
Filling radii of �nitely presented groupsS. M. Gersten� and T. R. RileyyAbstra
tThe �lling radius fun
tion R of Gromov measures the minimalradii of van Kampen diagrams �lling edge-
ir
uits w in the Cayley 2-
omplex of a �nite presentation P. It is known that the Dehn fun
tion
an be bounded above by a double exponential in R and the lengthof the loop, and it is an open question whether a single exponentialbound suÆ
es. We de�ne the upper �lling radius R(w) of w to bethe maximal radius of minimal area �llings of w and let R be the
orresponding �lling fun
tion, so R(n) is the maximum of R(w) over alledge-
ir
uits w of length at most n. We show that the Dehn fun
tionis bounded above by a single exponential in R and the length of theloop. We give an example of a �nite presentation P where R is linearlybounded but R grows exponentially.1991 Mathemati
s Subje
t Classi�
ation: 20F05, 20F32,57M071 Introdu
tion and statement of resultsGromov de�ned a number of �lling invariants for �nitely presented groups[15, Ch. 5℄ in terms of the geometry of van Kampen diagrams. Two ofthe most important are the �lling radius R and the minimal isoperimetri
fun
tion f0 (also known as the Dehn fun
tion [11℄), whose de�nitions we nowre
all.Let P be a �nite presentation for the group G. Let X be the Cayley 2-
omplex, so X is the universal 
over of the 2-
omplex 
anoni
ally asso
iatedto P (namely, one vertex, one edge for ea
h generator, and one 2-
ell for�Partially supported by NSF grant DMS-9800158.ySupported by EPSRC Award No. 98001683 and Corpus Christi College, Oxford.1



ea
h de�ning relator � whose atta
hing map spells out the 
y
li
 word �in the 1-skeleton); the 1-skeleton X(1) is the Cayley graph �. Let w be anedge-
ir
uit of � and let D be a van Kampen diagram1 �lling w [17℄, so Dis the domain of a 
ellular map D ! X where D is a 1-
onne
ted 
ellularplanar 2-
omplex su
h that w (read anti
lo
kwise from the base point ?) isthe asso
iated boundary 
ir
uit (i.e. w is the atta
hing map of the single2-
ell at in�nity). The 1-skeleton D(1) of D is equipped with a path metri
so that ea
h edge is assigned length 1. Let `(w) denote the length of theboundary word w. We will use four measurements one 
an make on D:� Area(D) is the area, that is, the number of 2-
ells in D,� R(D) is the radius, that is, the maximum distan
e of a vertex to theboundary in the path metri
 on D(1),� Diam(D) is the diameter, that is, the maximum distan
e (again in thepath metri
 on D(1)) of a vertex to the base point ? of D, (note thatdiameter is 
losely related to radius: R(D) � Diam(D) � R(D)+`(w)),� FL(D) is the �lling length, that is, the minimal bound on the lengthof boundary 
ir
uits in a 
omplete shelling of D (i.e. the 
ombinatorialnotion of a null-homotopy of w to ? a
ross D). See [12℄ for a detaileddis
ussion of �lling length.We de�ne Area(w) (resp. R(w), Diam(w), FL(w)) to be the minimumvalue of Area(D) (resp. R(D), Diam(D), FL(D)), where D ranges over vanKampen diagrams �lling w.The four measurements on diagrams lead to de�nitions of �lling fun
-tions for the presentation P. Perhaps the most important is the minimalisoperimetri
 fun
tion (a.k.a. the Dehn fun
tion) f0 : N ! N , de�ned byf0(n) = maxfArea(w) : w is an edge-
ir
uit in � with `(w) � ng;this takes �nite values sin
e there are only �nitely many orbits of su
h w upto the G-a
tion on �. More generally, an upper bound f : N ! R for theDehn fun
tion f0 is 
alled an isoperimetri
 fun
tion for P. The notion in1It is 
onvenient to think of D as a tree-like arrangement of topologi
al dis
s where twodis
s have at most one vertex in 
ommon. Some 
are is needed in dis
ussing van Kampendiagrams be
ause of the presen
e of 1-dimensional portions, namely, edges whi
h are notin
ident with any 2-
ell of D. 2



