WHAT IS A DEHN FUNCTION?

TIMOTHY RILEY

1. THE SIZE OF A JIGSAW PUZZLE

1.1. Jigsaw puzzles reimagined.l will describe jigsaw puzzles that are
somewhat dterent to the familiar kind. A box, shown in Figufie con-
tains an infinite supply of the three types of pieces pictuneds side: one
five—sided and two four—sided, their edges coloured grdaa,dnd red and
directed by arrows. It also holds an infinite supply of recgegr and blue
rods, again directed by arrows.

Ficure 1. A puzzle kit.

A good strategy for solving a standard jigsaw puzzle is fostdsemble the
pieces that make up its boundary, and then fill the interiorour jigsaw
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puzzles the boundary, a circle of coloured rods end—to—eral table top,
is the starting point. A list, such as that in Fig@eof boundaries that will
make for good puzzles is supplied.
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Ficure 2. A list of puzzles accompanying the puzzle kit
shown in Figurel.

The aim of the puzzle is to fill the interior of the circle witihet puzzle pieces
in such a way that the edges of the pieces match up in colouinahe di-
rection of the arrows. The way the pieces can be us@drdisignificantly
from a standard jigsaw: our pieces can be flipped and candtels¢d. Flip-
ping a piece reverses the sequence of coloured edges atewalindary;
stretching it does not disturb their order or directions.

Solutions to Puzzles 2, 3 and 4 from the above list are showigare 3.
The box in Figurel displays a solution to Puzzle 7.

When solving a puzzle you are allowed to push together rotiseitbound-

ary circle as happens in our solutions to Puzzles 2 and 3hallis required

for a valid solution is that the completed puzzle be flat orntéide top (that

is, beplanar), the colours and arrows should all match up, the boundary
should be the prescribed circuit of rods, and the interiousthbe entirely
filled with the supplied pieces.

Solutions are not unique in general — for example, Figlisbows two so-
lutions to Puzzle 4. As will become apparent (in the light enima2.16
especially), there are circles of rods that give puzzlexiwhiave no solu-
tion; but, assuming the manufacturer has been diligengrathe supplied
list should be solvable.

Exercise 1.1.Solve the remaining puzzles on the list in Fig@re
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Ficure 3. Solutions to three of the puzzles listed in Fig@re

(The flexibility of the pieces and their limitless number Wwibsurely pre-
vent these puzzle kits from ever being manufactured, butepoder imple-
mentation would seem in range of a skillful programmer.)

The puzzle kit of Figurd. is one of many possibilities. In general, a puzzle
kit will have a finite number of types of pieces, each in inérstipply. Each
piece will be a polygonal tile whose edges are coloured aadiaected by
arrows. A polygonal tile is allowed to have any number of exigeeater
than or equal to one. We accommodate the possibility of d&leng only
one or two edges by allowing the edges to curve: a one— or tded-s
tile could, for example, be circular with its perimeter died into one or
two edges, respectively. The kit will also include an ingrsupply of rods
which are also decorated by arrows and are given one of fimitahy possi-
ble colours. The set of colours of the edges of the puzzleepiedll always
be a subset of the set of colours of the rods.

1.2. The sizes of puzzlesSo what, then, is a Dehn function? When buying
a puzzle kit, you are likely to want to know how hard the pugatexfords
can be. There are many ways of interpreting “hard” here, jost,as for
standard jigsaw puzzles, a reasonable first consideratiomw many pieces
the puzzles require to complete. That is what a Dehn functeasures.
We look at all circles of at most rods (there are only finitely many since
the rods have only finitely many colours) which give puzzlest tadmit
solutions, and we ask for the minimum numbé&such that all those puzzles
have solutions that use no more thidrpieces. TheéDehn functionmaps
n— N.
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In the next section we will see the inspiration for puzzldseytare visual
representations of calculations in groups. We will redefireDehn func-
tion as a measure of the complexity of a grouplerd Problemand will
then reconcile that with the definition in terms of puzzles Skection3 we
will see how Dehn functions relate smap—film geometrythey record the
areas of discs spanning loops in certain spaces assoaagedups. Then
we will see in Sectiord that Dehn functions arlarge—scale invariant®f
groups in that the Dehn functions of two groups which lookikinon the
large—scale grow in the same way. Sectos a brief survey of which func-
tions occur as Dehn functions; Sectiéexplores some exotic examples of
Dehn functions; and Sectiohoffers suggestions for further reading.

2. A COMPLEXITY MEASURE FOR THE WORD PROBLEM

2.1. Words and presentations. A common way for a group to arise is via
apresentation For example, if the group is the fundamental group of some
topological space such as a surface, a 3—manifold, a kngbleonent etc.,
then you are likely to obtain it as a presentation viaSkedert—van Kampen
Theorem

A word on a setA = {ay, ..., a,} of symbols (aralphabej is a finite string

of the symbols, possibly including repetitions. The A&t is the union

of Awith the setA™! = {al‘l, - an‘l} of correspondingnverse symbojs
an associatethverse mapcarriesa, — a ! anda, ! — a, and extends
to words onA*! by x;---x¢ = X t--- %7t A cyclic permutation of a
word X - -+ X X1 - X IS @ wordXi 1 - - - X Xg - - - . Thelengthof the word

Xq - X is k.

A (finite) presentatiorfor a groupl’ may be denotedA | R) or

<al,---,an | rl,---,rm>,
whereA = {a,...,a,} is a set of symbols known as tlgeneratorsand

R={ry,...,rm}is a set of words oA*! which we calldefining relationgor
relators). A further convenient way to write a presentation is

<al,---,an|ul:V1,---,Um:Vm>,
which denotes
-1 -1
<al,---,an|ulvl 5+« s UnVm >

Elements ofl" are represented by words &i'. The defining relations
tell us when wordsv andw’ represent the same group element: specifically,
whenw can be obtained fronv by a finite sequence of the following moves

(i) free reduction remove a substring;a,* or a~ta; from within a
word;
(i) free expansioninsert a substring;a;* or a;~1a; into a word;
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(i) apply a defining relationreplace a substring in a word with a
new substrings such thatuv or vu! is a cyclic permutation of
one of the words ifR.

A null-sequencéor a wordw is such a sequence that transformso the
empty word.

The group operation is concatenation: the product of thegelements
represented by the wordsandv is the group element representeduw

Due diligence requires that we now verify that what we haviindd re-
ally is a group. The reader can check that concatenation adsvgives a
well-defined operation. The empty word (the word with no sgtaprep-
resents the identity, as do each of the defining relationsrance generally,
all words that admit null-sequences. The inverse of a gréement rep-
resented by a word is represented by the word?!. Associativity of the
group operation follows from the associativity of the opieraof concate-
nating words.

In the special case whel is empty, the group is théee group KA).
However, note that in Magalit and Clay’s chapters, elemehts(A) are
reducedwords — that is, words that do not allow any free reductions —
whereas for us elements B{A) are equivalence classes of words.

Example 2.1. The cyclic group of ordemis presented bya | a™).

Example 2.2.7Z x Z is presented bya, b | a-*b tab). Here is an example
of a null-sequence with respect to this presentation:

ba’ba?b? — bafa‘ba’b™? — baba'b? — bb! — empty word

First a substrindpa is replaced by aa~tb by applying the defining rela-
tion (ashal(atb)! = ba b tais a cyclic permutation afi-*b-*ab), then
there is a free reduction, then a substraip'b=! (also a cyclic permuta-
tion of a~tb~tab) is replaced by the empty word, and then there is a final
free reduction.

Example 2.3.(a,b,c | atbtab= ¢, ac = ca, bc = cb) present¥z, the
three—dimensional integral Heisenberg group, which isnthetiplicative
group of three—by—three matrices of the form

1 x z
01yl
0 0 1

wherex,y, z € Z. The matrices

110 100 101
010,101 1f,]0 1 O0
0 01 0 01 0 01

correspond t@, b, ¢, respectively.
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Exercise 2.4.Find null-sequences fa?blab’ab! anda*b-2a’b*a?b?
with respect to the presentation fbf; in Example2.3.

