
Filling radii of �nitely presented groupsS. M. Gersten� and T. R. RileyyAbstratThe �lling radius funtion R of Gromov measures the minimalradii of van Kampen diagrams �lling edge-iruits w in the Cayley 2-omplex of a �nite presentation P. It is known that the Dehn funtionan be bounded above by a double exponential in R and the lengthof the loop, and it is an open question whether a single exponentialbound suÆes. We de�ne the upper �lling radius R(w) of w to bethe maximal radius of minimal area �llings of w and let R be theorresponding �lling funtion, so R(n) is the maximum of R(w) over alledge-iruits w of length at most n. We show that the Dehn funtionis bounded above by a single exponential in R and the length of theloop. We give an example of a �nite presentation P where R is linearlybounded but R grows exponentially.1991 Mathematis Subjet Classi�ation: 20F05, 20F32,57M071 Introdution and statement of resultsGromov de�ned a number of �lling invariants for �nitely presented groups[15, Ch. 5℄ in terms of the geometry of van Kampen diagrams. Two ofthe most important are the �lling radius R and the minimal isoperimetrifuntion f0 (also known as the Dehn funtion [11℄), whose de�nitions we nowreall.Let P be a �nite presentation for the group G. Let X be the Cayley 2-omplex, so X is the universal over of the 2-omplex anonially assoiatedto P (namely, one vertex, one edge for eah generator, and one 2-ell for�Partially supported by NSF grant DMS-9800158.ySupported by EPSRC Award No. 98001683 and Corpus Christi College, Oxford.1



eah de�ning relator � whose attahing map spells out the yli word �in the 1-skeleton); the 1-skeleton X(1) is the Cayley graph �. Let w be anedge-iruit of � and let D be a van Kampen diagram1 �lling w [17℄, so Dis the domain of a ellular map D ! X where D is a 1-onneted ellularplanar 2-omplex suh that w (read antilokwise from the base point ?) isthe assoiated boundary iruit (i.e. w is the attahing map of the single2-ell at in�nity). The 1-skeleton D(1) of D is equipped with a path metriso that eah edge is assigned length 1. Let `(w) denote the length of theboundary word w. We will use four measurements one an make on D:� Area(D) is the area, that is, the number of 2-ells in D,� R(D) is the radius, that is, the maximum distane of a vertex to theboundary in the path metri on D(1),� Diam(D) is the diameter, that is, the maximum distane (again in thepath metri on D(1)) of a vertex to the base point ? of D, (note thatdiameter is losely related to radius: R(D) � Diam(D) � R(D)+`(w)),� FL(D) is the �lling length, that is, the minimal bound on the lengthof boundary iruits in a omplete shelling of D (i.e. the ombinatorialnotion of a null-homotopy of w to ? aross D). See [12℄ for a detaileddisussion of �lling length.We de�ne Area(w) (resp. R(w), Diam(w), FL(w)) to be the minimumvalue of Area(D) (resp. R(D), Diam(D), FL(D)), where D ranges over vanKampen diagrams �lling w.The four measurements on diagrams lead to de�nitions of �lling fun-tions for the presentation P. Perhaps the most important is the minimalisoperimetri funtion (a.k.a. the Dehn funtion) f0 : N ! N , de�ned byf0(n) = maxfArea(w) : w is an edge-iruit in � with `(w) � ng;this takes �nite values sine there are only �nitely many orbits of suh w upto the G-ation on �. More generally, an upper bound f : N ! R for theDehn funtion f0 is alled an isoperimetri funtion for P. The notion in1It is onvenient to think of D as a tree-like arrangement of topologial diss where twodiss have at most one vertex in ommon. Some are is needed in disussing van Kampendiagrams beause of the presene of 1-dimensional portions, namely, edges whih are notinident with any 2-ell of D. 2



