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Abstract

The filling radius function R of Gromov measures the minimal
radii of van Kampen diagrams filling edge-circuits w in the Cayley 2-
complex of a finite presentation P. It is known that the Dehn function
can be bounded above by a double exponential in R and the length
of the loop, and it is an open question whether a single exponential
bound suffices. We define the upper filling radius R(w) of w to be
the maximal radius of minimal area fillings of w and let R be the
corresponding filling function, so R(n) is the maximum of R (w) over all
edge-circuits w of length at most n. We show that the Dehn function
is bounded above by a single exponential in R and the length of the
loop. We give an example of a finite presentation P where R is linearly
bounded but R grows exponentially.
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1 Introduction and statement of results

Gromov defined a number of filling invariants for finitely presented groups
[15, Ch. 5] in terms of the geometry of van Kampen diagrams. Two of
the most important are the filling radius R and the minimal isoperimetric
function fy (also known as the Dehn function [11]), whose definitions we now
recall.

Let P be a finite presentation for the group G. Let X be the Cayley 2-
complex, so X is the universal cover of the 2-complex canonically associated
to P (namely, one vertex, one edge for each generator, and one 2-cell for
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each defining relator p whose attaching map spells out the cyclic word p
in the 1-skeleton); the 1-skeleton X is the Cayley graph I'. Let w be an
edge-circuit of ' and let D be a van Kampen diagram! filling w [17], so D
is the domain of a cellular map D — X where D is a 1-connected cellular
planar 2-complex such that w (read anticlockwise from the base point x) is
the associated boundary circuit (i.e. w is the attaching map of the single
2-cell at infinity). The 1-skeleton DU of D is equipped with a path metric
so that each edge is assigned length 1. Let ¢(w) denote the length of the
boundary word w. We will use four measurements one can make on D:

e Area(D) is the area, that is, the number of 2-cells in D,

e R(D) is the radius, that is, the maximum distance of a vertex to the
boundary in the path metric on D),

e Diam(D) is the diameter, that is, the maximum distance (again in the
path metric on D) of a vertex to the base point x of D, (note that
diameter is closely related to radius: R(D) < Diam(D) < R(D)+/{(w)),

e FL(D) is the filling length, that is, the minimal bound on the length
of boundary circuits in a complete shelling of D (i.e. the combinatorial
notion of a null-homotopy of w to x across D). See [12] for a detailed
discussion of filling length.

We define Area(w) (resp. R(w), Diam(w), FL(w)) to be the minimum
value of Area(D) (resp. R(D), Diam(D), FL(D)), where D ranges over van
Kampen diagrams filling w.

The four measurements on diagrams lead to definitions of filling func-
tions for the presentation P. Perhaps the most important is the minimal
isoperimetric function (a.k.a. the Dehn function) fo: N — N, defined by

fo(n) = max{Area(w) : w is an edge-circuit in I' with ¢(w) < n};

this takes finite values since there are only finitely many orbits of such w up
to the G-action on I". More generally, an upper bound f : N — R for the
Dehn function fy is called an isoperimetric function for P. The notion in

Tt is convenient to think of D as a tree-like arrangement of topological discs where two
discs have at most one vertex in common. Some care is needed in discussing van Kampen
diagrams because of the presence of 1-dimensional portions, namely, edges which are not
incident with any 2-cell of D.



group theory is due to Gromov [14] in analogy with the corresponding notion
in differential geometry. It is convenient to extend an isoperimetric function
f to the nonnegative reals by defining f(r) := f([r]), where [r] denotes, as
usual, the integer part of the real number 7.

Analogously one can define filling functions for R, Diam and FL. So in
particular there is the filling radius function R : N — N, given by

R(n) = max{R(w) : w is an edge-circuit in I with ¢{(w) < n}.

D. E. Cohen [6] first proved the double exponential theorem, which states
that there are constants A, B > 1 so that fo(n) < AB™™*" for all n, by
making use of an analysis of the complexity of the Nielsen reduction process
due to Avenhaus and Madlener [1]. The first author gave a geometrical proof
of this result in [10]; his argument has been generalized in several different
directions, cf. [9], [19].

As soon as the result was proved the question arose whether in fact a
single exponential bound sufficed; this is discussed by Gromov in [15, 5.C.].
The problem has remained open for almost a decade. One reason it is a
difficult problem is that minimum area and minimum radius van Kampen
diagrams may be completely different, even for aspherical presentations. We
give an example of this phenomenon in §5 for the presentation

(x,y,s,t|[z,y] =1, tet™! = 2%, sys™! = y2>.