Exercise 2.5.This exercise establishes an alternative way of viewing the
groupI” defined by a presentatigi\ | R). Let F(A) denote the free group
on the alphabef and {R) denote the smallest normal subgroupF{A)
containing all the elements represented by the wordg iBhow that

1-(RYy > FA) -T -1,

with the maps defined in the natural way, is a short exact segue- in
other words, the image of each map in the sequence is thel ladrtiee
next. Sal” = F(A)/¢R).

Exercise 2.6.The previous exercise implies that the wovdsepresenting
the identity inl" are precisely those that are equaFi(A) to products

(ul—lrjlelul) . (UN—lersN UN)
of conjugates of defining relations or their inverses — tsaeachy; is a
word onA*!, eachr; is in R, and eachy is +1. Show the minimal sucN

for a givenw is equal to the minimaN such that there is a null-sequence
for wincludingN application—of—a—relator moves.

2.2. The Dehn function and the Word Problem. It would seem that a
minimum standard for being able to work with a group given liniée pre-
sentation is that we should be able to tell whether or not teme represent
the same group element, or equivalently whether or not a wepresents
the identity. This is the known as thWord Problemfor the presentation.
It is the first of three problems singled out by Max Dehn in pdewtial
writings about a hundred years ago — s&@|,[ which is included in the
collection [L8] of Stillwell’s translations of Dehn’s papers.

Well, a word represents the identity when it can be conveddtle empty
word via a finite sequence of free reductions, free expassemmd applica-
tions of defining relations. So counting how many moves thkes$ gives
a natural measure of how hard it is to work with the presemtatilhis is
what the Dehn function does.

To be precise, th®ehn functionN — N mapsn to the minimal number
N such that ifw is a word of length at most that represents the identity,
then there is a null-sequence forinvolving at mostN applications—of—
defining—relations moves. There are only finitely many wartlength at
mostn since the alphabet is finite, and sd\ is well-defined.

(This is essentially how Madlener and Otto introduced thérbtinction,
under the nameéerivational complexityin [30] around the same time as
Gromoyv, in a manuscript which becan®Y[, defined an equivalent geomet-
ric invariant in the manner we will discuss in Secti8n The nameDehn
functionwas coined by Gersten i2]].)
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Remark 2.7. That we only count applications of defining relations here,
rather than all the moves, is just a technicality that alléevshe cleanest
possible statement of Lemn2al6below; if we counted all the moves we
would get an equivalent function in the sense defined in &e&til This

is because if there is a null-sequence iothat uses\ applications—of—
defining—relations moves, then there is one that Wéegpplications—of-
defining—relations moves and at m&st + £(w) free—reduction moves (and
no free—expansion moves), whei@) denotes the length a¥ andk is the
length of the longest word iR. (This follows from Lemma&.16below and

its proof.)

2.3. Some calculations of Dehn functions.

Proposition 2.8. The Dehn function (h) of the presentatioga | a") of the
cyclic group of order m is the greatest integer less than araé¢p n/m.

Here is a proof. A word or{la, a‘l} represents the identity ia | a") when

it can be converted ta'™ for somer € Z by free reductions. Doing so only
shortens the word and costs nothing as far as Dehn functiconiserned.
Then,|r| applications of the defining relation reduce the word to tmgty
word by deletinga®™ substrings. Sdf(n) < n/m. Consideration of the
effect of free reductions, free expansions and applicatiotiseobne defin-
ing relator on the sum of the exponents of the letters in a Weads to the
lower bound. Free reductions and free expansions leavecitanged and
applyinga™ = 1 changes it by at most. So it is not possible to redueg”
to the empty word using fewer thém applications of the defining relation.

Exercise 2.9.Show that the Dehn function of a finite presentation of a finite
group is always bounded above 6y for some constart.

Exercise 2.10.Compute the Dehn function exactly for some finite presen-
tations of finite groups.

Proposition 2.11.The Dehn function (h) of the presentatiota, b | a-*b-1aby)
of Z x Z grows quadratically. More preciselyn — 3)? < 16f(n) < n? for all
n.

For the upper bound, supposes a word on{a, b}** which has lengtim and
represents the identity. Then the numbea pfesent irw equals the number
of a! and the number df present equals the numbertof. The defining
relationa~*b~'ab = 1 can be re—expressed a@s = baorab? = b™ta or
alb=baloralb?=>b"'al and so can be used to she ana*! past a
b*!. So if we collect thex*! together by shfling them past the past tia!
and then freely reduce we will reach the empty word. Thereaareostn
of each, and sd(n) < n?.

Exercise 2.12.Sharpen these estimates in the above paragraph f¢rget
n°/16.
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Before we address the lower bound, here are two exercisesicong upper
bounds for Dehn function obtainable by the approach we used x Z.

Exercise 2.13.Show that for your favorite presentation of any finitely gen-
erated abelian group, the Dehn function is at most a constaesn?.

Exercise 2.14.Use the fact that each element#g can be expressed in a
unique way as a word of the foraPbc" for some integerp, g andr to
show that the Dehn functiofi(n) of the presentation

(a,b,c | atbtab=c, ac=ca bc=ch)

of H; satisfiesf (n) < Cn® for all n and a suitable consta6t (In fact, f(n)
also admits a cubic lower bound — s&g. ]

The lower bound in PropositioB.11 comes from the fact that the word
W = a*bkakb¥ has length & and represents the identity #hx Z, but any
null-sequence carrying it to the empty word requires at l¢aapplications
of the defining relatiom‘b~*ab. A direct proof in terms of null-sequences
would be cumbersome and unenlightening. A more naturalfpran be
given using geometric techniques we will see in Secioh Here is a
somewhat surprising alternative approach (which the reea@ld skip as
we will not need it later). | believe it originates iB][

As per Exercis@.6, suppose); are words or{a, by*! andg = +1 so that
W = (ul‘l(a‘lb‘lab)“ul) . -(uN‘l(a‘lb‘lab)E”uN) ,

equalswg in F(a, b) andN is the minimum number of times the defining re-
lation has to be applied to redusg to the empty word ia, b | a-tbaby).
Then inH; the wordW represents the same element as

(ul‘lcflul) e (uN‘lc‘NuN) ,

and so also as® - - - ¢, sincec commutes witha andb. But a calculation
using the matrix representation ##; given in Example2.3 shows thatwvy
andc€ represent the same elementfy, and thatc has infinite order in
Hs. SON > k2.

Exercise 2.15 Formulate and prove an analogue of Proposif#idri for the
presentatioda, b,c| abc= 1,b = ac) for Z x Z.

2.4. Puzzles kits are presentations.The beginnings of how to reconcile
the definition of Dehn function in terms of null-sequencethuhat given

in terms of puzzles may be evident. A finite presentationesponds to

a puzzle set. The colours of the rods and the edges of thegpiEates
correspond to the generating et Each puzzle piece corresponds to a
defining relatior € R following the boundary of the piece either clock-
wise or anti-clockwise from some starting point, one rerads translating
the colours to generators and understanding that traveistghe direction
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of an edge should mean an inverse letter. For examifaleas presented in
Example2.3, corresponds to the puzzle kit of Figute

We claim that for a wordyv, the problem of finding a sequence of free reduc-
tions, free expansions, and applications of defining m@hatithat carries it
to the empty word, is equivalent to solving the puzzle wheregfranslating
colours to generators and taking into account the diresfistarting from
some vertex one readsv around the initial circle of rods. This is because
null-sequences relate to solutions of puzzles, as we wpliagéx.

Here is how to obtain a sequence of free reductions and apiplics of
defining relations carrying to the empty word from a solution to the cor-
responding puzzle. Disassemble the completed puzzle byeded and
piece—by—piece in any way using the following moves untilredt remains
is the vertex::

(i) remove any pair of rods which form a spike coming out of plie-
zle — that is, run side—by—side and only meet the rest of tizelpu
at only one end;

(i) remove any piece which abuts the boundary circle thezj@jand
then reconfigure the boundary circle so as to close up thdiregsu
hole.

