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We provide a complete characterization of billiard trajectory hitting sequences

on
(
π
n

)
-isosceles triangles for n ≥ 2. The case of the

(
π
4

)
-isosceles triangle is pre-

sented in detail. When n equals two or three, these triangles tile the plane. For n

greater than or equal to four, this is no longer the case. On the two isosceles tri-

angles that tile the plane, as well as the
(
π
4

)
-isosceles triangle, we provide combi-

natorial renormalization schemes that apply directly to hitting sequences given

in a three letter aphabet of triangle side labels. Although cutting sequences have

been characterized on related translation surfaces, this is the first analysis of bil-

liard trajectory hitting sequences in triangles.
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CHAPTER 1

INTRODUCTION

Let Q be a compact connected planar region bounded by a curve that is C1

away from a finite set of points Σ. A billiard path is described by a point moving

along a straight line at unit speed in the interior of Q, bouncing off the bound-

ary according to the classical law of geometric optics that the angle of incidence

equals the angle of reflection. We do not attempt to define a continuation for

trajectories that hit points in Σ. Billiard trajectories in Q are in fact projections of

trajectories of a flow defined on the unit tangent bundle of Q, where we identify

certain incoming and outgoing vectors along the boundary of Q. The classical

case of billiards in a domain with non-smooth boundary is that of square bil-

liards. The rich results [46, 61, 71, 72] derived on the square encourage further

investigation of billiard tables with polygonal boundary. We say a polygon is

rational if all angles are rational multiples of π. In the rational case, the billiard

flow on the three-dimensional phase space can be studied in terms of invariant

surfaces.

Definition 1.0.0.1. (Hitting Sequences) Let Q be a polygonal table with labeled sides.

The hitting sequence of a billiard trajectory gt is the sequence of labels corresponding

to successive bounces of the trajectory off sides of Q.

As the most elementary polygons, triangular billiards are of fundamental

interest and have received a commensurate amount of attention [47, 33, 66, 84,

63, 64, 53, 30, 65]. Even in the setting of rational triangles however, many basic
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questions remain open. This thesis addresses the problem of characterizing hit-

ting sequences in rational triangles.

Triangles that tile the plane constitute a special class which is more easily an-

alyzed than general triangles. The symbolic dynamics of triangles that tile the

plane is related to Sturmian sequences [22, 61]. Results for the two planar isosceles

triangles, the
(
π
2

)
-isosceles and equilateral triangle, are included here (Chapter

3 and Appendix A) both for completeness and as an introduction to techniques

we will use in the thesis. More significantly, in this thesis we give the first com-

plete analysis of a triangle that does not tile the plane, the
(
π
4

)
-isosceles triangle.

There is an algorithm (see Section 4.2) that takes a word in the alphabet {β, λ, ρ}

of triangle sides (Figure 2.1 (a)) to a word in the alphabet {β0, β1, β2, β3, ρ
+, ρ−}

corresponding to edges shown in Figure 2.1 (d). The results of our analysis are

summarized below in Theorem 4.5.0.1.

Theorem 1.0.0.1 (Main Theorem). The set of infinitely deriveable (Definition 4.4.0.2)

words in {β0, β1, β2, β3, ρ
−, ρ+}(see Figure 2.1 (d)) which, at each derivation step, also

satisfy a finite set of coherence conditions (Definition 4.5.0.1) coincides with the clo-

sure of the set of billiard trajectory hitting sequences on the
(
π
4

)
-isosceles triangle.

Results of this form also hold in
(
π
n

)
-isosceles triangles when n is greater

than four. In Chapter 5, we show how the methods we use to analyze the
(
π
4

)
-

isosceles triangle extend to apply in
(
π
n

)
-isosceles triangles for n greater than

four.
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CHAPTER 2

PRELIMINARIES

One reason to focus on rational polygons is that in a rational polygon Q the

billiard flow is readily recast [94, 24] as the linear flow on a translation surface

SQ (Section 2.1). Labeled sides of the reflected copies of Q are geodesic segments

joining singular or marked points in SQ.

Definition 2.0.0.2. (Cutting Sequences) Let S be a translation surface, Σ a finite set of

points in S including all singular points, and E a collection of labeled saddle connections

joining points in Σ. The cutting sequence c(γ) of a geodesic γt on S is the ordered bi-

infinite sequence of labels arising from successive crossings of γt through labeled saddle

connections in E .

One natural setting in which to investigate cutting sequences is SQ where Q

is a rational triangle. In this case Σ includes marked points of S corresponding

to vertices of Q, and E includes of lifts of labeled sides of Q. If Q is a triangle that

tiles the plane, then SQ is the torus. The standard presentation of the torus as

a square gives rise to Sturmian sequences [61, 71, 72] and our analysis of hitting

sequences for triangles that tile the plane is closely connected with Sturmian

sequences. When Q is the
(
π
4

)
-isosceles triangle, SQ is a translation surface of

genus two corresponding to the regular octagon with opposite sides identified.

Arnoux and Hubert [1] raised the question of characterizing cutting sequences

on this surface with respect to the sides of the octagon. Their question was an-

swered by Smillie and Ulcigrai [74]. Partial results in this vein have been also

3



been obtained [19] for the so-called double-regular (2m+ 1)-gons.

Although the surface geometry of SQ is the same when Q is either a regu-

lar 2n-gon or a
(
π
n

)
-isosceles triangle, in the latter case, the marked point of S

corresponding to the apex of Q is an endpoint of additional edges (Figure 2.1

(a)-(d)) that play a key role in the combinatorial encoding of geodesics on SQ.

Billiards in
(
π
n

)
-isosceles triangles and in regular 2n-gons thus present distinct

combinatorial problems.

β

ρρλ

(a)
β

β

β

β

β β

β

β

ρρ

ρρ

ρρ

λ

λ

λ

λ

ρρ

(b)

β0

β0

β3

β
2

β1 β3

β2

β1

ρ0ρ0

ρ1ρ1

ρ0ρ0

λ1

λ1

λ3

λ3

ρ1ρ1

(c)

ρ+

ρ−

β1

β1
β3

β2

β3

β2

β0

β0

(d)

β1

β1
β3

β2

β3

β2

β0

β0

(e)

Figure 2.1: Edge labels for coding: billiard trajectories in the
(
π
4

)
-isosceles trian-

gle ((a),(b)); directional flow in the
(
π
4

)
-isosceles triangle surface (c); directional

flow in the centrally-punctured octagon surface (d), and directional flow on the
regular octagon surface (e).
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Although billiards in the regular 2n-gon and in the
(
π
n

)
-isosceles triangle

present distinct combinatorial problems, the symbolic dynamics of linear trajec-

tories on the centrally-punctured 2n-gon (Figure 2.1 (d)) and billiard trajectories

in the
(
π
n

)
-isosceles triangle are closely related. There is a well-defined map-

ping between centrally-punctured 2n-gon cutting sequences and
(
π
n

)
-isosceles

hitting sequences that we describe in Section 4.2.

It has long been known [62] that some low-dimensional dynamical systems

induce systems of the same class on restrictions of the original domain. This

renormalization operation can be iterated, producing a dynamics on the given

class of dynamical systems. If the original dynamical system has a combina-

torial characterization, renormalization of the flow yields a renormalization of

the combinatorics as well. This correspondence is well understood for interval

exchange transformations [62, 87]. The directional flow on a rational polygon

surface induces an interval exchange transformation on transversals, which has

led to interest in renormalization of the polygonal billiard flow itself [88, 93].

Renormalization of dynamical systems is generally a challenging problem. It

turns out that when Q is a
(
π
n

)
-isosceles triangle or a regular 2n-gon, symme-

tries and properties of the affine automorphism group of SQ make the renormal-

ization problem for billiards on Q somewhat more tractable. In Chapter 4 we

define a renormalization scheme for billiards on the
(
π
4

)
-isosceles triangle using

symmetries of the triangle and an affine automorphism of the regular octagon

surface. Analogous symmetries and affine automorphisms for
(
π
n

)
-isosceles tri-

angles and regular 2n-gons for n ≥ 5 allow us to extend the renormalization

scheme from Chapter 4 to billiards in
(
π
n

)
-isosceles triangles, n ≥ 5, which we

will do in Chapter 5.

5



2.1 Translation surfaces and rational polygons

A finite number of reflections through the sides of any rational polygon Q pro-

duces another polygon Q̃ whose exterior edges come in same-length parallel

pairs that can be identified by translation [24, 94]. In other words, under appro-

priate side identifications, Q̃ closes up into a compact surface SQ that is clearly

Euclidean away from images of vertices of Q̃. Furthermore, it is not hard to see

that even neighborhoods of points on SQ that were vertices in Q̃ can fail to be

Euclidean only in a limited sense: They are each ‘hinge points’ of a finite num-

ber of edge-pairs subtending angles {θ1, θ2, ..., θk} from copies of Q in Q̃, and are

thus conical singularities with cone angle 2πΣk
i=1θi.

Definition 2.1.0.1. (Translation Surface: Basic Formulation) A surface S with charts

(ϕk, Uk) is a translation surface if the overlap maps ϕi ◦ ϕ−1
j are translations on R2.

Clearly the surface SQ for Q a rational polygon satisfies this definition, and

is thus a translation surface. Generalizing the construction somewhat by speci-

fying an arbitrary collection of polygons with the property that their sides taken

as a group can be decomposed into same-length parallel pairs actually exhausts

the set of compact translation surfaces.

Definition 2.1.0.2. (Translation Surface: Polygonal Formulation) A collection of poly-

gons P = {P (1), P (2), ..., P (d)} whose sides decompose into same-length parallel pairs
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define a translation surface SP . Moreover, for any compact translation surface S, there

exists a collection P = {P (1), P (2), ..., P (d)} of polygons whose sides pair up by trans-

lation to produce S.

Complex analysis offers yet another definition of translation surfaces. From

this perspective, a translation surface is specified by the pairing of a Riemann

surface with an abelian differential. The complex analytic definition is, in fact,

equivalent to Definition 2.1.0.2 [95]. Here, we will only be using Definition

2.1.0.2.

The notation (S,Σ) will refer to a translation surface S with a specified col-

lection of distinguished points Σ, that always includes singular points of S and

may include additional marked points of the surface. In our case, Σ will include

the marked point of the 2n-gon surface S2n that corresponds to the centerpoint

of the regular 2n-gon. When Σ is clear from the context, we will use S as short-

hand for (S,Σ).

2.2 Veech surfaces and renormalization

Let S be a translation surface, Σ its set of singular and marked points and A(S,Σ)

the group of affine diffeomorphisms Φ : S 7→ S such that Φ(Σ) = Σ. The set

of derivatives of elements of A(S,Σ) plays an important role in understand-

ing the dynamical properties of the geodesic flow on (S,Σ), and in construct-

ing renormalization schemes on (S,Σ) that facilitate systematic study of the
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behavior of individual linear trajectories on (S,Σ). A(S,Σ) is the union of the

set of orientation-preserving A+(S,Σ) and orientation-reversing A−(S,Σ) affine

automorphisms of (S,Σ). The Veech group V(S,Σ) of (S,Σ) is the subgroup of

GL(2,R) consisting of derivatives of elements of A(S,Σ). One common conven-

tion restricts the Veech group to derivatives of orientation-preserving affine au-

tomorphisms of (S,Σ). Under this convention V(S,Σ) is a subgroup of SL(2,R).

Since orientation-reversing automorphisms will play a role in our renormal-

ization scheme, we will adopt a different convention. In this thesis, V(S,Σ)

will denote the group of derivatives of orientation-preserving and orientation-

reversing affine automorphisms. Using this definition, V(S,Σ) is a subgroup of

SL±(2,R) = {M ∈ GL(2,R) : det(M) = ±1}.

If S is specified as a finite collection of polygons P = {P1, ..,Pk} with side-

identifications (Definition 2.1.0.2), then SL±(2,R) acts on S by individually

transforming each Pj ∈ P : for M ∈ SL±(2,R), M · S is the surface specified by

M ·P = {M ·P1, ...,M ·Pk}, where M ·Pk is simply applying the linear transforma-

tion M to Pk in R2. The property of parallelism is preserved by M ∈ SL±(2,R)

so if P defines a translation surface, then M · P does.

The translation surface (S,Σ) is said to be a Veech surface or a lattice surface

if its Veech group V(S,Σ) is a lattice in SL±(2,R). Specifically (S,Σ) is a Veech

or lattice surface if V(S,Σ) is a discrete subgroup of SL±(2,R) that has finite co-

volume in SL±(2,R) but is not co-compact. This property implies that the Veech

group of a lattice surface must [44] have at least one parabolic element. Recall

that a linear transformation is parabolic if it has two identical eigenvalues and
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is not equal to the identity. Parabolic elements of V(S) are derivatives of auto-

morphisms that act as powers of Dehn twists of S along all cylinders in a fixed

direction (see Figure 4.1 for example). The linear part of such an automorphism

is a shear (for example,

1 1

0 1

) in SL±(2,R). An affine automorphism whose

derivative is the identity is a translation equivalences. Veech [85] established that

surfaces defined from the regular n-gons are all Veech surfaces. It follows from

work of Kenyon and Smillie, followed by Puchta [47, 64], that the
(
2π
m

)
-isosceles

triangles that tile centrally-punctured regular m-gons define Veech surfaces only

when m is even. A triangle is often said to be Veech if the triangle surface (S,Σ)

where Σ consists only of singular points of S is Veech. The
(
π
n

)
-isosceles triangles

that are the focus of this thesis actually satisfy a stronger version of the Veech

property that that we will call the strong Veech property for triangles.