group theory is due to Gromov [14℄ in analogy with the 
orresponding notionin di�erential geometry. It is 
onvenient to extend an isoperimetri
 fun
tionf to the nonnegative reals by de�ning f(r) := f([r℄), where [r℄ denotes, asusual, the integer part of the real number r.Analogously one 
an de�ne �lling fun
tions for R, Diam and FL. So inparti
ular there is the �lling radius fun
tion R : N ! N , given byR(n) = maxfR(w) : w is an edge-
ir
uit in � with `(w) � ng:D. E. Cohen [6℄ �rst proved the double exponential theorem, whi
h statesthat there are 
onstants A;B > 1 so that f0(n) � ABR(n)+n for all n, bymaking use of an analysis of the 
omplexity of the Nielsen redu
tion pro
essdue to Avenhaus and Madlener [1℄. The �rst author gave a geometri
al proofof this result in [10℄; his argument has been generalized in several di�erentdire
tions, 
f. [9℄, [19℄.As soon as the result was proved the question arose whether in fa
t asingle exponential bound suÆ
ed; this is dis
ussed by Gromov in [15, 5.C.℄.The problem has remained open for almost a de
ade. One reason it is adiÆ
ult problem is that minimum area and minimum radius van Kampendiagrams may be 
ompletely di�erent, even for aspheri
al presentations. Wegive an example of this phenomenon in x5 for the presentationhx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:This suggests studying relations between area and radius in the same dia-gram. This is the program we initiated in [12℄, where we studied relationsbetween area, diameter, and �lling length on the same 
lass of diagrams.We 
ontinue this program in this paper in relating area and �lling radiusin the 
lass of minimal area diagrams; this theme is also pursued in [13℄in 
al
ulating isoperimetri
 fun
tions in kernels of homomorphisms to freegroups.We de�ne R(w) (resp. R(w)) be the maximum value (resp. minimal value)of R(D) over all minimal area van Kampen diagrams D for an edge 
ir
uitw. These exist sin
e it is not diÆ
ult to see that there are only �nitelymany minimal area van Kampen diagrams for w up to the a
tion of G. The
orresponding �lling fun
tions, the upper �lling radius fun
tion R : N ! Nand the lower �lling radius fun
tion R : N ! N , are de�ned byR(n) := maxfR(w) : w is an edge-
ir
uit in � with `(w) � ng;R(n) := maxfR(w) : w is an edge-
ir
uit in � with `(w) � ng:3



We remark that the fun
tions R and R depend on the presentation, un-like the other �lling fun
tions we dis
ussed, whi
h are invariants of Tietzetransformations up to the appropriate notion of equivalen
e.2One has R(w) � R(w) � R(w) for all edge 
ir
uits w, and hen
e R(n) �R(n) � R(n) for all n. Let M be the length of the longest relation of the�nite presentation P. A van Kampen diagram D over P satis�es R(D) �MArea(D), sin
e MArea(D) is an upper bound on the number of 1-
ellsin a topologi
al dis
 
omponent of D. It follows that the radius of anyminimal area diagram for an edge 
ir
uit w is bounded by MArea(w); soR(w) � MArea(w) and thus R(n) � Mf0(n) for all n. On the other handour main theorem gives an inequality in the opposite dire
tion: in x3 weestablish the following single exponential bound for the Dehn fun
tion interms of the upper �lling radius fun
tion.Theorem 1. Let P be a �nite presentation. There is a 
onstant C > 1 sothat for all edge-
ir
uits w in the Cayley Graph of P one has Area(w) �`(w)CR(w).In Example 2.4 of x2 we use the Baumslag-Solitar group to show thisresult is best possible in this generality.Corollary 1. One has f0(n) � nCR(n) for suitable 
onstant C > 1 and forall n.We de�ne an AR-pair (f; g) for our �nite presentation P (in analogy to theAD-pairs introdu
ed in [12℄) to be an ordered pair of fun
tions f; g : N ! Nsu
h that for every edge-
ir
uit w there exists a van Kampen diagram Dwsu
h that Area(Dw) � f(`(w)) and R(Dw) � g(`(w)). Note that f is anisoperimetri
 fun
tion and g is an upper bound on the �lling radius. As anexample of the terminology, one way to state the double exponential theoremis that there is an AR-pair for P of the form (ABR(n)+n ;R(n)).An example of an AR-pair for P is (f0;R) sin
e for an edge 
ir
uit w we
an take Dw to be minimal area diagram whi
h has minimal radius amongstall possible minimal area �llings. Applying Corollary 1 we therefore have:2For a dis
ussion of equivalen
e relations for �lling fun
tions and the behaviour of �llingfun
tions on 
hange of presentation see [12, Theorem 4℄ and [13, se
tion 2℄. Brie
y, forf0, Diam and FL the notion of equivalen
e involves aÆne 
hange of variables in domainand range plus addition of a linear fun
tion, whereas for R one just performs the aÆnetransformations and omits the addition of a linear fun
tion.4



