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Abstract. We study the filling length function for a finite presentation of a group
T", and interpret this function as an optimal bound on the length of the boundary
loop as a van Kampen diagram is collapsed to the basepoint using a combinatorial
notion of a null-homotopy. We prove that filling length is well behaved under change
of presentation of T".

We look at “AD-pairs” (f, g) for a finite presentation P: that is, an isoperimetric
function f and an isodiametric function g that can be realised simultaneously. We
prove that the filling length admits a bound of the form [g + 1][log(f + 1) + 1]
whenever (f,g) is an AD-pair for P. Further we show that (up to multiplicative
constants) if " is an isoperimetric function (r > 2) for a finite presentation then
(z",2"~') is an AD-pair. Also we prove that for all finite presentations filling length
is bounded by an exponential of an isodiametric function.
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1. Introduction

Let P = (A|R) be a finite presentation for a group I'. The filling
length function for P is one of a number of functions that arise from
considering null-homotopic words; that is, words that evaluate to 1 in I'.
(A word is an element of the free monoid (AU.A~1)* on the generators
A and their formal inverses.) Null-homotopic words are characterised
by the existence of a null-sequence, defined as follows.

DEFINITION. A null-sequence for a null-homotopic word w is a
sequence of words w = wg,w1,...,wy, = 1 such that each w;41 is
obtained from w; by one of three moves.

1. Elementary (or free) reduction. Remove a subword aa ! from
w;, where a is a generator or the inverse of a generator.
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2 S. M. Gersten and T. R. Riley

2. Elementary (or free) expansion. Insert a subword aa™! into
w;, where a is a generator or the inverse of a generator. So w;+1 =
uaa v for some words u, v such that w; = uv in (AU A™1)*.

3. Application of a relator. Replace w; = auf by avf3, where uv~!

is a cyclic conjugate of one of the defining relators or its inverse and
vl = a;la;_ll ... a;l if v =a1...as 105, where a; are generators

or inverses of generators of P.

All this takes place in (AU .A1)*. Here we have denoted the empty
word by “1”, the neutral element in this monoid. Let £(w) denote length
of a word w in (AU .A~1)*; that is, £(w) is the number of letters in w.

DEFINITION. Let w be a null-homotopic word in P and let S denote
a null-sequence w = wg, w1, ..., Wy, = 1 for w. We let H(S) denote the
maximum of £(w;), 0 < i < m, and we define hy(w) to be the minimum
of H(S) as S ranges over all null-sequences for w. We define the filling
length function hy : N — N by setting ho(n) to be the maximum of
h(w) as w ranges over all null-homotopic words of length at most n.

Two better known filling functions, whose definitions we will recall
in the next section, are the Dehn function fy (also known as the opti-
mal isoperimetric function) and the optimal isodiametric function gq.
We say that f and g are respectively isoperimetric and isodiametric
functions for T" if fy(n) < f(n) and go(n) < g(n) for all n. We make
the following definition.

DEFINITION. An A D-pair for the finite presentation P is a pair of
functions (f, g) from N to N such that for every circuit w of length at
most n in the Cayley graph there exists a van Kampen diagram D with
area at most f(n) and diameter at most g(n). (So, in particular, f is
an isoperimetric function and g is an isodiametric function.)

The similar notion of an AR-pair is discussed in [9], where radius is
considered in place of diameter.

DEFINITION. Given two functions fi, fa : (0,00) — (0,00) we say
fi 2 fo when there exists C > 0 such that for all I € (0,00), fi(l) <
Cf2(Cl+ C) + Cl+ C. This yields the equivalence relation: f; ~ fy if
and only if f; < fo and fo =< f1.

It is natural to ask how fy, go and hg relate to each other. For a
finitely presentation of a group the following hold. For all n

2go(n) < ho(n) < 2K fo(n) +n,
where K := max {/(r) : r € R}. Further
fo(n) =X expho(n), and
fo(n) =X expexp(go(n) + n).
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D. E. Cohen and the first author proved a double exponential bound
for fo in terms of gy (see [3] and [6]). In fact, moreover, for an isodia-
metric function g for a finite presentation P, there exists £ > 1 such
that (EEQ(EHE,g(x)) is an AD-pair for P. (See [6].) We will prove the
remainder of the above results in the next section.

We remark that it follows from the inequalities above that the word
problem in T is solvable if and only any one of fy, go and hg is a
recursive function. See [7] for example.

It is an open question (to our knowledge first raised by John Stallings)
whether the double exponential bound can be improved to single ex-
ponential. (In the most extreme known examples fy and go differ ex-
ponentially - for example (a,b | b~'ab = a2).) In the light of the single
exponential bound on fj in terms of hg, it would seem that studying
ho is a natural approach to this question. Our first theorem offers a
bound on hg in terms of an AD-pair for a finite presentation.

THEOREM 1. Let (f,g) be an AD-pair for the finite presentation P.
Then ho(n) =< [g(n) + 1][log(f(n) + 1) + 1] for all n.

It is an open question whether this result can be improved to hg =<
go. Gromov observed in [10], 5C that if such a bound could be found
then using the bound fy < exp hg one could deduce a positive answer
to Stallings’ question.

Our second theorem gives a new example of an AD-pair.