This suggests studying relations between area and radius in the same dia-
gram. This is the program we initiated in [12], where we studied relations
between area, diameter, and filling length on the same class of diagrams.
We continue this program in this paper in relating area and filling radius
in the class of minimal area diagrams; this theme is also pursued in [13]
in calculating isoperimetric functions in kernels of homomorphisms to free
groups.

We define R(w) (resp. R(w)) be the maximum value (resp. minimal value)
of R(D) over all minimal area van Kampen diagrams D for an edge circuit
w. These exist since it is not difficult to see that there are only finitely
many minimal area van Kampen diagrams for w up to the action of G. The
corresponding filling functions, the upper filling radius function R : N — N
and the lower filling radius function R : N — N, are defined by

R(n) := max{R(w): w is an edge-circuit in T’ with f(w) < n},
R(n) = max{R(w) : w is an edge-circuit in I with {(w) < n}.
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We remark that the functions R and R depend on the presentation, un-
like the other filling functions we discussed, which are invariants of Tietze
transformations up to the appropriate notion of equivalence.?

One has R(w) < R(w) < R(w) for all edge circuits w, and hence R(n) <
R(n) < R(n) for all n. Let M be the length of the longest relation of the
finite presentation P. A van Kampen diagram D over P satisfies R(D) <
MArea(D), since MArea(D) is an upper bound on the number of 1-cells
in a topological disc component of D. It follows that the radius of any
minimal area diagram for an edge circuit w is bounded by M Area(w); so
R(w) < MArea(w) and thus R(n) < M fy(n) for all n. On the other hand
our main theorem gives an inequality in the opposite direction: in §3 we
establish the following single exponential bound for the Dehn function in
terms of the upper filling radius function.

Theorem 1. Let P be a finite presentation. There is a constant C' > 1 so
that for all edge-circuits w in the Cayley Graph of P one has Area(w) <
{(w)CR®),

In Example 2.4 of §2 we use the Baumslag-Solitar group to show this
result is best possible in this generality.

Corollary 1. One has fo(n) < nCR®™ for suitable constant C > 1 and for
all n.

We define an AR-pair (f, g) for our finite presentation P (in analogy to the
AD-pairs introduced in [12]) to be an ordered pair of functions f,g: N — N
such that for every edge-circuit w there exists a van Kampen diagram D,
such that Area(D,) < f({(w)) and R(D,) < ¢g(¢(w)). Note that f is an
isoperimetric function and ¢ is an upper bound on the filling radius. As an
example of the terminology, one way to state the double exponential theorem
is that there is an AR-pair for P of the form (AB*™*" R(n)).

An example of an AR-pair for P is (fy, R) since for an edge circuit w we
can take D, to be minimal area diagram which has minimal radius amongst
all possible minimal area fillings. Applying Corollary 1 we therefore have:

2For a discussion of equivalence relations for filling functions and the behaviour of filling
functions on change of presentation see [12, Theorem 4] and [13, section 2]. Briefly, for
fo, Diam and FL the notion of equivalence involves affine change of variables in domain
and range plus addition of a linear function, whereas for R one just performs the affine
transformations and omits the addition of a linear function.



Corollary 2. There is a constant C > 1 so that (nCR™ R(n)) is an AR-
pair and (nC®™ R(n) +n) is an AD-pair for P.

The next result is a bound on the filling length function Ay : N — N.
We apply the main result (Theorem 1) of [12], which gives a bound on fill-
ing length in terms of a diameter bound multiplied by the logarithm of a
simultaneously realisable area bound, to the AD-pair of Corollary 2.

Corollary 3. There is a constant E > 0 so that ho(n) < E(R(n)+n)(R(n)+
n)) for all n.

The following theorem serves to estimate the growth of the function R
relative to the area.

Theorem 2. Suppose that f is an isoperimetric function for a finite presen-
tation P such that f(n)/n is monotone increasing for large n. Then there
exist constants A, B > 0 so that

f(n)logn

n

Alog(fo(n)/n) <R(n) < B +B

for all n > 0.

The left inequality is a restatement of Theorem 1. The right inequality

is addressed in §4, Corollary 4.4, and tells us in particular that
lim R(n)/ () = 0

with f as in the theorem. Its proof is itself based on a bound we prove in
Proposition 4.1 for the filling radius of a minimal area van Kampen diagram
in terms of area and valid for a general presentation.