Corollary 2. There is a 
onstant C > 1 so that (nCR(n);R(n)) is an AR-pair and (nCR(n);R(n) + n) is an AD-pair for P.The next result is a bound on the �lling length fun
tion h0 : N ! N .We apply the main result (Theorem 1) of [12℄, whi
h gives a bound on �ll-ing length in terms of a diameter bound multiplied by the logarithm of asimultaneously realisable area bound, to the AD-pair of Corollary 2.Corollary 3. There is a 
onstant E > 0 so that h0(n) � E(R(n)+n)(R(n)+n)) for all n.The following theorem serves to estimate the growth of the fun
tion Rrelative to the area.Theorem 2. Suppose that f is an isoperimetri
 fun
tion for a �nite presen-tation P su
h that f(n)=n is monotone in
reasing for large n. Then thereexist 
onstants A;B > 0 so thatA log(f0(n)=n) � R(n) � Bf(n) lognn +Bfor all n > 0.The left inequality is a restatement of Theorem 1. The right inequalityis addressed in x4, Corollary 4.4, and tells us in parti
ular thatlimn!1R(n)=f(n) = 0with f as in the theorem. Its proof is itself based on a bound we prove inProposition 4.1 for the �lling radius of a minimal area van Kampen diagramin terms of area and valid for a general presentation.Proposition 4.1 yields several 
orollaries. In Corollary 4.2 we show thatif P presents a hyperboli
 group then there is a logarithmi
 bound on R.Further we obtain a generalisation of a statement of Gromov for polynomialisoperimetri
 fun
tions f [15, p. 100℄ (veri�ed for quadrati
 polynomials in[18, p. 799℄ and for general polynomials of degree � 2 in [12, Lemma 2℄):Theorem 3. Suppose f is an isoperimetri
 fun
tion for the �nite presenta-tion P su
h that g(n) := f(n)=n satis�es g(2n) � 2g(n) for all n > 0. Thenthere is a 
onstant C > 0 so that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :5



In parti
ular to obtain su
h a bound it is enough for g(n) to be superad-ditive.We gratefully a
knowledge 
omments and suggestions by Martin Bridson.2 Examples2.1 For �nitely generated groups, sublinearity of the �lling radius fun
tion Ris a 
hara
terisation of hyperboli
ity. That sublinearity of R implies hyper-boli
ity is Proposition 3.2.6 of [8℄. (We gratefully a
knowledge M. Kapovi
hfor also providing a proof of this fa
t.) Both proofs rely on the 
hara
teriza-tion of hyperboli
 groups as �nitely generated groups all of whose asymptoti

ones are R-trees (see [8℄ and [15℄).The proof that hyperboli
ity implies sublinear (indeed logarithmi
) radiusR is straightforward (see Proposition 3.2.6 of [8℄ for example). However inCorollary 4.2 we will a
tually prove more: if P presents a hyperboli
 groupG, then there is a 
onstant C > 0 so that one has R(n) � C(1 + log2 n).Hen
e the logarithmi
 bound on �lling radius is a
hieved on every minimalarea van Kampen diagram. This result is stated in Gromov [15, 5.C., page100℄.2.2 Another type of example is given by a presentation P whi
h satis�esa polynomial isoperimetri
 inequality of degree d � 2. In this 
ase, it wasproved in [12, x5℄ (generalising the d = 2 
ase in [18℄) that there is a positive
onstant A so that R(n) � A nd�1. This result is a spe
ial 
ase of Theorem3.2.3 The problem of 
al
ulating R(w) for a loop w is quite formidable, sin
e itrequires some knowledge of all minimal area �llings of w. There is, however,one 
ase where this is easy. Suppose that P is aspheri
al and suppose thatthere exists a van Kampen diagram Dw for w that imbeds in the Cayley 2-
omplex X. Then it is the 
ase that R(w) = R(Dw). This is a 
onsequen
e ofwhat Gromov 
alls \Gersten's lemma" in [3℄ 4.C2: under the hypotheses thatP is aspheri
al and Dw imbeds in X, if 
(Dw) denotes the integral 
ellular2-
hain of Dw in C2(X;Z), then Dw is determined by 
(Dw).Here is a proof of this lemma. It follows from the aspheri
ity of P thatthe 2-
hain of Dw is determined by w. The 2-
ells of Dw are determined byits 2-
hain whereas the 1-dimensional portions of the van Kampen diagramDw are determined by w. Hen
e the image of Dw in X is determined. Sin
e6



the map Dw ! X is an imbedding, it follows that this map is uniquelydetermined by a 
hoi
e of base point in X.We dedu
e that Dw is the unique minimal area �lling of w (and itsimbedding in X is unique up to left translation by group elements), when
eR(w) = R(Dw).2.4 Let G be the mapping torus of an inje
tive endomorphism � of the �nitelygenerated free group F = F (x1; x2; : : : ; xr) and let P = hx1; x2; : : : ; xr; t jtxit�1 = �(xi); 1 � i � ri. Then a minimal area van Kampen diagramD for an edge 
ir
uit w 
ontains no annular t-
orridors. Therefore the 2-dimensional portion of D must 
onsist entirely of t-
orridors, ea
h 
onne
tingan instan
e of t in w to an instan
e of t�1. There 
an be at most `(w)=2 su
h
orridors. A vertex on the path along one side of one of these 
orridors is adistan
e at most M=2 from the path along the other side, where M is thelength of the longest relator in P. We dedu
e that R(n) �Mn=4.A spe
ial 
ase is the Baumslag-Solitar group, whi
h has the aspheri
alpresentation hx; t j txt�1 = x2i. We �nd R is linearly bounded but thearea is exponential. In this example, R is a
tually bounded below by alinear fun
tion. There are obvious imbedded van Kampen diagrams for thenull-homotopi
 words [tnxt�n; x℄. By 2.3 these are the unique minimal area�llings. Using some hyperboli
 geometry one shows that these �llings havedepth at least n, so R has a linear upper bound and a (nonzero) linear lowerbound.32.5 In [4℄ M. R. Bridson gives a family J(a; b) (where a; b are positive integerswith a � b) and proves (in Proposition 7.2) that R(n) ' na=b. (See [13℄ forthe de�nition of '-equivalen
e.)3 A single exponential bound on Dehn fun
-tionsWe need a 
ouple of de�nitions before we pro
eed to a proof of Theorem 1.Star neighbourhoods. For a sub
omplex K of D de�ne Star(K) to be the3There are hyperboli
 groups G among those o