THEOREM 2. Let T be a group admitting a polynomial isoperimetric
function of degree r > 2. Then up to a common multiplicative constant
(z",2"~1) is an AD-pair for T.

Our third theorem is the result of applying Theorem 1 to the AD-
pair (EEg(z)ﬂ,g(w)) given above. (The factor involving g(n) + 1 that
one obtains by applying Theorem 1 can always be absorbed into the
exponential factor E9(W+n))

THEOREM 3. For a general finite presentation the filling length func-
tion is bounded by an exponential in the optimal isodiametric function:
ho(n) X exp(go(n) + n).

ACKNOWLEDGEMENT. We should like to thank the referee for sug-
gesting that we address the invariance of filling length under change
of presentation. This added significantly to the length, but the prob-
lem is more subtle than the corresponding question for area or radius
addressed in [9].

We should also like to thank the conference organisers and MSRI
for giving the authors the opportunity to meet and initiate our collab-
oration.
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2. The geometric interpretation of filling length

As before, P = (A | R) is a finite presentation for a group T'.

DEFINITION. A van Kampen diagram D for a null-homotopic word
w in P is a finite, planar, contractible, combinatorial 2-complex; its 1-
cells are directed and labelled by generators and the boundary labels
of each of its 2-cells are cyclic conjugates of relators or inverse relators.
Further the boundary label for D is w when read (by convention an-
ticlockwise) from a base point x in dD. (See page 155 of [2], or pages
233ff of [11].)

Equivalently one can define a van Kampen diagram D as a combina-
torial cell structure on S? together with a distinguished 2-cell e, and
a combinatorial map f from S2\ ey, to the presentation 2-complex of
P. The attaching map of e, is then mapped by f to w.

We can consider D to be providing a homotopy disc for w. Then,
in analogy with the study of the homotopy discs filling null-homotopic
loops in a Riemannian manifold, we associate various filling invariants
to the geometry of van Kampen diagrams for null-homotopic words w.
(Many such filling invariants are discussed by Gromov in Chapter 5 of
[10].

The Dehn function arises from considering the (combinatorial) area
Area(D) of D; that is, the number of 2-cells in D. The optimal isodia-
metric function concerns the diameter Diam(D), which is defined to be
the maximum over all vertices v of D of the distance in the 1-skeleton
of D from v to the base point of D. (The 1-skeleton is endowed with the
metric that uniformly gives each 1-cell length 1.) The Dehn function
fo : N = N and the optimal isodiametric function gy : N — N for the
finite presentation P = (A|R) of a group I" are defined by

fo(n) := max {Area(w) : words w with /(w) <n and w=1in T},
go(n) := max{Diam(w) : words w with {(w) <n and w=1inT'}.
From an algebraic point of view the Dehn function fo(n) is the least N

such that for every null-homotopic word w with £(w) < n there is an
equality

N
_ -1
w = u; Tl
i=1

in the free group F(A) for some relators r; € R*!, and words u;.
Similarly (up to an additive constant, 2 max {£(r) : 7 € R}), the opti-
mal isodiametric function go(n) is the minimal bound on the length
of the conjugating words w;, amongst such equalities in F'(.A) for null-
homotopic words w with £(w) < n.
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Filling Length in Finitely Presentable Groups 5

Let us pursue further the analogy of D with a homotopy disc. Filling
length concerns the length of the boundary curve contracted across D in
a combinatorial notion of a null-homotopy. The situation in a Rieman-
nian manifold X is that one considers contracting a null-homotopic
loop v : [0,1] — X based at x € X to the constant loop at .
By definition there is some continuous map H : [0,1] x [0,1] —» X
denoted by Hi(s) = H(t,s) with Hy = v, Hi(s) = % for all s, and
H;(0) = Hy(1) = * for all ¢. Filling length is the optimal bound on the
length of the loops H;. So the filling length of H is the supremum of the
lengths of the loops Hy for ¢t € [0, 1], and the filling length of + is the
infimum of the filling lengths of all possible null-homotopies H. Then
(using Gromov’s notation) define Filly Leng/ to be the supremum of
the filling lengths of all null-homotopic loops v : [0,1] — X of length
at most £ and based at x € X.

We give a combinatorial notion of a null-homotopy across a van Kam-
pen diagram. A shelling (also known as an combinatorial null-
homotopy) of D is a sequence D = Dy, Dy, ... , Dy, = * of van Kampen
diagrams where D; 1 is obtained from D; by one of the following three
types of moves.

A. 1-cell collapse. Remove a pair (e!,e?) such that e € 9e! is a
0-cell in D; which is not the base point x € D;, and el is a 1-cell
only attached to the rest of the diagram at one 0-cell which is not

el

B. 1-cell expansion. Suppose (e!,e’) is a pair such that e! is a 1-

cell in the interior of D; and e® € de! N 9D;. Make a cut along e!
starting from e, so two copies of €® and e! are found in D; ;. This
has the effect of introducing two new 1-cells into the boundary of
the diagram.

C. 2-cell collapse. Remove a pair (e2,e!) where e is a 2-cell of D;

with e! a 1-cell of 9e? N ID; (note that the 0-skeleton of D; is the
same as that of D;;1).