Proposition 4.1 yields several corollaries. In Corollary 4.2 we show that
if P presents a hyperbolic group then there is a logarithmic bound on R.
Further we obtain a generalisation of a statement of Gromov for polynomial
isoperimetric functions f [15, p. 100] (verified for quadratic polynomials in
[18, p. 799] and for general polynomials of degree > 2 in [12, Lemma 2]):

Theorem 3. Suppose f is an isoperimetric function for the finite presenta-
tion P such that g(n) := f(n)/n satisfies g(2n) > 2g(n) for all n > 0. Then
there is a constant C' > 0 so that for alln > 1,

R < (1 g 120).
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In particular to obtain such a bound it is enough for g(n) to be superad-
ditive.

We gratefully acknowledge comments and suggestions by Martin Bridson.

2 Examples

2.1 For finitely generated groups, sublinearity of the filling radius function R
is a characterisation of hyperbolicity. That sublinearity of R implies hyper-
bolicity is Proposition 3.2.6 of [8]. (We gratefully acknowledge M. Kapovich
for also providing a proof of this fact.) Both proofs rely on the characteriza-
tion of hyperbolic groups as finitely generated groups all of whose asymptotic
cones are R-trees (see [8] and [15]).

The proof that hyperbolicity implies sublinear (indeed logarithmic) radius
R is straightforward (see Proposition 3.2.6 of [8] for example). However in
Corollary 4.2 we will actually prove more: if P presents a hyperbolic group
G, then there is a constant C' > 0 so that one has R(n) < C(1 + log, n).
Hence the logarithmic bound on filling radius is achieved on every minimal
area van Kampen diagram. This result is stated in Gromov [15, 5.C., page
100].

2.2 Another type of example is given by a presentation P which satisfies
a polynomial isoperimetric inequality of degree d > 2. In this case, it was
proved in [12, §5] (generalising the d = 2 case in [18]) that there is a positive
constant A so that R(n) < A n?"!. This result is a special case of Theorem
3.

2.3 The problem of calculating R(w) for a loop w is quite formidable, since it
requires some knowledge of all minimal area fillings of w. There is, however,
one case where this is easy. Suppose that P is aspherical and suppose that
there exists a van Kampen diagram D,, for w that imbeds in the Cayley 2-
complex X. Then it is the case that R(w) = R(D,,). This is a consequence of
what Gromov calls “Gersten’s lemma” in [3] 4.Cy: under the hypotheses that
P is aspherical and D,, imbeds in X, if ¢(D,,) denotes the integral cellular
2-chain of D,, in Cy(X,Z), then D, is determined by c¢(D,,).

Here is a proof of this lemma. It follows from the asphericity of P that
the 2-chain of D,, is determined by w. The 2-cells of D, are determined by
its 2-chain whereas the 1-dimensional portions of the van Kampen diagram
D,, are determined by w. Hence the image of D,, in X is determined. Since
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the map D,, — X is an imbedding, it follows that this map is uniquely
determined by a choice of base point in X.

We deduce that D, is the unique minimal area filling of w (and its
imbedding in X is unique up to left translation by group elements), whence

R(w) = R(D,,).

2.4 Let G be the mapping torus of an injective endomorphism ¢ of the finitely
generated free group F' = F(xy,29,...,2,) and let P = (z1,29,...,2,,1 |
tzit™' = ¢(x;); 1 < i < 7). Then a minimal area van Kampen diagram
D for an edge circuit w contains no annular ¢-corridors. Therefore the 2-
dimensional portion of D must consist entirely of ¢-corridors, each connecting
an instance of ¢ in w to an instance of ¢~!. There can be at most £(w)/2 such
corridors. A vertex on the path along one side of one of these corridors is a
distance at most M /2 from the path along the other side, where M is the
length of the longest relator in P. We deduce that R(n) < Mn/4.

A special case is the Baumslag-Solitar group, which has the aspherical
presentation (z,t | tot~! = 22). We find R is linearly bounded but the
area is exponential. In this example, R is actually bounded below by a
linear function. There are obvious imbedded van Kampen diagrams for the
null-homotopic words [t"zt~™, x]. By 2.3 these are the unique minimal area
fillings. Using some hyperbolic geometry one shows that these fillings have
depth at least n, so R has a linear upper bound and a (nonzero) linear lower
bound.?