Definition 2.2.0.1 (Strong Veech Property for Triangles). A triangle whose reflec-

tions induce a translation surface S will be called be strongly Veech or said to be Veech

in the stronger sense if the translation surface (S,Σ) is Veech even when Σ includes,

in addition to the singular points of S, all points on S that correspond to vertices of the

triangle.

Proposition 2.2.0.1. The Veech group of the regular 2n-gon surface and the Veech

group of the
(
π
n

)
-isosceles triangle surface (with a marked point corresponding to the

triangle’s apex) coincide.

Proposition 2.2.0.1 was proven by Vorobets [89] (Propositions 4.2 and 4.3).
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When n is even, the Veech group of both the regular n-gon surface and

centrally punctured regular n-gon surface are generated by the rotation r 2π
n

by

2π
n

, the shear H+
n =

1 2 cot π
2n

0 1

 and the orientation-reversing reflection rv

through the vertical direction. When n is odd, the shear H+
n is the derivative of

an affine automorphism of the regular n-gon surface, but not of the centrally-

punctured regular n-gon surface: the marked central puncture on the surface is

not mapped back to itself by the affine transformation with derivative H+
n (see

Chapter 6).

In the cases treated here, the kernel of the Veech homomorphism D :

A((S,Σ)) 7→ GL(2,R) is trivial [76]. Thus, the automorphism with a given

derivative is unique and we adopt the following convention.

Notational Convention. To reduce notational overhead, we will sometimes use the

same notation for a given affine automorphism and its derivative. For example, the no-

tation H+
n above has been explicitly defined as a linear transformation. Consistent with

this definition, when considered as an element of the Veech group of the 2n-gon surface,

H+
n will be exactly as originally defined. However, when the text explicitly refers to H+

n

as an “affine automorphism,” then H+
n denotes the actual affine automorphism whose

derivative is H+
n .

Every direction on a Veech surface is either parabolic or is shortened by a

parabolic element of the Veech group [89]. This feature of Veech surfaces makes

them particularly amenable to renormalization. In the work reported here the
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parabolic element H−
n plays a central role.

2.3 Combinatorial renormalization in genus one

2.3.1 Cutting Sequences on the Square Torus

The canonical example of a Veech surface is the square torus. Its Veech group

is SL(2,Z), which is a lattice in SL(2,R). Billiard trajectories in a square table

can be viewed as geodesics on the torus. Parallel sides of the square billiard

table appear as distinct saddle connections on the square torus T2 joining the

marked point of T2 corresponding to the corners of the square to itself. Billiard

trajectories that reflect off sides of the square back into its interior correspond to

geodesics in T2 that “cut” through the corresponding saddle connection on T2.

The combinatorial rule that characterizes cutting sequences on the square

torus is simple. The closure of the set of cutting sequences on T2 consists exactly

of the words w ∈ {A,B}Z such that:

1. w contains at most one of the subwords [AA] or [BB]

2. For all n ∈ N, property (1) is retained by each iterate w(n) of w under the

operation that replaces every [Ak] or [Bk], k ≥ 2 in w(n−1) (k ≥ 2) with

[Ak−1] or [Bk−1] in w(n).
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Proving the classical characterization following the presentation of Smillie

and Ulcigrai ([76]) is instructive, and presents in a simplified setting many of

the tools we use later.

Let Σ0 = [0, π
4
] and T0 = {trajectories τ in direction θ : θ ∈ Σ0}. The group

D4 of isometries of the square, where D4 is the dihedral group with four ele-

ments, acts on cutting sequences by permuting letters: reflection in the hori-

zontal and vertical axes preserve the labelings while reflection in the diagonals

interchanges A and B. Without loss of generality we can consider only trajecto-

ries in T0 since any trajectory not in T0 can be sent to one in T0 by an element of

D4, and application of the permutation π1 = (A,B) to cutting sequences c(τ) of

τ /∈ T0 produces the cutting sequence of a trajectory T0.

Definition 2.3.1.1 (Normalization). Let ν ∈ D4 denote reflection through the angle-(
π
4

)
diagonal in T2. Whichever of τ or ν(τ) is in T0 is called the normalization n(τ) of

τ .

It is immediately evident that a cutting sequence c(τ), τ ∈ T0 cannot have re-

peating A’s. This information is captured in the transition diagram D0, a directed

graph whose vertices are the labeled sides of the square torus. A directed edge

joins two vertices v, v′ in D0 if a trajectory in T0 can exit side v and hit side v′ of

the square without crossing another side of the square.

Definition 2.3.1.2. We will say that a word w ∈ {A,B}Z is admissible if either

w or π1(w) is realizable as an infinite path in D0. If π1(w) is realizable in D0 then
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n(w) = π1(w) is called the normalization of w. When w is realizable in D0, then

n(w) = w.

Definition 2.3.1.3. The derived sequence w′ = D(w) of an admissible word w is

obtained from n(w) by deleting one B from each block of one or more consecutive B’s.

An admissible word w is infinitely derivable if w(n) = D(n)(w) is admissible for

all n ∈ N.

Proposition 2.3.1.1. Cutting sequences of billiard trajectories in the square are in-

finitely derivable.

Proof (following [76]). This can be proven by showing that for any linear tra-

jectory τ in the square, there is a linear trajectory τ ′ in the square such that

c(τ ′) = (c(τ))′. The cutting sequence w = c(τ) of a linear trajectory in the square

is necessarily admissible and, as indicated before, it can be assumed without

loss of generality that τ ∈ T0. We will construct τ ′ by applying an affine cut-

paste-shear diffeomorphism to the union of the square and the original trajec-

tory τ . To track these steps combinatorially, we augment the square with a diag-

onal edge labeled c, joining its lower left corner to its upper right corner. Note

that τ crosses c precisely when it is making a BB transition. So the augmented

cutting sequence c̃(τ) of τ gains a c between each pair of B’s in c(τ) (Fig. 2.2).
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A

B B

(a) 0 ≤ θ ≤ π/2

BA

(b) D0

A

A

B B

(c) π/2 ≤ θ ≤ π

B A

(d) D1

Figure 2.2: Possible transitions in the square. (Figure adapted from [74])

A
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B Bc

(a) Auxilliary diagonal
A

A

cBc

�
�

(b) Parallelogram Π

A

c c

A

B

(c) Renormalized flow
A

A

cc

BB

(d) Relabeling

Figure 2.3: Geometric renormalization of Σ0 linear trajectories in the square.
(Figure adapted from [74])

In the parallelogram Π (Figure 2.3 (b)) produced by cutting the augmented

square along c, then gluing edge B to itself, the augmented cutting sequence

c̃(τ) is preserved. Application the shear H =

−1 1

0 1

 that makes lines in

direction π
4

vertical, sends τ to τ ′, another linear trajectory in the square torus

(Figure 2.3 (c)). Unless τ itself is horizontal, the new trajectory τ ′ will not be

in the same direction as τ ; it has augmented cutting sequence c̃(τ ′) in H · Π.
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Removing the interior edge of H · Π (Figure 2.3 (d)) and returning to original

exterior side labeling has the effect first of dropping all B’s in c̃(τ ′) and then of

replacing each c in c̃(τ ′) with a B. Every c in c̃(τ ′) was sandwiched between two

B’s in some block of j ≥ 2 B’s from the original sequence c(τ), so replacing this

block with the j− 1 sandwiched c’s (then recoding those c’s as B’s again) leaves

exactly j − 1 B’s. Singleton B’s simply disappear (ABA 7→ AA) and every A in

c(τ) is retained in c(τ ′). In other words, c(τ ′) = (c(τ))′ according to Definition

2.3.1.3.

The converse to Proposition 2.3.1.1 is almost true ([71]):

Proposition 2.3.1.2 (Series). The set of infinitely deriveable sequences coincides with

the closure of the set of cutting sequences on T2.

An example of an infinitely deriveable word that is not the cutting sequence

of a trajectory in the square is w = ...BBABB..., two half-infinite strings of

B’s joined by a single A. The two half-infinite blocks of B’s in w code for

semi-infinite horizontal geodesic rays. The subword [BAB] joining the two

half-infinite B-blocks in w can only be realized by a non-horizontal geodesic

segment. Although w is not a cutting sequence, it is the limit of the sequence of

periodic words wn = ABn.
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CHAPTER 3

EXTENDED TREATMENT OF GENUS ONE

3.1 An Alternative Characterization of Cutting Sequences on

the Square Torus

This chapter introduces a renormalization strategy that will be used in remain-

der of the thesis. In the present section we detail a geometric renormalization

scheme for square billiards that follows the same steps as our renormalization

scheme for billiards in the
(
π
4

)
-isosceles triangle. Section 3.2 uses this renormal-

ization to induce a combinatorial renormalization for
(
π
2

)
-isosceles hitting se-

quences coded in letters {A,B,L±, R±} labeling sides of the
(
π
2

)
-isosceles trian-

gle. In Section 3.3 we employ this geometric renormalization to obtain a deriva-

tion rule for words in the alphabet {A,B,L±} in direct analogy to the way we

will later derive cutting sequences on the centrally-punctured regular 2n-gon,

that correspond to hitting sequences in the
(
π
n

)
-isoscles triangle n ≥ 4. We will

use the following terminology from Series [71].

Definition 3.1.0.1. (Almost Constant Sequences) A word w ∈ {A,B}Z is almost

constant if the following two conditions hold for either w or π1(w) = (A,B) · w:

1. At least one of w or π1(w) = (A,B) · w is realizable as a bi-infinite path through

the transition diagram D0 (Figure 2.2 (b)).

2. For at least one of w or π1(w) = (A,B) · w, there exists n ≥ 1 such that between
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any two A’s there are either n or n+ 1 B’s.

Note that any infinitely deriveable Σ0-admissible word is necessarily almost

constant. If w is Σ0-admissible, w satisfies condition (1) above. If in addition w

is infinitely deriveable, then there is no k ∈ N for which D(k)(w) contains both

[BB] and [AA]. This implies that blocks of B’s in w cannot differ in length by

more than one.

Definition 3.1.0.2. (Sandwiched letters) The letter wi in w = ...wi−2wi−1wiwi+1wi+2...

is said to be sandwiched in w if wi−1 = wi+1.

Proposition 3.1.0.1. If w ∈ {A,B}Z is the cutting sequence of a linear trajectory on

the torus, then:

1. w is almost constant.

2. For all n ∈ N, property (1) is retained by each iterate w(n) of w under the opera-

tion that retains in w(n) only the letters that are sandwiched in w(n−1).
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c cB

(c) Cut parallelogram along diagonal and
paste into square shape
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c c
B

(d) Reflect square about central
vertical axis
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A

c

BB

(e) Cut square along diagonal and paste into
parallelogram.

A

A

c
B

B B

(f) Shear paralleogram and trajectory back into
square shape.

Figure 3.1: Alternative renormalization of Σ0 linear trajectories in the square.
(Figure adapted from [74])
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BA
c

B

B

B

(a) Original transitions, D0

AB c B

(b) Transitions after renormaliza-
tion, D1

Figure 3.2: Possible transitions of original Σ0 trajectories (a) and renormalized
Σ0 trajectories in “almost dual ” form: horizontal and auxiliary edge are vertices,
remaining exterior polygon edge(s) label directed graph edges.

For this section, we will re-use vocabulary from the previous section but

slightly alter the definitions:

Definition 3.1.0.3. Let π1 be the permutation that interchanges A and B. A word

w ∈ {A,B}Z is called admissible if either w or π1(w) = (AB) · w is almost constant

(Definition 3.1.0.1). If π1(w) is realizable in D0 then n(w) = π1(w) is called the nor-

malization of w. When w is realizable in D0, then w = n(w).

Proposition 3.1.0.2. Cutting sequences are admissible. Equivalently, the normaliza-

tion of a cutting sequence is almost constant.

Proof. If w = c(τ) is the cutting sequence of a linear trajectory τ then by the

contruction of D0 either w or π1(w) is realizable in D0 and the first condition of

Definition 3.1.0.1 is satisfied. We now check that w = c(τ) satisfies the second

condition of Definition 3.1.0.1. Assume that w = c(τ) is the cutting sequence of

a normalized linear trajectory τ on the torus. Let m ∈ [0, 1] be the slope of τ ,

set µ = m−1 to be the the inverse slope of τ and let n = ⌊µ⌋ denote the integer
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part of µ (Figure 3.3). Let τ be the segment of τ in R2 with one endpoint v0 in

the x-axis interval [0, 1] and the other endpoint on y = 1. Projecting τ onto the

x-axis gives the interval Iµ = [v0, v0 + µ], where:

n ≤ v0 + n ≤ v0 + µ < v0 + (n+ 1) ≤ n+ 2

slope:  µ=0.6  (µ=1.6)

}
{

1B B B B

A

AA

A A

A

A

A

1

B B BB

Figure 3.3: Line of slope m ∈ [0, 1] can hit the vertical side of T2 either n = ⌊m−1⌋
or n+ 1 times between intersections with the horizontal side of T2.

Definition 3.1.0.4. The derived sequence w′ = D(w) of an admissible word w is

obtained from n(w) by deleting the first and last B from each block of two or more con-

secutive B’s.