group theory is due to Gromov [14℄ in analogy with the orresponding notionin di�erential geometry. It is onvenient to extend an isoperimetri funtionf to the nonnegative reals by de�ning f(r) := f([r℄), where [r℄ denotes, asusual, the integer part of the real number r.Analogously one an de�ne �lling funtions for R, Diam and FL. So inpartiular there is the �lling radius funtion R : N ! N , given byR(n) = maxfR(w) : w is an edge-iruit in � with `(w) � ng:D. E. Cohen [6℄ �rst proved the double exponential theorem, whih statesthat there are onstants A;B > 1 so that f0(n) � ABR(n)+n for all n, bymaking use of an analysis of the omplexity of the Nielsen redution proessdue to Avenhaus and Madlener [1℄. The �rst author gave a geometrial proofof this result in [10℄; his argument has been generalized in several di�erentdiretions, f. [9℄, [19℄.As soon as the result was proved the question arose whether in fat asingle exponential bound suÆed; this is disussed by Gromov in [15, 5.C.℄.The problem has remained open for almost a deade. One reason it is adiÆult problem is that minimum area and minimum radius van Kampendiagrams may be ompletely di�erent, even for aspherial presentations. Wegive an example of this phenomenon in x5 for the presentationhx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:This suggests studying relations between area and radius in the same dia-gram. This is the program we initiated in [12℄, where we studied relationsbetween area, diameter, and �lling length on the same lass of diagrams.We ontinue this program in this paper in relating area and �lling radiusin the lass of minimal area diagrams; this theme is also pursued in [13℄in alulating isoperimetri funtions in kernels of homomorphisms to freegroups.We de�ne R(w) (resp. R(w)) be the maximum value (resp. minimal value)of R(D) over all minimal area van Kampen diagrams D for an edge iruitw. These exist sine it is not diÆult to see that there are only �nitelymany minimal area van Kampen diagrams for w up to the ation of G. Theorresponding �lling funtions, the upper �lling radius funtion R : N ! Nand the lower �lling radius funtion R : N ! N , are de�ned byR(n) := maxfR(w) : w is an edge-iruit in � with `(w) � ng;R(n) := maxfR(w) : w is an edge-iruit in � with `(w) � ng:3



We remark that the funtions R and R depend on the presentation, un-like the other �lling funtions we disussed, whih are invariants of Tietzetransformations up to the appropriate notion of equivalene.2One has R(w) � R(w) � R(w) for all edge iruits w, and hene R(n) �R(n) � R(n) for all n. Let M be the length of the longest relation of the�nite presentation P. A van Kampen diagram D over P satis�es R(D) �MArea(D), sine MArea(D) is an upper bound on the number of 1-ellsin a topologial dis omponent of D. It follows that the radius of anyminimal area diagram for an edge iruit w is bounded by MArea(w); soR(w) � MArea(w) and thus R(n) � Mf0(n) for all n. On the other handour main theorem gives an inequality in the opposite diretion: in x3 weestablish the following single exponential bound for the Dehn funtion interms of the upper �lling radius funtion.Theorem 1. Let P be a �nite presentation. There is a onstant C > 1 sothat for all edge-iruits w in the Cayley Graph of P one has Area(w) �`(w)CR(w).In Example 2.4 of x2 we use the Baumslag-Solitar group to show thisresult is best possible in this generality.Corollary 1. One has f0(n) � nCR(n) for suitable onstant C > 1 and forall n.We de�ne an AR-pair (f; g) for our �nite presentation P (in analogy to theAD-pairs introdued in [12℄) to be an ordered pair of funtions f; g : N ! Nsuh that for every edge-iruit w there exists a van Kampen diagram Dwsuh that Area(Dw) � f(`(w)) and R(Dw) � g(`(w)). Note that f is anisoperimetri funtion and g is an upper bound on the �lling radius. As anexample of the terminology, one way to state the double exponential theoremis that there is an AR-pair for P of the form (ABR(n)+n ;R(n)).An example of an AR-pair for P is (f0;R) sine for an edge iruit w wean take Dw to be minimal area diagram whih has minimal radius amongstall possible minimal area �llings. Applying Corollary 1 we therefore have:2For a disussion of equivalene relations for �lling funtions and the behaviour of �llingfuntions on hange of presentation see [12, Theorem 4℄ and [13, setion 2℄. Briey, forf0, Diam and FL the notion of equivalene involves aÆne hange of variables in domainand range plus addition of a linear funtion, whereas for R one just performs the aÆnetransformations and omits the addition of a linear funtion.4