2.5 In [4] M. R. Bridson gives a family .J(a, b) (where a, b are positive integers
with @ > b) and proves (in Proposition 7.2) that R(n) ~ n%/*. (See [13] for
the definition of ~-equivalence.)

3 A single exponential bound on Dehn func-
tions

We need a couple of definitions before we proceed to a proof of Theorem 1.

Star neighbourhoods. For a subcomplex K of D define Star(K) to be the

3There are hyperbolic groups G' among those occurring in example 2.4. For example,
when ¢ : F' — F'is an automorphism, G = F' x4 Z is a hyperbolic group iff ¢ is hyperbolic
in the sense of Gromov, by a theorem of P. Brinkmann [5]; in this case R is sublinear, by
2.1.



union of closed 2-cells meeting K. Define Star;(K) to be the i-th iterate of
the star operation for ¢ > 1; by convention Stary(K) = K.

Diamond moves. These can also be referred to as Dehn surgeries and are
introduced and discussed in [7]. A diamond move can be performed in a
van Kampen diagram D of a finitely presented group G = (A | R), when
there is an a € A*! such that the string aa™' can be found in the 1-skeleton
of D. In other words there are two distinct oriented edges e; and e; with the
same initial vertex v, with the same edge labels a; let v be the path of length
2 along e; in the direction towards v and then along e, in the direction away
from v; then along v one reads a~! followed by a.

The diamond move consists of the following. Cut the diagram along ~:
this introduces a hole with boundary label a~'aa~'a; we can remove this hole
by identifying pairs of adjacent edges in two possible ways - one (necessarily)
returns us the original diagram D; performing the other is a diamond move.

The diamond moves we will use in the proof of Theorem 1 are illustrated
in Figure 2. As with the examples pictured there, applying the diamond move
when the terminal vertices of the edges e; and e, are distinct produces a van
Kampen diagram D;. Further Area(D) = Area(D;). In the case where e;
and ey have the same terminal vertex v;, the two edges enclose a subdiagram
D'. Let S be the spherical 2-complex obtained from D' by identifying e; with
€s. The result of the diamond move is to produce a 2-complex which consists
of S attached at v; to the van Kampen diagram obtained by removing D’
from D and identifying e; with e,.

Remark 3.1. In a minimal area van Kampen diagram for a word w, if e; and
ey are edges in D with the same initial vertices and the same edge labels,
then their terminal vertices are different - otherwise we could remove the
subdiagram enclosed by e; and e; to produce a diagram of lower area.

This remark together with the comments on diamond moves above lead
us to:

Lemma 3.2. Let D be a minimal area van Kampen diagram for the word
w. Suppose Dy is a 2-complex resulting from applying a diamond move to
D. Then

1. Dy s itself a van Kampen diagram, and

2. Area(D) = Area(D,), whence Dy is also a minimal area van Kampen
diagram for w.



We come now to our main result.

Theorem 1. Let P be a finite presentation. There is a constant C' > 1 so
that for all edge-circuits w in the Cayley Graph of P one has Area(w) <
{(w)CRw),

Proof. Suppose D is a minimal area van Kampen diagram for an edge circuit
w. We use the Star operation to decompose D into annuli. Let N; :=
Star;(0D) C D. For i > 1 let ¢; be the inner boundary of N;, and let ¢
be the boundary of the closure of the interior of D (i.e. 9D without the
1-dimensional portions). For i > 1 let A; = N; \ NV;_1, so the inner boundary
of A; is ¢; and the outer boundary is ¢;_;. The A; constitute an annular
decomposition of D as depicted in Figure 1.

Co.

Figure 1: The annular decomposition of D.

Observe that D = 0D U Uiﬁz(zl") A;. Let M be the length of the longest
relator in P and L be four times the number of generators.
Our object is to produce D satisfying the inequalities

Area(A;) < L l(¢i), (1)
Ue;))/M < Area(A;), (2)
relating the area of A; (for ¢ > 1) to the lengths of its outer and inner

boundaries; for i > 2, these combine to give Area(A;) < LM Area(A; ;) and
hence for i > 1 we have Area(A;) < L'M*™'"(cy) < LM~ (w).



It will then follow that

=

(w)
Area(D) <> L(w)L(LM)"™" = {(w)L

=1

(LM)R®) — 1
LM -1

completing the proof of the theorem.

Now inequality (2) follows from the observation that each 1-cell of ¢; is
an edge of a 2-cell in A; and the total number of edges of 2-cells in A; is at
most M Area(A;).

