1. TIM RILEY THE DEHN FUNCTION OF $SL_n(\mathbb{Z})$

For a word w on $a_1^{\pm 1}, \ldots, a_m^{\pm 1}$ representing 1 in a finite presentation $\mathcal{P} = \langle a_1, \ldots, a_m \mid \mathcal{R} \rangle$ of a group Γ , define $\operatorname{Area}(w)$ to be the minimal $A \in \mathbb{N}$ such that there is an equality $w = \prod_{i=1}^{A} u_i^{-1} r_i^{\varepsilon_i} u_i$ in the free group $F(a_1, \ldots, a_m)$ for some $\varepsilon_i = \pm 1$, some words u_i , and some $r_i \in \mathcal{R}$. Equivalently, $\operatorname{Area}(w)$ is the minimal A such that there is a van Kampen diagram for w over \mathcal{P} with at most A 2-cells. Defining $\operatorname{Area}(n)$ to be the maximum of $\operatorname{Area}(w)$ over all w that have length at most n and represent 1 in Γ , gives the Dehn function $\operatorname{Area}: \mathbb{N} \to \mathbb{N}$ of \mathcal{P} . Whilst $\operatorname{Area}: \mathbb{N} \to \mathbb{N}$ is defined for \mathcal{P} , a different finite presentation \mathcal{P}' for Γ will yield a Dehn function $\operatorname{Area}': \mathbb{N} \to \mathbb{N}$ that is qualitatively the same — for example, $(\exists C > 1, \forall n, (1/C)n^2 \leq \operatorname{Area}'(n) \leq Cn^2)$ if and only if the same is true for $\operatorname{Area}: \mathbb{N} \to \mathbb{N}$. (The C may differ.)

Question 1.1. Is the Dehn function of $SL_n(\mathbb{Z})$ quadratic when $n \geq 4$?

Presenting this as a question, rather than a claim, conjecture, or the like, may be unduly conservative. In his 1993 survey article¹, Gersten describes the quadratic Dehn function as an assertion of W.P.Thurston.

I am not even aware of a proof that the Dehn function of $SL_n(\mathbb{Z})$ is bounded above by a polynomial when $n \geq 4$. By contrast, the Dehn function of $SL_2(\mathbb{Z})$ is known to grow linearly $-SL_2(\mathbb{Z})$ is hyperbolic - and that of $SL_3(\mathbb{Z})$ grows like $n \mapsto \exp(n)$: Epstein & Thurston² proved the lower bound and a result sketched by Gromov³ gives the upper bound. (An elementary proof might be a step towards ??.)

Of course, ?? presupposes $SL_n(\mathbb{Z})$ is finite presentable, but that has been long known. The $n^2 - n$ matrices e_{ij} with 1's on the diagonal, the off-diagonal ij-entry 1, and all others 0, generate $SL_n(\mathbb{Z})$. Milnor⁴, following J.R.Silvester and in turn Nielsen and Magnus, explains that the Steinberg relations $\{[e_{ij}, e_{kl}] = 1\}_{i \neq l, j \neq k}$ and $\{[e_{jk}, e_{kl}] = e_{jl}\}_{j \neq l}$ together with $\{(e_{ij}e_{ji}^{-1}e_{ij})^4 = 1\}_{i \neq j}$ are defining relations. A proof of ?? would be an exacting quantitative proof of finite presentability.

One can regard ?? as a higher dimensional version of the Lubotzky-Mozes-Raghunathan Theorem, establishing the existence of efficient words representing elements g of $SL_n(\mathbb{Z})$ for $n \geq 3$, that is, words of length like the log of the maximum of the absolute values of the

¹Isoperimetric and isodiametric functions. In G.Niblo and M.Roller, eds., *Geo*metric group theory I, no. 181 in LMS lecture notes, C.U.P., 1993.

²D.B.A.Epstein et al., Word Processing in Groups, Jones and Bartlett, 1992.