urring in example 2.4 . For example,when � : F ! F is an automorphism, G = F o�Z is a hyperboli
 group i� � is hyperboli
in the sense of Gromov, by a theorem of P. Brinkmann [5℄; in this 
ase R is sublinear, by2.1. 7



union of 
losed 2-
ells meeting K. De�ne Stari(K) to be the i-th iterate ofthe star operation for i � 1; by 
onvention Star0(K) = K.Diamond moves. These 
an also be referred to as Dehn surgeries and areintrodu
ed and dis
ussed in [7℄. A diamond move 
an be performed in avan Kampen diagram D of a �nitely presented group G = hA j Ri, whenthere is an a 2 A�1 su
h that the string aa�1 
an be found in the 1-skeletonof D. In other words there are two distin
t oriented edges e1 and e2 with thesame initial vertex v, with the same edge labels a; let 
 be the path of length2 along e1 in the dire
tion towards v and then along e2 in the dire
tion awayfrom v; then along 
 one reads a�1 followed by a.The diamond move 
onsists of the following. Cut the diagram along 
:this introdu
es a hole with boundary label a�1aa�1a; we 
an remove this holeby identifying pairs of adja
ent edges in two possible ways - one (ne
essarily)returns us the original diagram D; performing the other is a diamond move.The diamond moves we will use in the proof of Theorem 1 are illustratedin Figure 2. As with the examples pi
tured there, applying the diamond movewhen the terminal verti
es of the edges e1 and e2 are distin
t produ
es a vanKampen diagram D1. Further Area(D) = Area(D1). In the 
ase where e1and e2 have the same terminal vertex vt, the two edges en
lose a subdiagramD0. Let S be the spheri
al 2-
omplex obtained fromD0 by identifying e1 withe2. The result of the diamond move is to produ
e a 2-
omplex whi
h 
onsistsof S atta
hed at vt to the van Kampen diagram obtained by removing D0from D and identifying e1 with e2.Remark 3.1. In a minimal area van Kampen diagram for a word w, if e1 ande2 are edges in D with the same initial verti
es and the same edge labels,then their terminal verti
es are di�erent - otherwise we 
ould remove thesubdiagram en
losed by e1 and e2 to produ
e a diagram of lower area.This remark together with the 
omments on diamond moves above leadus to:Lemma 3.2. Let D be a minimal area van Kampen diagram for the wordw. Suppose D1 is a 2-
omplex resulting from applying a diamond move toD. Then1. D1 is itself a van Kampen diagram, and2. Area(D) = Area(D1), when
e D1 is also a minimal area van Kampendiagram for w. 8



We 
ome now to our main result.Theorem 1. Let P be a �nite presentation. There is a 
onstant C > 1 sothat for all edge-
ir
uits w in the Cayley Graph of P one has Area(w) �`(w)CR(w).Proof. Suppose D is a minimal area van Kampen diagram for an edge 
ir
uitw. We use the Star operation to de
ompose D into annuli. Let Ni :=Stari(�D) � D. For i � 1 let 
i be the inner boundary of Ni, and let 
0be the boundary of the 
losure of the interior of D (i.e. �D without the1-dimensional portions). For i � 1 let �i = Ni nNi�1, so the inner boundaryof �i is 
i and the outer boundary is 
i�1. The �i 
onstitute an annularde
omposition of D as depi
ted in Figure 1.