Corollary 2. There is a onstant C > 1 so that (nCR(n);R(n)) is an AR-pair and (nCR(n);R(n) + n) is an AD-pair for P.The next result is a bound on the �lling length funtion h0 : N ! N .We apply the main result (Theorem 1) of [12℄, whih gives a bound on �ll-ing length in terms of a diameter bound multiplied by the logarithm of asimultaneously realisable area bound, to the AD-pair of Corollary 2.Corollary 3. There is a onstant E > 0 so that h0(n) � E(R(n)+n)(R(n)+n)) for all n.The following theorem serves to estimate the growth of the funtion Rrelative to the area.Theorem 2. Suppose that f is an isoperimetri funtion for a �nite presen-tation P suh that f(n)=n is monotone inreasing for large n. Then thereexist onstants A;B > 0 so thatA log(f0(n)=n) � R(n) � Bf(n) lognn +Bfor all n > 0.The left inequality is a restatement of Theorem 1. The right inequalityis addressed in x4, Corollary 4.4, and tells us in partiular thatlimn!1R(n)=f(n) = 0with f as in the theorem. Its proof is itself based on a bound we prove inProposition 4.1 for the �lling radius of a minimal area van Kampen diagramin terms of area and valid for a general presentation.Proposition 4.1 yields several orollaries. In Corollary 4.2 we show thatif P presents a hyperboli group then there is a logarithmi bound on R.Further we obtain a generalisation of a statement of Gromov for polynomialisoperimetri funtions f [15, p. 100℄ (veri�ed for quadrati polynomials in[18, p. 799℄ and for general polynomials of degree � 2 in [12, Lemma 2℄):Theorem 3. Suppose f is an isoperimetri funtion for the �nite presenta-tion P suh that g(n) := f(n)=n satis�es g(2n) � 2g(n) for all n > 0. Thenthere is a onstant C > 0 so that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :5



In partiular to obtain suh a bound it is enough for g(n) to be superad-ditive.We gratefully aknowledge omments and suggestions by Martin Bridson.2 Examples2.1 For �nitely generated groups, sublinearity of the �lling radius funtion Ris a haraterisation of hyperboliity. That sublinearity of R implies hyper-boliity is Proposition 3.2.6 of [8℄. (We gratefully aknowledge M. Kapovihfor also providing a proof of this fat.) Both proofs rely on the harateriza-tion of hyperboli groups as �nitely generated groups all of whose asymptotiones are R-trees (see [8℄ and [15℄).The proof that hyperboliity implies sublinear (indeed logarithmi) radiusR is straightforward (see Proposition 3.2.6 of [8℄ for example). However inCorollary 4.2 we will atually prove more: if P presents a hyperboli groupG, then there is a onstant C > 0 so that one has R(n) � C(1 + log2 n).Hene the logarithmi bound on �lling radius is ahieved on every minimalarea van Kampen diagram. This result is stated in Gromov [15, 5.C., page100℄.2.2 Another type of example is given by a presentation P whih satis�esa polynomial isoperimetri inequality of degree d � 2. In this ase, it wasproved in [12, x5℄ (generalising the d = 2 ase in [18℄) that there is a positiveonstant A so that R(n) � A nd�1. This result is a speial ase of Theorem3.2.3 The problem of alulating R(w) for a loop w is quite formidable, sine itrequires some knowledge of all minimal area �llings of w. There is, however,one ase where this is easy. Suppose that P is aspherial and suppose thatthere exists a van Kampen diagram Dw for w that imbeds in the Cayley 2-omplex X. Then it is the ase that R(w) = R(Dw). This is a onsequene ofwhat Gromov alls \Gersten's lemma" in [3℄ 4.C2: under the hypotheses thatP is aspherial and Dw imbeds in X, if (Dw) denotes the integral ellular2-hain of Dw in C2(X;Z), then Dw is determined by (Dw).Here is a proof of this lemma. It follows from the aspheriity of P thatthe 2-hain of Dw is determined by w. The 2-ells of Dw are determined byits 2-hain whereas the 1-dimensional portions of the van Kampen diagramDw are determined by w. Hene the image of Dw in X is determined. Sine6