Proposition 3.1.0.3. Cutting sequences of billiard trajectories in the square are derive-

able, and the derived sequence of a cutting sequence is also a cutting sequence.
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Proof. Let H+ =

1 2 cot(π
4
)

0 1

 be the horizontal shear in V+(T2), rv =

−1 0

0 1

 be the vertical reflection in V−(ST2
) and H− =

−1 2 cot(π
4
)

0 1

 =

H+rv in V−(T2). The linear transformation h =

−1 cot(π
4
)

0 1

 that makes

angle-
(
π
4

)
vectors vertical (Figure 3.1 (b)) is not in V = V+(T2) ∪ V−(T2).

Let κ1 be the cut-and-paste map shown in Figure 3.1 (c) and κ2 the cut-and-

paste map shown in Figure 3.1 (e). The effect of the affine automorphism

ΨT2
= h−1◦κ2◦rv◦κ1◦ h on T2 is illustrated in Figure 3.1 (b) through (e). ΨT2

is an

orientation-reversing affine automorphism of T2 with derivative H− ∈ V(T2).

Moreoever, ΨT2
is conjugate by the linear transformation h to the orientation-

reversing isometry with derivative rv ∈ V(T2). Affine automorphisms of a trans-

lation surface that are conjugate to isometries by elements of SL(2,R) that are

not derivatives affine automorphisms are called hidden symmetries of the surface.

They are discussed again in Section 4. The effect of ΨT2
on T2 is to horizontally

shear by 2 cot(π
4
) though a reflection of T2 about its central vertical axis. (Figure

3.4). As an affine automorphism of T2, ΨT2
sends linear trajectories in T2 to lin-

ear trajectories.
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2

3

1

2

3

1

2

3

4

5

A B B B A (B)

1

2

A B A (B)

1

Figure 3.4: Top: A Σ0 trajectory segment τ starting at the green dot and bouncing
off sides in the order indicated by small black numbers. Cutting sequence w of
τ in black letters to the right. Middle: Shearing the through the reflection of the
top figure about its central vertical axis (left), then sheared by H+ (right). Bot-
tom: Cutting the sheared torus along vertical green lines and translating pieces
back into the square. The trajectory segment in this figure is the renormalization
τ ′ of τ . The cutting sequnce w′ of τ ′ is in black letters to the right. In w′ the only
the sandwiched letters in w are retained.

Now assume that τ ∈ T0 is a linear trajectory in T2 and τ ′ = ΨT2
(τ). By

Proposition 3.1.0.2, w = c(τ) is admissible. Let p be the path that realizes w in

D0. In the first two transformations illustrated in Figure 3.1 (b,c), the cutting

sequence of the transformed trajectory is still w = c(τ). One can check that the

cutting sequence c(τ3) of the image τ3 of τ following the third transformation

(Figure 3.1, d) can be realized by following the path p through the transition

diagram D1 (Figure 3.2, b). Call this new sequence w′ = c(τ3). No other changes
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to the cutting sequence occur in subsequent steps of Figure 3.1, so w′ = c(τ ′)

proving the proposition.

An admissible word w is infinitely derivable if w(n) = D(n)(w) is admissible for

all n ∈ N.

Corollary 3.1.0.4. Cutting sequences of billiard trajectories in the square are infinitely

deriveable.

Theorem 3.1.0.5. The set of infinitely deriveable sequences is the closure of the set of

torus cutting sequences.

Proof. We have already shown (Proposition 2.3.1.2) that the set of classically (Def-

inition 2.3.1.3) infinitely deriveable words in {A,B}Z is the closure of the set of

torus cutting sequences. So here it suffices to show that there is a 1-to-1 cor-

respondence between the set of classically infinitely deriveable sequences and

alternative-sense infinitely deriveable sequences (Definition 3.1.0.4). Let Dc be the

derivation from Definition 2.3.1.3 and Da the derivation from Definition 3.1.0.4.

Let w ∈ {A,B}Z be a word in which every A is isolated and B’s appear in blocks

of length n or n + 1, i.e. w is what Series [71] calls an almost constant (Defintion

3.1.0.1) sequence. The classical derivation rule Dc gives the following transfor-

mation of sequences:

[ABB...B︸ ︷︷ ︸
k

] 7→ [ABB...B︸ ︷︷ ︸
k−1

], k ≥ 1
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While the alternative rule Da operates on sequences as indicated below:

[ABB...B︸ ︷︷ ︸
k

] 7→ [ABB...B︸ ︷︷ ︸
k−2

], k ≥ 2

So for fixed almost constant w ∈ {A,B}Z, we can send Da(w) to Dc(w) by apply-

ing Dc
a:

[ABA] 7→ [AA] and

[ABB...B︸ ︷︷ ︸
k

A] 7→ [ABB...B︸ ︷︷ ︸
k+1

A], k = 0 and k ≥ 2

And we can obtain Da(w) from Dc(w) by applying Da
c :

[ABA] 7→ [AA] and

[ABB...B︸ ︷︷ ︸
k

A] 7→ [ABB...B︸ ︷︷ ︸
k+1

A], k = 0 and k ≥ 2

Example 3.1.0.1. Let w = ...ABABABABBABBABBABBABABABABA....

w = ... A B A B A B A B B A B B A B B A B B A B A B A B A B A ...
Dc(w) = ... A A A A B A B A B A B A A A A A ...
Da(w) = ... A B A B A B A A A A A B A B A B A B A ...

Table 3.1:
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For any almost constant word w there exist unique almost constant words

v and u such that Dc
a(v) = w and Da

c(u) = w. The word v is the unique word

that contains an [ABA] wherever w has [AA] and that contains, for k = 0 or any

k ≥ 2, the subword [ABkA] wherever w has the subword [ABk+1A]. Similarly, u

is the unique word that contains [AA] where w has [ABA] and that contains, for

k = 0 or any k ≥ 2, the subword [ABk+1A] where w has the subword [ABkA].

One can check that if w is almost constant, then v and u are as well. This 1-to-1

correspondence suffices to prove the proposition.

3.2 Hitting Sequences in the
(
π
2

)
-Isosceles Triangle

Our initial approach the problem of characterizing
(
π
2

)
-isosceles triangle hitting

sequences considers all edges in the
(
π
2

)
-isosceles triangle’s reflected cover of

the centrally punctured square T⊙
2

(Figure 3.5). The geometric renormalization

procedure for billiards in the square torus described in Section 3.1 is employed

here without alteration: apply the affine automorphism ΨT2
from Section 3.1 to

T⊙
2

tiled by four reflected copies of the
(
π
2

)
-isosceles triangle (Figure 3.5). The

centerpoint is mapped back to itself under ΨT2
so the operation ΨT2

is an au-

tomorphism of T⊙
2

. In this setting however, the application of ΨT2
has different

combinatorial consequences.

In the unpunctured square torus, we say a sequence w ∈ {A,B}Z is admis-

sible if either w or π1(w) can be realized as an infinite path through the one-

step transition diagram D0. Incorporating interior triangle sides breaks some
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H

π1 =(AB)(R−R+)

π2 =(AB)(R−L+R+L−)

π3 =(L−R−)(L+R+)

π4 =(R−R+)(L−L+)

π5 =(AB)(L+L−)

π6 =(AB)(R−L−R+L+)

π7 =(R−L+)(R+L−)

Table 3.2: The permutation πk of {A,B,L±, R±} maps edge and vertex labels of
Dk to those of D0.

combinatorial symmetry. Specifically, the combinatorial transitions that can be

realized by a given trajectory in forward and backward time are no longer iden-

tical. Transition diagrams Dk for trajectories in angular sectors Σk = [kπ
4
, (k+1)π

4
],

k = 1, 2, ..., 7 are obtained by relabeling D0 and D∗
0 according to the permuta-

tions πk:

It will be convenient to look at this coding alphabet as a disjoint union

of exterior polygon sides B = {A,B} and interior triangle sides B =

{L−, R−, L+, R+} (Figure 3.5). For a word w ∈
(
B ∪ B

)Z
, we let w

∣∣
B

and w
∣∣
B

denote the restrictions of w to B and B respectively. The property most analo-

gous to admissibility in the square torus we now call weak admissibility.

Definition 3.2.0.1. We say a sequence w ∈ {A,B,L±, R±} is weakly admissible if

w
∣∣
B

is almost constant (Definition 3.1.0.1) and either w or π−1
i (w) is realizable as an

infinite path through D0. If πi(w) is realizable in D0 then n(w) = πi(w) is a normal-

ization of w.
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D0 L−

R−
ttA

R−

��
B

R+

WW

00

R+

��
L+

QQ

D1 L−

R+

ttB

R+

��
A

R−

WW

00

R−

��
L+

QQ

D2 R−

L+

ttB

L+

��
A

L−

WW

11

L−

��
R+

QQ

D3 R−

L−
ttA

L−

��
B

L+

WW

11

L+

��
R+

QQ

D4 L+

R+

ttA

R+

��
B

L−

WW

00

R−

��
L−

QQ

D5 L+

R−
ttB

R−

��
A

R+

WW

00

R+

��
L−

QQ

D6 R+

L−
ttB

L−

��
A

L+

WW

11

L+

��
R−

QQ

D7 R+

L+

ttA

L+

��
B

L−

WW

11

L−

��
R−

QQ

Table 3.3: All One-Step Transition Diagrams for the
(
π
2

)
-Isosceles Triangle-Tiled

Square

One distinction between the classical square torus and the case we present

here is the existence of a subword realizable in the one-step transition diagram

D0 that clearly cannot be realized as part of the cutting sequence of a linear

trajectory τ ∈ T0. Specifically, the subword u = [L+BL−] cannot be realized

by a trajectory with slope in [0, π
4
]. The “almost dual” diagram D∗

0 (Table 3.4)

whose vertices are labeled by horizontal and tipped edges of the
(
π
2

)
-isosceles

tiled square admits fewer subwords than D0. Every subword of length 3 arising
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D∗
0 R−

B

��

B
��
L−

cc

A

----

R+

VV

&&
L+

B

\\

D∗
1 R+

A

��

A
��
L−

cc

B

----

R−

VV

&&
L+

A

\\

D∗
2 L+

A

��

A
��
R−

cc

B

----

L−

VV

''
R+

A

\\

D∗
3 L−

B

��

B
��
R−

cc

A

----

L+

VV

''
R+

B

\\

D∗
4 R+

B

��

B
��
L+

cc

A

----

R−

VV

&&
L−

B

\\

D∗
5 R−

A

��

A
��
L+

cc

B

----

R+

VV

&&
L−

A

\\

D∗
6 L−

A

��

A
��
R+

cc

B

----

L+

VV

''
R−

A

\\

D∗
7 L+

B

��

B
��
R+

cc

A

----

L−

VV

''
R−

B

\\

Table 3.4: All Nearly-Dual Transition Diagrams for the
(
π
2

)
-Isosceles Triangle-

Tiled Square
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from a path through D∗
0 can be realized by a linear trajectory segment with angle

θ ∈ [0, π
4
]. Weakly admissible words not containing u are admissible.

Definition 3.2.0.2. A weakly admissible word w with normalization n(w) is admissi-

ble if n(w) is realizable in D∗
0.

BB

A

A

L
-

R
-

L
+

R
+

(a) Centrally Punc-
tured Square from(
π
2

)
-Isosceles Triangle

A B

R
+

L
+

L
-

R
+

R
-

R
-

(b) One-Step Transi-
tion Diagram D0 for
0 ≤ θ ≤ π

2

Figure 3.5

R
-

R
+

L
-

L
+

L
+

L
-

A

B

A

(a) Stage 0. Cut and
paste along diago-
nal, then shear back
to square shape.

R
-

R
+

L
-

L
+

L
+

L
-

B

A

A

(b) Stage 1. Flip
main diagonal.

R
-

R
+

L
-

L
+

L
+

L
-

A

B

A

(c) Stage 2. Reflect
about central verti-
cal axis.

R
-

R
+

L
-

L
+

L
+

L
-

A

B

A

(d) Stage 3. Flip
main diagonal
again.

Figure 3.6
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L
+

R
+

R
-

L
-

A

B

B

B

R
+

R
-
B

R
- R

-

R
+

R
+

B

B

(a) D(0)

L
+

R
+

R
-

L
-

AB R
+

R
-
B

R
- R

-

R
+

R
+

(b) D(1)′

L
+

R
+

R
-

L
-

AB B

R
-

R
+

(c) D(2)′

L
+

R
+

R
-

L
-

A

B

B

B

B

R
-

R
+

(d) D(3)′

Figure 3.7: Possible transitions of renormalized Σ0 trajectories, in “almost dual”
form: horizontal and vertical edges of Figure 3.6 (a) are vertices, remaining
edge(s) in Figure 3.6 (a) label directed graph edges

Proposition 3.2.0.1. The “almost dual” transition diagram D∗
0 realizes exactly the

same words as the transition diagram D(0) (Figure 3.7).

Proof. The transformation shown in Figure 3.6 (a), in which we first cut and

paste along the diagonal of Figure 3.5 (a) and then shear back to a square shape,

sends each linear trajectory τ ∈ Σ0 to a linear trajectory τ ′ in Σ
′
0 = [0, π

2
]. The

intersections between trajectories and edges in Figure 3.5 (a) are preserved un-

der this transformation, so c(τ) = c(τ ′). Thus. it suffices to check that that D(0)

realizes all two-step transitions possible for Σ′
0 trajectories in Figure 3.6 (a).

The effect of this geometric renormalization on cutting sequences w ∈(
B ∪ B

)Z
is to:

30



1. drop every B that is not sandwiched between either two A’s or two B’s in

w
∣∣
B

,

2. drop every R that is not sandwiched between two L’s or two R’s in w
∣∣
B

,

3. (3-letter subword swap) replace every occurance of [LRB] with [LBR], and

every occurence of [BRL] with [RBL].