Figure 1: The annular de
omposition of D.Observe that D = �D [ SR(w)i=1 �i. Let M be the length of the longestrelator in P and L be four times the number of generators.Our obje
t is to produ
e D satisfying the inequalitiesArea(�i) � L `(
i�1); (1)`(
i)=M � Area(�i); (2)relating the area of �i (for i � 1) to the lengths of its outer and innerboundaries; for i � 2, these 
ombine to give Area(�i) � LMArea(�i�1) andhen
e for i � 1 we have Area(�i) � LiM i�1`(
0) � LiM i�1`(w).9



It will then follow thatArea(D) � R(w)Xi=1 `(w)L(LM)i�1 = `(w)L(LM)R(w) � 1LM � 1
ompleting the proof of the theorem.Now inequality (2) follows from the observation that ea
h 1-
ell of 
i isan edge of a 2-
ell in �i and the total number of edges of 2-
ells in �i is atmost MArea(�i).Obtaining inequality (1) is less straightforward. There is no a prioribound on the valen
e of a vertex v of 
i�1 in the 
losure of the interior of �i,and hen
e on the number of 2-
ells in the interior of �i that are in
ident withv. However we use diamond moves to prove the following lemma, whi
h saysthat there is some minimal area diagram D for w for whi
h su
h a boundexists. It follows that (1) holds for D, and hen
e the theorem.Lemma 3.3. There exists a minimal area van Kampen diagram D �lling wsu
h that there is a uniform upper bound L on the valen
es of verti
es of the
urves 
i in the 
losure of the interior of 
i.Proof. Start with any minimal area van Kampen diagram diagram D0 for w.We use diamond moves to transform D0 to a van Kampen diagram D for wwith the required properties. In the pro
ess we may in
rease the radius of thediagram, but by Lemma 3.2 the area remains minimal. Thus R(D) � R(w).Consider a topologi
al dis
 
omponent D1 of D0 and a boundary vertexv of D1. Let e1; e2 be distin
t oriented edges in D1 with initial vertex v, andwith the same label. Then a diamond move is possible, but shall we do it?The answer depends on the end points x; y respe
tively of the edges. Observethat x 6= y by minimality of the area of D0 (Remark 3.1).The rule is do the diamond move only if either1. x and y are both in �D1, or2. x and y are both in the interior of D1.But we still have to de
ide in what order to do the surgeries.These two types of diamond moves are illustrated in Figure 2. In 
ase 1the e�e
t of the surgery is to in
rease the number of dis
 
omponents, or,better, to de
rease the number of distin
t verti
es on the boundary (when10



Figure 2: Diamond moves.e1; e2 have terminal verti
es on �D1). In 
ase 2 there is no 
hange on theboundary, but after surgery there is at least one fewer edge in
ident withthe boundary of a dis
 
omponent. One de�nes the indu
tion parameter tobe the ordered pair (a; b) ordered lexi
ographi
ally, where a is the numberof verti
es on the boundary of D0 and b is the number of edges in whi
h arein topologi
al dis
 
omponents of D0 whi
h are in
ident with the boundary.Note that ea
h of the two types of allowed diamond moves de
reases theindu
tion parameter.Let L be twi
e the number of verti
es in J. H. C. Whitehead's star graph([17, p. 61℄) of the �nite presentation4 P = hA j Ri, that is, L := 4jAj.4This is where the group theory enters, or, more pre
isely, where the �nite presentation11



Suppose that the indu
tion parameter 
annot be redu
ed by the two typesof diamond moves allowed, and let v be a vertex of �D1, a dis
 
omponentof D0. If there were three oriented edges e1; e2; e3 in D1, ea
h in
ident at v,and having the same label a, then two of them would either both end in theinterior or both end in the boundary of D1. In either 
ase one of the alloweddiamond moves is possible, and the indu
tion parameter 
an be redu
ed,
ontrary to assumption. It follows that ea
h label a 
an o

ur at most twi
eamong the oriented edges in D1 and in
ident at v. The number of labels isthe same as the number of edges of the star graph, namely 2jAj. It followsthat the number of edges in D1 and in
ident at v is at most 4jAj = L.After having redu
ed the indu
tion parameter to a minimum by the al-lowed types of diamond moves, we a
hieve a minimal area van Kampen dia-gram D01 for w, so that the number of 
orners of 2-
ells in
ident with �D01 is� L � `(�D01). Then one takes the star neighbourhood N 0 of �D01 in D01 and
onsiders the inner boundary of N 0 and repeats the pro
ess with w repla
edby the inner boundary label(s) and D0 repla
ed by their interiors in D01. Su
-
essively repeating this pro
edure (at most R(w) times) we eventually arriveat a diagram D with the properties we require.This 
ompletes the proof of the lemma, and the proof of the theorem is
omplete.4 Bounding upper �lling radius in terms ofisoperimetri
 fun
tions.In x1 we gave the 
rude estimate on the radius of a van Kampen diagram Dover a �nite presentation P:R(D) �MArea(D);where M is the length of the longest relation of P. From this it follows thatR(n) � R(n) �Mf0(n):The following proposition provides an improved bound on the �lling ra-dius in terms of the Dehn fun
tion; examples 2.1 and 2.2 of x2 are spe
ial
ases. We use dxe to denote the smallest integer bounding the real numberis used. 12