the map Dw ! X is an imbedding, it follows that this map is uniquelydetermined by a hoie of base point in X.We dedue that Dw is the unique minimal area �lling of w (and itsimbedding in X is unique up to left translation by group elements), wheneR(w) = R(Dw).2.4 Let G be the mapping torus of an injetive endomorphism � of the �nitelygenerated free group F = F (x1; x2; : : : ; xr) and let P = hx1; x2; : : : ; xr; t jtxit�1 = �(xi); 1 � i � ri. Then a minimal area van Kampen diagramD for an edge iruit w ontains no annular t-orridors. Therefore the 2-dimensional portion of D must onsist entirely of t-orridors, eah onnetingan instane of t in w to an instane of t�1. There an be at most `(w)=2 suhorridors. A vertex on the path along one side of one of these orridors is adistane at most M=2 from the path along the other side, where M is thelength of the longest relator in P. We dedue that R(n) �Mn=4.A speial ase is the Baumslag-Solitar group, whih has the aspherialpresentation hx; t j txt�1 = x2i. We �nd R is linearly bounded but thearea is exponential. In this example, R is atually bounded below by alinear funtion. There are obvious imbedded van Kampen diagrams for thenull-homotopi words [tnxt�n; x℄. By 2.3 these are the unique minimal area�llings. Using some hyperboli geometry one shows that these �llings havedepth at least n, so R has a linear upper bound and a (nonzero) linear lowerbound.32.5 In [4℄ M. R. Bridson gives a family J(a; b) (where a; b are positive integerswith a � b) and proves (in Proposition 7.2) that R(n) ' na=b. (See [13℄ forthe de�nition of '-equivalene.)3 A single exponential bound on Dehn fun-tionsWe need a ouple of de�nitions before we proeed to a proof of Theorem 1.Star neighbourhoods. For a subomplex K of D de�ne Star(K) to be the3There are hyperboli groups G among those ourring in example 2.4 . For example,when � : F ! F is an automorphism, G = F o�Z is a hyperboli group i� � is hyperboliin the sense of Gromov, by a theorem of P. Brinkmann [5℄; in this ase R is sublinear, by2.1. 7



union of losed 2-ells meeting K. De�ne Stari(K) to be the i-th iterate ofthe star operation for i � 1; by onvention Star0(K) = K.Diamond moves. These an also be referred to as Dehn surgeries and areintrodued and disussed in [7℄. A diamond move an be performed in avan Kampen diagram D of a �nitely presented group G = hA j Ri, whenthere is an a 2 A�1 suh that the string aa�1 an be found in the 1-skeletonof D. In other words there are two distint oriented edges e1 and e2 with thesame initial vertex v, with the same edge labels a; let  be the path of length2 along e1 in the diretion towards v and then along e2 in the diretion awayfrom v; then along  one reads a�1 followed by a.The diamond move onsists of the following. Cut the diagram along :this introdues a hole with boundary label a�1aa�1a; we an remove this holeby identifying pairs of adjaent edges in two possible ways - one (neessarily)returns us the original diagram D; performing the other is a diamond move.The diamond moves we will use in the proof of Theorem 1 are illustratedin Figure 2. As with the examples pitured there, applying the diamond movewhen the terminal verties of the edges e1 and e2 are distint produes a vanKampen diagram D1. Further Area(D) = Area(D1). In the ase where e1and e2 have the same terminal vertex vt, the two edges enlose a subdiagramD0. Let S be the spherial 2-omplex obtained fromD0 by identifying e1 withe2. The result of the diamond move is to produe a 2-omplex whih onsistsof S attahed at vt to the van Kampen diagram obtained by removing D0from D and identifying e1 with e2.Remark 3.1. In a minimal area van Kampen diagram for a word w, if e1 ande2 are edges in D with the same initial verties and the same edge labels,then their terminal verties are di�erent - otherwise we ould remove thesubdiagram enlosed by e1 and e2 to produe a diagram of lower area.This remark together with the omments on diamond moves above leadus to:Lemma 3.2. Let D be a minimal area van Kampen diagram for the wordw. Suppose D1 is a 2-omplex resulting from applying a diamond move toD. Then1. D1 is itself a van Kampen diagram, and2. Area(D) = Area(D1), whene D1 is also a minimal area van Kampendiagram for w. 8



We ome now to our main result.Theorem 1. Let P be a �nite presentation. There is a onstant C > 1 sothat for all edge-iruits w in the Cayley Graph of P one has Area(w) �`(w)CR(w).Proof. Suppose D is a minimal area van Kampen diagram for an edge iruitw. We use the Star operation to deompose D into annuli. Let Ni :=Stari(�D) � D. For i � 1 let i be the inner boundary of Ni, and let 0be the boundary of the losure of the interior of D (i.e. �D without the1-dimensional portions). For i � 1 let �i = Ni nNi�1, so the inner boundaryof �i is i and the outer boundary is i�1. The �i onstitute an annulardeomposition of D as depited in Figure 1.