Definition 3.2.0.3. The derived sequence w′ = D(w) of an admissible word w is

obtained from n(w) by deleting the first and last B from each block of two or more con-

secutive B’s in w
∣∣
B

, and every R that is not sandwiched between two L’s or two R’s in

wB, then performing the subword swap (point 3. above).

Example 3.2.0.1. Suppose

w = ...AR−BL−R−BL−R−BL−R−BR+L+BR+L+BR+L+BR+A...

encodes part of a linear trajectory τ ∈ T0 in the
(
π
2

)
-isosceles-tiled centrally punctured

square. Since w is admissible, it is realizable by a path p D(0). The effect of tracking p

through transition diagrams D(0), D(1)′ , D(2)′ , and D(3)′ (Figure 3.7) successively are

shown in Table 3.5. The derived sequence w′ of w is given in the last row of Table 3.5.

It is the word obtained by taking the path p through D(3)
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Start A R− B L− R− B L− R− B L− R− B R+ L+ B R+ L+ B R+ L+ B R+ A
Step 1 A R− L− R− L− R− L− R− B R+ L+ R+ L+ R+ L+ R+ A
Step 2 A L− R− L− R− L− B L+ R+ L+ R+ L+ A
Final A L− B R− L− B R− L− B L+ R+ B L+ R+ B L+ A

Table 3.5

An admissible word w is infinitely derivable if w(n) = D(n)(w) is admissible for

all n ∈ N.

Proposition 3.2.0.2. Cutting sequences of linear trajectories in the
(
π
2

)
-isosceles tiled

square are infinitely deriveable.

The proof of Proposition 3.2.0.2 follows the same strategy as the proof of

Proposition 2.3.1.1. If w = c(τ) is the cutting sequence of a linear trajectory τ on

the
(
π
2

)
-isosceles tiled square, then n(w) exists and is realizable in the “almost

dual” Σ0 transition diagram D∗
0 (Figure 3.4 (a)). By Proposition 3.2.0.1, D(0) re-

alizes the same words as D∗
0. Thus n(w) can be realized by a path p through

D(0)′ . The derived sequence w′ of w is obtained by tracing the path p through

D(3)′ (Figure 3.7 (d)). The word w′ is the cutting sequence of the trajectory τ(3)

that results from applying the affine automorphism illustrated in Figure 3.6 (a)

through (d) to the isosceles-tiled square.

It is not hard to see that, restricted to just exterior square sides {A,B}, this

process amounts to dropping the first and last B in any B-block of length greater
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than 2. So, in its restriction to the smaller alphabet, this operation has exactly

the combinatorial effect of performing this geometric renormalization proce-

dure from Section 3.1 on trajectories in the square torus. Also note that the ge-

ometric renormaliation process has no effect on trajectory crossings of the two

interior triangle edges in direction π
4
; as a result, every L+ and L− in a cutting

sequence w is retained in the derived sequence w′ (Figure 3.7). Specifically, ge-

ometric renormalization of trajectories preserves all crossings of edges that are

either vertical or horizontal under κ1 · h (see Figure 3.9).

It is also clear that the letters L− and L+ suffice to encode the passage of a

trajectory τ ∈ T0 under (resp. over) the centerpoint of the T⊙
2

. Our treatment of

the
(
π
n

)
-isosceles triangles use two parallel interior segments joining the marked

2n-gon centerpoint to exterior 2n-gon vertices. We now apply this approach to

the simpler
(
π
2

)
-isosceles case below.

3.3 Cutting Sequences in the
(
π
2

)
-Isosceles Triangle: Working

in the Centrally-Punctured Square

The fundamenal difference between the coding of linear trajectories on square

torus and on the
(
π
2

)
-isosceles triangle is the requirement, in the latter case, that

we capture trajectory behavior relative to the marked centerpoint. Applying

ΨT2
(Figures 3.8, 3.9 and 3.10) gives the geometric renormalization familiar from

Figure 3.1 in Section 3. Symmetries now give transition diagrams Dk, D∗
k for tra-

jectories with angles in sectors Σk = [kπ
4
, (k+1)π

4
] by label permutations πk:

33



π1 =(AB)

π2 =(AB)(L−L+)

π3 =id

π4 =(L−L+)

π5 =(AB)(L−L+)

π6 =(AB)

π7 =(L−L+)

L
-

L
+

A

A

BB

(a) Centrally Punc-
tured Square from(
π
2

)
-Isosceles Triangle

A B

L
+

L
-

(b) One-Step Transi-
tion Diagram for 0 ≤
θ ≤ π

4

Figure 3.8
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L
-

L
+

A

A

BB

(a) Stage 0.00
Two copies
of triangle
leg along
diagonal

A

A

B B

L
-

L
+

(b) Stage 0.0 Sheared
parallelogram (0 ≤
θ′ ≤ π

2 )

L
-

L
+

L
+

L
-

A

B

A

(c) Stage 0.
Cut along
diagonal and
paste back to
square shape.

L
-

L
+

L
+

L
-

A

B

A

(d) Stage 1.
Reflect about
central vertical
axis.

Figure 3.9

L
+

L
-

B

A B

B

B

B

B
B

B

(a) D(0)

L
+

L
-

A B

B

B

B

(b) D(1)′

Figure 3.10: Possible transitions of renormalized Σ0 trajectories, in “almost
dual” form: horizontal and interior triangle edges are vertices, remaining ex-
terior polygon edge(s) label directed graph edges

Weakly admissible sequences defined here as they were in Section 3.1. They

are words whose restrictions to B are almost constant and whose normaliza-

tions πi(w) = n(w) exist (i.e., are realizable in the one-step transition diagram

D0). Admissible sequences have normalizations realizable in the ‘nearly dual’

transition diagram D∗
0. Sub-alphabets B = {A,B}, B = {L±} of exterior and

interior edges are again useful here.

The intersections of a linear trajectories τ ∈ T0 with interior triangle sides

labeled by L+ and L− are invariant under ΨT2
(examine Figure 3.9). Thus, the

L+’s and L−’s that appear in the cutting sequence of τ are retained in the cut-

ting sequence of the renormalized trajectory τ ′. Differences between the cutting
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sequence of τ and the cutting sequence of its renormalization τ ′ = ΨT2
· τ occur

only over the subalphabet B = {A,B}.

Definition 3.3.0.1. The derived sequence w′ = D(w) of an admissible word w is

obtained from n(w) by deleting the first and last B from each block of two or more con-

secutive B’s in w
∣∣
B

.

Example 3.3.0.1. The derived sequence of:

w = ...ABL−BL−BL−BL+BL+BL+BA...

from Example 3.2.0.1 in this setting is given in Table 3.6.

Start A B L− B L− B L− B L+ B L+ B L+ B A
Final A L− B L− B L− B L+ B L+ B L+ A

Table 3.6

An admissible word w is infinitely derivable if w(n) = D(n)(w) is admissible for

all n ∈ N. Furthermore:

Proposition 3.3.0.1. Cutting sequences w ∈ {A,B,L±}Z of linear trajectories in T⊙
2

are infinitely deriveable.

The proof of the Proposition follows the same strategy as the the proof of

Proposition 2.3.1.1. If w is the cutting sequence of a linear trajectory on the

centrally-punctured square, then n(w) exists and is realizable by a path p though
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the “almost dual” Σ0 transition diagram D(0) (Figure 3.10 (a)). The derived se-

quence w′ of w is obtained by tracing the path p through D(1)′ (Figure 3.10 (b)).
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CHAPTER 4

GENUS TWO: THE
(
π
4

)
-ISOSCELES TRIANGLE

Our approach to the problem of characterizing billiard trajectory cutting se-

quences on the
(
π
4

)
-isosceles triangle utilizes techniques introduced in Section

3.3. These techniques use exploit the fact that the
(
π
4

)
-isosceles triangle unfolds

into a centrally punctured regular octagon O⊙ , which closes up under side-

identifications into a surface S
⊙

O with the the same Veech group as SO. In S
⊙

O

reflected isosceles triangle legs are among the boundary segments of cylinders

in parabolic direction π
8

(Figure 4.1).

β1β3

β2 β2

β0

β0
β1

β3

β1 β3

β2 β2

β0

β0
β1

β3

β1

β2

β0
r-

r+

r-

r+

a
-

a
+

b
-

b
+ a

-

β0

Figure 4.1: Horizontal and direction-
(
π
8

)
cylinder decompositions of O⊙

Recall from Section 2.1 that the translation surface S
⊙
O is geometrically in-

distinguishable from SO, the (unpunctured) regular octagon surface. Coordi-

nates in arbitrarily small neighborhoods of the central puncture in O⊙ are Eu-

clidean; the puncture is a nonsigular marked point with cone angle 2π. Geo-

metrically identical surfaces, such as (SO,Σ) and (S
⊙

O,Σ
⊙
), with different sets of
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marked points can have different affine automorphism groups. As indicated in

Section2.1, however, regular 2n-gon surfaces with and without a marked cen-

terpoint do have the same Veech group (y Proposition 2.2.0.1). In the case of the

surfaces SO and S
⊙

O, the Veech group V(SO) is generated by the rotation, rπ
4
, the

horizontal shear H+ =

1 2(1 +
√
2)

0 1

 and reflection rv through the central

vertical axis. The orientation-preserving subgroup, V+(SO) of V(SO) is gener-

ated by just rπ
4

and H+.

The linear transformation H+ is the derivative of the automorphism illus-

trated in Figure 4.3. This automorphism induces a Dehn twist in the middle

horizontal cylinder and two twists in the other cylinder (Figure 4.1)). It is, how-

ever, the orientation-reversing automorphism Ψ = Υ ◦ H+ ◦ rv with derivative

H− =

−1 2(1 +
√
2

0 1

 ∈ V(S
⊙

O) that plays a central role in our renormaliza-

tion scheme. H− is a hidden symmetry of S
⊙

O. That is, H− has finite order (in fact

it is an involution) and there is a linear transformation not in the Veech group

of S
⊙

O that conjugates H− to an isometry of S
⊙

O.

1

2
3

2

3

4

5

4

6

7
8

9
9

8

7

6

5+ 5+ 5-
5-

Figure 4.2: The figure shows H+ · O⊙ (right) and
(
Υ ◦ H+

)
(left) applied to O⊙ .

The shear H+ is the derivative of the automorphism of O⊙ that postcomposes
the cut-and-paste map Υ with H+. (Figure adapted from [74])

39



Consider the shear h =

−1 1 +
√
2

0 1

 that preserves the horizontal di-

rection and takes lines tipped in direction π
8

to vertical lines (Figure 4.2). The

linear transformation h is not the derivative of an affine automorphism of O⊙ .

The composition κ−1 ◦ rv ◦ κ of the cut-and-paste map κ that translates pieces of

h · O⊙ to the L-shaped collection of rectangles in Figure 4.10 with κ−1 ◦ rv is an

isometry of h · O⊙ . And

h−1 ◦ κ−1 ◦ rv ◦ κ ◦ h

is an automorphism of O⊙ with derivative:

h−1 ◦ rv ◦ h = H− ∈ V(S
⊙

O).

Thus, h ◦ H− ◦ h−1 = rv, implying that H− is a hidden symmetry of S
⊙

O con-

jugate to the orientation-reversing isometry rv of by h, a linear transformation

that is not the derivative of an affine automorphism of S
⊙

O.

Figure 4.3: Left: the sheared octagon h · O⊙ ; Right: (κ ◦ h) · O⊙
(Figure adapted

from [74])
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In the sheared octagon h · O⊙ , the non-horizontal exterior sides of O be-

come diagonals in circumscribed rectangles (Figure 4.3). Cutting and pasting

into the L-shaped configuration L⊙ in Figure 4.3 yields a set of exterior rectan-

gle sides that represent interior horizontal edges and edges tipped in direction π
8

in O⊙ . These will be called auxiliary edges; they are labeled with {a−, b−, b+, a+}

(Figure 4.10). The auxiliary edges correspond to exterior edges of horizontal

cyliders and cylinders in direction π
8

on O. Use of the augmented alphabet

Ã
⊙
= B ∪ {ρ−, ρ+} ∪ {a−, b−, b+, a+} permits greater flexibility in tracking how

trajectories pass through cylinders in L⊙ (Figure 4.10). The value of this flexibil-

ity is evident in Section 4.1.

b1

b1

b0

b0

b2 b2

b3

b3

r
+

r
-

under

over

b1

b1

b0

b0

b2 b2

b3

b3

r
+

r
-

counter-

clockwise

clockwise

Figure 4.4: Example of a Σ0-trajectory segment passing under/over the central
puncture in O⊙ while making a β2-to-β2 transition.
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4.1 Admissibility Criteria for O⊙ Cutting Sequences

Although the octagon and centrally-punctured octagon surfaces SO and S
⊙

O

share the same intrinsic geometry, interior edges included to account for trajec-

tory behavior with respect to the marked centerpoint of O⊙ lead to more com-

plex symbolic dynamics for geodesics on S
⊙

O.

