 2.1. In a (δ)-hyperbolic geodesic metric space, for every geodesic [a , b ] connecting a and b

|d (e , [a , b ])− (a · b )e | ≤ 6δ.

Proof. See [8]: the proof of Proposition 1.22 on page 411 shows that insizes of geodesic triangles are at most
6δ, and the proof of Proposition 1.17(3) =⇒ (2) on page 409 shows that all geodesic triangles are 6δ-thin,
and the claimed inequality follows.

The (Gromov-) boundary ∂ X of a hyperbolic metric space X is defined with reference to, but is in fact
independent of, a point e ∈ X . It is the set of equivalence classes of sequences (an ) in X such that (am ·
an )e →∞ as m , n →∞, where two such sequences (an ) and (bn ) are equivalent when (am · bn )e →∞ as
m , n→∞. Indeed, they are equivalent when (an · bn )e →∞ as n→∞ since

(an · bm )e ≥ min{(an · bn )e , (bm · bn )e }−δ

by (δ)-hyperbolicity. Denote the equivalence class of (an ) by lim an .

When X is a geodesic hyperbolic metric space, there are equivalent definitions of ∂ X , such as ∂ X is the
set of equivalence classes of geodesic rays emanating from x , where two such rays are equivalent when
they stay uniformly close. The condition (am · an )e →∞ is what makes a sequence (an ) ray-like, and the
condition (am · bn )e →∞ corresponds to uniform closeness.

Extend the Gromov product to X := X ∪ ∂ X by

(a · b )e = sup lim inf
m ,n→∞

(am · bn )e

where the sup is over all sequences (am ) and (bn ) in X representing (when in ∂ X ) or tending to (when in
X ) a and b , respectively. (The “sup lim inf” is necessary—see [8, page 432].)

We note, for (3) in the following lemma, that in a proper geodesic hyperbolic metric space X , each pair of
distinct points a , b ∈ ∂ X is joined by a bi-infinite geodesic line [a , b ] (Lemma 3.2 on page 428 of [8]).

Lemma 2.2. Suppose X is a proper geodesic (δ)-hyperbolic metric space.

(0). If x , y ∈ X and e ∈ X , then there exist sequences (xn ) and (yn ) in X with x = lim xn , y = lim yn , and
(x · y )e = limn (xn · yn )e .

(1). If a , b , c ∈ X and e ∈ X , then (a · b )e ≥ min{(a · c )e , (c · b )e }−2δ.

(2). If a , b ∈ X and c ∈ ∂ X , then |d (a , b )− (a · c )b − (b · c )a | ≤ δ.

(3). If e ∈ X and [a , b ] is any geodesic joining any a , b ∈ ∂ X , then |d (e , [a , b ])− (a · b )e | ≤ 8δ.
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Proof. (0) and (1) are parts 3 and 4 of [8, page 433, Remark 3.17]. (Alternatively, see parts 3 and 5 of [28,
Lemma 4.6] but note that there inf lim inf is used in place of sup lim inf and so the constants differ.)

For (2), using (0) take sequences cn , c ′n both approaching c such that (a · c )b = lim(a · cn )b and (b · c )a =
lim(b · c ′n )a . Now, (δ)-hyperbolicity yields (a · cn )b ≥ min{(a · c ′n )b , (cn · c ′n )b } − δ. As n → ∞, we have
(cn · c ′n )b →∞, but (a · c ′n )b is bounded above by d (a , b ). So (a · c ′n )b ≤ (a · cn )b +δ for all sufficiently large
n . Interchanging the roles of cn and c ′n we find |(a · cn )b − (a · c ′n )b | ≤δ for all sufficiently large n . Hence:

|d (a , b )− (a · cn )b − (b · c ′n )a | ≤ δ+ |d (a , b )− (a · c ′n )b − (b · c
′
n )a | = δ+ |0| = δ

for all sufficiently large n . Taking the limit as n→∞ gives the result.

For (3) (cf. Exercise 3.18(3) [8, page 433]), choose sequences an → a and bn → b along [a , b ]. Also choose
a ′n , b ′n ∈ X as in (0) so that (a ·b )e = lim(a ′n ·b

′
n )e . For large enough n , the closest point of [a , b ] to e lies on

[an , bn ], so
|d (e , [a , b ])− (an · bn )e | = |d (e , [an , bn ])− (an · bn )e | ≤ 6δ, (1)

with the inequality being by Lemma 2.1. By the (δ)-hyperbolicity condition,

(an · bn )e ≥ min{(an ·a ′n )e , (a ′n · b
′
n )e , (bn · b ′n )e }−2δ, and

(a ′n · b
′
n )e ≥ min{(an ·a ′n )e , (an · bn )e , (bn · b ′n )e }−2δ.

As n→∞ both (an ·a ′n )e →∞ and (bn ·b ′n )e →∞, but lim sup(an ·bn )e and lim sup(a ′n ·b
′
n )e are bounded

above by (a · b )e + 1 (else, passing to subsequences, we can assume (an · bn )e > (a · b )e + 1/2 for all n , and
so lim inf(an · bn )e ≥ (a · b )e + 1/2 contrary to the definition of (a · b )e ). So these two inequalities together
give |(an · bn )e − (a ′n · b

′
n )e | ≤ 2δ for all sufficiently large n . Combining this with (1) gives the result.

Visual metrics are natural metrics on the boundary ∂ X of a (δ)-hyperbolic space X . Their essence is that
a , b ∈ ∂ X are close when geodesics from a basepoint e ∈ X to a and from e to b fellow travel for a long
distance. One might hope that if r > 1, then d (a , b ) = r −(a ·b )e would define such a metric, but unfortunately,
as such, transitivity can fail. Instead, say that a metric d on ∂ X is a visual metric with visual parameter r > 1
when there exist k1, k2 > 0 such that for all a , b ∈ ∂ X ,

k1r −(a ·b )e ≤ d (a , b ) ≤ k2r −(a ·b )e . (2)

Lemma 2.3. Suppose X is a (δ)-hyperbolic space, r > 1, and e ∈ X is the base point with respect to which ∂ X
is defined. Then there is a visual metric on ∂ X with parameter r . Moreover, any two visual metrics d and d ′

on ∂ X (perhaps with different r and e ) are Hölder-equivalent in that there existsα> 0 such that the identity
map (∂ X , d )→ (∂ X , d ′) is α-Hölder and its inverse is (1/α)-Hölder. In particular, the visual topology on ∂ X
is independent of these choices.

The existence claim is [8, Proposition 3.21, page 435]. Hölder-equivalence is known (see [16, Theo-
rem 2.18]), and follows, in this generality, immediately from the definition of visual metric and the fact
that (a · b )e ≥ (a · b )e ′ −d (e , e ′).

We will need that X := X ∪ ∂ X is a compactification of X :

Lemma 2.4. If X is a proper (δ)-hyperbolic geodesic metric space, then there is a unique compact metrizable
topology on X := X ∪∂ X such that: the inclusions of X and of ∂ X are homeomorphic onto their images, ∂ X
is closed, and a sequence xn in X converges to x ∈ ∂ X if and only if (xn ) is in the equivalence class x .