An example of such a disassembly of a completed puzzle issihowig-
ured.

Ficure 4. A disassembly of a completed puzzle.

—»

I H

*

Evidently, the word corresponding to the circuit of rods.ard the perime-
ter changes by a free reduction in the first type of move anahlapalication-
of-a-relator in the second, and the number of applicatiba-elator moves
is equal to the area of the puzzle. In the example of the disalsly in

Figure 4, the corresponding null-sequence (reading around theairesy
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anticlockwise fromk) is
c’baalbc?h? — c?haalcbcib? - c?haalclbblicib?
— cbctbbicbt - cb’bicibt —» cbelibt

— bb? — empty word

The natural way to look to translate from a null-sequence/fiara solution
for the corresponding puzzle, is to reverse the procedlaeesuccessive
pieces and rods on the table top as dictated by the null-eequtil a
solution to the puzzle has been assembled. This is workablé¢he agree-
ment between the number of puzzle pieces and the number lodatpgns-
of-defining-relators becomes evident, but there is a teehmroblem. It
may be that the puzzle cannot be kept in the table—top whemdmed in
this manner — that is, planarity may break down. (When thidbjam oc-
curs, in some sense the null-sequence must have bef@cigmd, and so the
difficultly can be avoided bynprovingthe null-sequence.)

Seeninthis group theoretic light, a completed puzzle ismas avan Kam-
pen diagranfor w. Modulo the dfficulty mentioned above, we have estab-
lished the following lemma which is closely related (via Eoise 2.6) to

a foundational lemma of van Kampen frodd]. (A proof of this lemma
which deals carefully with the planarity issue can be founfLD].)

Lemma 2.16. In a finite presentation for a group, the words that repre-
sent the identity are precisely those that correspond talgesavhich admit
solutions. Moreover, the Dehn function defined in terms akz|lms agrees
exactly with the Dehn function defined in terms of null-saegas.

The reader may like to revisit Exerci@e4 in the light of this lemma. The
two words in that exercise correspond to Puzzles 5 and 7 o &R

2.5. Solving the Word Problem. Our next result, found for example in
Gersten’s surveyZ3], gives a direct connection between the Dehn function
of a finite presentation and solving its Word Problem. Whendmgeuss
algorithms in what follows, you can think of programs writte any rea-
sonable (pseudo—)programming language, running on any@@myou
like. But to be formal and precise, we mean an idealized caimgulevice
known as aruring machineA functiong : N — N is recursivewhen there
is an algorithm which on input, outputsg(n). There are functions! —» N
which are not recursive. Indeed, there are finite presemstior which
there is no algorithm to decide the Word Problem — we will séwihis in
Section6.4.

Proposition 2.17. For a finite presentatiodA | R) of a group with Dehn
function f: N — N, the following are equivalent.
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(i) There is an algorithm which, on input a word ori*Awill declare
whether or not that word represents the identity.
(i) There is a recursive function gN — N such that {n) < g(n) for
all n.
(iii) f itself is a recursive function.

Here is most of a proof. Given an upper bowtd) on the Dehn function, it
is always possible to reduce a word of lengtlthat represents the identity
to the empty word using a null-sequence with at ng{s) + kg(n) + n
moves — see Remark.7. So if g(n) is recursive, we can test whether a
word of lengthn represents the identity by trying all null-sequences teat u
at most that number of moves. If, on the other hand, we havéganitam
which solves the word problem, then we can calcufdt® by the following
arduous procedure. First list all words 8 of length at mosh; discard
from the list all that fail to represent the identity; andrthér each word
w that remains, calculate the minimal number of applicatedra—relator
moves necessary to reduedo the empty word (or the minimal number of
pieces in a solution to the puzzle corresponding/Xo

Exercise 2.18.Complete this proof by explaining how to do the final step.

2.6. How hard is the Word Problem really? To be honest, the Dehn func-
tion is not a good measure of thefftbulty of the Word Problem. It is a
worst—case measure of how long a direct attack on the Worldléhoby
successively applying defining relations and free redastaind expansions
will take. But that attack imon—deterministicin order to reduce a word to
the empty word using the shortest possible null-sequeheegight choices
need to be made about which moves to apply and where in thetvapply
them. Making this a deterministic algorithm — that is, renmgvthe need
to make choices — appears to cost an exponential leap inrgriime. It
could be done by exhaustively trying all possible sequentesoves of a
given length (specified by the Dehn function). But this nasdems worth
the trouble as there are usually far mofgogent ways to tackle the Word
Problem as we will now see.

As a simple example, considéxZ presented bya, b | ab = ba), which has

a quadratically growing Dehn function (Propositiaril). To tell whether

or not a word or{a, b}*! represents the identity, it is enough just to add up
the exponents of that! andb*! present and check whether both are zero.

Another example is the Heisenberg grotfy of Example2.3. Its Dehn
function grows liken — n® (see Exercis@.14). But viewing H3 as a
matrix group and calculating by multiplying matrices (ugtechniques like
writing the entries in binary) is anflicient means of checking whether a
word represents the identity.
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The same strategy works féa, s | s'as = a?), whose Dehn function
grows exponentially fast as we will see in Sectéf It can be represented
1/2 0)

: . 11
bymatrlceswaa+—>(o 1) ande—>( o 1)

In Sections6.2 and 6.3 we will see examples of groups with even faster
growing Dehn functions. The Dehn function of Baumslag’'sugro

(a,t| (tat)ta(ttat) = a?)

grows like a tower of exponential functions, but a polyndntime solu-
tion to its Word Problem was recently found by Miasnikov, dkbv and
Won in [32]. | believe that the Word Problems of tigdra example$
have similarly éicient solutions, despite having Dehn functions growing
like Ackermann’s fast growing function& (as will be explained in Sec-
tion 6.3).

There are examples where the gap between the Dehn functibtihemun-
ning time of the mostf@cient algorithm to solve the Word Problem is sim-
ilarly large or even greater. Cohen, Madlener & Oti6][gave examples
where the gap is lika — Aq(n), which isnon—primitive recursiveand re-
cently Kharlampovich, Myasnikov & SapiBfl] gave examples where the
gap is at least any given recursive function. Their techaiguo take algo-
rithms which are known to halt always but, on some inputse sakamount
of time comparable to the values of these especially fastigg functions,
andembedthem in the Word Problem (lots of work goes into making this
precise) for a suitable finite presentation of a group. T&iddne in such
a way that checking that certain words represent the igebyitusing di-
rect applications of generators and relations is similautming these very
slow algorithms, and so makes the Dehn function grow sityilguickly.
But this is unnecessary work as the issue of whether thosgswepresent
the identity really only hinges on whether those slow aliyonis terminate...
and they always do. Cohen gives an entertaining descripfithre phenom-
enon with the help of a magical salmon (!) iy.

All this is not to detract from the Dehn function. It repretsea compelling
link between algebraic computation (in a suitably restdcsense) and, as
we will see in Sectior3, geometry.

2.7. The challenge of making demanding puzzlesHere is an informal
guestion of potential application to cryptography. Redadit each puzzle
set comes with a list of suggested puzzles. Assuming thetodre chal-

lenging puzzles, we might wonder how the manufacturer camecap with

the list. Ideally, generating the list should be much easian solving the
puzzle.

Project 2.19. Are there finite presentations in which it is easy to generate
words that represent the identity, but hard to solve thelp@zz
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| do not mean that the puzzles necessarily involve a paattyularge num-

ber of pieces, but that it is hard to describe solutions, engwrovide some
extrinsic proof why a solution must exist. (Thanks to Sasis@dkov for

conversations on this topic.)

2.8. Infinite presentations. It is possible to define groups via infinite pre-
sentations, by relaxing the definition in Sect@i to allowA or R, or both,

to be infinite. The definition of Dehn function given in Sect®.2remains
well-founded for infinite presentations, but is less cortpgl The Dehn
functions of any two finite presentations of the same growgvgn similar
ways, as we will discuss in Sectigh2 But for infinite presentation they
can be very dterent; after all, if we go to the extreme of including all the
words that represent the identity in the set of defining i@fat then the
Dehn function will only take values 0 or 1.