x from above. Throughout this se
tion isoperimetri
 fun
tions are assumedto have domain [0;1).Proposition 4.1. Let P be a �nite presentation and M the length of itslongest relation. Then for all minimal area van Kampen diagrams D foredge-
ir
uits w of length at most n (with n � 1) one hasR(D) � M2��f0(n)n=2 �+ �f0(n=2)n=4 � + � � �+ �f0(n=2s�1)n=2s �+ f0(1)�;where s = dlog2 ne.It follows that R(D) �M2 f0(1) + s+ s�1Xi=0 f0(n=2i)n=2i+1 !.Proof. We prove the proposition by indu
tion on n.Let w be an edge 
ir
uit of length at most n and let D be a minimalarea van Kampen diagram �lling w. If n = 1 then R(D) � Mf0(1) and theproposition holds.For the indu
tion step we employ the annular de
omposition of D usedin the proof of Theorem 1. Re
all that for all i � 1 we established theinequality: Area(�i) � `(
i)=M:It follows that there exists m �M�f0(n)n=2 � su
h that `(
m) � n=2, for oth-erwiseArea(D) = R(D)Xi=1 Area(�i) � R(D)Xi=1 `(
i)=M > �f0(n)n=2 �n=2 � f0(n):Now for su
h m we �nd that for any vertex v 2 Nm (re
all from theproof of Theorem 1 that Ni = Stari(�D), so v is not in the interiors of thesubdiagrams of D en
losed by 
m) we haved(v; �D) �M2�f0(n)n=2 �:Now 
m is a union 
m = Si2Im 
im of simple 
losed 
urves 
im any two of whi
hmeet at no more than one vertex. These 
im ea
h have length at most n=2 � 113



and en
lose a minimal area van Kampen diagrams Dim. By indu
tion, for alli 2 Im the diagram Dim satis�esR(Dim) �M2��f0(n=2)n=4 �+ �f0(n=4)n=8 � + � � �+ �f0((n=2)=2s�1)(n=2)=2s �+ f0(1)�;where s = dlog2(n=2)e = dlog2 ne � 1. NowR(D) � M2�f0(n)n=2 � +maxi2Im R(Dim):The result therefore follows.A �rst 
orollary is that hyperboli
 groups have a logarithmi
 bound ontheir upper �lling length R.Corollary 4.2. Let P be a �nite presentation for a hyperboli
 group G.Then there exists C > 0 su
h that for n � 1,R(n) � R(n) � C (1 + log2 n) :Proof. In [14℄ Gromov 
hara
terises hyperboli
 groups as the �nitely pre-sented groups that satisfy a linear isoperimetri
 fun
tion. Take K > 0 su
hthat n 7! Kn is an isoperimetri
 fun
tion for P. Applying this to the boundof Proposition 4.1 we get R(n) �M2 (f0(1) + (1 + 2K) (1 + log2 n)) :Remark 4.3. The signi�
an
e of this result is that all minimal area vanKampen �llings in a presentation of a hyperboli
 group satisfy a uniformlogarithmi
 bound on their radius. Spe
ial 
onstru
tions of diagrams withlogarithmi
 bounds on their radius are given in [20℄.The next 
orollary tells us that any reasonably well-behaved upper boundon the area is a gross overestimate of R, so the theorem and proposition givebetter estimates on R from below and from above, respe
tively, than thenaive area estimate.Corollary 4.4. Suppose that f is an isoperimetri
 fun
tion for our �nitepresentation P and that f(n)=n is monotone in
reasing for all n � N (forsome �xed N > 0). Then there exists C > 0 su
h thatR(n) � C �1 + f(n)n � (1 + log2 n)for all n � 1. So in parti
ular limn!1R(n)=f(n) = 0.14



Proof. We use 1 + 2f(n)n as a bound on all but �nitely many of the dlog2 neterms in the summation in Proposition 4.1. This givesR(n) �M2 �f0(1) + �1 + 2f(n)n � dlog2 ne + C 0�for some 
onstant C 0 > 0.Many familiar fun
tions, like xr, r � 2, and exp x, satisfy the hypothesisof Corollary 4.4, and indeed satisfy the hypothesis of our �nal 
orollary:Corollary 4.5. Suppose f is an isoperimetri
 fun
tion for P and that f(n=2i) �f(n)=22i for all n > 0 and i = 0; 1; : : : ; dlog2 ne� 1. Then there exists C > 0su
h that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :Proof. This bound is obtained by applying f(n=2i) � f(n)=22i to ea
h termin the summation in Proposition 4.1, whi
h are then seen to be bounded byterms in a geometri
 series.Corollaries 4.2 and 4.5 generalize results of Gromov [15℄ p. 100, Papasoglu[18℄ p. 799, and [12℄ Proposition 3.The hypothesis of Corollary 4.5 appears somewhat mystifying. In Theo-rem 3 we will give a 
ouple of stronger but more transparent hypotheses to
larify the result and thereby to enhan
e its utility (we hope). First we re
alla de�nition:De�nition. If g is a nonnegative real valued fun
tion on N , then g is 
alledsuperadditive if g(m+n) � g(m)+ g(n) for all m;n > 0. Note that superad-ditive fun
tions are in
reasing. Superadditive fun
tions have been 
onsideredpreviously in relation to isoperimetri
 fun
tions in [16℄ and [2℄ (in the latterthey are 
alled \subnegative").Theorem 3. Suppose f is an isoperimetri
 fun
tion for the �nite presenta-tion P su
h that g(n) := f(n)=n satis�es g(2n) � 2g(n) for all n > 0. Thenthere is a 
onstant C > 0 so that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :In parti
ular to obtain su
h a bound it is enough for g(n) to be superad-ditive. 15