Proof. Uniqueness follows from the fact that for metrizable spaces, the topology is determined by knowl-
edge of which sequences converge and to which points they converge. For a sequence xn in X , xn → x ∈ X
in the topology of X precisely when all but finitely many xn ∈ X and xn → x in the topology of X . Also,
xn → x ∈ ∂ X in the topology of X precisely when: (i) the subsequence of xn consisting of points in ∂ X is
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finite or converges to x in the topology of ∂ X , AND (ii) the subsequence of xn consisting of points in X is
finite or represents the equivalence class x .

The topology on X is constructed and sequential compactness is proved in [8, page 430, III.H.3.7] and
metrizability in [8, page 433 III.H.3.18(4)]. For metric spaces, sequential compactness is equivalent to com-
pactness. The agreement with the topology on ∂ X coming from the visual metric is [8, page 435 III.H.3.21].
The characterization of convergent sequences follows from [8, page 431, III.H.3.13].

Given a finitely generated group G with finite generating set A, one forms the Cayley graph CA(G ) with
vertex set G and edge set {{v, w } |v, w ∈G , v w −1 ∈ A ∪A−1}. The graph metric on CA(G ) induces the word
metric on the vertex set G and G is called a (δ)-hyperbolic group if the metric space G is (δ)-hyperbolic.

Lemma 2.5. If G is a hyperbolic group, then there is a unique compact metrizable topology on G :=G ∪∂G
such that: the inclusions of G and of ∂G are homeomorphic onto their images, ∂G is closed, and a sequence
gn in G converges to g ∈ ∂G if and only if (gn ) is in the equivalence class g .

Proof. In this case, CA(G ) is a proper hyperbolic geodesic metric space, to which Lemma 2.4 applies. One
may identify ∂G with ∂ CA(G ) as visual metric spaces and thus identify G := G ∪ ∂G with a subspace of
CA(G ) = CA(G )∪ ∂G , and so endow G with the subspace topology. The stated properties of G are now a
consequence of Lemma 2.4, and uniqueness follows as it does in the proof of Lemma 2.4.

Changing the finite generating set A induces a quasi-isometry and so does not affect whether G is hy-
perbolic (Theorem 1.9 of [8, page 402, III.H.1]), nor does it affect the topology on ∂G (Theorem 3.9 of [8,
page 430, III.H.3.7]) or G (Lemma 3.1(b)⇐⇒ (c) below).

3 Cannon–Thurston maps and Mitra’s Lemma

Given two hyperbolic groups Λ and Γ and an injective homomorphism ı :Λ→ Γ , one may ask if it extends
to a continuous map ı : Λ→ Γ . Equivalently (Lemma 3.1), one may ask whether ı induces a well-defined
map ı̂ : ∂ Λ→ ∂ Γ sending [(gn )] to [(ı gn )]. When one (and hence both) exist, ı̂ is the restriction of ı to ∂ Λ
and is called the Cannon–Thurston map. The next section will prove the existence of Cannon–Thurston
maps for the heavily distorted free subgroups of hyperbolic hydras. This section deals with general tools
for showing the existence of Cannon–Thurston maps.

For now, let us deal with a more general setting. Consider a map f : Y → X where (X , dX ) is (δX )–hyperbolic
and (Y , dY ) is (δY )–hyperbolic. We will assume X and Y are proper and geodesic, or else Lemma 2.4 will not
provide us a topology on X and Y (though one could still ask whether (xn )→ ( f (xn )) gives a well-defined
continuous map ∂ X → ∂ Y ). The following lemma is an embellished version of Mitra’s criterion for the
Cannon–Thurston map to exist ([23, Lemma 2.1] and [24, Lemma 2.1]).

Our notation is that BX (e , R ) = {x ∈ X | dX (e , x )< r } and B X (e , R ) = {x ∈ X | dX (e , x )≤ r }, and we write
γ= [x , y ]X to mean γ is a geodesic in X from x to y . The metrics on ∂ X and ∂ Y implicit in this lemma are
any visual metrics d∂ X and d∂ Y .

The additional hypothesis for (f) can be removed ifδY , the constant of hyperbolicity for Y , is zero; forδY >
0, we do not know whether (f) is equivalent to or strictly weaker than (a)–(e) in its absence. An inclusion
map of a subgroup into an ambient group is Lipschitz when both have word metrics coming from some
finite generating sets, and so it is satisfied in that setting.

We remark that the equivalence (a)–(d) also follows for X and Y hyperbolic groups and f : X → Y an
injective homomorphism, with the same proof (replacing Lemma 2.4 with Lemma 2.5).

7
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Lemma 3.1. Suppose (X , dX ) and (Y , dY ) are infinite proper geodesic hyperbolic metric spaces, and f : Y →
X is a proper map. Fix a basepoint e ∈ Y . Define M , M ′, M ′′ : [0,∞)→ [0,∞) by

M (N ) := inf
¶
( f (x ) · f (y ))Xf (e ) | x , y ∈ Y and (x · y )Ye ≥N

©
,

M ′(N ) := inf
{

dX ( f (e ),γ) | γ= [ f (x ), f (y )]X for some [x , y ]Y in Y rBY (e , N )
}

,

M ′′(N ) := inf
{

dX ( f (e ),γ) | γ= [ f (z ), f (y )]X for some z on some [e , y ]Y with dY (e , z )≥N
}

.

The following are equivalent:

(a). (an ) 7→ ( f (bn )) induces a well-defined function f̂ : ∂ Y → ∂ X .

(b). (an ) 7→ ( f (bn )) induces a well-defined, continuous map f̂ : ∂ Y → ∂ X .

(c). There exists a continuous extension f : Y → X of f .

(d). M (N )→∞ as N →∞.

(e). M ′(N )→∞ as N →∞.

Moreover, if sup{dX ( f (x ), f (y )) | dY (x , y )≤ r }<∞ for all r ≥ 0, then these are also equivalent to

(f). M ′′(N )→∞ as N →∞.

Proof. Each of M (N ), M ′(N ), and M ′′(N ) is a non-decreasing function, so is either bounded or tends to∞
as N →∞.

That (b)=⇒ (a) is immediate.

Here is why (a) =⇒ (d). Suppose M (N ) ≤ C for all N . So there are sequences (pn ) and (qn ) in Y with
(pn ·qn )Ye →∞ but ( f (pn ) · f (qn ))Xf (e ) ≤ C for all n . As Y ∪ ∂ Y is sequentially compact by Lemma 2.4, both

(pn ) and (qn ) have subsequences which converge in Y ∪ ∂ Y . But the condition (pn ·qn )Ye →∞ precludes
any such subsequence from converging in Y , so those subsequences converge to points in ∂ Y , indeed to
the same point.

Next we prove (d) =⇒ (b). Suppose sequences (pn ) and (qn ) in Y both represent the same point in ∂ Y .
Then (pn · qn )Ye →∞ as n →∞, and so ( f (pn ) · f (qn ))Xf (e ) →∞, since M (N ) →∞ as N →∞. Thus if
( f (pn )) and ( f (qn )) represent points in ∂ X , then those points are the same.

So, to prove f̂ is well-defined, it suffices to show that if a sequence (an ) in Y represents a point in ∂ Y (and
so dY (e , an )→∞, since dY (e , an ) ≥ (an · am )Ye ), then ( f (an )) represents a point in ∂ X . Indeed, it suffices
to show that a subsequence of ( f (an )) represents a point in ∂ X . By sequential compactness of X ∪ ∂ X
(Lemma 2.4), a subsequence of ( f (an )) converges. If it converges to a point in X , then a subsequence of
( f (an )) is in some compact (by properness of X ) ball B X (e , R ). But then, by properness of f , a subsequence
of (an ) would be contained in some ball BY (e , R ′), which would contradict dY (e , an )→∞. So some sub-
sequence of ( f (an )) converges to (that is, represents—see Lemma 2.4) a point in ∂ X .