Nevertheless, se@%] for an interesting study of Dehn functions of infinite
presentations. And there are stark open problems, suclaa@dahwhich |
thank I. Kapovich) which headlines the following project:

Project 2.20. Which functions are Dehn functions of infinite presentation
of ZxZ? (It may be natural to work up taLipschitz equivalenceas defined
in Thomas’ chapter.) In particular:

(i) Can you gen — n®? What general upper bound can you find for
Dehn functions of infinite presentations®i Z7?
(i) Can you gein — n*/2?
(i) How do your investigations change if you replagex Z with, for
exampleZ x Z x Z?

It is possible to vary the definition of Dehn function gightingthe defin-
ing relations: assign a strictly positive real number toheachich it con-
tributes whenever it is applied. (This is the standard Demttion when
all the weights are 1.) The next exercise show that the weidbtnot sig-
nificantly change the scope of Dehn functions of finite presems.

Exercise 2.21.Show that iff (n) is the standard Dehn function amg(n) is
a weighted Dehn function of a finite presentation, then tlegistsC > 0
such thatf (n)/C < f,(n) < Cf(n) for all n.

Exercise 2.22.Revisit Projec.20admitting weighted Dehn functions.

3. ISOPERIMETRY

3.1. Ox-hide and soap film. In Virgil's Aeneid, Dido is described as pur-
chasing land on which to found the city of Carthage. For aredjprice,

the sellers allow her all she can enclose with a single oe-Hshe duly cuts
the ox—hide into thin strips and arranges it in a semi—cacalc between
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two points on the (roughly straight) coastline, therebynaiag a far larger
parcel of land than the sellers had envisaged. In additisRitthul ox—hide
slicing, her success was based on her ability to give thengbsolution to
a form ofisoperimetric problemnamely the problem of finding the arc of
a given length which, when connecting two points on a sttdigk in the
plane, will enclose the largest area.

In general, ansoperimetric problenconcerns determining the maximal
area, volume or the like that a shape can have when its boyislaon-
strained in some way. The Dehn function of a finitely presgmpeupl’
relates to an isoperimetric problem concerning spanningdawith discs
in a suitable space. This sort of isoperimetry has a fampliassical man-
ifestation: a wire loop lifted out of soap solution emergparmed by an
area—minimizing surface in the form of a soap film. What camesas this
“suitable space” is the subject of the next section.

3.2. Spaces associated to finite presentations of groupslere are some
gualities we should look for in a space associated ibwe are to con-
sider the isoperimetry of spanning loops with discs. It d$tidae simply
connected — that is, every loop should span a disc, by whichean that
every continuous map frorg! = {(x, Y)eR? | X2 +y? = 1} to the space

should extend to a continuous map frddd = {(x, y) e R?| X2 +y? < 1};
there should be reasonable notions of the lengths of paththenareas of
discs; and it should resemidian some strong sense as we shall see.

A group I with a finite generating seA is naturally a metric space: the
distance between group elemegtandh is the length of the shortest word
on A*! representinggth. This distance function is known as theord
metric But, as suchl” appears a sparse cloud of points, and falls short of
our requirements. Gromov puts it colourfully in an inspgrimtroduction

to [27):

This space may appear boring and uneventful to a geome-
ter's eye since it is discrete and the traditional local (e.g
topological and infinitesimal) machinery does not run in
I.

We will give two ways to flesh out this space whHehas a finite presentation
(AlR).

The firstis combinatorial. The Cayley graph (introduced iarlyalit's chap-
ter in this volume) adds some substancé&tthe vertices are the group el-
ements and there is a directed edge labedlé@m g to gafor everyg e I’
anda € A. But this space also appears iffstient. Itis a graph and so is not
usually simply connected and, anyway, to draw a connectitmtive Dehn
function, we surely need to add structure reflecting theRset defining
relations.
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So, for every € R, we add a family of(r)—sided polygonal faces (or discs
when{(r) is 1 or 2) to the Cayley graph, whefé) denotes the length of
the wordr. For every loop that is made up of a succession of edges along
which we read (traversing edges against their orientations, being the wa
inverse letters arise), one such face is attached by gltsimgpundary edge—
by—edge to the loop. The resulting space is natdexhd is known as the
Cayley 2—complerf (A | R). We will establish that it is simply connected

in Section3.3.

Two examples oK are shown in Figuré. The Cayley graph df x Z with
respect to a two—element generating {seb} is a grid-like graph and we
get the Cayley 2—complex fa@a, b | a-tb tab) by filling in squares with
faces, with the result tha€ is a plane. On the other hand, the Cayley 2—
complex of the presentatiaia, b |) of the free groug=(a, b) is simply the
Cayley graph as there are no defining relations and so no.faces

>
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Ficure 5. Portions of the Cayley 2—complexes for the pre-
sentationga, b | a*b~tab) and(a, b |) of Z x Z andF..

A

A

A useful additional perspective dfis available to those readers with some
background in algebraic topology. The reason for the nmtdfi is that it

is the universal cover of a certain finite 2—dimensional clexi, which

is illustrated in Figures. ThisK hasI" as its fundamental group and is as-
sembled as dictated by the presentation as follows. StHrtanbne vertex.
Attach to that vertex, both ends of one directed edge for elhenta € A
labelling that edge by. The result is called eose Then for eachr € R,
attach to the rose on#r)—sided face, wheré(r) denotes the length of the
word r, along the edge—loop around which we readrhatK has funda-
mental groud” is a consequence of the Seifert—van Kampen Theorem. In
one of the examples of Figuie K is a torus, and in the other it is a rose
with two petals

For most presentations is hard to visualize — try the example of the
presentation fo#3; in Example2.3, for instance.
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Ficure 6. The 2—compleX associated to a presentation.

We give K a metric by taking each of its edges to have length one and
each of the faces to be a regular Euclidean polygon whoss areeall of
length one. (When we need a one-sided “polygon” use a Ewaclidiésc

of perimeter one, and when we need a two—sided polygon uselal&an
disc whose perimeter has length two and is divided into twoisiecular
“edges”.) We declare the distance between two points tlodse the length

of the shortest path connecting them.

The second type of space we associate to a finite presentdtegroup
I is aRiemannian manifoldM. A manifoldis a space which on the small
scale resembles Euclidean sp&fdor somen; it is Riemanniarwhen it is
endowed with a certain structure which gives rise to notsuch as lengths
of paths, angles between paths, areas or volumes of sulnsess an.

It turns out that there is a lot of flexibility over what Rienmaan manifolds
will do for our purposes. It should be simply connected arautdhcoarsely
resembld. For example, foZ x Z we can takeM to be the plane —Z x Z
andM bear a coarse resemblance in thatZ can be regarded as the set of
points in the plane with integer coordinates; if you squirfZ  Z it looks
like a plane.

To be more precise (and more technical — skip this paragfagiuilike),

the universal cover of any compact connected Riemannianfotrv
(with no boundary) which haE as its fundamental group can serveMs
(For the example df. x Z presented bya, b | a~b ab), a torus can serve
asM.) Such arM always exists wheh is finitely presented: in fact, we can
takeM to be the boundary of a small neighbourhood of a copy of the-com
plex K embedded irR®. The manner in whicli resembles thi$/ stems
from the action ofl” acts onM by deck transformations. Fix a basepoint
pe M. The mapDd : I' —» M takingg € I' to the translatg- pof pby g, is a
guasi—isometry— a type of map whose existence captures a precise notion
of its domain and target beirmparsely the sameQuasi—isometries are the
subject of Thomas’ chapter; we will return to them in Sectioh



WHAT IS A DEHN FUNCTION? 17

3.3. Isoperimetry in the Cayley 2—complex. Here we will explain the
connection between the Dehn function of a finite presema&ie (A | R)
for I and isoperimetry in the spa¢e constructed in the previous section.
We will considerM in Section3.4

The outgoing edges from any given vertexKnare labelled in one—to—
one correspondence with the elements of the generating. s€éhe same
is true of the incoming edges. So wongon A*! correspond one—to—one
with paths that traverse a succession of edges from any giaeting vertex
g € I'. Moreover, sincgw andg are equal i if and only if w represents
the identity —

Lemma 3.1. Words that represent the identity ihcorrespond one—to—one
with loops based at some fixed vertex that traverse a succes$iedges
(edge—loops)

Suppose is an edge—loop i andw is the corresponding word. As
represents the identity, the associated puzzle has aswlthiat is, there is a
van Kampen diagram for w. View A as a 2—-dimensional planar complex:
the puzzle pieces being faces, and the rods and the edges pl#zle
pieces being edges in the complex. Figured0, and11 are examples
of van Kampen diagrams viewed as such complexes. The eddgéssin
complex inherit orientations and labellings by generatans the rods and
from the sides of the puzzle pieces.