Proof. By Corollary 4.5 it suÆ
es to show that f(n=2i) � f(n)=22i for allpositive numbers n; i with 2i � n. The 
ondition g(2n) � 2g(n) for all n > 0is the same as f(2n) � 4f(n) for all n > 0, that is, f(n=2) � f(n)=4 for alln > 0. An indu
tion on i then shows that f(n=2i) � f(n)=22i as required.5 Comparing R with R and ROpen problem. Given a �nite presentation P, bound R in terms of R.The double exponential theorem states that f0(n) � ABR(n)+n for suitable
onstants A;B > 1. Sin
e R(n) � Mf0(n), it follows that R is bounded bya double exponential fun
tion of R. This seems wildly extravagant, and onemight hope for a single exponential bound.Example.5 Here is an example (due to M. R. Bridson [3℄) of a �nite pre-sentation for whi
h the radius R di�ers exponentially (at least on an in�nitesubset of N) from the both the upper radius R and the lower radius R.Let P = hA j Ri be the aspheri
al presentationhx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:De�ne a family of edge 
ir
uits wn := [tnxt�n; snys�n℄. Let Dn be the obviousvan Kampen diagram Dn �lling wn: 
onsisting of two triangular diagramsfor the edge 
ir
uits tnxt�nx�2n and two triangular diagrams for snys�ny�2n,surrounding a square diagram for the 
ir
uit [x2n ; y2n℄ (see Figure 3). Thediagram Dn imbeds in the Cayley 2-
omplex, thus by Gersten's Lemma (seeExample 2.3) is the unique minimal area diagram for wn. It follows thatR(wn) = R(wn) = R(Dn) � 2n�1, that is, the upper radius R(n) and thelower radius R(n) are at least exponential for n 2 f8m+ 4 : m 2 Ng.On the other hand one 
an make use a method of short
uts (independentlydue to both the �rst author and M. R. Bridson) to provide a linear boundon the �lling radius R. In the instan
e of the diagram Dn, short
uts areinserted by 
utting along ea
h of the 2n � 1 lines labelled x2n within thesquare portion of Dn and then inserting two 
opies of the minimal areadiagram Tn for tnxt�n = x2n in the subpresentation hx; t j txt�1 = x2i, wherethe two 
opies have tnxt�n in 
ommon on their boundaries; the two segmentsof the boundaries labelled x2n are identi�ed with the two 
uts. The blown-up5We are grateful to the referee for suggesting we in
lude 
onsideration of R in thisexample. 16



Figure 3: The diagram D0n for wn = [tnxt�n; snys�n℄ using short
uts.diagram D0n (illustrated in Figure 3) has radius linearly bounded in n; onesees this be
ause it is a linear distan
e from any vertex to one of the lineslabelled tnxt�n, and a linear distan
e from there to the boundary.The diagramDn has area 4(2n�1)+22n; inserting the short
uts to produ
eD0n in
reases the area by 2(2n� 1)2. So D0n is far from having minimal area.More generally we 
an proveProposition 5.1. There is a linear bound on the �lling radius R ofP = hx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:Proof. Given any edge-
ir
uit w in the Cayley graph of P we use short
utsto produ
e a van Kampen diagram D0 for w with radius bounded linearly inn = `(w). We need a 
ouple of preliminary notions.17