To establish continuity, suppose p , q ∈ ∂ Y . By definition of the visual metrics d∂ X and d∂ Y , there exist
constants r, s > 1 and k , l > 0 (independent of p , q ) such that

d∂ X ( f̂ (p ), f̂ (q )) ≤ k r −( f̂ (p )· f̂ (q ))
X
f (e ) (3)

and

d∂ Y (p , q ) ≥ l s−(p ·q )
Y
e . (4)

8
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Since (p ·q )Ye = sup lim infm ,n→∞ (pm ·qn )Ye , there exist sequences (pm ) and (qn ) in Y representing p and q ,
respectively, with lim infm ,n→∞ (pm ·qn )Ye ≥ (p · q )

Y
e − 1. So (pm · qn )Ye ≥ (p , q )Ye − 2 for all sufficiently large

m , n . By definition of M we have ( f (pm ) · f (qn ))Xf (e ) ≥M ((p ·q )Ye −2) for such m , n , and hence

( f̂ (p ) · f̂ (q ))Xf (e ) ≥ M ((p ·q )Ye −2). (5)

Combining (3) and (5), we have

d∂ X ( f̂ (p ), f̂ (q )) ≤ k r −M ((p ·q )Ye −2). (6)

So, by (4), if we make d∂ Y (p , q ) sufficiently small, we can make (p · q )Ye arbitrarily large, so by hypothe-

sis make M
(
(p ·q )Ye −2

)
arbitrarily large, and so by (6) make d∂ X ( f̂ (p ), f̂ (q )) arbitrarily small. Thus f̂ is

continuous.

That (c) =⇒ (b) is an immediate consequence of Lemma 2.4, for we just take f̂ to be the restriction of f .
Properness of f guarantees that f (∂ Y )⊆ ∂ X .

To see that (b)=⇒ (c) we show that the function f := f ∪ f̂ is continuous. Since X and Y are metric spaces,
it suffices to show that pn → p implies f (pn )→ f (p ) whenever pn , p ∈ Y . Since Y is an open subset of Y
on which f restricts to the continuous function f , we may assume p ∈ ∂ Y . Since f̂ is continuous, we may
assume each pn ∈ Y . But then Lemma 2.4 says (pn ) represents p , so by (b), ( f (pn )) represents f̂ (p ). Using
Lemma 2.4 again, we see f (pn )→ f̂ (p ). That is, f (pn )→ f (p ).

The equivalence of (d) and (e) comes from Lemma 2.1, which implies that there exists C > 0 such that
M ′(N )≤M (N +C ) +C and M (N )≤M ′(N +C ) +C for all N .

That (e)=⇒ (f) is immediate as [z , y ]Y is a geodesic segment in Y lying outside BY (e , N ).

Here is a proof that (f) =⇒ (e) under the assumption that sup{dX ( f (x ), f (y )) | dY (x , y ) ≤ r } <∞ for
all r ≥ 0. Suppose λ = [h1, h2]Y . As t := (h1 · h2)Ye approximates dY (λ, e ) with error at most a constant
(Lemma 2.1), it is enough to show dX ([ f (h1), f (h2)]X , e ) → ∞ as t → ∞. Let αi = [e , hi ]Y for i = 1, 2.
By the slim-triangles condition, [ f (h1), f (h2)]X lies in a C -neighborhood of a piecewise-geodesic path
[ f (h1), f (α1(t ))]X ∪ [ f (α1(t )), f (α2(t ))]X ∪ [ f (α2(t )), f (h2)]X for some constant C . So it is enough to show
that the distance of each of these three segments from f (e ) in X tends to ∞ as t →∞. This is so for
[ f (h1), f (α1(t ))]X and [ f (α2(t )), f (h2)]X by (f). By the thin-triangles condition (see e.g. [8, pages 408–409]),
dY (α1(l ),α2(l )) is at most a constant for all 0 ≤ l ≤ t , and so in particular dY (α1(t ),α2(t )) is at most a con-
stant. The assumption that sup{dX ( f (x ), f (y )) | dY (x , y ) ≤ r } <∞ for all r ≥ 0 gives an upper bound,
independent of t , on the length of [ f (α1(t )), f (α2(t ))]X . Since the distances of the endpoints of this seg-
ment from f (e ) in X tend to∞ as t →∞, so does the distance of the whole segment.

The first part of the following lemma shows that Theorem 1.1 is not a quirk of the choice of generating
sets. The second establishes the sense in which the function ε(δ) of Section 1 is an invariant for Cannon–
Thurston maps. The third will allow us to reinterpret Lemma 3.1 (as Corollary 3.3) in a manner well suited
to analyzing hyperbolic hydra.

Lemma 3.2. Suppose Λ is a hyperbolic subgroup of a hyperbolic group Γ .

(i). Whether the Cannon–Thurston map ∂ Λ→ ∂ Γ exists does not depend on the choice of finite generating
sets giving the word metrics.

(ii). If the Cannon–Thurston map ı : ∂ Λ→ ∂ Γ exists for a hyperbolic subgroup Λ of a hyperbolic group Γ ,
the modulus of continuity for ı does not depend on the finite generating sets and the choices of visual
metrics up to the following Hölder-type equivalence. If ε(δ) and ε′(δ) are the moduli of continuity of ı
defined with respect to different such choices, then there are functions f1, f2 : (0,∞)→ (0,∞), each of
the form x 7→Ci x αi for some Ci ,αi > 0, such that ε′(δ)≤ ( f1 ◦ ε ◦ f2)(δ) for all δ > 0.

9
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(iii). Suppose A and B are finite generating sets for Γ and Λ, respectively. Suppose f : CB (Λ)→ CA(Γ ) is any
map between the respective Cayley graphs which restricts to the inclusionΛ ,→ Γ on the vertices of CB (Λ)
and sends edges to geodesics in CA(Γ ). The Cannon–Thurston map ∂ Λ→ ∂ Γ , defined in terms of finite
generating sets A for Γ and B for Λ, exists if and only if the Cannon–Thurston map ∂ CB (Λ)→ ∂ CA(Γ )
does.

Proof. Suppose ∂1Γ , ∂2Γ , ∂1Λ, and ∂2Λ are boundaries of Γ and Λ defined with respect to different finite
generating sets and the Cannon–Thurston map ∂1Λ→ ∂1Γ exists. The identity maps on Λ and Γ changing
the word metrics are Lipschitz, so induce maps ∂2Λ → ∂1Λ and ∂1Γ → ∂2Γ (Theorem 3.9 of [8, page 430,
III.H.3.7]). The composite map ∂2Λ→ ∂1Λ→ ∂1Γ → ∂2Γ satisfies Lemma 3.1(a), so the Cannon–Thurston
map ∂2Λ→ ∂2Γ exists.

If X , Y , Z are metric spaces and g : Y → Z and h : X → Y are maps with moduli of continuity εg and εh ,
respectively, then it follows from the definition that εg ◦h (δ) ≤ (εg ◦ εh )(δ) for all δ > 0. Specializing to the
case of ∂2Λ→ ∂1Λ→ ∂1Γ → ∂2Γ in the previous paragraph, (ii) follows from the fact (Proposition 5.5 and
Theorem 6.5 of [6]) that ∂2Λ→ ∂1Λ and ∂1Γ → ∂2Γ are Hölder.