It is possible to regard as a disc spanningin K, as we will now explain.
This “disc” may besingularin that it may have one—dimensional portions
as in Examples 2 and 3 in Figuge

Suppose we choose a vertein A and choose any vertaxin K. We will
explain that there is a unique map from all the 1-skeleton d¢fhat is,

its edges and vertices) # which sends/ to g and sends edges to edges
in such a way as to match up edge orientations and labels. din¢ip
that the image of any edge—pathAiremanating fronv is determined by the
matching of the edge orientations and labels. We might wibiat/this leads

to inconsistencies, but this concern would be unfoundetvdfedge—paths
p; and p; in A emanate fronv and have a common final edge (traversed
in the same or in opposite directions), then they enclosebamuplex of

A which is itself a van Kampen diagram; so the wevdread around its
boundary represents the identity, and theref@rdetermines an edge—loop
in K starting fromg; therefore the images of the final edgespafand p,
must agree. Finally, we can extend this map to the whol® by sending
faces inA to faces ink — we can do so because the words read around the
edge—paths around the faces\iare defining relators, and so the images of
those edge—paths encircle fadés Note that the boundary circuit &f is
carried to an edge—loop i€ around which we reaw and that this edge—
loop would bep if we chosev andg suitably.
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As a corollary, we learn tha€ is simply connected, as promised in Sec-
tion 3.2

In this combinatorial setting, the appropriate notion cfaafor A is the
easiest one imaginable: the number of faces it has. Our shgou has
established —

Proposition 3.2. The Dehn function of a finite presentation P, as defined
in terms of puzzles, is minimal isoperimetric function foK in that it
maps n— N, where N is the minimal number such that any edge—loop in
K of length at most n can be spanned by a combinatorial tisat is, a
van Kampen diagrajrwith at most N faces.

In light of this proposition, denote the Dehn functionfby Areg : N —
N.

3.4. Isoperimetry in Riemannian manifolds. It has long been known that
any loop of length? in the plane can be filled with a disc of area at most
£?/(4r). This bound is realized by a circle of perimeter |t is no coin-
cidence that the Dehn function @fx Z also grows quadratically (Propo-
sition 2.11). After all, the plane bears as coarse resemblan@x&. A
similar connection can be drawn between the Dehn functieverfyfinitely
presented group and the isoperimetry of the associateddRigian mani-
fold M (of Section3.2).

By adiscin M we mean the image of a continuous ni2p— M. Use any
reasonable notion of area for discsNh (Pulling back the Lebesgue mea-
surefrom M to D? is one way to go.) Theninimal isoperimetric function
Area; : [0, 00) — [0,0) for M is defined so that Argg(¢) is the infimal
real number such that every loop of length at mbist M can be spanned
by a disc of area at most Arg&). (In fact, this infimum is a minimum...
there is a long story here known Bfateau’s Problemn)

The following theorem is generally attributed to Gromov,onk responsi-
ble for richly animating the study of finitely generated goswy drawing
on analogies and connections with Riemannian geometnailedtproofs
can be found in10] and [14]. The fact that the fundamental group of a com-
pact Riemannian manifold is always finitely presentablé balimplicit in
this theorem; we will not prove this here but the ideas ingdlare similar
to those that establish Theoreh8;, see Chapter 1.8 oflfl] for details.

The wordequivalentin the theorem refers to the relatienwhich is com-
monly used in geometric group theory to capture the notiofunétions
growing at the same rate. Férg : [0, ) — [0, o) we write f < gwhen
there exist€ > 0 such thatf (¢) < Cg(C¢+ C) + C¢ + Cfor all £ > 0. And
f ~gwhenf < gandg < f. This relation can be expanded to encompass
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functions with domainN by extending their domain to [G) so that these
functions become constant on the intervals+ 1) for alln € N.

Exercise 3.3.Show that all functions which grow at most linearly fast are
equivalent. Show that — n® andn — n?, wherea, s > 1, are equivalent

if and only if @ = B. Show that polynomially growing functions are not
equivalent to exponentially growing functions— c" (wherec > 1). Show
thatn — c" andn — d" are equivalent for ai¢,d > 1.

Theorem 3.4(The Filling Theorem) Suppose M is a compact Riemannian
manifold without boundary and that P is a finite presentationits fun-
damental groud’. The minimal isoperimetric functioAreag(¢) for M is
equivalento the Dehn functiodreas(n) of I'.

For an idea of how to prove the Filling Theorem let us look agatithe
example ofZ x Z, presented bya, b | atb 'ab), with M being the plane.
Theinfinite chessboardomplexK is itself a plane and so maps M in
the natural way. So, in this instance, the theorem is abaupening filling
general loops in the plane with discs to filling edge—loophéchessboard
pattern with chessboard squares. The key points are firatyatharbitrary
loop in the plane can be pushed into the 1-skeleton withaueasing its
length too much, secondly that the number of squares it thetoges is
comparable to the area it originally enclosed, and thirdat an edge—loop
enclosing squares is the same thing as a van Kampen diagram.

This approach works in full generality: a disc spanning PlooM is sim-
ilar to a van Kampen diagram filling an edge—loopﬁnTo make sense of
this we have to relat andM. We mapK to M beginning with its vertices,
for which we useb : I' - M from SectiorB.2, and then we extend to the 1—
skeleton by mapping the edge between a pair of vertic&stma geodesic
(thatis, a minimal length path) between their images, agd the extend to
the whole ofK by mapping the interiors of faces Kato minimal area discs
spanning the loops that are the images of their boundaribs. r@sulting
mapK — M can be used to carry edge—loops and van Kampen diagrams
into M, whilst retaining control on their lengths and areas. Muegpar-
bitrary loops or discs itM can bepushedto edge—loops or combinatorial
discs in the image of thi whilst maintaining similar control.

4. A LARGE—SCALE GEOMETRIC INVARIANT

4.1. Quasi—isometries. The chapter by Thomas is devoted to quasi—isometries,
so here we will be brief. Quasi—isometries are maps whicty care metric
space almost onto another with a bounded amount of stretelmic tearing.
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To be precise, a mag : X — Y between metric spaces is & [i)—quasi—
isometry whered > 1 andu > 0, when

j_le(x,y)— 4 < d(@(x), DY) < Ad(XY) +

for all x,y € X, and every point o¥ is within a distance: of the image of
®. Two metric spaces are quasi—isomorphic when there is a-gs@ametry
between them.

In an exercise Thomas guides you through why quasi—isorsstiy equiv-
alence relation on any given set of metric spaces. And sheptbat, whist
a finitely generated group can have man§atent finite generating sets and
so many diferent word metrics, all are equivalent in that the identigpm
is a quasi—isometry from the group with one word metric toséi@e group
with another word metric.

Exercise 4.1.Show thatthe mag : I' — M given at the end of Sectidh2
and the inclusion map — K identifyingI" with the set of vertices df are
both quasi—isometries.

4.2. The Dehn function is a quasi—isometry invariant. We defined a
Dehn function in terms of &nite presentation foa group, rather than sim-
ply in terms of a group. But if a group has a finite presentatiben it
has many finite presentations. So the nagging question isthevibehn
function depends on the presentation. The relatiaefined in Sectio.4
allows us a satisfying answer.