Notice that the effect on the boundary word of performing A, B or C
is an instance of move 1, 2, or 3 (respectively) from the definition of a
null-sequence given in the introduction. In the case of move B, if €0 =
then the free expansion of the boundary word occurs either at the start
or at the end of the word, depending on which of the two copies of €°
in D; 11 one takes to be the new base point.

For a shelling S = (Dy,D1,...,Dp,) of D, let w; be the boundary
word of D; and let

H(S) := max{f(w;) : 4 =0,1,... ,m}.
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Define FL(D), the filling length of D, to be the minimum of H(S) over
all shellings S of D. Define FL(w) to be the minimum of FL(D) over
all van Kampen diagrams for w.

We claim that FL(w) is the same as ho(w) where hg is the filling
length function defined in the introduction using null-sequences.

PROPOSITION 1. We have ho(w) = FL(w) for all null-homotopic

words w.

Proof. Let D be a van Kampen diagram for w that gives an optimal
shelling Dy, Dy, ... , Dy, and let w = wo, w1, - - . , Wy = 1 be the bound-
ary labels of the diagrams in the shelling read as ordinary (not cyclic)
words from the base point. Then wg, w1, ..., w,, is a null-sequence and
so h(w) < max {f(w;) : 0 <i<m} = FL(w)

To obtain the opposite inequality, let S be a null-sequence w =
wo, W1, . .., Wy, = 1 for w with H(S) = h(w). We need

LEMMA 1. Under the assumptions above there is a van Kampen di-
agram D for w and a shelling of D whose sequence of intermediate
boundary labels have length at most ho(w).

Proof. We begin by drawing w;, 0 < ¢ < m, as the horizontal arc in
the Cartesian plane of length /(w;) beginning at (0,7) and ending at
(¢(w;), 1), subdivided at integral points, oriented from left to right, with
the segment [(%, 7), (¢,7 + 1)] labelled by the j-th letter of w;. We shall
define maps f; on subsets of the strip V; = {(z,y) |t <y < i+ 1}
with contractible fibres, where the definition depends on the type of
operation that is applied to go from w; to w;y1. There are three cases
to consider.

1. The operation is an elementary expansion, so w; = uv — uzz v,

with z a generator or inverse generator, and with u of length j. In
this case we shall construct an explicit retraction f; of the strip Y;
onto the union of the line y = ¢ and the line segment [(j,4), (j + 1,7 +
1)]. The retraction is vertical projection on (z,y) if z < j and is a

retraction downward along a line of slope 1/2 if z > j. In the triangle
Al(4,4),(4,2+1),(j+ 1,74 1)] the retraction is vertical projection onto
the side [(4,7),(j + 1,7 + 1)]. And in the triangle A[(j,%),(j + 1,7 +
1),(4 + 2,7 + 1)] the retraction is downward along lines of slope 1/2
onto the side [(j,1), (7 + 1,7+ 1)].

The crucial features of the map f; that we need are

a) f; folds the segment [(j,% 4+ 1),(j + 2,7 + 1)] onto the segment
[G,1), (G + 1,i + 1)}, and

b) the fibres of the map f; are finite trees.
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The decomposition space of the map f; on Y; is in this case the result
of an elementary expansion applied to the line y = i, where the edge
adjoined, when oriented upward, has label .

2. The operation is an elementary reduction. In this case we interchange
the roles of ¢ and 7 + 1 in the definition of the map f;. Again properties
a) and b) hold for this map.

3. The operation is an application of a relator. Let the operation be
w; = auf — avf, where uv™! is a cyclic conjugate of a defining relator,
which will be assumed to be a nonempty word. Let £(a) = j, £(u) = s,
and {(v) = t.

We define an equivalence relation on Y; whose equivalence classes
counsist of segments [(z,1), (z,7 + 1)] if z < j and segments parallel to
and to the right of the segment [(i,7 + s),(¢ + 1,5 + t)]. Thus each
equivalence class consists of either a single segment, or, in case s = 0
or t = 0, the union of two segments with a point in common. The map
fi is the decomposition map for this equivalence relation, and it follows
that all fibres of f; are finite trees.

Observe that the effect of taking the decomposition space of the map
fi to Y; is to attach to the line y = ¢ an arc of length ¢ beginning at
(4,7) and ending at (j + s,7) with label v and to attach a 2-cell with
boundary label uv~!.

We now take the decomposition space Y of the plane determined
by imposing the equivalence relations of the fibres of all the maps f;,
0 <i<m-~—1, and let f be the corresponding map, f : R? — Y.
Although the fibres of each f; are contractible, it will not be the case
in general that the fibres of f are contractible (for example, if we do an
elementary expansion and then the same reduction, that will introduce
a cycle in the fibre of f). There will be 1-dimensional cycles occurring
in a fibre, and these can pinch off 2-sphere components of Y, among
other things. After we throw away all the cycles, the result is a van
Kampen diagram diagram D for w (precisely, if we take maximal cycles
in the fibre of f, in the sense that these do not contain other cycles in
their interior, and collapse their interiors to points, then the resulting
decomposition space is R?, as an application of the Vietoris mapping
theorem, since the fibres of the resulting map are contractible; the cell
structure and labelling for the van Kampen diagram comes from the
the cell structure and labelling exhibited for the decomposition spaces
of the maps f; above in cases 1 and 3).