For (iii), a Cannon–Thurston map CB (Λ)→ CA(Γ ) restricts to a Cannon–Thurston map Λ→ Γ . Conversely,
the quasi-isometries Γ ,→ CA(Γ ) and Λ ,→ CB (Λ) induce isometries ∂ Γ → ∂ CA(Γ ) and ∂ CB (Λ) → ∂ Λ. So
a Cannon–Thurston map ∂ Λ → ∂ Γ induces a composite map ∂ CB (Λ) → ∂ Λ → ∂ Γ → ∂ CA(Γ ) satisfying
Lemma 3.1(a).

Corollary 3.3. Suppose Λ is a finite-rank free subgroup of a hyperbolic group Γ . Suppose A is a finite gen-
erating set for Γ and B is a free basis for Λ. The Cannon–Thurston map ∂ Λ→ ∂ Γ exists if and only if for all
M ′′ > 0, there exists N such that whenever αβ is a reduced word on B with |α| ≥ N , every geodesic in the
Cayley graph CA(Γ ) joining α to αβ lies outside the ball of radius M ′′ about e .

Proof. By Lemma 3.2(iii), the Cannon–Thurston map ∂ Λ→ ∂ Γ exists if and only if the Cannon–Thurston
map ∂ CB (Λ)→ ∂ CA(Γ ) for f (as defined in that lemma) does. Now applying condition (f) of Lemma 3.1 to
f gives the result, since reduced words correspond to geodesics in CB (Λ).

4 Cannon–Thurston maps for hyperbolic hydra groups

The hyperbolic hydra Γk are a family of hyperbolic groups with distorted (when k > 1) free subgroups Λk .
In this section we will review some pertinent details from [7] and [13] of the construction and properties
of the hyperbolic hydra groups Γk . We then show the existence of Cannon–Thurston maps ∂ Λk → ∂ Γk for
hyperbolic hydra. Throughout, we fix an integer k ≥ 1.

The hyperbolic hydra Γk of [7] is an elaboration of the hydra group Gk of [13]:

Gk = F (a1, . . . , ak )oϕ Z

where ϕ is the automorphism

ϕ(ai ) =

®
a1 i = 1,

ai ai−1 1< i ≤ k

of the free group Fk = F (a1, . . . , ak ). Let t denote a generator of the Z-factor, so ϕ(ai ) = t −1ai t in Gk for all
i . In [13] it is proved that Gk is CAT(0) and has a rank-k free subgroup Hk = 〈a1t , . . . , ak t 〉, distorted so that
DistGk

Hk
' Ak .

Since the restriction of ϕ to 〈a1, . . . , ai−1〉= Fi−1 is an automorphism for each i and ϕ(ai ) ∈ ai 〈a1, . . . , ai−1〉,
we have

10
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Lemma 4.1. For any integer j (positive or negative),

ϕ j (ai ) ∈ ai 〈a1, . . . , ai−1〉 and ϕ j (a−1
i ) ∈ 〈a1, . . . , ai−1〉a−1

i .

For example, ϕ−1(a7) = a7a5a3a1a−1
2 a−1

4 a−1
6 .

The normal form of g in Gk is the unique “w t m such that “w is a reduced word on a1, . . . , ak and g = “w t m in
Gk . For any r ≤ k , an Hr -word is a reduced word on a1t , . . . , ar t . For example, (a3t )(a3t )(a2t )(a3t )−1 is an
H3-word and its normal form is a3a3(a−1

1 a2a 2
1 a2a−1

1 )a
−1
3 t 2, since in G3

(a3t )(a3t )(a2t )(a3t )−1 = a3(t a3t −1)(t 2a2t −2)(t 2a−1
3 t −2)t 2

= a3ϕ
−1(a3)ϕ

−2(a2)ϕ
−2(a−1

3 )t
2

= a3(a3a1a−1
2 )(a2a−2

1 )(a2a 2
1 a2a−1

1 a−1
3 )t

2

= a3a3(a
−1
1 a2a 2

1 a2a−1
1 )a

−1
3 t 2.

Lemma 6.1 of [13], which says that Hk ∩〈t 〉= {1} in Gk , implies the following two lemmas:

Lemma 4.2. Given g ∈Gk , if there exists j such that g t j ∈Hk , then that j is unique.

Lemma 4.3. If g1, g2 ∈Hk have normal forms “w t n1 and “w t n2 , respectively, then g1 = g2.

Observe that the relative locations of the (a3t )±1 in (a3t )(a3t )(a2t )(a3t )−1 are the same as the relative loca-
tions of the a±1

3 in a3a3(a−1
1 a2a 2

1 a2a−1
1 )a

−1
3 . That is, ignoring all other symbols, the former word has two

(a3t ) symbols followed by (a3t )−1, while the latter has two a3 symbols followed by a−1
3 . This is an instance

of the following lemma.

Lemma 4.4. Consider an Hr -word w of the form

u0(ar t )ε1 u1(ar t )ε2 u2 · · · (ar t )εn un

where u0, . . . , un ∈Hr−1 and ε1, . . . ,εn ∈ {±1}, and ui 6= 1 whenever εi =−εi+1. Then, for all s ∈Z, the normal
form “w t m of w satisfies

ϕs (“w ) = v0a ε1
r v1a ε2

r v2 · · ·a εn
r vn

for some v0, . . . , vn ∈ 〈a1, . . . , ar−1〉where vi 6= 1 whenever εi =−εi+1.

The case s = 0 is Lemma 6.2 of [13]. We will not need to use Lemma 4.4; we state it because it sets the scene
for the analogous Lemma 4.8 below. A proof of 4.4 can be extracted from the proof we will give for 4.8 by
replacing Γk ,Λr ,Λr−1,ϕ with Gk , Hr , Hr−1,θ , respectively, and invoking Lemmas 4.1 and 4.3 instead of 4.5
and 4.7, respectively.

The construction of Gk above is elaborated in [7] to give the hyperbolic hydra Γk . It involves additional
variables a0, b1, . . . , bl and has the form

Γk = F oθ Z

where F is the free group F (a0, . . . , ak , b1, . . . , bl ), and θ is an automorphism of F whose restriction to
F (b1, . . . , bl ) is an automorphism and

θ (ai ) =


U a1V i = 0,

a0 i = 1,

ai ai−1 1< i ≤ k ,

where U and V are words on b1, . . . , bl . We will prove here that Cannon–Thurston maps exist for all hyper-
bolic Γk of this form. In [7], U , V , l and θ |F (b1,...,bl ) are chosen carefully to ensure Γk is hyperbolic. (In fact,
in [7], l = 17, and U and V depend on k , but θ |F (b1,...,bl ) does not.)

11
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Let t denote a generator of the Z-factor in Γk = F oθ Z, so t −1ai t = θ (ai ) and t −1b j t = θ (b j ) for all i and
j . For 1≤ r ≤ k , letΛr be the subgroup 〈a0t , . . . , ar t , b1, . . . , bl 〉 of Γk . It is proved in [7] thatΛk is free of rank
k + l +1 and is distorted so that DistΓkΛk

� Ak . Let Λ0 = 〈b1, . . . , bl 〉. (Note that Λr actually depends on both k
and r , but k is fixed throughout this section.)