Geodesic segments on S
⊙

O that pass through the same labeled edge twice in

succession are further identified by their orientation with respect to the center-

point p⊙ . The projection of any such trajectory segment onto the minor arc it

forms with a circle centered at p⊙ moves either clockwise or counterclockwise,

a distinction encoded by which of the interior triangle-leg edges, ρ± it crosses

(Figure 4.4). Let τ be a closed linear segment in direction θ ∈ Σ0 = [0, π
8
] that

intersects the octagon boundary δO only at its endpoints. The diagram D0 (Fig-

ure 4.8, right) summarizes the combinatorics of such segments with respect to

the alphabet A
⊙
= {β0, β1, β2, β3, ρ

−, ρ+} (Figure 4.8, left). Vertices of D0 repre-

sent octagon sides, directed edges are labeled by any interior edges that must

be crossed by a Σ0 trajectory in O⊙ passing between exterior octagon sides cor-

responding to the base and leading vertices of the directed edge.
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Summary of Notational Conventions

The alphabet B = {β0, β1, β2, β3} labels distinct-angle segments of δO.
B = {ρ−, ρ+} labels interior spoke segments of O⊙ that are reflected legs
of the isosceles-

(
π
8

)
triangle. A

⊙
= B ∪ B is the coding alphabet for trajec-

tories in O⊙ . Ã
⊙
= B ∪ {ρ±} ∪ {a−, b−, b+, a+} includes all interior edges in

O⊙ bounding horizontal and angle-
(
π
8

)
cylinders. The restriction of a larger

word to its elements in a particular sub-alphabet, for example of w ∈
(
A

⊙
)Z

to B, is given as

w
∣∣
B

CS
⊙

i is the set cutting sequences of linear trajectories in Σi = [ iπ
8
, (i+1)π

8
].

Objects connected with the angular sectors Σi+8 containing backward time
trajectories from sectors Σi = [ iπ

8
, (i+1)π

8
], i ∈ {0, 1, ..., 7} will sometimes be

denoted with subscript i−. The objects associated with Σi, i ∈ {0, 1, ..., 7}
always have an implied subscript i+. This becomes relevant when we speak
of subscripts iϵ, ϵ ∈ {+,−}. For example:

Σi− ≡ Σi+8, CS
⊙

i− ≡ CS
⊙

i+8, D
⊙

i− ≡ D
⊙

i+8

and

Ti ϵ = Ti+8, (ϵ = +), Ti ϵ = Ti, (ϵ = −)

Large bold Σ’s, T’s, and CS
⊙

’s are unions over i = 0, 1, 2, ..., 15

TTT ≡
15∪
i=0

Ti, Σi ≡
15∪
i=0

Σi

Both set closures and infinite periodic words are denoted by an overline. For
example:

the closure of CSCS ⊙
is CSCS ⊙

and

the word β1β3β2 is shorthand for ...β1β3β2β1β3β2β1β3β2...

Figure 4.5
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b 1

b 1

b 0

b 0

b 2 b 2

b 3

b 3

t
+

t
- β0 β1 β2

β3

ρ
+

ρ
−

Figure 4.8: O⊙ and D0, the transition diagram for Σ0 linear trajectories in O⊙

ν+
0 =

(
1 0
0 1

)
ν+
1 =

( 1√
2

1√
2

1√
2

− 1√
2

)
ν+
2 =

( 1√
2

1√
2

− 1√
2

1√
2

)
ν+
3 =

(
0 1
1 0

)

ν+
4 =

(
0 1
−1 0

)
ν+
5 =

(− 1√
2

1√
2

1√
2

1√
2

)
ν+
6 =

(− 1√
2

1√
2

− 1√
2

− 1√
2

)
ν+
7 =

(
−1 0
0 1

)

Table 4.1: Positive normalizing isometries ν+
i of O⊙ that take Σi to Σ0, i =

0, 1, 2, ..., 7. The remaining positive normalizing isometries are orientation re-
versing: ν+

i− ≡ ν+
i+8 = ν+

i ◦ rπ, i = 0, 1, ..., 7. The negative normalizing isometries ν−
i

sending Σi to Σi− ≡ Σi+8, i = 0, 1, 2, ..., 15 are given by ν−
i = rπ ◦ ν+

i .

The topology of transition diagrams Di, i = 1, 2, .., 7 for trajectories in

Ti ≡ {τ θ a linear trajectory on O⊙
: θ ∈ Σi =

[
iπ

4
,
(i+ 1)π

4

]
}

and of transition diagrams Di− ≡ Di+8, i = 0, 1, 2, ..., 7

Ti− ≡ {τ θ a linear trajectory on O⊙
: θ ∈ Σi− ≡ Σi+8 =

[
(i+ 8)π

4
,
(i+ 9)π

4

]
}

is exactly the same as that of D0, and symmetries of the octagon ensure that
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vertex labels of D0 are positive normalizing vertex permutations π+
i : B → B of

those in each of the Di, i = 0, 1, 2, ..., 15 (Figure 4.9). Moreoever, π+
i+8 = π+

i

∀i ∈ {0, 1, 2, ..., 7}. and the negative normalizing vertex permutations that take ver-

tex labels of Di to those of D0− are identical to the positive normalizing permu-

tations. So π−
i = π+

i , i = 0, 1, 2, ..., 15.

Definition 4.1.0.1. The Σ0 trajectory n(τ) = n+(τ) = ν+
i (τ) obtained from τ ∈ Ti,

i ∈ {0, 1, ..., 7} is called the normalization of τ . The normalization of τ ∈ Ti− ,

i ∈ {0, 1, ..., 7} is the Σ0− trajectory given by n(τ) = n−(τ) = νi−(τ).

Starting from the directed edge joining β0 to β3 in D0 and proceeding

clockwise around the diagram, enumerate the successive edges {e1, e2, .., e10}

of D0. Denote by R
⊙

the subset of { ∅ , ρ−, ρ+}10 consisting of an alternating

length 2k, k = 1, 2, 3, 4, 5 strings of ρ±’s padded by 10−2k
2

leading and trail-

ing ∅ ’s, i.e. words such as [ ∅ ∅ ∅ ρ− ρ+ ρ− ρ+ ∅ ∅ ∅ ]. These words are pa-

rameterized by the length and initial sign of their alternating string of ρ±’s, so

R
⊙ ≡ {2±, 4±, 6±, 8±}. Edges of D0 are labeled by 2− ∈ R

⊙
. Let π

⊙+
i be the

permutation on R
⊙

that sends the element of R
⊙

labeling edges of Di to 2−. So

relabeling Di according to π+
i ≡

(
π+
i , π

⊙+
i

)
, i = 0, 1, ..., 15 yields D0. Note that

π
⊙+
i+8 = (2− 2+)◦π⊙+

i so π̂+
i ≡ π+

i+8 = (π+
i , (2

− 2+)◦π⊙+
i ). Edges of D0− are labeled

by 2+ ∈ R
⊙

so π
⊙−
i = (2− 2+) ◦ π⊙+

i and π−
i = (π+

i , (2
− 2+) ◦ π⊙+

i ).

Definition 4.1.0.2. A word w ∈
(
A

⊙
)Z

is weakly admissible if it can be realized

as an infinite path in one of the diagrams Di, i = 0, 1, 2, ..., 15. If weakly admissible w

can be realized in Dj , then w is said to be weakly Σj-admissible or weakly admissible
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with respect to Σj .

Notational Convention. In what follows, the notation πi will be used in two related

ways. When applied to the set of edge and vertex labels of Di, πi is the composition

(πi, π
⊙
i ) of permutations discussed above. When applied to a Σi-admissible word w, πi

will denote the word n(w) = πi(w) realized by following the p that realizes w in Di

through D0.

Definition 4.1.0.3. The word w ∈
(
A

⊙
)Z

is normalizable if for some i ∈

{0, 1, ..., 15}, πi(w) is realizable as an infinite path in D0. The word w is normal-

izable if and only if it is weakly Di-admissible for some i ∈ {0, 1, ..., 15}. In this

case, normalizations of Σi-admissible w and Σi−-admissible v are given respectively

by n(w) = n+(w) = π+
i (w) and n(v) = n−(v) = π−

i (v).

Proposition 4.1.0.1. Cutting sequences of linear trajectories in O⊙ are weakly admis-

sible.

Proof. Each linear trajectory τ θ, θ ∈ Σi, i = 1, 2, ..., 15 on O⊙ can be viewed as

a concatenation of closed segments τ j , j ∈ N in direction θ that intersect the

octagon boundary ∂O only at their endpoints. By construction, there is a two-

vertex path pj in Di realizing the cutting sequence c(τ j) of each segment, so

the cutting sequence c(τ θ) of τ θ is realizable in Di as an ordered concatenation

p(τ θ) = p1p2...
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Figure 4.9: Di, i = 0, 1, 2, ..., 7, transition diagrams for Σi, i = 0, 1, 2, ..., 7 lin-
ear trajectories in O⊙ ; Di− ≡ Di+8, i = 0, 1, 2, ..., 7 is Di with signs of each ρ±

switched. A word in
(
A

⊙
)Z

that is realizable as path through Di is weakly Σi-
admissible.

It is clear from inspection that neighboring diagrams Dk, Dk+1 (mod 8) re-

alize two common periodic period 1 or 2 restrictions of words from A
⊙ to

B = {β0, β1, β2, β3}. It is also clear from inspection that any word w ∈
(
A

⊙
)Z

that makes all transitions realizable in Dk is realizable only in Dk.
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π+
0 = Id π+

1 = (β0β3)(β1β2) π+
2 = (β0β1β2β3) π+

3 = (β0β2)

π+
4 = (β0β2)(β1β3) π+

5 = (β0β1)(β2β3) π+
6 = (β0β3β2β1) π+

7 = (β1β3)

Table 4.2: Permutations π+
i that convert vertex labels of Di and of Di− ≡ Di+8 to

those of D0, i = 0, 1, 2, ..., 7.

π
⊙+
0 = Id π

⊙+
1 = (2+ 2−) π

⊙+
2 = (4+ 2−) π

⊙+
3 = (6+ 2−)

π
⊙+
4 = (8+ 2−) π

⊙+
5 = (8− 2−) π

⊙+
6 = (6− 2−) π

⊙+
7 = (4− 2−)

Table 4.3: Permutations π
⊙+
i that convert edge labels of Di to those of D0, i =

0, 1, 2, .... The edge-label permutations for Di− ≡ Di+8 are given by π
⊙

i− ≡ π
⊙
i+8 =

(2− 2+) ◦ π⊙
i .
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b
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t
+

t
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a
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Figure 4.10: Augmented centrally punctured octagon Õ⊙ (left) and L-shaped
table L⊙

= (κ ◦ h) · Õ⊙ (right).

Extending the procedure introduced for the torus in Section 2.3.1, we now

label edges of the one-step transition diagram D0 by the auxiliary segments

crossed by trajectories τ ∈ T0 passing from the octagon side labeled by the ver-

tex at the base of the edge to the octagon side labeled by the vertex at its tail

(Figure 4.11). This augmented transition diagram will be denoted D̃0.
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b0 b1 b2b3

t
+

t
-

a
+

a
-

b
+

b
-

Figure 4.11: The figure shows D̃0, the transition diagram for Σ0 trajectories in
Õ⊙ .

The role of the augmented alphabet becomes clearer when we switch point

of view, creating a new transition diagram D̃
∗
0 for Σ0 trajectories that is “nearly

dual” to D̃0. These nearly-dual transition diagrams labeled by letters in the aug-

mented alphabet will prove useful in determining a derivation rule on words in

A
⊙ that corresponds to the geometric renormalization scheme we detail in Sec-

tion 4.28. In D̃
∗
0 , vertices are labeled by horizontal and vertical edges of L⊙ and

directed edges labeled by the interior diagonals in L⊙ crossed by Σ0 trajectories

passing between the rectangle side labeled by the initial vertex to the rectangle

side labeled by the terminal vertex (Figure 4.19).

β0

β3

β3

β3 β3 β1

β1

β1

β1

β2

β2β2

β2
ρ+

β2

ρ−a+

a−
b+

b
−

β2

β2

β2

Figure 4.12: D̃∗
0 , the dual Σ0 transition diagram: here the vertices are the edges of

Õ⊙ that are cylinder boundary components in horizontal and angle-
(
π
8

)
cylinder

decompositions of O⊙ while edges are labeled by exterior sides of O⊙ that are
interior diagonals of the cylinders. The dual Σ0− diagram D̃

∗
0− is obtained from

D̃
∗
0 by switching the signs of those vertex labels that have sigs as superscripts.
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Observation 4.1.0.1. The original transition diagram D0 from which weak admissibil-

ity was defined (Figure 4.9) allows two finite words that are impossible for a trajectory

τ ∈ T0 to realize: words containing the subword [ρ+β2 ρ
−] (Figure 4.20). To be clear,

these are not the only words realizable in D0 that are not realizable as the cutting se-

quence of a linear trajectory on O⊙ . These words are distinctive however in that simply

looking at two-step transitions immediately reveals that they cannot be contained in

cutting sequences.

Definition 4.1.0.4. The augmentation of a weakly Σi-admissible word w, i ∈

{0, 1, ..., 7} is the word w̃ obtained by tracing the path p(n+(w)) of its normalization

in D0 through D̃0. The augmentation of a Σi−-admissible w is the word obtained by

tracing p(n−(w)) through D̃0− .

Definition 4.1.0.5. A weakly Σj ϵ-admissible, ϵ ∈ {+,−} word w is admissible if

its augmented normalization ñ(w) is realizable as a path in D̃
∗
0 ϵ . An admissible word

is said to be Σj ϵ-admissible or admissible with respect to Σj ϵ if it is weakly Σj ϵ-

admissible (Definition 4.1.0.2).