Let w; be the images of the w; after the portions in the 2-sphere
components are discarded. Then w = wg,w1,... ,Wn = 1 is a null-
sequence (except that it is possible that @w; = w; 1 for some 7). If w; ;1 is
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the result of an elementary reduction in w; then D; 1 is the consequence
of performing a 1-cell collapse on D;. Similarly if w;1 is obtained from
w; by a free expansion then D;,; is the result of a 1-cell expansion in
D;. The relationship between D; and D;;; is more complicated when
W;+1 1S the result of an applying a relator to w;. Recall that w; = auf
and w;11 = avf, where uv~! is a a cyclic conjugate of a relator or
an inverse relator. If u is not the empty word then D;;; is obtained
from D; by a 2-cell collapse followed by a sequence of I-cell collapses.
If w is the empty word let a be the first letter of v, and then D;,; can
be produced from D; by a 1-cell expansion that inserts aa~! into the
boundary word of D;, followed by a 2-cell collapse.

The diagrams of the resulting shelling of D have boundary word of
length at most max{¢(w;) : 4 =0,1,... ,m} < ho(w).

This completes the proof of Lemma 1.

We can now complete the proof of Proposition 1. It follows from
Lemma 1 that

FL(w) < max {£(w;) : 1 <i<m} <max{l(w;) : 1 <i<m}=h(w).
Since we have already shown that h(w) < FL(w), it follows that FL(w) =
h(w), and the proof of the Proposition 1 is complete.

We can now deduce two results given in the introduction:

COROLLARY 1. For a finite presentation (A | R), for all n,
2g0(n) < ho(n) < 2K fo(n) +n,
where K := max {{(r) : 7 € R}.

Proof. Let D be a van Kampen diagram for a null-homotopic word w of
length n. Let S = (Do, D1, - .. , Di,) be any shelling of D. The boundary
circuit of each D; corresponds to a circuit in the 1-skeleton D of (which
may involve back-tracking). Given any vertex v in D, there must be
some D; whose circuit passes through v. But this provides two paths in
the 1-skeleton of D from v to *, from which we deduce the inequality
that the diameter is bounded above by half the filling length. The
second inequality holds because the boundary words of the diagrams
D; have length at most twice the total length of the 1-skeleton of D,
which is at most 2K fo(n) + n.

COROLLARY 2. For a finite presentation

fo = exp ho.
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Proof. This bound is due to the first author and Gromov (see pages
100fF of [10]). Let w be a null-homotopic word. Take any van Kampen
diagram Dy for w and any shelling S = (Do, D1, ... ,Dy,) for Dy. For
i = 0,1,...,m let w; be the boundary word of D;. Each word w;
corresponds to a circuit p; in D(()l) (possibly with backtracking). If there
exists k > j such that the words w; and wy, are the same then perform
the following surgery on Dy, D1, ... , D;: cut along p; and py, discard the
portion between p; and p; and glue the remaining two portions along
the equal words w; = wg. Fori =0,1,...,j define D; to be the diagram
obtained in this way by surgery on D;. For ¢ = j+1,5+2,... ,m—(k—j)
define D; := D; 1 (k—j)- The result is a new shelling Do, D1, . .. 71_)m—(k—j)
of a van Kampen diagram Dy for w, in which there is at least one
repetition fewer in the sequence of boundary words.

Now repeat this procedure until we have a shelling for w in which
the boundary labels of the diagrams are all distinct.

The area of a van Kampen diagram is the number of 2-cell collapse
moves in any of its shellings. There are at most exp(C ho(n)) words of
length at most hg(n) for some constant C > 0. The bound on fy(n)
follows and the proof of the corollary is complete.

The functions fy, go and hg are dependent on the choice of finite
presentation P for I'. However these functions do behave well on change
of presentation in the following sense.

It is well known that if P and Q are finite presentations for the
same group then the two Dehn functions defined with respect to the
two presentations are ~-equivalent (as defined in the introduction).
The same can be said of the optimal isodiametric function. (See, for
example, [9].)

THEOREM 4. Suppose hp and hg are the filling length functions
defined with respect to two finite presentations P and Q for the same
group. Then hp ~ hg.

Proof. Recall that Tietze’s theorem [11] states that there is a finite
sequence of Tietze operations and their inverses starting at P and
terminating at Q. There are two types of Tietze operations, types I
and II, and their inverses. A type I operation P — Q adjoins a new
free generator ¢ and a new relator tu~!, where u is a word in the
generators of P (so u does not involve t), whereas a type II operation
does not change the generators but adjoins a new relator R which is a
consequence of the relations of P.

Consider first the type I operation P — Q given by adjoining the
new generator ¢ and new relator tu~', where u does not involve ¢. In the
argument that follows we shall assume that u is not the empty word.
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10 S. M. Gersten and T. R. Riley

A separate and easier argument must be given if u is empty, which we
omit.

Suppose first that w is a null-homotopic word in the generators of
Q. The length of w increases by at most a constant factor A = £(u)
when one replaces all occurrences of ¢ in S by u. Thus by at most £(w)
applications of a relator we obtain a new word w’ in the generators
of P. Now take an optimal null-sequence for w’ with respect to P. It
follows that hg(n) < hp(An) for all n.