Understand θ n (“w ) to mean the reduced word on a0, . . . , ak , b1, . . . , bl that represents θ n (“w ) in F .

Mapping ai 7→ amax{1,i }, b j 7→ 1 and t 7→ t for all i , j defines a surjection Γk →→ Gk such that Φ(Λr ) =Hr .

Corresponding to Lemmas 4.1–4.4 for Gk , we have the following Lemmas 4.5–4.8 for Γk .

The definition of θ immediately gives:

Lemma 4.5. For any integer j ∈Z (positive or negative), and any i > 1

θ j (ai ) ∈ ai 〈a0, a1, . . . , ai−1, b1, . . . , bl 〉 and θ j (a−1
i ) ∈ 〈a0, a1, . . . , ai−1, b1, . . . , bl 〉a−1

i .

The normal form of g ∈ Γk is the unique ĝ t m such that ĝ is a reduced word on a0, a1, . . . , ak , b1, . . . , bl and
g = ĝ t m in Γk . For any 1 ≤ r ≤ k , a Λr -word is a reduced word on a0t , a1t , . . . , ar t , b1, . . . , bl . Likewise, a
Λ0-word is a reduced word on b1, . . . , bl .

Proposition 4.8 of [7] says that Λk ∩ 〈t 〉 = {1}. So we immediately have the following analogues of Lem-
mas 4.2 and 4.3:

Lemma 4.6. Given g ∈ Γk , if there exists j such that g t j ∈Λk , then that j is unique.

Lemma 4.7. If g1, g2 ∈Λk have normal forms “w t n1 and “w t n2 , respectively, then g1 = g2.

Finally, we have analogues of Lemma 4.4. We treat the r > 1 and r = 1 cases separately. First–

Lemma 4.8. Let r > 1. Consider a Λr –word w of the form

u0(ar t )ε1 u1(ar t )ε2 u2 · · · (ar t )εn un

where u0, . . . , un ∈Λr−1 and ε1, . . . ,εn ∈ {±1}, and ui 6= 1 whenever εi =−εi+1. Then for any s ∈Z,

θ s (“w ) = v0a ε1
r v1a ε2

r v2 · · ·a εn
r vn

for some v0, . . . , vn ∈ 〈a0, a1, . . . , ar−1, b1, . . . , bl 〉where vi 6= 1 whenever εi =−εi+1.

In short, Lemma 4.8 says that for a reducedΛr word w and its normal form “w t n , the occurrences of ar t in
w correspond to occurrences of ar in “w (and indeed in θ s (“w ) for any s ) and the occurrences of (ar t )−1 in
w correspond to occurrences of a−1

r in “w (and indeed in θ s (“w ) for any s ): the count of each and the order
in which they occur in their respective words is preserved.

Proof of Lemma 4.8. Write each u j in normal form: u j = û j t m j with û j ∈ 〈a0, a1, . . . , ar−1, b1, . . . , bl 〉. Then

θ s (“w ) = θ s (û0)θ
p1 (a ε1

r )θ
q1 (û1)θ

p2 (a ε2
r )θ

q2 (û2) · · ·θ pn (a εn
r )θ

qn (ûn ) (7)

where qi = s − (m0+m1+ · · ·+mi−1)− (ε1+ · · ·+εi ) and where

pi =

®
s − (m0+m1+ · · ·+mi−1)− (ε1+ · · ·+εi−1) if εi = 1

s − (m0+m1+ · · ·+mi−1)− (ε1+ · · ·+εi−1) +1 if εi =−1.

By Lemma 4.5, the result follows unless a±1
r a∓1

r is cancelled during the reduction of the right side of equa-
tion (7). For an a−1

r ar cancellation to occur in (7), it would have to occur within θ pi (a−1
r )θ

qi (“ui )θ pi+1 (ar )

12
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for some i . But then Lemma 4.5 would yield θ qi (“ui ) = 1, so “ui = 1. By Lemma 4.7, we would have ui = 1,
a contradiction. For an ar a−1

r cancellation to occur in (7), we would have θ pi (ar )θ qi (“ui )θ pi+1 (a−1
r ) = 1 for

some i such that εi = 1 and εi+1 =−1. But then qi −pi =−1 and pi+1−pi =−mi . So

1 = θ−pi (θ pi (ar )θ
qi (“ui )θ

pi+1 (a−1
r ))

= ar θ
qi−pi (“ui )θ

pi+1−pi (a−1
r )

= ar θ
−1(“ui )θ

−mi (a−1
r )

= ar t “ui t −1t mi a−1
r t −mi

= ar t ui (ar t )−1t −mi .

So t mi = (ar t )ui (ar t )−1 ∈ Λk . But then t mi = 1 by Lemma 4.7. This would contradict the fact that ui ∈
Λr−1 r {1}. Thus no a±1

r a∓1
r cancellation occurs in the reduction of the right side of equation (7) and the

lemma is proved.

Next we give the r = 1 analogue to Lemma 4.8. Recall that θ (a0) =U a1V and θ (a1) = a0, so Lemma 4.5
does not apply in the r = 1 case. Roughly speaking, Lemma 4.8 could be expanded to accommodate the
r = 1 case by allowing occurrences of a0 to sometimes swap with occurrences of a1. More precisely:

Lemma 4.9. Consider a Λ1–word w of the form

w = u0(aµ1
t )ε1 u1(aµ2

t )ε2 u2 · · · (aµn
t )εn un

where u0, . . . , un ∈ Λ0 = 〈b1, . . . , bl 〉 with µ1, . . . ,µn ∈ {0, 1} and ε1, . . . ,εn ∈ {±1}, and with ui 6= 1 whenever
µi =µi+1 and εi =−εi+1. Then for all s ∈Z,

θ s (“w ) = v0a ε1
ξ1

v1a ε2
ξ2

v2 · · ·a
εn
ξn

vn

for some v0, . . . , vn ∈ 〈b1, . . . , bl 〉 and some ξ1, . . . ,ξn ∈ {0, 1}with vi 6= 1 whenever ξi = ξi+1 and εi =−εi+1.

Proof. We have
θ s (“w ) = θ s (u0)θ

p1 (a ε1
µ1
)θ q1 (u1)θ

p2 (a ε2
µ2
)θ q2 (u2) · · ·θ pn (a εn

µn
)θ qn (un ) (8)

where qi = s − (ε1+ · · ·+εi ) and where

pi =

®
s − (ε1+ · · ·+εi−1) if εi =+1

s − (ε1+ · · ·+εi−1) +1 if εi =−1.

Each θ qi (ui ) ∈ 〈b1, . . . , bl 〉 and θ pi (a εi
µi
) ∈ 〈b1, . . . , bl 〉a

εi
ξi
〈b1, . . . , bl 〉 where ξi = µi + pi (mod 2). The result

follows unless some a±1
0 a∓1

0 or a±1
1 a∓1

1 cancels in the reduction of the right side of equation (8). Such a
cancellation would have to occur within θ pi (a εi

µi
)θ qi (ui )θ pi+1 (a εi+1

µi+1
) for some i . But then

θ pi (a εi
µi
)θ qi (ui )θ

pi+1 (a εi+1
µi+1
) ∈ 〈b1, . . . , bl 〉.

Applying θ−pi , we get
a εi
µi
θ qi−pi (ui )θ

pi+1−pi (a εi+1
µi+1
) ∈ 〈b1, . . . , bl 〉.