Proposition 4.1.0.2. Cutting sequences of linear trajectories on O⊙ are admissible.

Proof. If c(τ) is the cutting sequence of a linear trajectory τ on O⊙ , and w =

n(c(τ)) its normalization then, by Proposition 4.1.0.1 , w is weakly admissible.

Moreover, by Observation 4.1.0.1, the 3-letter subword [ρ+β2 ρ
−] occurs nowhere

in w, and hence cannot occur in the augmentation w̃ of w. Since any word w̃

realizable in D̃
⊙
0 not containing the subword [ρ+β2 ρ

−] is also realizable in D̃
∗
0 ,
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this proves the proposition.

4.2 Combinatorial correspondence between
(
π
4

)
-isosceles and

centrally punctured regular octagon billiards

With the language of admissibility at our disposal we now establish the cor-

respondence between cutting sequences of linear trajectories on the centrally

punctured regular octagon and hitting sequences of billiard trajectories on the(
π
4

)
-isosceles triangle.

Proposition 4.2.0.1. Let w = c(τ) be the cutting sequence of a linear trajectory on

O⊙ . There is a well-defined mapping a : (A )Z 7→ {β, λ, ρ}Z that yields a word

w
△

= a(w) ∈ {β, λ, ρ}Z that is the hitting sequence of a billiard trajectory τ ′ on

the
(
π
4

)
-isosceles triangle.

Proof. By Proposition 4.1.0.1, w = c(τ) is weakly Σi-admissible for some i ∈

{0, 1, ..., 15}. The normalization n(w) of w exists and either n(w) or (ρ+ ρ−) · n(w)

is realizable in D0. First assume that n(w) is realizable in D0,so n(w) is the cut-

ting sequence of the normalization n(τ) of τ . Let p be the path through D0 that

realizes n(w). The triangle augmented transition diagram D̃
△ (Figure 4.14, dia-

gram II.) labels directed edges of D0 by the interior triangle legs (Figure 4.13

(b)) crossed by Σ0 trajectories passing from the octagon side labeled by the ini-

tial vertex to the octagon side labeled by the terminal vertex. The unindexed
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triangle augmented transition diagram D
△ (Figure 4.14, diagram III.) drops su-

perscripts and subscripts from edge and vertex labels of D̃
△ . Since w is the

cutting sequence of the linear trajectory τ on O⊙ , the word w
△
= a(w) obtained

by tracing p through D
△ is clearly the hitting sequence of the

(
π
4

)
-isosceles bil-

liard trajectory τ ′ that unfolds into n(τ) on O⊙ . If (ρ+ ρ−) · n(w) is realizable in

D0, then the same argument holds for (ρ+ ρ−) · n(w) and rv · n(τ)

Since the correspondence is many-to-one, there is more than one natural way

to define the mapping from
(
π
4

)
-isosceles hitting sequences to O⊙ cutting se-

quences. We present a mapping that fixes the target angular sector of its image.

Other natural choices might fix the indexed β in O⊙ to which the first appear-

ance of β in the hitting sequence lifts.

Proposition 4.2.0.2. Let w be the hitting sequence of a billiard trajectory on the
(
π
4

)
-

isosceles triangle. There is a well-defined mapping from a : {β, λ, ρ}Z 7→
(
A

⊙
)Z

that

yields a word w
⊙
= a(w) ∈

(
A

⊙
)Z

that is the cutting sequence of a linear trajectory

τ ′ on O⊙ .

Proof. Let w be the hitting sequence of a billiard trajectory τ in the
(
π
4

)
-isosceles

triangle. Either w of (λρ) · w is realizable the dual triangle transition diagram D
△∗

(Figure 4.14, Diagram IV.) in which edge labels of D△ are vertex labels, and di-

rected edges of D△∗
are labeled with vertex labels from D

△ . First assume that

w is realizable in D
△∗

. Let p be a path through D
△∗

that realizes w. The path p

is unique if w contains a β-free subword (Definition 4.2.0.1) of length four, or if w
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contains two β-free subwords of different lengths.

Definition 4.2.0.1 (β-free subwords). A β-free subword of w ∈ {β, λ, ρ}Z is a sub-

word without β’s that cannot be extended in either direction while retaining this prop-

erty.

Diagram V. in Figure 4.14 is adapted from the almost-dual augmented Σ0

transition diagram (Figure 4.12) by stripping vertex labels, leaving only labels

from the alphabet A
⊙ . When p is unique, then w

⊙
= a(w) ∈

(
A

⊙
)Z

is the

word obtained by tracing p through Diagram V. of Figure 4.14. If every β-free

subword of w is the same length, say k < 4, then there are exactly two paths p1

and p2 that realize w in D
△ . The words w

⊙
1 and w

⊙
2 obtained by tracing p1 and

p2 through Diagram V. of Figure 4.14 are the same up to indexing, they are both

period-one periodic words βiβj , i ̸= j ∈ {0, 1, 2}. In this case, w
⊙
= a(w) will

be whichever of w
⊙
1 or w

⊙
2 has βmin(i,j) in the zero position. Since w is the cutting

sequence of a billiard trajectory τ on the
(
π
4

)
-isosceles triangle, w

⊙
= a(w) is the

cutting sequence of the normalization n(τ ′) ∈ T0 of the linear trajectory τ ′ in O⊙

that τ that unfolds into.

We have so far assumed that w is realizable in D
△ . Since w is a hitting se-

quence either w or (λρ) · w is realizable in D
△ . If (λρ) · w is realizable in D

△

then the same argument above holds for (λρ) · w and rv · τ and w
⊙ is the cutting

sequence of the normalization n(τ ′) ∈ T0 of the unfolding in O⊙ of the reflected

billiard trajectory rv · τ .
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Figure 4.14: Cutting sequences of direction θ ∈ [0, π
8
] trajectories on the centrally-

punctured octagon can be realized by a path p through diagram I. Tracing
p through diagram III. gives the corresponding hitting sequence on the

(
π
4

)
-

isosceles triangle. Hitting sequences, up to permutation by (λ ρ), on the
(
π
4

)
-

isosceles triangle can be realized by a path p′ in diagram IV. Tracing p′ through
diagram V. gives the corresponding cutting sequence for a direction θ ∈ [0, π

8
]

trajectory on the centrally punctured octagon.

4.3 Renormalization of Linear Trajectories in O⊙

Proposition 4.3.0.1. If τ ∈ TTT , then Ψ(n+(τ)) and Ψ(n−(τ)) are also linear trajectories

on O⊙ , and Ψ(n−(τ)) = rπ ·Ψ(n+(τ)).
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Proof. Without loss of generality assume τ ∈ T0 (so n+(τ) = τ ). It is clear that

rv(τ) is a linear trajectory in O⊙ and thus H−(τ) =
(

H+ ◦ rv
)
(τ) is a linear tra-

jectory in
(

H+ ◦ rv
)
(O⊙

) = H−(O⊙
). The composition Ψ of the affine auto-

morphism with derivative H− and the cut-and-paste map Υ is an isometry, so

τ ′ = Ψ(n+(τ)) is a linear trajectory in O⊙ . Moreoever,

Ψ(n−(τ)) =
(
Υ ◦ H− ◦ rv ◦ rπ

)
(τ)

=
(
Υ ◦ rπ ◦ H− ◦ rv

)
(τ)

=
(
rπ ◦Υ ◦ H− ◦ rv

)
(τ)

= rπ
(
Ψ(n+(τ))

)
= rπ(τ

′)

is a rotation of τ ′ ∈ TTT , thus also in TTT .

Observation 4.3.0.1. (Figure 4.15) Note that the affine automorphism with derivative

H+ (which, abusing notation, we also refer to as H+) takes Σ7 to
7∪

i=1

Σi so H− = H+◦rv

takes Σ0 to
7∪

i=1

Σi and Ψ(T0) ∩ T0 =
7∪

i=1

Σi. Similarly, Ψ(T0−) =
7∪

i=1

Σi− .
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Figure 4.15: Images of
(

H−)−1

(
7∪

i=1

Σiϵ

)
in Σ0 sgn (ϵ) , with respect to angles of

sheared exterior octagon sides H · δO.

θ θ′ β1 β2 β3

0 ≤ θ ≤ θβ′

1
θ′ ∈ Σ6 ∪ Σ7 β3-sandwiched β2-sandwiched β1-sandwiched G3

θβ′

1
≤ θ ≤ θβ′

2
θ′ ∈ Σ4 ∪ Σ5 β2-sandwiched β2-sandwiched β1-sandwiched G2

θβ′

2
≤ θ ≤ θβ′

3
θ′ ∈ Σ2 ∪ Σ3 β2-sandwiched β1-sandwiched B-sandwiched G1

θβ′

3
≤ θ ≤ π/8 θ′ ∈ Σ1 β2-sandwiched β1-sandwiched β0-sandwiched G0

1

Figure 4.16: Sandwiched letters in the normalized Σjϵ-admissible derivatives of
coherent Σi sgn (ϵ)-admissible words, in terms of the angular subsectors of Σ0 sgn (ϵ)

that the derivative falls into. (Figure adapted from [74])

Definition 4.3.0.1. The operation of applying Ψ to n+(τ) ∈ T0 or to n−(τ) ∈ T0− for

τ ∈ Ti or τ ∈ Ti− , i = 0, 1, 2, .., 7 respectively will be called geometric derivation or

renormalization and denoted by D(τ).

As an immediate consequence of Proposition 4.3.0.1 we have the following

corollary:

Corollary 4.3.0.2. If τ is a linear trajectory on O⊙ , then every successive geometric
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derivation τ (n) = D(n)(τ) of τ is also a linear trajectory on O⊙ .

4.4 Renormalization of Symbolic Trajectories in O⊙

We now return to our main focus: the characterization of cutting sequences on

S
⊙

O.

Definition 4.4.0.1. The letter wi in a word w = ...wi−1wiwi+1... ∈ A Z is said to be

sandwiched if wi−1 = wi+1.

Let D :
(
A

⊙
)Z

→
(
A

⊙
)Z

be the operator on admissible words w ∈
(
A

⊙
)Z

that retains every ρ−, ρ+ in n(w) and the letters in n(w) that are sandwiched in

n(w)
∣∣
B

. This operation will be called combinatorial derivation.

Definition 4.4.0.2. An admissible word w ∈
(
A

⊙
)Z

is deriveable if w′ = D(w) is

also admissible.

Example 4.4.0.1. Consider the word

w = ...β0 β3 β1 β2 ρ
− β2 ρ

+ β1 β3β0β3... ∈ A0

In this case, n(w) = w, and

n(w)
∣∣
B

= ...β0 β3 β1 β2 β2 β2 β1 β3 β0 β3...
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The derived sequence retaining all ρ±’s and sandwiched letters of n(w)
∣∣
B

is:

D(w) = ...ρ− β2 ρ
+ β0... ∈ A5,A6.

Let CS
⊙ ⊂

(
A

⊙
)Z

be the set of cutting sequences of linear trajectories on O⊙ .

Proposition 4.4.0.1. If w ∈ CS
⊙

, then w is deriveable and w′ = D(w) ∈ CS
⊙

.

Proof of Proposition 4.4.0.1. Without loss of generality, we prove the proposition

for τ ∈ T0. Let w = c(τ) be the cutting sequence of τ ∈ T0. By Proposition 4.3.0.1,

we know that

τ ′ = Ψ(τ)

=
(
Υ ◦

(
h−1 ◦ rv ◦ h

))
· τ

=
(
Υ ◦

(
h−1 ◦ κ−1rv ◦ κ ◦ h

))
· τ.

Let τ θ, θ ∈ [0, π
2
] be the image of τ in L⊙

= (κ ◦ h) · O⊙ . Note that τ θ has the

same combinatorics as τ , i.e. c(τ θ) = c(τ) = w. By Proposition 4.1.0.2, the aug-

mentation w̃ of w is realizable in D̃
∗
0 . Now reflect each rectangle in L⊙ about its

central vertical axis. Call the result L⊙′
= rv · L

⊙ (see Figure 4.17). The diagonals

in L⊙′
carry primed labels to indicate change in angle from the preimages in L⊙ .
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Figure 4.17: Left: L⊙
= (κ ◦ h) · Õ⊙ , the Σ0-linear trajectory τ with cutting se-

quence w in Õ⊙ is the angle θ ∈ [0, π
8
] linear trajectory h · τ in L⊙ with the same

cutting sequence. Right: L⊙ ′ , the cutting sequence of h · τ in L⊙ ′ is w′ = D(w),
the derived sequence of w.
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Figure 4.19: D̃
∗
0 (Top) the nearly-dual transition diagram for Õ⊙ ; D̃∗′

0 (Bottom)
the nearly-dual transition diagram for Õ⊙ following geometric renormalization.
The nearly-dual transition diagrams D̃

∗
0− and D̃

∗′
0− before and after geometric

renormalization are obtained by changing the polarity of the signed vertex la-
bels in D̃

∗
0 and D̃

∗′
0 .
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Vertex labels of the transition diagram D̃
∗′
0 for linear trajectories τ θ, θ ∈ [0, π

2
]

in L⊙′
are the same as those in D̃

∗
0 , while directed edges are labeled according to

the diagonals in L⊙′
a trajectory in [0, π

2
] must cross in getting from the rectangle

side labeled by the initial vertex to the rectangle side labeled by the terminal

vertex.