Obtaining inequality (1) is less straightforward. There is no a priori
bound on the valence of a vertex v of ¢;_; in the closure of the interior of A;,
and hence on the number of 2-cells in the interior of A; that are incident with
v. However we use diamond moves to prove the following lemma, which says
that there is some minimal area diagram D for w for which such a bound
exists. It follows that (1) holds for D, and hence the theorem.

Lemma 3.3. There exists a minimal area van Kampen diagram D filling w
such that there is a uniform upper bound L on the valences of vertices of the
curves ¢; in the closure of the interior of c;.

Proof. Start with any minimal area van Kampen diagram diagram D’ for w.
We use diamond moves to transform D’ to a van Kampen diagram D for w
with the required properties. In the process we may increase the radius of the
diagram, but by Lemma 3.2 the area remains minimal. Thus R(D) < R(w).

Consider a topological disc component D; of D' and a boundary vertex
v of Dy. Let ey, e5 be distinct oriented edges in Dy with initial vertex v, and
with the same label. Then a diamond move is possible, but shall we do it?
The answer depends on the end points x, y respectively of the edges. Observe
that = # y by minimality of the area of D’ (Remark 3.1).

The rule is do the diamond move only if either

1. x and y are both in 9Dy, or
2. x and y are both in the interior of D;.

But we still have to decide in what order to do the surgeries.

These two types of diamond moves are illustrated in Figure 2. In case 1
the effect of the surgery is to increase the number of disc components, or,
better, to decrease the number of distinct vertices on the boundary (when
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Case 1. Case 2.

€1y e2 .
1vy e
x
Y 5D,
T ey D1
€1]e
v
v

Figure 2: Diamond moves.

e1, es have terminal vertices on dD;). In case 2 there is no change on the
boundary, but after surgery there is at least one fewer edge incident with
the boundary of a disc component. One defines the induction parameter to
be the ordered pair (a,b) ordered lexicographically, where a is the number
of vertices on the boundary of D’ and b is the number of edges in which are
in topological disc components of D' which are incident with the boundary.
Note that each of the two types of allowed diamond moves decreases the
induction parameter.

Let L be twice the number of vertices in J. H. C. Whitehead’s star graph
([17, p. 61]) of the finite presentation® P = (A | R), that is, L := 4|A].

4This is where the group theory enters, or, more precisely, where the finite presentation
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Suppose that the induction parameter cannot be reduced by the two types
of diamond moves allowed, and let v be a vertex of dD;, a disc component
of D'. If there were three oriented edges e, es, €3 in Dy, each incident at v,
and having the same label a, then two of them would either both end in the
interior or both end in the boundary of D;. In either case one of the allowed
diamond moves is possible, and the induction parameter can be reduced,
contrary to assumption. It follows that each label a can occur at most twice
among the oriented edges in Dy and incident at v. The number of labels is
the same as the number of edges of the star graph, namely 2|A|. Tt follows
that the number of edges in D; and incident at v is at most 4| A| = L.

After having reduced the induction parameter to a minimum by the al-
lowed types of diamond moves, we achieve a minimal area van Kampen dia-
gram D] for w, so that the number of corners of 2-cells incident with 0D is
< L-£(0D}). Then one takes the star neighbourhood N’ of Dj in D) and
considers the inner boundary of N’ and repeats the process with w replaced
by the inner boundary label(s) and D’ replaced by their interiors in D}. Suc-
cessively repeating this procedure (at most R(w) times) we eventually arrive
at a diagram D with the properties we require.

This completes the proof of the lemma, and the proof of the theorem is
complete. O

4 Bounding upper filling radius in terms of
isoperimetric functions.

In §1 we gave the crude estimate on the radius of a van Kampen diagram D
over a finite presentation P:

R(D) < MArea(D),
where M is the length of the longest relation of P. From this it follows that
R(n) < R(n) < Mfy(n).

The following proposition provides an improved bound on the filling ra-
dius in terms of the Dehn function; examples 2.1 and 2.2 of §2 are special
cases. We use [z] to denote the smallest integer bounding the real number

is used.
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x from above. Throughout this section isoperimetric functions are assumed
to have domain [0, 00).

Proposition 4.1. Let P be a finite presentation and M the length of its
longest relation. Then for all minimal area van Kampen diagrams D for
edge-circuits w of length at most n (with n > 1) one has

o[ 4] [ - [ )

where s = [log, n].