Call an edge-
ir
uit w0 standard if it is redu
ed (i.e. is without ba
ktra
k-ing) and every segment w00 of w0 
onsisting entirely of x; y; x�1; y�1's is ofthe form xayb for some a; b 2 Z.Consideration of the s and t-
orridors in any van Kampen diagram foran edge-
ir
uit w0 leads us to:Lemma 5.2. Suppose that w0 is a nonempty standard edge-
ir
uit. Thenw0 
ontains a segment u of one of the following formstxkt�1; t�1xkt; syks�1; s�1yks;for some k 2 Z� f0g:Given su
h a standard edge-
ir
uit w0, we 
an eliminate an s or t-pair {that is, say u = txkt�1, then u = x2k in G; we repla
e u in w0 by x2k (andsimilarly for the other 3 possibilities) to produ
e an edge-
ir
uit w00. Thisserves as a step in the pro
ess of 
onstru
ting a van Kampen diagram for w0:produ
ing an s or t-
orridor with k 2-
ells.So let us now use these ideas to 
onstru
t a van Kampen diagram D forour arbitrary edge-
ir
uit w in the Cayley graph of P. First we repeatedlyapply the relation [x; y℄ = 1 together with free redu
tion to express w instandard form w0, a pro
ess whi
h does not in
rease the length of the word.This produ
es an annular diagram with outer boundary 
ir
uit w and innerboundary 
ir
uit w0. The distan
e from a vertex on the inner boundary
ir
uit to the outer is at most n.Now eliminate an s or t-pair from w0 to produ
e w00. Next 
onvert w00 intoan edge-
ir
uit w1 in standard form. This involves re-expressing a segment ofw00 of the form xa1yb1xkxa2yb2 or xa1yb1ykxa2yb2 in the form xayb. The minimalarea diagram (over the subpresentation hx; y j [x; y℄i) for this transformation
onsists of a jb1j � jk+ a2j or jb1 + kj � ja2j re
tangle (respe
tively) togetherwith 1-dimensional portions 
orresponding to free redu
tion.We 
an now repeat the pro
ess: eliminate an s or t-pair from w1 toprodu
e w01 and then 
onvert to standard form giving w2, and so on. Thereare less than n=2 pairs s; s�1 and t; t�1 in w, so for some m < n=2 we �ndwm is the empty word and the 
onstru
tion of D is 
omplete.Lemma 5.3. The length of the sides of the re
tangles in the 
onstru
tion ofD is bounded by 22n. 18



Proof. To obtain this (
rude) bound it is enough to 
ontrol maxfLi : i =0; 1; : : :g whereLi := maxfk : x�k or y�k is a segment of wig:Now Li+1 � 4Li be
ause when a segment xa1yb1x2kxa2yb2 or xa1yb1y2kxa2yb2in w0i is re-expressed as xayb to produ
e the edge-
ir
uit wi+1 we �ndjaj; jbj � 2jkj+maxfja1j+ ja2j; jb1j+ jb2jgwith ja1j; ja2j; jb1j; jb2j; jkj � Li. So ea
h Li is bounded by 4iL0 � 4n=2L0 �2n � n < 22n. Hen
e the bound stated in the lemma.In the 
onstru
tion of D, formation of a re
tangle follows the 
onstru
tionof an s or t-
orridor. So the boundary of ea
h re
tangle meets the side of an sor t-
orridor. To produ
e D0 we will insert short
uts into all of the re
tanglesand also along the sides of all s and t-
orridors. Then it will be possible topro
eed from any vertex in D0 to the boundary within a linearly boundeddistan
e.So let us now des
ribe how to 
reate short
uts. Re
all that the short-
uts in the diagrams D0n of Figure 3 were provided by two 
opies of thediagram Tn, the minimal area diagram for the edge-
ir
uit tnxt�nx�2n overthe subpresentation hx; t j txt�1 = x2i. In the more general setting we willuse subdiagrams Tm;k of Tm (de�ned for k = 1; 2; 3; : : : ; 2m): obtain Tm;k byreading along the x2m boundary segment of Tm until xk is rea
hed and then
ut along a shortest path to the tmxt�m boundary segment; the resultingdiagram has boundary 
ir
uit labelled xku with `(u) � 3m + 1, and furtherthe distan
e from any vertex of the xk segment to the u segment is at most2m. Let T 2m;k denote the diagram with boundary 
ir
uit xkx�k obtained bygluing together two 
opies of Tm;k along the segment u. Then the distan
ein T 2m;k between any two verti
es is at most 2 � 2m+ (3m+ 1) = 7m + 1.De�ne S2m;k to be the diagram 
onstru
ted analogously over the subpre-sentation hy; s j sys�1 = y2i.We insert short
uts into all the re
tangles ofD: if [xk; yk0℄ is the boundary
ir
uit of su
h a re
tangle then jkj; jk0j � 22n by Lemma 5.3; 
ut along ea
hof the jk0j+1 paths labelled xk, and glue in 
opies of T 22n;jkj; further 
ut alongthe two sides of the re
tangle labelled yk0 and glue in 
opies of S22n;jk0j. Thedistan
e between any two verti
es in a re
tangle after short
uts have beenadded is at most 3(7 � 2n+ 1) = 42n+ 3.19



A path along the side of an s or t-
orridor in D is labelled by xk or ykfor some k with jkj � 22n. Cut along all of these paths and insert 
opies ofT 22n;jkj or S22n;jkj respe
tively.LetD0 be the diagram for w obtained fromD by inserting these short
uts.We now 
laim the boundR(D0) � (42n+ 3) + (14n+ 1) + n = 57n+ 4on the radius of D0 in terms of n = `(w). From any vertex of one of there
tangles one 
an rea
h an s or t-
orridor within a distan
e 42n + 3 (as
al
ulated above). Then one 
an rea
h the end of the 
orridor (and hen
ethe edge-
ir
uit w0) in a further distan
e 14n+ 1. Finally one arrives at theboundary 
ir
uit w from w0 within a distan
e of at most n.Referen
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