Figure 1: The annular deomposition of D.Observe that D = �D [ SR(w)i=1 �i. Let M be the length of the longestrelator in P and L be four times the number of generators.Our objet is to produe D satisfying the inequalitiesArea(�i) � L `(i�1); (1)`(i)=M � Area(�i); (2)relating the area of �i (for i � 1) to the lengths of its outer and innerboundaries; for i � 2, these ombine to give Area(�i) � LMArea(�i�1) andhene for i � 1 we have Area(�i) � LiM i�1`(0) � LiM i�1`(w).9



It will then follow thatArea(D) � R(w)Xi=1 `(w)L(LM)i�1 = `(w)L(LM)R(w) � 1LM � 1ompleting the proof of the theorem.Now inequality (2) follows from the observation that eah 1-ell of i isan edge of a 2-ell in �i and the total number of edges of 2-ells in �i is atmost MArea(�i).Obtaining inequality (1) is less straightforward. There is no a prioribound on the valene of a vertex v of i�1 in the losure of the interior of �i,and hene on the number of 2-ells in the interior of �i that are inident withv. However we use diamond moves to prove the following lemma, whih saysthat there is some minimal area diagram D for w for whih suh a boundexists. It follows that (1) holds for D, and hene the theorem.Lemma 3.3. There exists a minimal area van Kampen diagram D �lling wsuh that there is a uniform upper bound L on the valenes of verties of theurves i in the losure of the interior of i.Proof. Start with any minimal area van Kampen diagram diagram D0 for w.We use diamond moves to transform D0 to a van Kampen diagram D for wwith the required properties. In the proess we may inrease the radius of thediagram, but by Lemma 3.2 the area remains minimal. Thus R(D) � R(w).Consider a topologial dis omponent D1 of D0 and a boundary vertexv of D1. Let e1; e2 be distint oriented edges in D1 with initial vertex v, andwith the same label. Then a diamond move is possible, but shall we do it?The answer depends on the end points x; y respetively of the edges. Observethat x 6= y by minimality of the area of D0 (Remark 3.1).The rule is do the diamond move only if either1. x and y are both in �D1, or2. x and y are both in the interior of D1.But we still have to deide in what order to do the surgeries.These two types of diamond moves are illustrated in Figure 2. In ase 1the e�et of the surgery is to inrease the number of dis omponents, or,better, to derease the number of distint verties on the boundary (when10



Figure 2: Diamond moves.e1; e2 have terminal verties on �D1). In ase 2 there is no hange on theboundary, but after surgery there is at least one fewer edge inident withthe boundary of a dis omponent. One de�nes the indution parameter tobe the ordered pair (a; b) ordered lexiographially, where a is the numberof verties on the boundary of D0 and b is the number of edges in whih arein topologial dis omponents of D0 whih are inident with the boundary.Note that eah of the two types of allowed diamond moves dereases theindution parameter.Let L be twie the number of verties in J. H. C. Whitehead's star graph([17, p. 61℄) of the �nite presentation4 P = hA j Ri, that is, L := 4jAj.4This is where the group theory enters, or, more preisely, where the �nite presentation11



Suppose that the indution parameter annot be redued by the two typesof diamond moves allowed, and let v be a vertex of �D1, a dis omponentof D0. If there were three oriented edges e1; e2; e3 in D1, eah inident at v,and having the same label a, then two of them would either both end in theinterior or both end in the boundary of D1. In either ase one of the alloweddiamond moves is possible, and the indution parameter an be redued,ontrary to assumption. It follows that eah label a an our at most twieamong the oriented edges in D1 and inident at v. The number of labels isthe same as the number of edges of the star graph, namely 2jAj. It followsthat the number of edges in D1 and inident at v is at most 4jAj = L.After having redued the indution parameter to a minimum by the al-lowed types of diamond moves, we ahieve a minimal area van Kampen dia-gram D01 for w, so that the number of orners of 2-ells inident with �D01 is� L � `(�D01). Then one takes the star neighbourhood N 0 of �D01 in D01 andonsiders the inner boundary of N 0 and repeats the proess with w replaedby the inner boundary label(s) and D0 replaed by their interiors in D01. Su-essively repeating this proedure (at most R(w) times) we eventually arriveat a diagram D with the properties we require.This ompletes the proof of the lemma, and the proof of the theorem isomplete.4 Bounding upper �lling radius in terms ofisoperimetri funtions.In x1 we gave the rude estimate on the radius of a van Kampen diagram Dover a �nite presentation P:R(D) �MArea(D);where M is the length of the longest relation of P. From this it follows thatR(n) � R(n) �Mf0(n):The following proposition provides an improved bound on the �lling ra-dius in terms of the Dehn funtion; examples 2.1 and 2.2 of x2 are speialases. We use dxe to denote the smallest integer bounding the real numberis used. 12