Proposition 4.2. The Dehn functions of any two finite presentations for the
same group are equivalent in the sense:of

This proposition highlights the need for the Cn” term in the definition of
~, Consider the presentatiotes| ) and(a, b | by of Z. The Dehn function of
(a| ) is constantly zero since there are no defining relations.tfBubDehn
function of(a, b | b) is n — n since it takes applications of the defining
relation to reducé®" to the empty word.

In fact, the Dehn function is an invariant is a broader sense.

Theorem 4.3.If finitely generated groupE; and I, are quasi—isometric
with respect to some (and so any) word metrics, Bnis finitely presented,
thenI’;, is also finitely presentable and their Dehn functions, delfiéh
respect to any finite presentations, are equivalent in tinssef~.

This theorem implies Propositich2 (see Sectio.1). It is proved by a
follow—your—nose type of argument, remembering that, @sgisometries
need not be continuous, it is better to examine th&&ch on configurations
of points than on paths or 2—cells. Here is a sketch. Conaitiapp in the

Cayley graph of ;. Use a quasi—isometidy : I'; — I'; to carry the vertices
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on this loop into the Cayley 2—complex fbg. Join up the points there by
geodesics inthe order they appeareg oo make a loop. Fill that loop with

a minimal area van Kampen diagramand use guasi—inversé&; — I'» to

® to carry the vertices ok back tol',, which gives a configuration of points
which coarsely fillp. Analyzing the distances between the vertices in this
configuration by comparing them to the distances betweendirespond-
ing points inA, leads to the result th&t is finitely presentable. Moreover,
the configuration can be fleshed out to give a genuine van Kamhpgram
modeled onA filling p with respect to any finite presentation o, and
that shows the Dehn functions are equivalent. 3¢ei{[11] for details.

Theorem4.3tells us that the Dehn function is an invarianiaige—scaleor
coarsegeometry and so is a tool in an influential programme of Gromov
to understand discrete groups (such as groups with wordiasetrp to
guasi—isometry. In fact, the Dehn function is just the firstaumber of
filling functionsdiscussed by Gromov ir2[f] along with a variety of quasi—
isometry invariants. Filling functions record geometeatures of discs or
other surfaces spanning loops in a space such as area, eiaradtus, the
lengths loops grow to in the course of null-homotopies, andrs They
also have higher dimensional analogues, concermng 1)—dimensional
balls spanning—dimensional spheres rather than just discs (2—dimenisiona
balls) spanning loops (1-dimensional spheres). They cem Iz recast
homologicallyin terms ofcyclesboundingchains

5. Tue DEHN FUNCTION LANDSCAPE

Hyperbolic groups, the subject of Duchin’s chapter in tlukime, are those
finitely presented groups which amegatively curvedThey can be charac-
terized as the finitely presented groups whose Dehn furggoow ~ n.
They stand isolated in that if a finitely presentable groupDahn function
not bounded below by a quadratic function, then that groupyerbolic
[6, 11, 26, 35, 37].

Finitely generated abelian groups withx Z subgroups (i.e. those that
are not hyperbolic) have Dehn functions n?>. More generally,semi—
hyperbolicgroups, CAT(0) groups (the subject of Ruane’s chapter) and
automaticgroups have Dehn function n?. These groups all display fea-
tures of non—positive curvature, and we might suspect thaing Dehn
function< n? might be a reasonable characterization of non—positivescur
ture amongst finitely presentable groups. However the dagsoups with
Dehn function~ n? is broad. It contains S|(Z) for n > 5 (and conjecturally
SL4(Z)) [46], Thompson’s groug- [28], Stallings’ group 9], and exam-
ples of nilpotent groups of all nilpotency classd$|[ and none of these
could reasonably be called non—positively curved.
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In notes for a summer school in 19984], Gersten wrote the following,
which has since been proved prescient as most of the exafjoptdssted
were established later —

| call this a zoo, because | am unable to see any pattern
in this bestiary of groups. It would be striking if there
existed a reasonable characterization of groups with qua-
dratic Dehn functions, which was more enlightening than
saying that they have quadratic Dehn functions.

Looking beyond quadratic, we mention next that there arengkes of
finitely presented groups with Dehn functienn®. For example, the two—
generator groups which ahee nilpotent of class € that is, have only the
relations necessary to make them nilpotent of ctass have Dehn func-
tions~ n°1[3, 27, 38|.

More generally, there is much known about for whieh> 1, there are
finitely presented groups with Dehn functienn®. The set of suclx is
countable as there are only countably many finite presenttand, as we
have indicated, it has no values in the open interva2)1But it is dense
in the interval [200) — see |7, 9]; and for the interval [4o0), remarkably
detailed information is provided iMB]: conditions on thex in terms of
whether there is a Turing Machine capable of writing out thet fidigits of
the decimal expansion af within a certain amount of time. Additionally,
a wide variety of other functions : N — N which grow> n* are shown in
[43] to be equivalent to Dehn functions — indeed, just about athmon
such functions that have ttseiper—additivityproperty, f(n + m) > f(n) +
f(m) for all n,me N.

We now turn to the extremes of the Dehn function landscape.

6. RAsT GROWING DEHN FUNCTIONS

6.1. A group with exponential Dehn function. Establishing how a Dehn
function grows presents twoftlculties. The upper bound requires consid-
eration ofall words that represent the identity. And, for the lower bound,
whilst it sufices to consider only a suitable family of wordg whose
lengths grow~ n, we must argue thatll van Kampen diagrams for those
W, have at least some given area. The situation is analogoh tstrug-
gle to establish the (worst—case) time—complexity of sooraputational
problem: for an upper bound one needs to show there is antalgawrhich
solves the problem within some given time alhinputs, and for the lower
bound one has to show that on some “worst” family of inpet&ryalgo-
rithm that solves the problem takes at least some given anodtime.

In this section we will show —
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Theorem 6.1. The Dehn function (h) of (a, s| s 'as= a?) satisfies {n) ~
2",

This group(a, s| stas= a?) is often known as BS(R) and is one of a fam-
ily of groups discussed in detail in Freden’s chap8&rbgroup distortions
one of its pertinent geometric features and of those grampsrne in Sec-
tions6.2 and6.3. In general subgroup distortiorconcerns how a finitely
generated subgrould sits inside an ambient finitely generated grdap
There are two natural word metrics on suchkinthe intrinsic metricdy
coming from its own generating set and the extrinsic mekicoming from
the generating set @¢&. Givenn e N, thedistortion functionsupplies the
maximal distancely (1, h) from the identity of all elements € H such that
ds(1, h) < n. Roughly speaking, this function grows quickly whinsits
severely scrunched up on itself insi@e It is, in a sense, a lower dimen-
sional version of Dehn function in that it concerns fillingspheres (that is,
pairs of points) with 1—discs (that is, paths).

Exercise 6.2.Up to ~, the growth of the distortion function of a finitely
generated subgroup of a finitely generated group does nendepn the
finite generating sets.

Proposition 6.3. The distortion function for the subgroup= (a) of (a, s|
s tas= a?) grows exponentially.

That this distortion function grows 2" is a consequence of the doubling
effect thats has when it conjugatess which leads to the relatiors"as’ =
a?'. We will give some explanation for the upper bound at the efnithie
section.

The large distortion translates into large Dehn functiocalnse a copy of a
van Kampen diagram fa"as'a %', displaying the repeated—doubling, can
be joined to its mirror image along the side label#&d off—set by one, to
give a van Kampen diagram for

w, = as"ad'als"alg"

as illustrated below in the case= 5. (This van Kampen diagram and those
to come in Sectiol.3are drawn more economically as 2—complexes rather
than as the puzzles of Sectitr) Note that we had to join two mirror-image
copies because one on its own would have both area and bguedagth

~ 2" on account of the exponentially large poweraof

This family of van Kampen diagrams has are@". Here are two strategies
for proving the lower bound. (The same strategies can bearaglto give
the lower bound for PropositioR.11) The first uses some concepts from
algebraic topology; the second is more elementary.
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S a <5

s a S

Ficure 7. A van Kampen diagram foas®asas>a's
with respect tola, s | stas = a?). All vertical edges are
labelleda and directed upwards. All horizontal edges are
labelleds; those on the left half of the diagram are oriented
to the right and those on the right half are oriented to the lef
An example of acorridor is shown in green.