For a±1
0 a∓1

0 or a±1
1 a∓1

1 to cancel, we would have to have εi+1 =−εi . But then pi+1 = pi (check the two cases
εi =±1), and so

a εi
µi
θ qi−pi (ui )a

−εi
µi+1
∈ 〈b1, . . . , bl 〉.

But then θ qi−pi (ui ) = 1 and µi =µi+1, because 〈a0, a1, b1, . . . , bl 〉 is free on the given generators. This would
contradict the fact that ui 6= 1. Thus no such cancellation occurs, and the lemma is proved.
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Next we give a technical lemma comparing the location of the final (ar t )±1 in a Λr -word w to the location
of the corresponding a±1

r in its normal form “w t m , and moreover in θ n (“w ). A point of terminology: the ‘R’
in the word ‘WORD’ occurs 3 letters in.

We use |u |F to denote the length of a word u on a0, . . . , ar , b1, . . . , bl . And we use |u |Λr
to denote the length

of a Λr -word—that is, length as a word on (a0t ), . . . , (ar t ), b1, . . . , bl , not as a word on a0, . . . , ar , b1, . . . , bl .

Lemma 4.10. For all integers A, B ≥ 0 and r with k ≥ r > 1, there exists N such that if |n | ≤ B and w =
u (ar t )±1 is a reduced Λr -word with |u |Λr

≥N , then the final a±1
r in θ n (“w ) occurs at least A symbols in.

Similarly, such an N exists for the final a±1
0 or a±1

1 in θ n (“w )when r = 1 and w is u (a0t )±1 or u (a1t )±1.

Proof. We may suppose n is a fixed integer such that |n | ≤ B .

Assume first that r > 1. In the manner explained in the comment following Lemma 4.8, the (ar t )±1 in w
correspond to the a±1

r in θ n (“w ).
First we will address the case where w = u (ar t )−1. Since the final letter of θ±1(a−1

r ) is a−1
r , the final a−1

r in
θ n (“w ) is in fact the final letter of θ n (“w ). So we are seeking to prove that |θ n (“w )|F ≥ A when N is sufficiently
large. Since θ is an automorphism, only finitely many v ∈ F satisfy |θ n (v )|F < A. By Lemma 4.7, each such
v equals “w for at most oneΛr -word w , so the lemma is proved by taking N sufficiently large to avoid these
finitely many w .

Next we address the case where w = u (ar t ). The normal forms of u and w are “w t j+1 and û t j for some j .
They are related in that “w t j+1 = w = u (ar t ) = û t j ar t = û θ− j (ar ) t

j+1.

Thus “w = ûθ− j (ar ).

Since the first letter of θ n− j (ar ) is ar , Lemma 4.8 says there is no cancellation between θ n (û ) and θ n− j (ar )
in θ n (“w ) = θ n (û ) · θ n− j (ar ). (Otherwise there would be too few instances of ar in θ n (“w ).) Thus the final
ar in θ n (“w ) occurs |θ n (û )|F + 1 letters in. So we are now seeking to prove that |θ n (û )|F + 1 ≥ A when N is
sufficiently large, and this can be handled as in the previous case. This completes the proof when r > 1.

Next, we do the case r = 1. Suppose w = u (aµt )±1 is reduced with u = û t j and µ ∈ {0, 1}. This time
we have “w = ûθ−J (a±1

µ ) where |J − j | ≤ 1. This time there may be some cancellation between θ n (û ) and

θ n−J (a±1
µ ) in θ n (“w ) = θ n (û ) · θ n−J (a±1

µ ), but the cancellation is restricted (by Lemma 4.9) to only symbols

from {b ±1
1 , . . . , b ±1

l }. We have two cases: |J | ≥ A or |J | < A. If |J | ≥ A, then | j | ≥ A − 1, so Lemma 4.9 tells
us that θ n (û ) contains at least A − 1 symbols from among {a±1

0 , a±1
1 }. Thus the final a±1

0 or a±1
1 of θ n (“w )

occurs at least A symbols in, as desired. On the other hand, if |J | < A, then |n − J | < n + A by the triangle
inequality. This gives a bound on |θ n−J (a±1

µ )|F and hence on the amount of cancellation that can occur in

θ n (“w ) = θ n (û ) ·θ n−J (a±1
µ ). The lemma now follows by the same argument as in the r > 1 case.

Let C (F ) and C (Γk ) denote the Cayley graphs of F and Γk with respect to a0, . . ., ak , b1, . . ., bl and a0, . . ., ak ,
b1, . . ., bl , t , respectively. Let BF (e , R ) denote the open ball of radius R about e in C (F ). Write [x , y ]F or
[x , y ]Γk for a geodesic between x and y in C (F ) or C (Γk ), respectively. In the case of C (F ), which is a tree,
geodesics between any given pair of points are unique. Let dF and dΓk be the associated metrics.

The shadow of the suffixβ of a reducedΛk -wordαβ is the set of all geodesic segments [÷α ·β (i ), Ÿ�α ·β (i +1)]F
where β (i ) denotes the length-i prefix of β and 0≤ i < |β |Λk

.

Lemma 4.11. For all K > 0, there exist integers C , R > 0 such that if αβ is a reduced Λk -word and |α|Λk
≥C

and the shadow of β is outside BF (e , R ), then every [α,αβ ]Γk satisfies dΓk ([α,αβ ]Γk , e )≥ K .

Proof. As Γk is hyperbolic, there is some δ > 0 such that every geodesic triangle in C (Γk ) is δ-slim.

14



Cannon–Thurston maps, subgroup distortion, and hyperbolic hydra 15

Any geodesic segment [α,αβ ]Γk is in a 2δ-neighborhood of any piecewise-geodesic path [α, α̂]Γk ∪[α̂,”αβ ]Γk ∪
[”αβ ,αβ ]Γk in C (Γk ). So it suffices to have [α, α̂]Γk , [α̂,”αβ ]Γk , and [”αβ ,αβ ]Γk stay at least K +2δ away from the
identity element e .

To ensure d (e , [α, α̂]Γk )≥ K +2δ, we need [α, α̂]Γk to avoid finitely many elements of Γk , say g1, . . . , gm . Since
α= α̂t n for some n , there is a unique geodesic [α, α̂] joining α to α̂ in C (Γk ) and it is a succession of edges
all labelled t . So if g i is on [α, α̂] then g i t ji = α ∈ Λk for some ji . But then by Lemma 4.6, it suffices for α
not to be one of at most m elements of Λk . So it suffices to ensure |α|Λk

is sufficiently long.

Since |αβ |Λk
≥ |α|Λk

, we find d ([”αβ ,αβ ]Γk , e )≥ K +2δ also.

Finally, we consider [α̂,”αβ ]Γk . The strategy is to use the existence of the Cannon–Thurston map ∂ F →
∂ Γk (not ∂ Λk → ∂ Γk !) to ensure this geodesic stays far (at least K + 2δ) from the identity. As previously
mentioned, the main theorem in [23] is that Cannon–Thurston maps always exist for infinite hyperbolic
normal subgroups of hyperbolic groups. Thus condition (e) of Lemma 3.1 must hold where X = C (Γk )
and Y = C (F ) and f is the inclusion map. Since C (F ) is a tree, the geodesic segment [α̂,”αβ ]F is a subset
of the union of the geodesic segments comprising the shadow of β , which do not intersect BF (e , R ) by

assumption. Thus [α̂,”αβ ]F is disjoint from BF (e , R ). So condition (e) says that choosing R large enough

makes [α̂,”αβ ]Γk arbitrarily far (so at least K +2δ) from e , as desired.