x from above. Throughout this setion isoperimetri funtions are assumedto have domain [0;1).Proposition 4.1. Let P be a �nite presentation and M the length of itslongest relation. Then for all minimal area van Kampen diagrams D foredge-iruits w of length at most n (with n � 1) one hasR(D) � M2��f0(n)n=2 �+ �f0(n=2)n=4 � + � � �+ �f0(n=2s�1)n=2s �+ f0(1)�;where s = dlog2 ne.It follows that R(D) �M2 f0(1) + s+ s�1Xi=0 f0(n=2i)n=2i+1 !.Proof. We prove the proposition by indution on n.Let w be an edge iruit of length at most n and let D be a minimalarea van Kampen diagram �lling w. If n = 1 then R(D) � Mf0(1) and theproposition holds.For the indution step we employ the annular deomposition of D usedin the proof of Theorem 1. Reall that for all i � 1 we established theinequality: Area(�i) � `(i)=M:It follows that there exists m �M�f0(n)n=2 � suh that `(m) � n=2, for oth-erwiseArea(D) = R(D)Xi=1 Area(�i) � R(D)Xi=1 `(i)=M > �f0(n)n=2 �n=2 � f0(n):Now for suh m we �nd that for any vertex v 2 Nm (reall from theproof of Theorem 1 that Ni = Stari(�D), so v is not in the interiors of thesubdiagrams of D enlosed by m) we haved(v; �D) �M2�f0(n)n=2 �:Now m is a union m = Si2Im im of simple losed urves im any two of whihmeet at no more than one vertex. These im eah have length at most n=2 � 113



and enlose a minimal area van Kampen diagrams Dim. By indution, for alli 2 Im the diagram Dim satis�esR(Dim) �M2��f0(n=2)n=4 �+ �f0(n=4)n=8 � + � � �+ �f0((n=2)=2s�1)(n=2)=2s �+ f0(1)�;where s = dlog2(n=2)e = dlog2 ne � 1. NowR(D) � M2�f0(n)n=2 � +maxi2Im R(Dim):The result therefore follows.A �rst orollary is that hyperboli groups have a logarithmi bound ontheir upper �lling length R.Corollary 4.2. Let P be a �nite presentation for a hyperboli group G.Then there exists C > 0 suh that for n � 1,R(n) � R(n) � C (1 + log2 n) :Proof. In [14℄ Gromov haraterises hyperboli groups as the �nitely pre-sented groups that satisfy a linear isoperimetri funtion. Take K > 0 suhthat n 7! Kn is an isoperimetri funtion for P. Applying this to the boundof Proposition 4.1 we get R(n) �M2 (f0(1) + (1 + 2K) (1 + log2 n)) :Remark 4.3. The signi�ane of this result is that all minimal area vanKampen �llings in a presentation of a hyperboli group satisfy a uniformlogarithmi bound on their radius. Speial onstrutions of diagrams withlogarithmi bounds on their radius are given in [20℄.The next orollary tells us that any reasonably well-behaved upper boundon the area is a gross overestimate of R, so the theorem and proposition givebetter estimates on R from below and from above, respetively, than thenaive area estimate.Corollary 4.4. Suppose that f is an isoperimetri funtion for our �nitepresentation P and that f(n)=n is monotone inreasing for all n � N (forsome �xed N > 0). Then there exists C > 0 suh thatR(n) � C �1 + f(n)n � (1 + log2 n)for all n � 1. So in partiular limn!1R(n)=f(n) = 0.14



Proof. We use 1 + 2f(n)n as a bound on all but �nitely many of the dlog2 neterms in the summation in Proposition 4.1. This givesR(n) �M2 �f0(1) + �1 + 2f(n)n � dlog2 ne + C 0�for some onstant C 0 > 0.Many familiar funtions, like xr, r � 2, and exp x, satisfy the hypothesisof Corollary 4.4, and indeed satisfy the hypothesis of our �nal orollary:Corollary 4.5. Suppose f is an isoperimetri funtion for P and that f(n=2i) �f(n)=22i for all n > 0 and i = 0; 1; : : : ; dlog2 ne� 1. Then there exists C > 0suh that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :Proof. This bound is obtained by applying f(n=2i) � f(n)=22i to eah termin the summation in Proposition 4.1, whih are then seen to be bounded byterms in a geometri series.Corollaries 4.2 and 4.5 generalize results of Gromov [15℄ p. 100, Papasoglu[18℄ p. 799, and [12℄ Proposition 3.The hypothesis of Corollary 4.5 appears somewhat mystifying. In Theo-rem 3 we will give a ouple of stronger but more transparent hypotheses tolarify the result and thereby to enhane its utility (we hope). First we realla de�nition:De�nition. If g is a nonnegative real valued funtion on N , then g is alledsuperadditive if g(m+n) � g(m)+ g(n) for all m;n > 0. Note that superad-ditive funtions are inreasing. Superadditive funtions have been onsideredpreviously in relation to isoperimetri funtions in [16℄ and [2℄ (in the latterthey are alled \subnegative").Theorem 3. Suppose f is an isoperimetri funtion for the �nite presenta-tion P suh that g(n) := f(n)=n satis�es g(2n) � 2g(n) for all n > 0. Thenthere is a onstant C > 0 so that for all n � 1,R(n) � C �1 + log2 n+ f(n)n � :In partiular to obtain suh a bound it is enough for g(n) to be superad-ditive. 15