Let p(w̃) be the path realizing w̃ = c(τ̃ θ) in D̃
∗
0 ; the cutting sequence w̃′ =

c′(τ θ) of τ θ in D̃
∗′
0 is the word obtained by tracing p(w̃) through D̃

∗′
0 . Examina-

tion of the diagrams D̃∗
0 and D̃

∗′
0 reveals that:

1. Every occurrence of ρ± in w̃ is retained in w̃′.

2. Exactly the sandwiched letters in w̃
∣∣
B

are retained in w̃′

Applying
(
Υ ◦ h−1 ◦ κ−1

)
to τ θ and L⊙′

produces the renormalized trajectory

D(τ) in Õ⊙ with the same combinatorics as τ θ in L⊙′
. Dropping the auxiliary

edges from Õ⊙ and dropping primes from octagon side labels yields the cutting

sequence of τ ′ in O⊙ , and by observations 1 and 2 above, this sequence is pre-

cisely c(τ ′) = w′ = D(w) = c(w)′. By symmetry, the corresponding statement

holds for c(τ), τ ∈ T0− with respect to D̃
∗
0− and D̃

∗′
0− .

Corollary 4.4.0.2. If w ∈ CS
⊙

, then w is infinitely deriveable and w(n) = D(n)(w) ∈

CS
⊙ ∀ n ∈ N.
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Proof. This follows immediately from Proposition 4.3.0.1 and Definition 4.4.0.2

of the operator D on admissible words in
(
A

⊙
)Z

.

4.5 Generation and Coherence on O⊙

The set of infinitely deriveable sequences is the closure of the set of cutting se-

quences on the square torus, but this is no longer the case in higher genus. Con-

sider for example the following admissible periodic word:

Example 4.5.0.1.

w = β2 ρ−β2 ρ+β2β1β3β1β2 ρ+β2β1β3β1β2 ρ−β2β1β3β1β2β1β3β0β3β1 (4.1)

According to Definition 4.4.0.2, the derivative of w is:

w′ = ρ−β2 ρ+β3 ρ+β3 ρ−β3β2β0

Examining Figures 4.9 and 4.12 indicates thats w′ is realizable in D6 with normal-

ization n(w′) = β1β2 ρ−β2ρ+β2β1β3 whose augmentation ñ(w′) is realizable in D̃
∗
0 ,

making w′ admissible. After a second derivation, we get:
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w′′ = ρ−β2ρ+β0

which is realizable in D5 and D6, with normalizations n5(w′′) = β3β1 = β1β3 =

n6(w′′) whose augmentation w̃′′ is realizable in D̃
∗
0 .

And all subsequent derivations, n ≥ 3, will be :

w(n) = β1β3

always realizable in D5 and D6 with augmented normalization realizable in D̃
∗
0 . Hence

w is infinitely deriveable.

However, any trajectory segment in Σ0 that realizes the first half of w could not also

realize the second half. In particular, a segment in Σ0 realizing [β1β2 ρ
−β2 ρ

+β2β1] has

to have slope < 1
3
tan (π

8
), whereas a segment in Σ0 realizing [β1β2β1] necessarily has

slope greater than 1
2
tan (π

8
) (Figure 4.20).
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Figure 4.20

Theorem 4.5.0.1 (Set of Infinitely Coherent Sequences is the Closure of the Space

of Cutting Sequences). The set of infinitely coherent sequences in
(
A

⊙
)Z

coincides

with the closure CSCS
⊙

of the set of cutting sequences of linear trajectories on O⊙ .

Infinitely deriveable words, such as those in Example 4.5.0.1 encode concate-

nated sequences of linear segments whose angles in Σ0 map to different angular

sectors under geometric renormalization (Figure 4.15). Such concatenations are

not geometric limits of any sequence of bi-infinite linear trajectories in O⊙ , nor
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are their cutting sequences limits of sequences of cutting sequences of linear

trajectories. As a further constraint on deriveable sequences, we introduce the

notion of coherence. Coherence or coherence with respect to (i,j) is a property in-

volving the relationship between a deriveable word w, the sector Σi with respect

to which it is admissible, the sandwiched letters in n(w)
∣∣
B

and the sector Σj with

respect to which w′ is admissible. An infinitely deriveable word w ∈
(
A

⊙
)Z

is

infinitely coherent if ∀ n ∈ N, ∃ (in, jn) with respect to which w(n) = D(n)(w) is

coherent.

Definition 4.5.0.1. A deriveable word w ∈
(
A

⊙
)Z

realizable in Di, i ∈

{0, 1, 2, ..., 15} with w′ realizable in Dj , j ∈ {1, 2, ..., 15} is coherent with re-

spect to (i,j) when the sandwiched letters in the restriction n(w)
∣∣
B

of n(w) to B =

{β0, β1, β2, β3} fall only into the categories given for Gk, k =
[
j (mod 8)

2

]
(Table in Figure

4.23); w is infinitely coherent if it is infinitely deriveable, and for each n ∈ {0, 1, 2, ....}

there exist in, jn such that D(n)(w) is coherent with respect to (in, jn)
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w′ is coherent with respect to (i, j) if the sandwiched letters in n(w′)

∣∣
B

fall only
into categories given for Gk, k = ⌊ j (mod 8)
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The set of sequences coherent with respect to some finite or infinite sequence

of sectors {sk} ∈ S∗ will be denoted by C ({sk}); the set of infinitely coherent se-

quences is C ∞ .

Definition 4.5.0.2. A sequence of sectors for a linear trajectory τ on O⊙ , (resp. of

its cutting sequence w = c(τ)), is a sequence {sj ϵ(τ)}j∈Z where sj ∈ {0, 1, 2, ..., 7},

ϵ ∈ {+,−} is the index of the angular sector of the jth geometric derivative τ (j) =

D(n(τ (j−1))) of τ . Equivalently, sj ∈ {0, 1, 2, ..., 7}, ϵ ∈ {+,−} is the index of the

sector with respect to which the jth combinatorial derivative w(j) = D(n(w)(j−1)) of

w = c(τ) is admissible.

For our purposes it suffices to consider the subset S∗ of sector sequences for

τ ∈ T0, i.e. the sequences {sk(τ)}k∈Z where s0 = 0, sk ̸= 0, k ̸= 0.

4.5.1 Inverting Derivation and Interpolating Words

Let O⊙′
= Ψ

(
O⊙
)

be the renormalized version of O⊙ and O⊙′+ =
(
Υ ◦ H−) ·

O⊙ the image of H− ·O⊙ in O⊙′ (see Figure 4.26). Knowing the admissibility cri-

teria and derivation rule for linear trajectories on O⊙ and sequences in
(
A

⊙
)Z

allows us to iteratively construct infinitely deriveable words from admissible

words. Since geometric derivation takes place on normalized trajectories in

τ ∈ Tϵ, ϵ ∈ {0, 0−} and produces trajectories in Tj sgn (ϵ) , j sgn (ϵ) ̸= 0, the cutting

sequence of the Σ0 trajectory τ̃0 from which τ was geometrically derived can be
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recovered by examining the edge-crossings of τ through the image of O⊙′+ in

O⊙′ (see Figures 4.26 and 4.27).

The generation diagram Gj is an augmentation of the transition diagram Dj ;

each pair of labeled vertices β,β̃ joined by a directed edge in Dj codes a Σj tra-

jectory segment τ in O⊙ whose intersection with ∂O consists of an initial point

on β, and a terminal point on β̃. In Gj , the edge joining β and β̃ is labeled by the

labeled sides of O⊙′+ that τ crosses between its final departure from β and its

first encounter with β̃.

Definition 4.5.1.1. Let w0 be admissible with respect to Σi. Let p0 = p(w0) be the

path realizing w0 in Di. The fact that w0 is admissible means there is also a path

p̃0 = p(w̃0) realizing the augmentation w̃0 of (the normalization of) w0 in D̃
∗
0 . Let

g0i : Ai → A0, i = 1, 2, ..., 7 be operators defined to take w0 ∈ Ai to the interpolated

word, w1 = g0i (w0) ∈ A0, by tracing path p0 through the Σi generation diagram Gi

(Figure 4.26).

Remark 4.5.1.1. Note that w0 is assumed here to be Σi-admissible, not just weakly

Σi-admissible. Thus, the order of ρ±’s in w0 is such that w0 maps, under πi, to a word

whose augmentation is realizable in D̃
∗
0 . This means that the path p0 through Di moves

through edges labeled by ρ+ and ρ− in a way that will produce admissible words when

followed through Gi.

Proposition 4.5.1.1. If w = c(τ) is a Σj-admissible cutting sequence and W = g0j(w),

then W ′ = w.
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Figure 4.25: Generation diagrams, Gi, i ∈ {1, 2, ..., 7}

Proof. Without loss of generality assume w = c(τ) is the cutting sequence of a

linear trajectory in direction θ ∈ Σj+ for some j ∈ {1, 2, ..., 7}. So by Propo-

sition 4.1.0.2 w = ...wi−1wiwi+1... = c(τ) is Σj-admissible. Moreoever, the Σ0-

admissible word W = g0j(w) corresponds, by construction, to the interpolated

word that records between wi and wi+1 the edge-crossings of τ in O⊙′+ that oc-

cur as τ moves from edge wi to edge wi+1 in O⊙′ , the geometric derivative of

O⊙ . This is necessarily a word in Σ0 since the image of
7∪

j=1

Tj under Ψ is T0 by
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Observation 4.3.0.1.
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Figure 4.26: Top: O⊙′+ (gray) superimposed on O⊙′ (black); Bottom left: L⊙ and
L⊙′

; Bottom right: L⊙′
with diagonals from L⊙ superimposed.

Example 4.5.1.1. The finite word

w = [β3 ρ
+β1 ρ

−β0 ρ+ β0 ρ
−β0 ρ

+β1]

is realizable by the finite path p through D3. Following p through G3 yields:

g03(w) = [β3β1β2 ρ
+β2β1β2 ρ

−β2β1β3β0β3β1β2 ρ
+β2β1β0β3β1β2 ρ

−β2β1β0β3β1β2 ρ
+β2β1]
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which is Σ0-admissible. Moreover, if we adopt the convention that derivation on a finite

word retains first and last letter, we readily verify that
(
g0j(w)

)′
= w.

Definition 4.5.1.2. Generating W ∈ Ai, i ̸= 0± such that n(W )′ = w for w ∈ Aj is

now straightforward: gij = π−1
i ◦ g0j(w).

Proposition 4.5.1.2. If w ∈ Aj and W = gij(w) then W is coherent with respect to

(i, j) and w = n(W )′.

Proof. Inspection of Figure 4.25 verifies that the possible sandwiched letters in

the restriction to B of W1 = g0j(w) = πi(π
−1
i g0j(w)) = πi(g

i
j(w) = n(gij(w) = n(W )

are exactly those given in Figure 4.23 for Gk, k = ⌊ j (mod 8)
2

⌋. Deriving W1 drops

the sandwiched letters in W1

∣∣
B

acquired during generation, so W ′
1 = n(W )′ = w.

As a corollary of Propositions 4.5.1.1 and 4.5.1.2 we have:

Corollary 4.5.1.3. If w = c(τ) is a cutting sequence on O⊙ , then w is coherent. Specif-

ically, if τ ∈ Ti and τ ′ ∈ Tj , w is coherent with respect to (i, j)

Even more is true however.

Corollary 4.5.1.4 (Cutting Sequences are Infinitely Coherent). If w = c(τ) is the

cutting sequence of a linear trajectory τ on O⊙ , w is infinitely coherent.
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Proof. Corollary 4.4.0.2 ensures that w is infinitely deriveable. Let {sk}k∈N be the

sequence of sectors (see Definition 4.5.0.2) for τ , so w(n) = D(n)(w) ∈ Ask for all

k. Now, by Corollary 4.5.1.3, we have that for every j ∈ N, w(j) is coherent with

respect to (sj, sj+1).

It remains to show that infinitely coherent words are limits of cutting se-

quences of linear trajectories on O⊙ . Toward this end we introduce some nota-

tion and results from [76]. After accounting for ρ±’s in generation diagrams and

for different admissibility conditions for words in
(
A

⊙
)Z

, Smillie and Ulcigrai’s

results on generation and coherence for the unpunctured regular octagon trans-

late directly to the centrally punctured case. These results are derived from an

additive continued fraction algorithm for the octagon which is built on the sequence

of sectors of a linear trajectory in O. These sequences and their convergence

properties are common to trajectories (modulo those that intersect the center-

point of O) in O and O⊙ , and we will use the relevant results from [74] without

adaptation.

b0 b1b2b3 b0 b1
b2 b3

b0 b1b2
b3 b0

b1b2 b3

b0
b1

b2 b3
b0b1 b2b3b0

b1 b2
b3

D0,1 D1,2 D2,3 D3,4 D4,5 D5,6 D6,7 D7,0

Figure 4.29: Period 2 and 1 transitions in unpunctured octagon shared by tran-
sition diagrams for adjacent angular sectors.
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Let Pk denote the set of period 1 or 2 periodic words in Dk (Figure 4.22),

so for example P6 = {β1β0, β0β2, β2β3, β3}. Further, for a sequence of sectors

{s ϵ
k}k∈N ∈ S∗, define:

G (s0, s1, ..., sk) = {gs0s1g
s1
s2
...gsk−1

sk
u : u ∈ Ask}

and

P(s0, s1, ..., sk) = {gs0s1g
s1
s2
...gsk−1

sk
u : u ∈ Psk}

Lemma 4.5.1.5 (Smillie-Ulcigrai [76], Lemma 2.4.17). For any sequence of sectors

s = {s ϵ
k}k∈N ∈ S∗ and for each k, all words in P(s0, s1, ..., sk) are cutting sequences

of periodic trajectories.