Next suppose that w is a null-homotopic word in the generators of P
(so w involves no t’s) and let w = wo, w1, ..., w;, be an extremal null-
sequence for w in Q. Thus wy, w2, ..., wm,m_1 can involve t. Let w; be the
result of replacing each occurrence of t*! by u*!, so w; is a word in the
generators of P. The sequence wg, Wi, W2, - - . , Wm—1, Wm can be refined
to a null-sequence in P by inserting intermediate elementary expansions
and reductions (for example, if w; has a subword tt~1, then w; has the
subword uuil; if w; — wjy1 consists of removing ttil, then one can
remove uu ! from w; by a sequence of £(u) elementary reductions).
Furthermore we have ¢(w;) < ¢(u)f(w;) (it is here that we use £(u) # 0).
It follows from these observations that hp(w) < £(u)hg(w), and hence
hp(n) < £(u)hg(n) for all n.

Combining the inequalities of the previous two paragraphs gives
hg(n) < hp(An) and hg(n) < £(u)hg(n), which proves the equivalence
for type I Tietze operations.

Next assume that Q is obtained from P by a type II Tietze operation,
where we adjoin as new relator the relation R.

It is clear that hg < hp because there are more null-sequences for
null-homotopic words with respect to Q.

Let us seek a bound in the other direction. The word R can be
obtained from the empty word by a sequence Sgp = (ug,u1,... ,Um)
where ug = 1, u,, = R and each w;4+1 is obtained from wu; by ei-
ther free expansion, free reduction or an application of a relator in
the presentation P. Similarly R~! can be obtained via the sequence
SEI = (ugHurty .o, unt). Let M := max {€(v;) : i = 0,1,... ,m}.

Suppose S is a null-sequence for w with respect to the presentation
Q. We obtain a null-sequence for w with respect to the presentation P
by using Sg in a process that replaces all applications of the relator R in
the sequence S. Observe that if w; 1 is obtained from w; by application
of the relator R, then we can equally well produce w; 1 by inserting a
copy of R*! into w; and then performing some free reductions. Further
we can use the sequence Sﬁl to insert the copy of R*'. The result
is a null-sequence for w with respect to the presentation P, with an
increase of at most M + ¢(R) in the maximum length of the words in
the sequence.
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From the results above we deduce that hg < hp < hg + M + {(R).
So hp ~ hg, and the proof of the theorem is complete.

3. Examples and applications

1. Polynomial isoperimetric function. If T satisfies a polynomial
isoperimetric function of degree r > 2 then (z",z"~!) is an AD-pair for
I" up multiplicative constants. This is the conclusion of Theorem 2 and
is proved in section 5.

It follows from Theorem 1 that ho(n) < n"~!log(n + 1). This con-
trasts with the inequality hg < fo in the introduction.

2. Bridson’s groups. The group T'y, defined for m > 2 by

<a1, ey Qum, Sy T, T ‘ for i < m, s”la;s = a;ait1,

[t,ai] = [1,ai] = [s,am] = [t,am] = [T, amt] = 1)

has AD-pair (z?™! ™) up to multiplicative constants. This family
of examples is due to Bridson — see [1]. The group I'y, is constructed
as follows. Take the mapping torus of the free group automorphism
whose action on homology is given by the matrix that has a single
Jordan block of size m and eigenvalue 1. Then take a 2-step HNN
extension: add a stable letter ¢ which acts trivially on the free fibre,
and add a further stable letter 7 that commutes with the free subgroup
generated by {a1,as,... ,@n_1,anmt}. Bridson shows that in fact 22m+!
is the optimal isoperimetric function and =™ is the optimal isodiametric
function.

Theorem 1 gives us bounds of £ logx on their filling length func-
tions, which is a significant improvement on the bounds z?™*! obtained
from the inequality hg =< fo.

3. Arbitrary finite presentations. If P is an arbitrary finitely pre-
sentation with an isoperimetric function f, then (f(z), f(z) + ) is
AD-pair. (See Gersten [7], Lemma 2.2.)

Also, as discussed in the introduction, if g is an isodiametric function
for P then there is some E > 1 such that (EEg(E)Jrz,g(w)) is an AD-
pair. Applying Theorem 1 yields the conclusion of Theorem 3: that gg
is bounded by an exponential in go(n) + n.

4. Asynchronously combable groups. Up to multiplicative con-
stants, (E*, z) for some E > 1 and (zL(x),x) are both AD-pairs when
T is an asynchronously combable group. Here the length function L(n)
is the maximum length of combing paths for group elements at distance
at most n from the identity. That (E®, z) is an AD-pair follows from
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12 S. M. Gersten and T. R. Riley

the linear bound on the filling length function and that fy < exp hg; see
Corollary 2. In particular (22, z) is an AD-pair when T is synchronously
automatic since I' then admits a combing in which the combing lines
are quasi-geodesics (see [4], pages 84-86).

Asynchronously combable groups have linear bounds on their filling
length functions. (Theorem 1 gives weaker bounds on the filling length.)
This is a result of the first author - Theorem 3.1 on page 130 of [8],
where the notation LC'N H; is in this case what we call linearly bounded
filling length. In essence the homotopy can be performed by contracting
in the direction of the combing, so the contracting loop always remains
normal to the combing lines. (See also [7] for definitions.)