Proof. By Corollary 4.5 it suÆes to show that f(n=2i) � f(n)=22i for allpositive numbers n; i with 2i � n. The ondition g(2n) � 2g(n) for all n > 0is the same as f(2n) � 4f(n) for all n > 0, that is, f(n=2) � f(n)=4 for alln > 0. An indution on i then shows that f(n=2i) � f(n)=22i as required.5 Comparing R with R and ROpen problem. Given a �nite presentation P, bound R in terms of R.The double exponential theorem states that f0(n) � ABR(n)+n for suitableonstants A;B > 1. Sine R(n) � Mf0(n), it follows that R is bounded bya double exponential funtion of R. This seems wildly extravagant, and onemight hope for a single exponential bound.Example.5 Here is an example (due to M. R. Bridson [3℄) of a �nite pre-sentation for whih the radius R di�ers exponentially (at least on an in�nitesubset of N) from the both the upper radius R and the lower radius R.Let P = hA j Ri be the aspherial presentationhx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:De�ne a family of edge iruits wn := [tnxt�n; snys�n℄. Let Dn be the obviousvan Kampen diagram Dn �lling wn: onsisting of two triangular diagramsfor the edge iruits tnxt�nx�2n and two triangular diagrams for snys�ny�2n,surrounding a square diagram for the iruit [x2n ; y2n℄ (see Figure 3). Thediagram Dn imbeds in the Cayley 2-omplex, thus by Gersten's Lemma (seeExample 2.3) is the unique minimal area diagram for wn. It follows thatR(wn) = R(wn) = R(Dn) � 2n�1, that is, the upper radius R(n) and thelower radius R(n) are at least exponential for n 2 f8m+ 4 : m 2 Ng.On the other hand one an make use a method of shortuts (independentlydue to both the �rst author and M. R. Bridson) to provide a linear boundon the �lling radius R. In the instane of the diagram Dn, shortuts areinserted by utting along eah of the 2n � 1 lines labelled x2n within thesquare portion of Dn and then inserting two opies of the minimal areadiagram Tn for tnxt�n = x2n in the subpresentation hx; t j txt�1 = x2i, wherethe two opies have tnxt�n in ommon on their boundaries; the two segmentsof the boundaries labelled x2n are identi�ed with the two uts. The blown-up5We are grateful to the referee for suggesting we inlude onsideration of R in thisexample. 16



Figure 3: The diagram D0n for wn = [tnxt�n; snys�n℄ using shortuts.diagram D0n (illustrated in Figure 3) has radius linearly bounded in n; onesees this beause it is a linear distane from any vertex to one of the lineslabelled tnxt�n, and a linear distane from there to the boundary.The diagramDn has area 4(2n�1)+22n; inserting the shortuts to produeD0n inreases the area by 2(2n� 1)2. So D0n is far from having minimal area.More generally we an proveProposition 5.1. There is a linear bound on the �lling radius R ofP = hx; y; s; t j [x; y℄ = 1; txt�1 = x2; sys�1 = y2i:Proof. Given any edge-iruit w in the Cayley graph of P we use shortutsto produe a van Kampen diagram D0 for w with radius bounded linearly inn = `(w). We need a ouple of preliminary notions.17