The first strategy is to us&ersten’s Lemmaargue that theCayley 2—
complexis contractible and therefore that amongst all van Kampen di
grams for a given word, a diagramthat is embedded in the sense of Sec-
tion 3.1 (or even just embedded on the complement of its 1-skeleton) i
of minimal area. The point is that any other van Kampen diagha for

the same word could combine withto make a 2—cycle in the Cayley 2—
complex, which is contractible and so all the faces\ahust cancel with
faces inA'.

Exercise 6.4.Show that the Cayley 2—complex ¢, s | stas = a?) is

homeomorphic to the direct product of an infinite trivaletiiaf is, three
edges meet at each vertex) tree with a line, and so is coibieacdhow that
the maps (in the sense of Secti®r) from the diagrams of Figuré to the
Cayley 2—complex are embeddings.

The second strategy usegrridors (or bandg to understand van Kampen
diagrams. Such is the sole defining relat®has = a2, adjoining eacls

in the boundary of a van Kampen diagram, there must be a fat#whas

an edge labelled by on its far side; and that edge must adjoin another face
with same property; and so on. So there is a chain of facesedoone—
to—the—next by edges labelledproceeding through the diagram forming a
corridor with the edges along its sides all labellediby; This corridor must
terminate at some other edge labelkedlsewhere on the boundary of the
diagram. Corridors therefore paiff@dges labelled bg in the boundary.
The four green faces in Figuiecomprise an example of a corridor.

Corridors cannot cross themselves or each other. So cosndoststack up

in any van Kampen diagram fev, and it can be deduced that the exponent
sums of the words oa*! along their sides grow exponentially through this
stack. In the example of Figuig they run vertically through the diagram,
and grow exponentially in length towards the centre of tlagdim. So one
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corridor must include= 2" faces. (A complication in the way of making
this argument precise is that corridors that form ringsaadtof emerging
on the boundary are possible. But swatmuli are, in a sense redundant,
and do not appear in diagrams of minimal area.)

To complete a proof of Theorefl, we need the exponential upper bound.
Corridors are useful here also. Suppose we have a wogpresenting the
identity, andA is a van Kampen diagram fav. If w contains any letters
s*1, then since all such letters are pairefitoy corridors inA and no two
corridors cross, there must be a subwsttlis™ of w such thau is a word

on {a, a‘l} and thes*! in this subword is joined to the™ by a corridor. It
follows that there is a null-sequence fewhich begins by replacingtus™

with a wordak wherelk| is either half or twice the sum of the exponent of the
letters inu, and uses at mog| applications—of—a—relator moves in doing
so. (We have just proved and employ@dtton’s Lemma) Repeat until all

st! have been pairedfiband removed, and then freely reduce the resulting
word on{a, a‘l} to the empty word. Summing the applications—of—a—relator
moves we use along the way gives our exponential upper bdldrelsame
approach leads to a proof of the exponential upper boundedigtortion
function for(a) in (a, s| stas= a?).

6.2. Iterated distortion and Baumslag’'s one—relator group. Rename the
example from SectioBf.1as(a, s; | 1 tas; = a?) and consider embellish-
ing it by distorting(s;) by introducing a new lettes, acting on(s;) via
S;1s;s, = 52 The distortion function foZ = (a) inside the resulting
group

@s.slsag =a, 'ss = 5%
growsx> expg?, since

22"

(2 "as") a(e "9s") = s 7as” = a
(We write exp for thel—fold iterate of the exponential function.)
Iterating, we find the distortion function f@ = (a) inside
(@ s.--.s|s"as =% s. 7SS0 =57 (i > 1)
grows> exg". (In fact it grows~ exg". We will not explain how the upper

bound on distortion is proved, fice to say the ideas in Sectiénl can be
employed.)

A schematic of a van Kampen diagram illustrating the catoahethat leads
to the 3—fold iterated exponential distortion is shown igu¥e8.

Exercise 6.5.Draw van Kampen diagrams for
(s 'sis) e (s las)a (s as) a(s iss)a

and
(2 %s19%) A (e *as)a (s ?s1%) ta(s ?sisY)a
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in{a, s, S| s1tas = a2 1S = 52).

> S3"
S a2

Ficure 8. Three—fold iterated exponential distortion in
(@ s, sls'as =&, 9815 =5°% $7'9% = ).

Like the example in Sectio6.1, a copy of such a diagram can be glued to
its mirror image along the side labelled by the huge powex ahd dfset

by one, and the result is a family of diagrams with perimeter and area

~ expg"(n). This is the beginnings of a proof (along the same lines as th
in Section6.1) that —

Theorem 6.6. The Dehn function of
(@S, .8 s tas =&, Si'SSa =53 > 1)
grows= exgd".

This family of groups has a limit (loosely speaking) — a oretator group
(a,t| (tat)ta(ttat) = a?)
due to Baumslag?). Introducings as shorthand fot~‘at, we can re—
express this presentation as:
(a,st|stas=a? s=t1lat),

and we see that conjugation Isyagain has a doublingffect ona, andt
conjugatesa to s. This leads to a feedbacktect whereby we get huge
distortion ofZ = (a) on account of diagrams of the form shown schemat-
ically in Figure9. If the portion of the perimeter of this diagram that ex-
cludes the huge power @ is to have lengtm, then the tree dual to the
picture must have depth |log, n] and this suggests the distortion grows
like n — expl°%")(1), as is indeed the case. This is proved by Platonov in
[39], building on work of GerstenZ2] and Bernascon#], en route to —

Theorem 6.7. The Dehn function of
(a,t| (ttat)ta(ttat) = a?)

is equivalent to the functionw exgl°%")(1).
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Ficure 9. Distortion in Baumslag's groufa, s,t | stas =
a’, s=ttat).

Again diagrams with huge area can be obtained by joining tomes of
the distortion diagrams along the large poweapéftset by 1.

Exercise 6.8.Draw detailed van Kampen diagrans in the manner of Fig-
ure 9 with the power ofa along the horizontal path at the bottom being 2,
22,22 etc.

Exercise 6.9.What is the length of a shortest word equallaifin (a, s, t |
stas= a? s=ttat)? What abou!®°%?

6.3. Hydra groups. Hydra groups were devised by Will Dison and the
author. Drawing inspiration from the legend of Herculeshfigvith the
Lernaean hydra, we definedngdrato be apositiveword (that means no
inverse letters are allowed) on the infinite alphaden,,.... Hercules fights
this hydra by striking f its first letter. It then regenerates according to
the rule that each remainirg, wherei > 1, becomes;a;_; (and each
remaininga; remains as it is). This process — removal of the first letter
and then growth — repeats, with Hercules victorious whert {ilp the
hydra is reduced to the empty word.

Here is an example in which Hercules defesimza; in five strikes:

aaza; — azaa; — daa; — a4 — a; — empty word
Exercise 6.10.Prove that Hercules always wins.
Strikingly, battles are of enormous duration, even agaimsple short hy-

dra. DefineH(w) to be the number of strikes it takes Hercules to defeat the
hydraw, and for integer& > 1, n > 0, defineH,(n) := H(a").

Exercise 6.11.Show thatH;(n) = nandH,(n) = 2" - 1.
Exercise 6.12.Give a formula forHz(n + 1) in terms ofHz(n).

Exercise 6.13.For what values ofi can you calculaté{,(n)?
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Dison and the author showeg(] that these functiong, are a variation
on Ackermann’s famous fast—growing functioAgs : N — N which are
defined for integerk, n > 0 by:

Ai(n) = 2n
Aca(n) = AP (1).

So, in particularAy(n) = 2n, Ag(n) = 2" andAg(n) = exp”(1), where ex’
denotes the—fold iterate ofn — 2". Fork > 1, it turns out thatH, ~ A..