4. A bound on the filling length function

THEOREM 1. Let (f,g) be an AD-pair for the finite presentation P.
Then ho(n) =X [g(n) + 1][log(f(n) + 1) + 1] for all n.

First we give a lemma about rooted trees that we shall use in the
proof of this theorem. Let 7 be a finite rooted tree in which each
node has valence three except for the root (valence two) and the leaves
(valence one).

Let F be a finite forest of such trees. The wvisible nodes of F are
the roots. An elementary shelling is the removal of the root of one
of its trees (together with the two edges that meet that root when the
tree has more than one node). A (complete) shelling is a sequence
of elementary shellings ending with the empty forest. The wvisibility
number of a shelling of F is the maximum number of visible vertices
occurring in the shelling. The visibility number VN(F) is the minimum
visibility number of all shellings.

Let N(7") denote the number of nodes of 7.

LEMMA 2. Let the integer d be determined by 2¢—1 < N(T) < 2¢+1 —
1. Then VN(T) < d+ 1.

Proof. To obtain this bound on VN(7") we shall perform each elemen-
tary shelling by always choosing a tree with the least number of nodes
to shell first. This is what we call a logarithmic shelling.

We argue by induction on N(7), where the induction begins when
N(7) = 1; in this case d = 0 and VN(7") = 1, as required.

For the induction step, assume that N(77) > 1 with 2¢—1 < N(7) <
24+1 _ 1. Removing the root of 7 produces two trees 77, 72. We let
N(7T1) < N(T2). Let 2% — 1 < N(7;) < 24+! — 1 for i = 1,2. By the
induction hypothesis we have VN(7;) < d;+1 for ¢ = 1, 2. Since we shell
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Filling Length in Finitely Presentable Groups 13

T first, we get VN(7) < max(VN(71)+1, VN(72)) < max(di1+2,d2+1)
by the induction hypothesis. There are now two cases, depending on
whether di < dy or di = ds.

Case 1. di < da. In this case max(dy + 2,da +1) =da+1<d+ 1, so
we get VN(7) < d+ 1 as required.

Case 2. dy = dy. Here max(d; + 2,ds + 1) = dy + 2. We have 2(2% —
1)+ 1 < N(T1) + N(T2) + 1 < 2(291+1 — 1) 4+ 1, whence 24111 — 1 <
N(T) < 2%1+2 — 1. Tt follows that d = d; + 1, and VN(T) < d + 1 as
required.

This completes the induction, and the proof of Lemma 1 is complete.
COROLLARY 3. VN(7) < logy(N(7)+1) + 1.

Proof. Write 2¢—1 < N(T) < 291 —1,50 VN(T") < d+1 < logy(N(T)+
1) + 1, as required.

REMARK. Note that since VN(7) is an integer, the upper bound for
VN(T) in the corollary can be replaced by the least integer bounding
logy(N(7) 4+ 1) from above. Stated in this form, the result is sharp, as
we see by taking T' to be the complete rooted tree 7 (d) of depth d. In
this case 7(d) has 29! — 1 nodes, and the visibility number is d + 1.

We will deduce Theorem 1 from the following proposition.

PROPOSITION 2. Suppose that I' is the group of a finite triangular
presentation P in which no generator represents identity element, and

let w be a null-homotopic word with n := {(w). Given a van Kampen
diagram D for w with D := Diam(D) and A := Area(D) we find

FL(D) < (2D +1)(logy(A+1)+1)+4D +1+n.

REMARK. Any finite presentation (A|R) for a group I yields a finite
triangular presentation for I'. Such presentations are characterised by
the length of relators being at most three. If » € R is expressible in
F(A) as wiws where £(w1),f(w2) > 2 then add a new generator a to
A, and in R replace r by a~'w; and aws. A triangular presentation is
achieved after a finite number of such transformations.

Furthermore the condition that no generator represents the identity
element can be achieved by Tietze transformations [11]. For suppose
that the generator a of P represents the identity element of the group
I" of the presentation. Then we may adjoin a as an additional relator
and repeatedly use a combination of Tietze operations to remove all
occurrences of a from the other relators. Finally, we can remove the
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14 S. M. Gersten and T. R. Riley

pair consisting of the generator a and relator a, thereby reducing both
the number of generators and the number of relators by one.

Recall from section 2 that fy,go and hg are invariant up to ~-
equivalence on change of finite presentation, and that we know from
Proposition 1 that FL(w) = hg(w) for all null-homotopic words w. So
Proposition 2 is sufficient to prove Theorem 1.

Proof of Proposition 2. We start by taking a maximal geodesic tree T
in the 1-skeleton of the van Kampen diagram D, rooted at the base
point x of D. So from any vertex of D there is a path in 7 to x with
length at most D.

By cutting along paths in 7 we can decompose D into sub-diagrams
D; where only one edge from 9D — T occurs in each D;.