Call an edge-iruit w0 standard if it is redued (i.e. is without baktrak-ing) and every segment w00 of w0 onsisting entirely of x; y; x�1; y�1's is ofthe form xayb for some a; b 2 Z.Consideration of the s and t-orridors in any van Kampen diagram foran edge-iruit w0 leads us to:Lemma 5.2. Suppose that w0 is a nonempty standard edge-iruit. Thenw0 ontains a segment u of one of the following formstxkt�1; t�1xkt; syks�1; s�1yks;for some k 2 Z� f0g:Given suh a standard edge-iruit w0, we an eliminate an s or t-pair {that is, say u = txkt�1, then u = x2k in G; we replae u in w0 by x2k (andsimilarly for the other 3 possibilities) to produe an edge-iruit w00. Thisserves as a step in the proess of onstruting a van Kampen diagram for w0:produing an s or t-orridor with k 2-ells.So let us now use these ideas to onstrut a van Kampen diagram D forour arbitrary edge-iruit w in the Cayley graph of P. First we repeatedlyapply the relation [x; y℄ = 1 together with free redution to express w instandard form w0, a proess whih does not inrease the length of the word.This produes an annular diagram with outer boundary iruit w and innerboundary iruit w0. The distane from a vertex on the inner boundaryiruit to the outer is at most n.Now eliminate an s or t-pair from w0 to produe w00. Next onvert w00 intoan edge-iruit w1 in standard form. This involves re-expressing a segment ofw00 of the form xa1yb1xkxa2yb2 or xa1yb1ykxa2yb2 in the form xayb. The minimalarea diagram (over the subpresentation hx; y j [x; y℄i) for this transformationonsists of a jb1j � jk+ a2j or jb1 + kj � ja2j retangle (respetively) togetherwith 1-dimensional portions orresponding to free redution.We an now repeat the proess: eliminate an s or t-pair from w1 toprodue w01 and then onvert to standard form giving w2, and so on. Thereare less than n=2 pairs s; s�1 and t; t�1 in w, so for some m < n=2 we �ndwm is the empty word and the onstrution of D is omplete.Lemma 5.3. The length of the sides of the retangles in the onstrution ofD is bounded by 22n. 18



Proof. To obtain this (rude) bound it is enough to ontrol maxfLi : i =0; 1; : : :g whereLi := maxfk : x�k or y�k is a segment of wig:Now Li+1 � 4Li beause when a segment xa1yb1x2kxa2yb2 or xa1yb1y2kxa2yb2in w0i is re-expressed as xayb to produe the edge-iruit wi+1 we �ndjaj; jbj � 2jkj+maxfja1j+ ja2j; jb1j+ jb2jgwith ja1j; ja2j; jb1j; jb2j; jkj � Li. So eah Li is bounded by 4iL0 � 4n=2L0 �2n � n < 22n. Hene the bound stated in the lemma.In the onstrution of D, formation of a retangle follows the onstrutionof an s or t-orridor. So the boundary of eah retangle meets the side of an sor t-orridor. To produe D0 we will insert shortuts into all of the retanglesand also along the sides of all s and t-orridors. Then it will be possible toproeed from any vertex in D0 to the boundary within a linearly boundeddistane.So let us now desribe how to reate shortuts. Reall that the short-uts in the diagrams D0n of Figure 3 were provided by two opies of thediagram Tn, the minimal area diagram for the edge-iruit tnxt�nx�2n overthe subpresentation hx; t j txt�1 = x2i. In the more general setting we willuse subdiagrams Tm;k of Tm (de�ned for k = 1; 2; 3; : : : ; 2m): obtain Tm;k byreading along the x2m boundary segment of Tm until xk is reahed and thenut along a shortest path to the tmxt�m boundary segment; the resultingdiagram has boundary iruit labelled xku with `(u) � 3m + 1, and furtherthe distane from any vertex of the xk segment to the u segment is at most2m. Let T 2m;k denote the diagram with boundary iruit xkx�k obtained bygluing together two opies of Tm;k along the segment u. Then the distanein T 2m;k between any two verties is at most 2 � 2m+ (3m+ 1) = 7m + 1.De�ne S2m;k to be the diagram onstruted analogously over the subpre-sentation hy; s j sys�1 = y2i.We insert shortuts into all the retangles ofD: if [xk; yk0℄ is the boundaryiruit of suh a retangle then jkj; jk0j � 22n by Lemma 5.3; ut along eahof the jk0j+1 paths labelled xk, and glue in opies of T 22n;jkj; further ut alongthe two sides of the retangle labelled yk0 and glue in opies of S22n;jk0j. Thedistane between any two verties in a retangle after shortuts have beenadded is at most 3(7 � 2n+ 1) = 42n+ 3.19
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