We are now ready to use Corollary 3.3 to show the Cannon–Thurston map ∂ Λk → ∂ Γk exists.

Proof of Theorem 1.1. Fix some δ > 0 so that all geodesic triangles in C (Γk ) are δ-slim.

For integers A, B ≥ 0 and r with k ≥ r ≥ 1, let N (r, A, B ) be the least integer N as per Lemma 4.10. Given an
integer R > 0, recursively define a sequence Nk (R ), Nk−1(R ), . . . , N1(R ) of positive integers by:

Nk (R ) := N (k , R , 0),

and for r = k −1, k −2, . . . , 1

Nr (R ) := N

Ñ
r, R +max

|“w |F ∣∣∣∣∣∣Λk -words w with |w |Λk
=

k∑
j=r+1

Nj (R )

 ,
k∑

j=r+1

Nj (R )

é
.

Suppose M ′′ > 0 is given. Let K =M ′′ + (2δ+ 1)k . Let C , R > 0 be obtained from K as per Lemma 4.11.
Recall the mapΦ from the hyperbolic hydra group Γk to the hydra group Gk defined by ai 7→ amax{1,i }, b j 7→ 1
and t 7→ t for all i , j . Let L be the maximum of |θ−n (s )|F ranging over all s ∈ {b1, . . . , bl } and all n ∈ Z for
which there exists û ∈ F such that û t n ∈ Λk and the reduced word representing Φ(û ) in F (a1, . . . , ak ) has
length less than R . (There are only finitely many such n since û t n ∈Λk implies Φ(û t n ) =Φ(û )t n ∈Hk , and
for any x ∈ F (a1, . . . , ak ), there is at most one m ∈Z such that x t m ∈Hk by Lemma 4.2.) Choose C ′ >C so
that every Λk -word u of length |u |Λk

≥C ′ has free-by-cyclic normal form û t n with
∣∣û∣∣F ≥R + (L/2).

Suppose αβ is a reduced Λk -word such that |α|Λk
≥ N := C ′ +

∑k
r=1 Nr (R ). Express α as wk · · ·w0 where

|wr |Λk
=Nr (R ) for 1 ≤ r ≤ k . In particular, |α|Λk

≥ |w0|Λk
≥ C ′ > C . Let βr denote the longest prefix of β in

Λr and let γr denote (any) geodesic [α,αβr ]Γk . In particular, γk is an arbitrary geodesic [α,αβ ]Γk . We will
show that γk lies at least a distance M ′′ from e in C (Γk ). Corollary 3.3 will then complete the proof.

Suppose, for a contradiction, that dΓk (γk , e )<M ′′. Let α̂t n be the free-by-cyclic normal form of α in Γk .

We claim that the shadow of the suffix β0 of αβ0 does not intersect BF (e , R ). The endpoints of the geodesic
segments in F comprising this shadow are all of the form α̂θ−n (x ) for various x ∈ F (b1, . . . , bl ). There are
two cases to consider: the length of the reduced word in F (a1, . . . , ak ) representing Φ(α̂) is at least R and is
less than R . In the former case, because α̂ contains at least R letters a±1

i (0 ≤ i ≤ k ), the closest approach
of any such geodesic to e (i.e. the Gromov product of its endpoints) is at least R . In the latter case, L is an

15
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upper bound for the length of the constituent geodesics in the shadow of β0, and so, by definition of C ′,
the shadow of β0 does not intersect BF (e , R ). In either case, the shadow stays outside of BF (e , R ).

On the other hand, the following claim, in the case r = 0, shows that

dΓk ([α,αβ0]Γk , e ) < M ′′+ (2δ+1)k = K ,

so Lemma 4.11 implies the shadow of β0 intersects BF (e , R ). This contradiction will prove the theorem.

Claim. For r = k , k −1, . . . , 1, 0,

(ir ). dΓk (γr , e )<M ′′+ (2δ+1)(k − r ), and

(iir ). wr wr−1 · · ·w0 ∈Λr .

We prove this claim using downward induction on r .

The base case r = k is straightforward: γk = [α,αβ ]Γk and wk · · ·w0 = α ∈ Λk by definition, and dΓk (γk , e ) <
M ′′ by hypothesis.

Now we prove that (ir+1) and (iir+1) implies (ir ) and (iir ) for r = k − 1, . . . , 1, 0. (In the case r = 0, we must
interpret each instance of “(ar+1t )±1” in the following to mean “(a0t )±1 or (a1t )±1” and each occurrence of
“a±1

r+1” to mean “a±1
0 or a±1

1 ”.)

We will make repeated use of the following lemma.

Lemma 4.12. Suppose wk , . . . , wr+1 are as defined earlier, and wk · · ·wr+1 x (ar+1t )±1 y z is a reducedΛk -word
in which the subwords x , y and z are Λr+1-words and |wk · · ·wr+1 x (ar+1t )±1 y |Λk

≥C . If γ is any geodesic in
C (Γk ) from wk · · ·wr+1 x (ar+1t )±1 y to wk · · ·wr+1 x (ar+1t )±1 y z , then dΓk (γ, e )≥ K .

To prove this lemma we consider the free-by-cyclic normal form ⁄�wk · · ·wr+2t nr for wk · · ·wr+2 in Γk . Now,
|wk · · ·wr+2|Λk

=
∑k

j=r+2 Nj (R ) by construction, so |nr | ≤
∑k

j=r+2 Nj (R ). So, by definition,

Nr+1(R ) ≥ N (r +1, R + |⁄�wk · · ·wr+2|F , |nr |).

By hypothesis (iir+1), we see wr+1 x (ar+1t )±1 ∈ Λr+1, and |wr+1| = Nr+1(R ) by construction, so the fi-

nal a±1
r+1 in θ−nr ( ¤�wr+1 x (ar+1t )±1) is at least R + |⁄�wk · · ·wr+2|F letters in. Therefore, the final a±1

r+1 in⁄�wk · · ·wr+2 θ
−nr ( ¤�wr+1 x (ar+1t )±1) is at least (R + |⁄�wk · · ·wr+2|F )− |⁄�wk · · ·wr+2|F = R letters in. Since y and

z are Λr+1-words and wk · · ·wr+1 x (ar+1t )±1 y z is reduced, this implies the shadow of z cannot intersect
BF (e , R ). So, by Lemma 4.11, dΓk (γ, e )≥ K , completing the proof of the lemma.

Returning to the proof of the claim, we will consider two cases: βr =βr+1 andβr 6=βr+1. In the former case,
we may assume γr = γr+1. So (ir ) follows immediately from (ir+1). Since (ir ) implies dΓk (γr , e ) < K , (iir+1)
and Lemma 4.12 with z = βr shows that wr · · ·w0 cannot be expressed as x (ar+1t )±1 y . So wr · · ·w0 ∈ Λr

and we have (iir ).