To achieve the bound claimed in the proposition we will shell D by
shelling each D; in turn. So let us first explain a means of shelling each
D;. We will use six types of 2-cell collapse moves. These are depicted
in Figure 1, with the thicker lines representing edges in 7. The arrows
indicate edges in the boundary of the van Kampen diagram. In each
move a 1-cell in D — 7T is removed. To see that these are all the 2-
cell collapsing moves we require to shell D;, observe that D; — T is
connected. Also recall that we assumed that in the presentation P no
generator represents the identity - it follows that there are no degen-
erate triangles or bi-gons amongst the 2-cells of the diagram D. That
is, all triangles (resp. bi-gons) have three (resp. two) distinct 1-cell and
0-cells. Also note that there can be no 2-cell whose boundary consists
of just one 1-cell and one 0-cell.

@—’W C>T\</

(i) (ii)

iii
j (v) v v (vi) v
Figure 1. 2-cell collapse moves.

We now give the means of performing the shelling in a way that
realises the bound on filling length. Repeatedly apply the following
four steps:

1. 1-cell collapse (as defined in section 2),
2. moves (i) and (ii): bi-gon collapse,

3. moves (iii) and (iv),
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Filling Length in Finitely Presentable Groups 15

4. moves (v) and (vi) in accordance with logarithmic shelling.

The first step in the list that is available is performed, and then we
return to the start of the list. The effect is to shell the diagram D;
eventually leaving just the base point .

The means by which we use logarithmic shelling to choose which
2-cell to collapse when performing step 4 requires some explanation.
Take the dual graph G of D; — T, which is made up of vertices dual to
faces in D; and edges dual to edges in DEl) — 7. Now G is a tree for the
following reason. If G contains a loop then it contains a simple loop.
Consider G to be inscribed in D; in the natural way. Then there would
be a vertex of D; in the interior of the simple loop and this could not be
connected to dD; by a path in T, which would contradict maximality
of T.

The shelling tree is then obtained by reducing G in the following
manner: for any vertex v which is dual to a 2-cell of the form (i), (ii), (iii)
or (iv) of Figure 1, collapse one of the edges that meets v, at each stage
reducing both the number of edges and the number of vertices by one.
An example is illustrated in Figure 2 in which thicker lines represent
edges in 7. The branching vertices of the shelling tree correspond to
2-cells in D of the form (vi) and the leaves correspond to 2-cells of the
form (v). Observe that the shelling tree has a natural root: the vertex
corresponding to the 2-cell in D; of the form (vi) that is first reached on
shelling D; (and when there is no such 2-cell the shelling tree consists
of just one vertex). Now the shelling tree is a finite rooted tree in which
each node has valence three except for the root (valence two) and the
leaves (valence one), i.e. a tree of form discussed in at the start of this
section. When performing step 4 we chose the 2-cell to be pushed across
in accordance with the process of logarithmic shelling of rooted trees
used in Lemma 2. The number of nodes in the tree is at most A and
so by Corollary 3 the visibility number is at most logy(A + 1) + 1.

Figure 2. D; and its shelling tree.
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16 S. M. Gersten and T. R. Riley

It remains to explain how to bound the filling length of the shelling of
D; given above, and then how to deduce a bound on the filling length of
D. Consider the situation when the next step to be applied is number
4. The visibility number associated to the shelling tree constructed
above is at most logy(A + 1) + 1. The boundary loop includes at most
logy(A 4+ 1) + 1 edges of the type occurring in move (vi). These are
separated by paths in 7 of length at most 2D. The loop is closed by
another path in 7 again of length at most 2D. So this loop has length
at most:

logy(A+1)+1+2Dlogy(A+1)+2D = (2D + 1)(logy(A+ 1) +1).

Now applying move (v) or (vi) increases the length of the loop by 1,
creating two new channels where moves (i), (ii), (iii) and (iv) may
be performed. (Channels correspond to paths in G between branching
vertices.) Consider then applying steps 1, 2 and 3. Step 1 can only
decrease the length, and step 2 leaves it unchanged. Step 3 can be
applied at most 2D times in each of the two channels. Thus the increase
in length before step 4 is next applied is at most 1+ 4D. This gives the
bound

FL(D;) < (2D +1)(logy(A + 1) + 1) + 4D + 1. (1)

Now as one reads w around D from the basepoint one meets the
subdiagrams Dj, D, . .. in turn. Shell the D; in this order in the manner
described above (except that when shelling D;, do not collapse the 1-
cells of D; N D;41). Consider the shelling of D at the stage where the
subdiagram D; is being shelled. The boundary loop consists of a portion
of the boundary loop of the shelling of D;, a portion of the geodesic
arc from x to 9D that runs between D; and D;, 1, and a portion of 0D.
These latter two portions have total length at most n, and so

FL(D) < max {FL(D;)} + n.

Combining this with (1) above we have our result.

REMARK. The shelling of D involves 1-cell collapse and 2-cell collapse
moves, but no 1-cell expansion moves.

5. An AD-pair for groups satisfying a polynomial
isoperimetric inequality

In this section we prove:
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Filling Length in Finitely Presentable Groups 17

THEOREM 2. Let I’ be a group admitting a polynomial isoperimetric
function of degree r > 2. Then up to a common multiplicative constant
(z",2" 1) is an AD-pair for T.

Papasoglu gives this result for » = 2 in [12], page 799. It requires a
small generalisation of his argument to obtain the result for all » > 2,
as follows. (See also [10], page 100.)