The source of the extreme fast growth of Ackermann’s fumcigothe re-
cursion inherent in their definition. Such recursion is appain the battle
with the hydra in that iua, is a hydra that happens to end in the letigr
then in the timeH (u) it takes to killu, there appeat (u) lettersa,_; (and
many other letters besides) after the fiaalhich then have to be disposed
of. So the time it takes to complete that initial task detesithe size of
the remaining challenge.

DefineGy to be the group presented by

(aq,...,a0t | trast = &, tlat=aa 1 (Vi > 1))
and Hy to be the subgrougast, ..., at). The regeneration rules for the
hydra are apparent in the defining relations for this predemt. Thesd&sy
are well behaved and straight—forward in a number of resg26f — they
are free—by—cyclic CAT(0), biautomati¢ and they can be presented with
only one defining relation. An#l, is a rankk free subgroup. None—the—
less:

Theorem 6.14([20]). The distortion function of Hin Gy grows= Ay.

For an idea of why the distortion function grows so fast, adeisthis ques-
tion: for whatr (if any) is &'t € H¢? This is where the battle with the
hydra comes in. To see how, look at the case wikete2 andn = 4, for
example. One can try to convext* to a word ona;t andayt times a power
of t by introducing att~! to pair the first letter witht, and then carrying
the accompanying* to the end of the word by conjugating through the
intervening letters; then paitfithe nexta; likewise, and repeat:

at = aptttaltt?

Lt aaaxa;aa; tt

Lt ast t_lalazalazalt t2
Lt at aava; a1y =2

The hydra battle
Ay — dAdaidd; — iy — -

plays out within this calculation. Pairingfahe first letter with & corre-
sponds to the removal of the first letter of a hydra and cornjngaa t—!
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through to the right—hand end corresponds to regeneraionas Hercules
wins aftert(a,*) = 15 steps, it eventually arrives at a word ayh anda,t
timest~1°. This calculation, run to its conclusion, gives rise to tha Kam-
pen diagram in Figur&0. There is nothing special about the exampte 2
andn = 4 here. So, as we know Hercules triumphsHfia,") = Hi(n)
steps, we have the answeg H(n) to our question.

azrj_]_z

by ba
Yt

>T1> Vaf

ay y

<

>— a:
2
124
1

L . .

Y Y Y

y
rrrrrrTrT Tttt

- .

<

<l ¢l ¢l «l ¢l «
<

Ficure 10. A van Kampen diagram showing thag*t'®
equals a word omait and ast in (a;,a,t | tlagt =
ayas,tla;t = a;). Labels on the interior edges are not
shown; those on the horizontal edges ard,ahd those on
the vertical edges area anda, — which are which should
be apparent from the defining relations.

The diagram in Figurd0 can be paired with its mirror image, with three
corridors of 2—cells arranged between them to give a van Kampen diagram
that demonstrates the equality®) of a,ta;a,~> and a reduced word on
a,t andayt of length 2H,(4) + 3. (Two copies of this diagram are shown in
blue within the van Kampen diagram in Figut&.) Similar diagrams can
be constructed for all battles between Hercules and thealagdr thereby
showing that for alln andk, there are words ofey, . .., a, t}** of length
2n+ 3 which represent the same element§jras certain reduced words on
{aat, ..., at)*! of length 2H,(n) + 3. Given thatH, ~ A, this establishes
the lower bound of Theore®.14 See 0] for more details and a proof of
the upper bound.

Now, Gy does not have a large Dehn function — it is a CAT(0) group and
so has Dehn functiog n?. Distortion does not always lead to large Dehn
function. (Even groups with heavily distort&dsubgroups can have small
Dehn functions. For example, §Z) has exponentially distorted sub-
groups (see, for example29]) and Dehn function: n? [46].)
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Ficure 11. A van Kampen diagram for a word {G,, p |

[Ho, p]), illustrating how heavy distortion dfl, in G, leads

to a large Dehn function. It is assembled from a pair of
mirror—-image copies of diagrams that arise due to this dis-
tortion; they are separated by a corridor of faces (shown in
yellow) which connects the two boundary edges labefied

But there are standard methods for translating groups \eivity distorted
subgroups to groups with large Dehn function — see Chapitérin [11]

for a general discussion. We defiigto be the HNN—extension @y which

is presented byGy, p | [Hk, p]) — shorthand for the presentation obtained
from our presentation dby by adding a new generatprand new defining
relationsp at = at p for eachi, so thatp commutes with all elements of
Hy.

Theorem 6.15.T presented byGy, p | [Hk, p]) has Dehn function: A.

The diagram in Figurélindicates how to get the lower bounfinyvan Kam-
pen diagram with the same boundary must have a corridor Isf c@hnect-
ing one of the edges labellgdo the another, singgonly occurs in defining
relations of the fornp at = ait p. (This corridor is shown in yellow in Fig-
ure11) Along the sides of this corridor we read words {@ut, . . ., at}**
which are necessarily equal to words{ag, . . ., ay, t}*! that we read around
part of the boundary of the diagram since killipgnapsl'x — Gy. But as
the distortion ofHy in Gy is > Ay, the length of the corridor (as a function
of the length of the boundary circuit of the diagram) mustb&,.
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6.4. Groups with undecidable word problem. One of the great achieve-
ments in twentieth century mathematics was the constmubtydBoone 5],
Britton [12, 13] and Novikov [33] of finitely presented groups for which
there can be no algorithm to solve the Word Problem. Theren®dern
account in 41].

The foundational non—computability result is Turing’s girdhat there is
no algorithm for theHalting Problem that is, no algorithm which will
input a progranmp together with an input for that program, and will de-
clare whether or nop eventually halts on input This can be proved by a
Cantor—type diagonal argument; the existence of functidérs N which
are not recursive immediately follows. Mark$¢31] and Post40] indepen-
dently showed that there is no algorithm which solves thed/®yoblem for
finitely presentedemi—groupsRoughly speaking, the point is that there is
a strong analogy between the instructions of a Turing Machimd a finite
presentation for a semi—group. Moreover, the play—out atleutation on
the tape of a Turing Machine resembles the manipulation ofisin the
generators of a semi—group using its defining relations.idée for groups
is the same, but there the result is much harder since thegnialfar more
tenuous.

By Proposition2.17, the Dehn function of a finitely presented group with
unsolvable Word Problem is not bounded above by any reaifsivction.
These are therefore examples for which, in this sense, tia Bienction
must grow exceptionally quickly. However, there are swipg subtleties
here. Recently, Olshanski8§] constructed an example of a finitely pre-
sented group for which there is no algorithm to solve the Werablem,
but on an infinite subset &f its Dehn function is bounded above by a qua-
dratic function.

7. FURTHER READING

A natural next step after this introduction is Bridson’s\ay [10], which

provides careful proofs of a number of the results discubgee including
the Filling Theorem and van Kampen’s Lemma, explains otbehnrtiiques
for establishing Dehn functions, and draws a variety of emtions with
other topics.

My article in [8] on filling functionsexplores the interconnections between
and applications of a variety of quasi—isometry invariaimsluding Dehn
functions, that concern the geometry of van Kampen diagrarhe notes
by N. Brady and by Short in the same volume respectively asdBehn
functions in the context of non—positive curvature and méges for un-
derstanding groups and van Kampen diagrams sucmadi—cancellation
theory.
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The book [L1] by Bridson and Haefliger is a key resource for many topics in
geometric group theory including Dehn functions, espécialthe context
of non—positive curvature.

Gromov instigated and inspired much of the explosion of wavkr the
last thirty years on the geometry of discrete groups. Indaesuibstantial
proportion of that research can be viewed as exegesis obbis [B7].

Gersten’s surveyZ3] on isoperimetric functions and their analogues, iso-
diametric functions, which concern the diameters of distisar than their
areas, published in a companion volume of the same confergmceed-
ings as Gromov'’s book, has also been influential and is wherestmDehn
functionwas coined. It remains well worth reading. Also, Gerstel996
summer school note24)] are readily accessible and include discussion of
Dehn functions of hyperbolic and automatic groups.

Sapir's 2] is a recent and wide—ranging survey which covers many areas
of current research on Dehn function and related topics.
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