It follows that R(D) < M? (f[] + s+ Z fo /Zf?) :

Proof. We prove the proposition by induction on n.

Let w be an edge circuit of length at most n and let D be a minimal
area van Kampen diagram filling w. If n =1 then R(D) < M fy(1) and the
proposition holds.

For the induction step we employ the annular decomposition of D used
in the proof of Theorem 1. Recall that for all # > 1 we established the
inequality:

(ci)/M

i) =
It follows that there exists m < M [fo(/Q —‘ such that ¢(c,,) < n/2, for oth-
n

Area(A

erwise

R(D)

= fo(n)
Area(D) = Z Area(4;) > Z 0e;) /M > [ 0 —‘n/Q > fo(n).

p— n/2

Now for such m we find that for any vertex v € N,, (recall from the
proof of Theorem 1 that N; = Star;(0D), so v is not in the interiors of the
subdiagrams of D enclosed by ¢,,) we have

—~

d(v,0D) < M? H“L(/ﬂ

Now ¢, is a union ¢, = (¢, ¢, of simple closed curves ¢}, any two of which
meet at no more than one vertex. These ¢! each have length at most n/2 > 1
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and enclose a minimal area van Kampen diagrams D! . By induction, for all
i € I, the diagram D! satisfies

gy < o (| £52 |« (20 4 [ 2R+ i)
where s = [log,(n/2)] = [log,n] — 1. Now

R(D) < M? [%W + max R(D!).

The result therefore follows. O

A first corollary is that hyperbolic groups have a logarithmic bound on
their upper filling length R.

Corollary 4.2. Let P be a finite presentation for a hyperbolic group G.
Then there exists C' > 0 such that for n > 1,

R(n) <R(n) < C(1+1logyn) .

Proof. In [14] Gromov characterises hyperbolic groups as the finitely pre-
sented groups that satisfy a linear isoperimetric function. Take K > 0 such
that n — Kn is an isoperimetric function for P. Applying this to the bound
of Proposition 4.1 we get R(n) < M2 (fo(1) + (1 4+ 2K) (1 +log, n)). 0O

Remark 4.3. The significance of this result is that all minimal area van
Kampen fillings in a presentation of a hyperbolic group satisfy a uniform
logarithmic bound on their radius. Special constructions of diagrams with
logarithmic bounds on their radius are given in [20].

The next corollary tells us that any reasonably well-behaved upper bound
on the area is a gross overestimate of R, so the theorem and proposition give
better estimates on R from below and from above, respectively, than the
naive area estimate.

Corollary 4.4. Suppose that f is an isoperimetric function for our finite
presentation P and that f(n)/n is monotone increasing for all n > N (for
some fired N > 0). Then there exists C > 0 such that

R(n) < C (1 + @) (1 + logyn)
for all n > 1. So in particular lim,_,o, R(n)/f(n) = 0.
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Proof. We use 1 + 2" as a bound on all but finitely many of the [log, 1|

n
terms in the summation in Proposition 4.1. This gives

/ (")> [log, n] + C’)

n
for some constant C' > 0. I

R(n) < M? (fo(l) + <1 + 2

Many familiar functions, like z", » > 2, and exp z, satisfy the hypothesis
of Corollary 4.4, and indeed satisfy the hypothesis of our final corollary:

Corollary 4.5. Suppose f is an isoperimetric function for P and that f(n/2') <
f(n)/2% for allm >0 andi=0,1,...,[logyn] —1. Then there exists C > 0
such that for allmn > 1,
R(n) <C <1+log2n+ M) :

n
Proof. This bound is obtained by applying f(n/2%) < f(n)/2% to each term
in the summation in Proposition 4.1, which are then seen to be bounded by
terms in a geometric series. U

Corollaries 4.2 and 4.5 generalize results of Gromov [15] p. 100, Papasoglu
[18] p. 799, and [12] Proposition 3.

The hypothesis of Corollary 4.5 appears somewhat mystifying. In Theo-
rem 3 we will give a couple of stronger but more transparent hypotheses to
clarify the result and thereby to enhance its utility (we hope). First we recall
a definition:

Definition. If g is a nonnegative real valued function on N, then g is called
superadditive if g(m+n) > g(m)+ g(n) for all m,n > 0. Note that superad-
ditive functions are increasing. Superadditive functions have been considered
previously in relation to isoperimetric functions in [16] and [2] (in the latter
they are called “subnegative”).