³Asymptotic invariants of infinite groups. In G. Niblo and M. Roller, eds., Geometric group theory II, no. 182 in LMS lecture notes, C.U.P., 1993. See $\S2B_1, \S5A_7, \S5A_9, \S5D(5)(c)$.

⁴Introduction to algebraic K-theory, vol. 72 of Annals of Mathematical Studies, Princeton University Press, 1971.

matrix entries.⁵ As a word representing g amounts to a path in the Cayley graph from 1 to g, the L.-M.-R. Theorem can be thought of as saying that 0-spheres admit efficient fillings by 1-discs. A word w representing 1 in a finite presentation \mathcal{P} corresponds to a loop ρ_w in the Cayley graph; a van Kampen diagram for w can be regarded as a combinatorial homotopy disc for ρ_w in the Cayley 2-complex of \mathcal{P} . So ?? is, roughly speaking, the claim that 1-spheres admit efficient fillings by 2-discs in $\mathrm{SL}_n(\mathbb{Z})$ for $n \geq 4$. Gromov³ takes this further and suggests that in $\mathrm{SL}_n(\mathbb{Z})$, Euclidean isoperimetric inequalities concerning filling k-spheres by (k + 1)-discs persist up to k = n - 3. (For k = n - 2, the exponential lower bound of Epstein & Thurston² applies.)

One attack on ?? is that whilst $\operatorname{SL}_n(\mathbb{Z})$ is not a *cocompact* lattice in the symmetric space $X := \operatorname{SL}_n(\mathbb{R})/\operatorname{SO}(n)$, and so the quadratic isoperimetric inequality enjoyed by X does not immediately pass to $\operatorname{SL}_n(\mathbb{Z})$, open horoballs can be removed from X to give a space X_0 on which $\operatorname{SL}_n(\mathbb{Z})$ acts cocompactly. Druţu⁶ and Leuzinger & Pittet⁷ have made progress in this direction, including a quadratic isoperimetric inequality for the boundary horosphere of each removed horoball. They work in the more general setting of lattices in semisimple Lie groups, and establish results towards Gromov's assertion³ that "solvable groups of high real rank are expected to satisfy a polynomial isoperimetric inequality."

Chatterji has asked whether for $n \geq 4$, $\operatorname{SL}_n(\mathbb{Z})$ enjoys her property L_{δ} for some $\delta \geq 0$, which would imply a sub-cubic Dehn function⁸.

The author's efforts towards ?? have, to date, yielded⁹ a version of L.-M.-R. giving explicit efficient words. This may aid the construction of van Kampen diagrams, but that remains to be seen. However it has led to progress elsewhere.¹⁰

Finally, we mention that for n > 3, the Dehn functions of the cousins $\operatorname{Aut}(F_n)$ and $\operatorname{Out}(F_n)$ of $\operatorname{SL}_n(\mathbb{Z})$ are also unknown.¹¹

⁵Cyclic subgroups of exponential growth and metrics on discrete groups, C.R. Acad. Sci. Paris, Série 1, 317:723–740, 1993. The word and Riemannian metrics on lattices of semisimple groups, *I.H.É.S. Publ. Math.*, 91:5–53, 2000.

⁶Filling in solvable groups and in lattices in semisimple groups, *Topology*, 43:983–1033, 2004.

⁷On quadratic Dehn functions, *Math. Z.*, 248(4):725–755, 2004.

⁸M.Elder, L_{δ} groups are almost convex and have a sub-cubic Dehn function, Algebr. Geom. Topol., 4:23–29 (electronic), 2004.

⁹Navigating the Cayley graphs of $SL_N(\mathbb{Z})$ and $SL_N(\mathbb{F}_p)$, Geometriae Dedicata, 113(1):215–229, 2005.

¹⁰M.Kassabov and T.R.Riley, Diameters of Cayley graphs of Chevalley groups, to appear in Eur. J. Comb.

¹¹M.R.Bridson and K.Vogtmann, Automorphism groups of free, surface, and free abelian groups, arXiv:math.GR/0507612.