DEFINITION. The radius of a van Kampen diagram D is
Rad(D) := max {d(v,dD) : v is a vertex of D},

where d(v, 0D) is the combinatorial distance in the 1-skeleton.

DEFINITION. For a subcomplex K of D define star(K) to be the union
of closed 2-cells meeting K. Define star;(K) to be the i-th iterate of
the star operation for ¢ > 1; by convention starg(K) = K. So if T is
triangularly presented then the 0-cells in star;(0D) are precisely those
a distance at most ¢ from 0D.

The substance of Theorem 2 is in the following lemma.

LEMMA 3. Suppose (A|R) is a finite triangular presentation for a
group I' (see the paragraph following Proposition 2) and that R includes
all null-homotopic words of length at most 3. Suppose further that there
is M > 0 such that fo(n) < Mn" for alln. Then for all null-homotopic
w we have Rad(D) < 12ML(w)" Y, where D is a minimal area van
Kampen diagram for w.

Recall that a change of finite presentation induces a ~-equivalence
on isoperimetric and isodiametric functions. Note that there are only
finitely many words of length at most 3 in a finitely presented group.
Also observe that adding n/2 is sufficient to obtain a diameter bound
from a radius bound. Thus this lemma is sufficient to prove Theorem 2.

Proof of Lemma 3. We proceed by induction on n. For n < 3 the result
follows from our insistence that R includes all null-homotopic words of
length at most 3.

For the induction step suppose w is null-homotopic and 4(w) =
n. Let D be a minimal area van Kampen diagram for w. Let N; :=
star;(0D). Now Nj;, being a connected subcomplex of D with open
discs removed from its interior. Define ¢y to be the boundary of the
2-dimensional portions of D and for 7 > 1 define ¢; := ON;. Each ¢; is
the union of simple closed curves any two of which meet at one point
or not at all.

Now Area(N;+1) — Area(NN;) > I(c;)/3 because every 1-cell of ¢; lies
in the boundary of some 2-cell in N;; — N;. For all 4,

Area(D) > Area(Ni1) > U(ci)/3 + U(ci—1)/3 + - + (o) /3.
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18 S. M. Gersten and T. R. Riley

Thus if I(c;) > n/2 for all i < 6Mn"~! we get a contradiction of the
area bound Mn" for D. So for some i < 6Mn"~! we find I(c;) < n/2.
We can appeal to the inductive hypothesis to learn that the diagrams
enclosed by the simple closed curves constituting ¢; have radius at most
12M (n/2)" ! < 6Mn" L. This is true since the minimality of the area
of D implies that each ¢; is filled by a diagram of minimal area.

So a vertex v of D either lies in N;, in which case d(v, D) < 6 Mn" 1,
or is in a diagram enclosed by one of the simple closed curves c of ¢; .
In the latter case d(v, D) < d(v,¢) +d(c,0D) < 12Mn" ! as required,
thus completing the proof of the lemma.

6. Concluding remarks

OPEN QUESTION. In connection with the question of John Stallings,
whether for a finite presentation there is always a simple exponential
bound fy = exp gg, it is natural to ask whether there is always an AD-
pair of the form (exp go, go)- This adds the requirement that the exp gg
bound on fj is always realisable on the same van Kampen diagram as
go- Our main theorem gives a necessary condition that this be true,
namely that hy < go2.

We shall now make some observations relevant to the single expo-
nential question just stated.

PROPOSITION 3. If P is a finite presentation, then for all integers
N > 3 there exists C(N) > 0 such that for all van Kampen diagrams
D in P all of whose vertices have valence at most N one has

1. Area(D) < NPam(P)+1 _ 1 gnd
2. FL(D) < C(N) - Diam(D)? +n + 1.

Proof. The number of vertices at a given distance ¢ from the base point
is at most N(N — 1)7!, so it follows that the number of geometric

edges E(D) satisfies E(D) < N+ N2+ ...+ NP < Ni;_ll_l, where

D = Diam(D). Since each edge is incident with at most 2 faces, we
get Area(D) < 2% ZJ:I{ L < NP+l _ 1 giving the first conclusion of the
proposition.

From Proposition 2 it follows that FL(D) < (2D+1)(D+1) logy(N)+
4D+1+n = C(N)D?+n+1, where C(N) depends only on N, proving

the second conclusion.

COROLLARY 4. For every finite presentation P there is a constant
C > 0 such that if D is an immersed topological disc diagram in P,
then FL(D) < C - Diam(D)2 +n + 1.
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Proof. Since D is immersed, the valence of a vertex v is at most the
number of edges incident at a vertex of the Cayley graph, namely, twice
the number of generators of P. The corollary follows from the second
conclusion of the proposition.

REMARK. As we mentioned in the introduction, if hg =< go then it
follows that fo =< exp gg; one sees this as a consequence of the bound
fo = exp hg. We do not know an example from finitely presented groups
where hy < go fails; however it is shown by Frankel and Katz in [5] that
this can fail in a simply connected Riemannian context. (However their
example does not amount to a properly discontinuous cocompact action
by isometries on a simply connected Riemannian manifold, so it does
not correspond to an example arising from finitely presented groups.)
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