Theorem 3. Suppose f is an isoperimetric function for the finite presenta-
tion P such that g(n) := f(n)/n satisfies g(2n) > 2g(n) for all n > 0. Then
there is a constant C' > 0 so that for alln > 1,

R < (1 g+ 120).

In particular to obtain such a bound it is enough for g(n) to be superad-
ditive.
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Proof. By Corollary 4.5 it suffices to show that f(n/2') < f(n)/2% for all
positive numbers n, 7 with 2¢ < n. The condition g(2n) > 2¢(n) for all n > 0
is the same as f(2n) > 4f(n) for all n > 0, that is, f(n/2) < f(n)/4 for all
n > 0. An induction on i then shows that f(n/2) < f(n)/2% as required. [

5 Comparing R with R and R

Open problem. Given a finite presentation P, bound R in terms of R.
The double exponential theorem states that fo(n) < AB™™™ for suitable
constants A, B > 1. Since R(n) < M fy(n), it follows that R is bounded by
a double exponential function of R. This seems wildly extravagant, and one
might hope for a single exponential bound.

Example.” Here is an example (due to M. R. Bridson [3]) of a finite pre-
sentation for which the radius R differs exponentially (at least on an infinite
subset of N) from the both the upper radius R and the lower radius R.

Let P = (A | R) be the aspherical presentation

(x,y,s,t|[z,y] =1, tet ! = 2%, sys ! = y2>.

Define a family of edge circuits w,, := [t"zt™", s"ys™"]. Let D,, be the obvious
van Kampen diagram D,, filling w,: consisting of two triangular diagrams
for the edge circuits "ot "2 ~2" and two triangular diagrams for s"ys "y=2",
surrounding a square diagram for the circuit [22",y*"] (see Figure 3). The
diagram D,, imbeds in the Cayley 2-complex, thus by Gersten’s Lemma (see
Example 2.3) is the unique minimal area diagram for w,. It follows that
R(w,) = R(w,) = R(D,) > 2"7!, that is, the upper radius R(n) and the
lower radius R(n) are at least exponential for n € {8m + 4 : m € N}.

On the other hand one can make use a method of shortcuts (independently
due to both the first author and M. R. Bridson) to provide a linear bound
on the filling radius R. In the instance of the diagram D,,, shortcuts are
inserted by cutting along each of the 2" — 1 lines labelled 22" within the
square portion of D, and then inserting two copies of the minimal area
diagram T, for t"z¢ "™ = 2" in the subpresentation (x,t | tzt ' = 22), where
the two copies have t"2¢™" in common on their boundaries; the two segments
of the boundaries labelled 22" are identified with the two cuts. The blown-up

5We are grateful to the referee for suggesting we include consideration of R in this
example.
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Figure 3: The diagram D), for w, = [t"xt™™", s"ys "] using shortcuts.

diagram D!, (illustrated in Figure 3) has radius linearly bounded in n; one
sees this because it is a linear distance from any vertex to one of the lines
labelled t"xt™", and a linear distance from there to the boundary.

The diagram D,, has area 4(2"—1)+22"; inserting the shortcuts to produce
D! increases the area by 2(2" — 1)2. So D], is far from having minimal area.

More generally we can prove
Proposition 5.1. There is a linear bound on the filling radius R of
P={(x,y,st]|[x,y] =1, tat™" =22, sys™' =y?).

Proof. Given any edge-circuit w in the Cayley graph of P we use shortcuts
to produce a van Kampen diagram D' for w with radius bounded linearly in
n = {(w). We need a couple of preliminary notions.

17



Call an edge-circuit wy standard if it is reduced (i.e. is without backtrack-
ing) and every segment w; of wy consisting entirely of x,y,z7", y~"s is of
the form z%y® for some a,b € Z.

Consideration of the s and t-corridors in any van Kampen diagram for
an edge-circuit wy leads us to:

Lemma 5.2. Suppose that wqy is a nonempty standard edge-circuit. Then
wq contains a segment u of one of the following forms

txkt’l, t’lxkt, syks’l, s’lyks,

for some k € Z — {0}.

Given such a standard edge-circuit wg, we can eliminate an s or t-pair —
that is, say u = tz¥¢~!, then v = 2?* in G; we replace u in wy by #?* (and
similarly for the other 3 possibilities) to produce an edge-circuit wyj. This
serves as a step in the process of constructing a van Kampen diagram for wy:
producing an s or t-corridor with &k 2-cells.