Next, assume βr 6= βr+1. The (reduced) word βr+1 can be expressed as βr (ar+1t )±1β ′r for some β ′r ∈ Λr+1.
Let ρr be the geodesic segment in C (Γk ) labelled (ar+1t )±1 connecting αβr to αβr (ar+1t )±1. Let γ′r =
[αβr (ar+1t )±1,αβr+1]Γk . Then, by Lemma 4.12 with x =wr · · ·w0βr , y the empty word, and z =β ′r ,

dΓk (γ
′
r , e ) ≥ K . (9)

If (ar+1t )±1 occurs in wr · · ·w0, then Lemma 4.12 with x (ar+1t )±1 y =wr · · ·w0 and z =βr shows that

dΓk (γr , e ) ≥ K . (10)
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By the slim-triangles condition for C (Γk ), γr+1 is contained in the 2δ-neighborhood of γr ∪ρr ∪ γ′r and
hence in the (2δ+1)-neighborhood of γr ∪γ′r . So

min{d (e ,γr ), d (e ,γ′r )} ≤ d (e ,γr+1) + (2δ+1)

< M ′′+ (2δ+1)(k − (r +1))+ (2δ+1)

= M ′′+ (2δ+1)(k − r ),

the second inequality coming from (ir+1).

But by (9), d (e ,γ′r )≥ K ≥M ′′+ (2δ+1)(k − r ). So min{d (e ,γr ), d (e ,γ′r )}= d (e ,γr ) and (ir ) follows.

Moreover, (10) cannot be true since it contradicts (ir ), so (ar+1t )±1 does not occur in wr · · ·w0 and (iir )
follows. This completes the induction step of the claim, and thus proves the theorem by contradiction.

5 Wildness of Cannon–Thurston maps

Proof of Theorem 1.2. We have that Γ and Λ are (δΓ )- and (δΛ)-hyperbolic, respectively, for some δΓ ,δΛ > 0.
Let ı :Λ→ Γ denote the inclusion map and ı̂ : ∂ Λ→ ∂ Γ denote the Cannon–Thurston map.

Since Λ is non-elementary, |ı̂ (∂ Λ)| =∞ by [16, Thm. 12.2(1)]. We may thus choose p1, p2, p3 ∈ ∂ Λ with
ı̂ p1, ı̂ p2, ı̂ p3 ∈ ∂ Γ distinct. Let C = 2δΛ+max{(pi ·pj )Λe | 1≤ i < j ≤ 3}.

By definition of the distortion function (see Section 1), we can take a sequence hn ∈ Λ with dΓ (e , hn ) ≤ n
and dΛ(e , hn ) =DistΓΛ(n ). By Lemma 2.2(1)

(pi ·pj )
Λ
e = (hn pi ·hn pj )

Λ
hn
≥ min{(e ·hn pi )

Λ
hn

, (e ·hn pj )
Λ
hn
}−2δΛ,

so we can choose i = i (n ) and j = j (n ) ∈ {1, 2, 3}with i 6= j such that

(e ·hn pi )
Λ
hn

, (e ·hn pj )
Λ
hn
≤ C .

Combined with Lemma 2.2(2) this gives that for k = i , j ,

(hn ·hn pk )
Λ
e ≥ dΛ(e , hn )− (e ·hn pk )

Λ
hn
−δΛ ≥ DistΓΛ(n )−C −δΛ.

So, by Lemma 2.2(1),

(hn pi ·hn pj )
Λ
e ≥ min{(hn ·hn pi )

Λ
e , (hn ·hn pj )

Λ
e }−2δΛ ≥ DistΓΛ(n )−C −3δΛ.

Writing β := k2r C+3δΛ , where k2 is as per (2) in Section 2 applied to ∂ Λ, we get

d∂ Λ(hn pi , hn pj ) ≤ k2r −(hn pi ·hn pj )Λe ≤
β

r DistΓΛ(n )
. (11)

On the other hand, using Lemma 2.2(3) for the first inequality,

(ı̂ (hn pi ) · ı̂ (hn pj ))
Γ
e = (hn ı̂ pi ·hn ı̂ pj )

Γ
e

≤ dΓ (e , [hn ı̂ pi , hn ı̂ pj ]Γ ) +8δΓ
≤ dΓ (e , hn ) +dΓ (hn , [hn ı̂ pi , hn ı̂ pj ]Γ ) +8δΓ
≤ n +dΓ (e , [ı̂ pi , ı̂ pj ]Γ ) +8δΓ .

Writing α := k1/s 8δΓ+max{dΓ (e ,[ı̂ pi ,ı̂ pj ]Γ )|1≤i< j≤3}, where k1 is as per (2) in Section 2 applied to ∂ Γ , we then get

d∂ Γ (ı̂ (hn pi ), ı̂ (hn pj )) ≥ k1s−(ı̂ (hn pi ),ı̂ (hn pj ))Γe ≥
α

s n
. (12)

Combining (11) and (12) yields the inequality claimed in Theorem 1.2.
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Corollary 1.3 will follow from the following proposition.

Proposition 5.1. For all k ≥ 2, the modulus of continuity ε(δ) of the Cannon–Thurston map ∂ Λk → ∂ Γk for
hyperbolic hydra has the property that there exist C0, C1 > 0 and C2 > 1 such that for all η ∈ (0, C0),

ε

(
1

C
Ak (bC1 log(1/η)c)

2

)
≥ η. (13)

Proof. For convenience, extend the domains of the functions Ak : N→ N and DistΓkΛk
: N→ N to [1,∞) by

declaring the functions to be constant on the half-open intervals [n , n +1).

From Theorem 1.2 we have

ε

Ç
β

r Dist
Γk
Λk
(n )

å
≥
α

s n

for all real n ≥ 0 and some constants α,β > 0 and r, s > 1. Thus for all η≤α,

ε

Ñ
1

exp
Ä

log(r )DistΓkΛk
(logs (α/η))− log(β )

äé ≥ η. (14)

As DistΓkΛk
� Ak by [7], there exists C > 0 such that Ak (n ) ≤ C DistΓkΛk

(C n +C ) +C n +C for all real n , and
therefore

DistΓkΛk
(N ) ≥

1

C
Ak

Å
N −C

C

ã
−

N

C

for N ≥ 2C . So

log(r )DistΓkΛk
(logs (α/η))− log(β ) ≥ K1Ak (K2 log(1/η)−K3)−K4 log(1/η)−K5

for all η ∈ (0, K0), for suitable constants K0, . . . , K5 > 0. By shrinking K0 if necessary, we can make log(1/η)
arbitrarily large, so that we may absorb the constant K3 into K2. Moreover, Ak grows faster than a linear
function as k ≥ 2, so (by further shrinking K0) the constants K4 and K5 can be absorbed into K1. Thus

log(r )DistΓkΛk
(logs (α/η))− log(β ) ≥ K1Ak (K2 log(1/η)). (15)

So combining (14) and (15) and setting C0 = K0, C1 = K2, and C2 = e K1 , we have the result claimed.

Plugging η= 1/n into inequality (13) yields

ε

(
1

C
Ak (bC1 log(n )c)

2

)
≥

1

n

for all sufficiently large n . So Corollary 1.3, which asserts

ε

Å
1

Ak−1(n )

ã
≥

1

n

for all sufficiently large n , follows from the fact that

C
Ak (bC1 log(n )c)

2 � Ak

(
bC1 log(n )c

)
= Ak−1

Å
Ak

(
bC1 log(n )c −1

)ã
≥ Ak−1

Å
A3

(
bC1 log(n )c −1

)ã
� Ak−1(n ).

For the last� inequality, recall that A3(m ) = 22
...
2
´

m
.
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