So let us now use these ideas to construct a van Kampen diagram D for
our arbitrary edge-circuit w in the Cayley graph of P. First we repeatedly
apply the relation [z,y] = 1 together with free reduction to express w in
standard form wy, a process which does not increase the length of the word.
This produces an annular diagram with outer boundary circuit w and inner
boundary circuit wy. The distance from a vertex on the inner boundary
circuit to the outer is at most n.

Now eliminate an s or ¢-pair from wy to produce wj. Next convert wj, into
an edge-circuit w; in standard form. This involves re-expressing a segment of
wp of the form % yP1 2¥ %292 or 291y "1 yF1%2yb2 in the form x%y°. The minimal
area diagram (over the subpresentation (z,y | [z, y])) for this transformation
consists of a |b1| X |k + aa| or |by + k| X |ag| rectangle (respectively) together
with 1-dimensional portions corresponding to free reduction.

We can now repeat the process: eliminate an s or t-pair from w; to
produce w} and then convert to standard form giving w,, and so on. There
are less than n/2 pairs s,s ! and ¢,¢7! in w, so for some m < n/2 we find
Wy, is the empty word and the construction of D is complete.

Lemma 5.3. The length of the sides of the rectangles in the construction of
D is bounded by 2°".
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Proof. To obtain this (crude) bound it is enough to control max{L; : i =
0,1,...} where

+k

L; := max{k : ¥ or y™ is a segment of w;}.

Now L;.; < 4L; because when a segment z%1y% z2kz%29%2 or g1 qb1q2kyezyb2
in w! is re-expressed as 2%y’ to produce the edge-circuit w; ; we find

jal; [b] < 2[k| + max{[ay | + |ag, [by] + [b2]}

with |a1|, |asl, [b1], [b2|, |[k| < L;. So each L; is bounded by 4'L, < 4"2L, <
2" .1 < 227 Hence the bound stated in the lemma.

In the construction of D, formation of a rectangle follows the construction
of an s or t-corridor. So the boundary of each rectangle meets the side of an s
or t-corridor. To produce D' we will insert shortcuts into all of the rectangles
and also along the sides of all s and ¢-corridors. Then it will be possible to
proceed from any vertex in D' to the boundary within a linearly bounded
distance.

So let us now describe how to create shortcuts. Recall that the short-
cuts in the diagrams D) of Figure 3 were provided by two copies of the
diagram T),, the minimal area diagram for the edge-circuit t"zt "2 ~2" over
the subpresentation (x,t¢ | tzt~' = ). In the more general setting we will
use subdiagrams T, of T,,, (defined for k =1,2,3,...,2™): obtain T, by
reading along the 22" boundary segment of T}, until z* is reached and then
cut along a shortest path to the t"xt™™ boundary segment; the resulting
diagram has boundary circuit labelled z*u with ¢(u) < 3m + 1, and further
the distance from any vertex of the z* segment to the u segment is at most
2m. Let T,‘;,k denote the diagram with boundary circuit z¥z=* obtained by
gluing together two copies of T}, ; along the segment u. Then the distance
in T}, between any two vertices is at most 2 - 2m + (3m + 1) = 7Tm + 1.

Define an’k to be the diagram constructed analogously over the subpre-
sentation (y, s | sys™' = y?).

We insert shortcuts into all the rectangles of D: if [*, y*'] is the boundary
circuit of such a rectangle then |k, |k'| < 22" by Lemma 5.3; cut along each
of the |k'| +1 paths labelled 2", and glue in copies of Tgn"k‘; further cut along
the two sides of the rectangle labelled y* and glue in copies of Sgn"k,‘. The

distance between any two vertices in a rectangle after shortcuts have been
added is at most 3(7-2n + 1) = 42n + 3.
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A path along the side of an s or t-corridor in D is labelled by z* or y*
for some k with |k| < 22". Cut along all of these paths and insert copies of
T22n,\k\ or Sgn"k‘ respectively.

Let D' be the diagram for w obtained from D by inserting these shortcuts.

We now claim the bound

R(D') < (42n+3)+ (4n+1)+n=57Tn+4

on the radius of D' in terms of n = ¢(w). From any vertex of one of the
rectangles one can reach an s or t-corridor within a distance 42n + 3 (as
calculated above). Then one can reach the end of the corridor (and hence
the edge-circuit wg) in a further distance 14n 4 1. Finally one arrives at the
boundary circuit w from wy within a distance of at most n. O
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