Proposition 4.5.1.6 (Smillie-Ulcigrai [76], Prop. 2.4.20 (Infinite Coherence via

Generation)). A word w is infinitely coherent with respect to the sequence of sectors

s = {s ϵ
k}k∈N ∈ S∗ if and only if:

w ∈
∩
k∈N

G (s0, s1, ..., sk)

Thus, a word w is infinitely coherent if and only if:
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w ∈
∩
k∈N

∪
s0∈{0,1,..,7}

si∈{1,2,..,7},i>0

G (s0, s1, ..., sk)

Proposition 4.5.1.7 (Smillie-Ulcigrai [76], Prop. 2.4.21). If w is an infinitely coher-

ent word, every finite subword w∗ of w is realized by a periodic trajectory τ in the sense

that w∗ = c(τ ∗) is the cutting sequence of some finite segment τ ∗ of τ . In particular, if

w is infinitely coherent with respect to {sk}k∈N, then each finite subword of w occurs as

a subword of some periodic cutting sequence in

∪
k∈N

P(s0, s1, ..., sk)

Corollary 4.5.1.8 (Smillie-Ulcigrai [76], Cor. 2.4.22). If w is infinitely coherent with

respect to {sk}k∈N then

w ∈
∪
k∈N

P(s0, s1, ..., sk)

Lemma 4.5.1.9 (Set of Infinitely Coherent Sequences Contains the Closure of the

Space of Cutting Sequences). If w ∈
(
A

⊙
)Z

is infinitely coherent, then there exists

a sequence {τj}j∈N of linear trajectories on O⊙ such that w = lim
j→∞

c(τj).

Proof. This is effectively a restatement of Corollary 4.5.1.8; it follows from
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Lemma 4.5.1.5 and Proposition 4.5.1.7.

Proof of Theorem 4.5.0.1. Theorem 4.5.0.1 follows as a corollary from Corollary

4.5.1.4 Lemma 4.5.1.9 and Proposition 4.5.1.6. Specifically, from Corollary 4.5.1.4

we get the inclusion CSCS
⊙ ⊆ C

∞ . The sets Aj , j ∈ {0, 1, ..., 15} are subshifts

of finite type, thus they are closed. For each j ∈ {0, 1, ..., 15}, the length of

any subword common to both w and v ∈ Aj cannot decrease under gij , i ∈

{0, 1, ..., 15} so these operators and their compositions are continuous. Which

makes C ∞
=
∩
k∈N

∪
s0∈{0,1,..,7}

si∈{1,2,..,7},i>0

G (s0, s1, ..., sk) (equality by Proposition 4.5.1.8)

the countable intersection of finite unions of closed sets. SoC ∞ is a closed set

consisting of limit points of cutting sequences, i.e. C ∞
= CSCS

⊙

.
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CHAPTER 5

ARBITRARY GENUS: THE
(
π
N

)
-ISOSCELES TRIANGLE

Hitting sequences on
(
π
n

)
-isosceles triangles for n > 4 can be characterized

using machinery analogous to that employed for the
(
π
4

)
-isosceles triangle. All

relevant geometric features of the
(
π
4

)
-isosceles triangle surface have analogues

in higher genus
(
π
n

)
-isosceles triangle surfaces, n > 4 . The

(
π
n

)
-isosceles tri-

angle unfolds into a centrally punctured regular 2n-gon P
⊙

2n. The translation

surface S
⊙

P2n
is geometrically identical to the surface SP2n that arises from iden-

tifying parallel sides of the unpunctured regular 2n-gon. When n = 2k ≥ 4,

SP2n has a singular point with cone angle 2π(n − 1) and decomposes into k ra-

tionally commensurable horizontal cylinders, one with inverse modulus cot π
2n

,

the others with inverse modulus 2 cot π
2n

. When n = 2k + 1 ≥ 3, SP2n has two

singular points, each with with cone angle 2πk and decomposes into k hori-

zontal cylinders which all have inverse modulus 2 cot π
2n

. Consistent with our

convention in previous chapters, we again take the Veech group of a surface

to include derivatives of both orientation-preserving and orientation-reversing

affine automorphisms. In this sense, the Veech group of SP2n is generated by the

rotation rπ
n

, the shear H+
2n =

1 2 cot π
2n

0 1

 and the reflection rv about the central

vertical axis. The linear transformation h2n =

−1 cot π
2n

0 1

is not in the Veech

group of S2n, but conjugates H− =

−1 2 cot π
2n

0 1

 ∈ V(SP2n) to the orientation-

reversing isometry rv of SP2n , demonstrating that H− is a hidden symmetry of

SP2n .
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β0

βn-1β1

βn-2
β2

β0

βn-1 β1

βn-2

β0

β0

a0

a1

a0

a1

b0

b1

b0

ρ−

ρ+

βk

βk

b1

Figure 5.1: The augmented sheared 2n-gon, h2n · P⊙

2n for n = 2k ≥ 4. The
indexed a’s and b’s are boundary edges of horizontal cylinders and cylinders
in direction

(
π
2n

)
in P

⊙

2n (see Figure 4.10 for octagon case). For n = 2k + 1 ≥ 5,
the ρ− is replaced by a λ− indicating a reflected copy of the left leg of the base
triangle.

The combinatorics of
(
π
n

)
-isosceles, n > 4 billiard trajectories are analogues

over larger alphabets of the combinatorics for
(
π
4

)
-isosceles case. For n = 2k ≥ 4

the coding alphabet on P
⊙

2n is A
⊙
2n = {β0, β1, ..., βn−1, ρ

±}. When n is odd, the

edge that codes for passage of Σ0 trajectories under the puncture is actually a

reflection of the left leg of the base triangle, so is more appropriately labeled λ−.

For simplicity we will call the parallel reflected triangle legs that encode posi-

tion with respect to the puncture ρ± in both cases. The alphabet A
⊙
2n is a disjoint

union of B2n = {β0, β1, ..., βn} and B = {ρ−, ρ+}. The symmetries of P
⊙

2n allow

us to restrict consideration to the angular sector Σ2n

0 = [0, π
2n
]. For each P

⊙

2n the

one-step transition diagram D2n
j for Σ

2n

j = [ jπ
2n
, (j+1)π

2n
], j = 0, 1, ..., 4n − 1 is ob-

tained from D2n
0 (Figure 5.2) by a composition πj = π

⊙
j ◦πj of two permutations:

the permutation πj of vertex labels {β0, ..., βn−1} corresponding to the isometry

sending Σ
2n

j to Σ
2n

0 , and the permutation π
⊙
j of the set of length n + 2 words in

{∅, ρ−, ρ+} that, as an ordered (n + 2)-tuple, label directed edges of diagrams
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Di,i = 0, 1, ..., 4n − 1 (see paragraph following Definition 4.1.0.1 of Section 4.1

and Remark ?? for details in the octagon case).

β0 β2k-1 β1 β2k-2 β2k-j βk+1 βk-1
βkβj

ρ+

ρ−

Figure 5.2: The one-step Σ0 = [0, π
2n
] transition diagram D

2n

0 for n = 2k ≥ 4. For
n = 2k + 1 ≥ 5, the ρ− is replaced by a λ− indicating a reflected copy of the left
leg of the base triangle.

In Chapter 4, at each stage of the discussion, we take explicit account of

the combinatorial asymmetry between sectors Σj and Σj+2n. Here we will

simply make the following observations and proceed with a focus on Σj , j =

0, 1, ..., 2n− 1.

1. The permutation πj+2n is equal to πj for j = 0, 1, ..., 2n− 1.

2. The permutation π
⊙
j+2n is equal to (ρ− ρ+) ◦ π⊙

j for j = 0, 1, ..., 2n− 1

3. The composition πj+2n is equal to (ρ− ρ+) ◦ πj , j = 0, 1, ..., 2n− 1

4. A word w in A
⊙
2n is the cutting sequence of a sector Σ2n

j+2n trajectory on P
⊙

2n

if and only if (ρ− ρ+) · w is the cutting sequence of a sector Σ
2n

j trajectory,

j = 0, 1, ..., 2n− 1

A word w ∈
(
A

⊙
2n

)Z
is weakly admissible if it is realizable in D2n

i for some
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i ∈ {0, 1, ..., 4n − 1}. In this case n(w) = πi · w is realizable in D2n
0 and is called

the normalization of w. If w is admissible and its normalization is realizable in

the augmented almost-dual sector Σ
2n

0 transition diagram D∗
2n (Figure 5.3) in

which vertices are labeled by boundary segments of the horizontal and angle-(
π
2n

)
cylinders in the augmented 2n-gon P̃

⊙

2n (see Figure 4.2 from Chapter 4 for

the octagon case)

βn-1

β1

β0

a0

b0

b0
ρ+

ρ−
βkβn-1 a0

βn-1

βn-1 β1

β1

βn-2

βk

βk

βk

βk

βk βk

βk-1

bk-2

bk-2

Figure 5.3: The ‘almost dual’ Σ0 = [0, π
2n
] transition diagram D

∗
2n for n = 2k ≥ 4.

See Figure 4.19 (top) for the octagon case and Section 4.4 for detail on these
transition diagrams for the octagon. For n = 2k + 1 ≥ 5, the ρ− is replaced by a
λ− indicating a reflected copy of the left leg of the base triangle.

The correspondence between cutting sequences of linear trajectories on P
⊙

2n

and hitting sequences of billiard trajectories on
(
π
n

)
-isosceles triangles is ob-

tained exactly in the manner detailed for the
(
π
4

)
-isosceles triangle in Section

4.2.

For all n ∈ {4, 5, ...}, the orientation-reversing affine automorphism
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Ψ2n = h−1
2n ◦ κ−1

2n ◦ rv ◦ κ2n ◦ h2n

has derivative H−
2n = h−1

2n ◦ rv ◦ h2n which is conjugate to orientation-reversing

isometry rv of P
⊙

2n. Geometric derivation of Σ
2n

0 trajectories in P
⊙

2n is accom-

plished by application of Ψ2n (Figures 5.4 and 5.5). The almost-dual transition

diagram D∗′
2n (Figure 5.6) captures the two-step transitions possible for Σ2n

0 tra-

jectories following renormalization.

β0

βn-1 β1

βn-2 β2
β0

a0

a1a1

b0

b0

b1

a1

ρ+

ρ−

ρ+

ρ−

βk

bk-2

bk-2

bk-2

b1

ak-2

bk-3

bk-3

ak-2ak-2

a0 a0

Figure 5.4: The L-shaped table L⊙
2n obtained by applying the cut-and-paste map

κ2n to h2n · P
⊙

2n for n = 2k ≥ 4. (See Figure 4.10 for an analogous cut-and-paste
map applied in the octagon case.) For n = 2k + 1 ≥ 5, the ρ− is replaced by a λ−

indicating a reflected copy of the left leg of the base triangle.
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β0

βn-1 β1

βn-2 β2
β0

a0

a1a1

b0

b0

b1

a1

ρ+

ρ−

ρ+

ρ−

βk

bk-2

bk-2

bk-2

b1

ak-2

bk-3

bk-3

ak-2ak-2

a0 a0

Figure 5.5: The reflected L-shaped table L⊙′
2n obtained by reflecting each rectan-

gle of L⊙
2n about its central vertical axis, for n = 2k ≥ 4. (See Figure 4.17 for

octagon case.) For n = 2k + 1 ≥ 5 odd, the ρ− is replaced by a λ− indicating a
reflected copy of the left leg of the base triangle.

βn-1 β0

a0

b0

b0
ρ+

ρ−
βk

a0

βn-1 β1 βn-2

βk

βkβk-1

bk-2

bk-2

Figure 5.6: The post-renormalization ‘almost dual’ Σ0 = [0, π
2n
] transition dia-

gram D
∗′
2n for n = 2k. See Figure 4.19 (bottom) for the octagon case, and Section

4.4 for detail on these transition diagrams for the octagon. For n = 2k + 1 ≥ 5
the ρ− is replaced by a λ− indicating a reflected copy of the left leg of the base
triangle.

The normalization n(w) of any admissible word w ∈
(
A

⊙
2n

)Z
is realizable

by a path p through D∗
2n. The word w′ obtained by tracing p through D∗′

2n is
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the derivative of w. The effect of derivation on n(w) is to retain every ρ± in and

the sandwiched letters in n(w)
∣∣
B

. Proofs of the statements below exactly follow

proofs of the analogous statements for centrally punctured octagon presented

in Chapter 4.

Proposition 5.0.1.10. For any n ∈ {4, 5, ...}, cutting sequences of linear trajectories

on P
⊙

2n are weakly admissible, thus normalizable.

Proposition 5.0.1.11. For any n ∈ {4, 5, ...}, cutting sequences of linear trajectories

on P
⊙

2n are admissible.

Proposition 5.0.1.12. For any n ∈ {4, 5, ...}, cutting sequences of linear trajectories

on P
⊙

2n are deriveable, and the derived sequence is also the cutting sequence of a linear

tajectory on P
⊙

2n.

Corollary 5.0.1.13. For any n ∈ {4, 5, ...}, cutting sequences of linear trajectories on

P
⊙

2n are infinitely deriveable.

Although all cutting sequences of linear trajectories on P
⊙

2n are infinitely de-

riveable, not every infinitely deriveable sequence in A
⊙
2n is the cutting sequence

of a linear trajectory. This is for the reasons discussed in connection with the

centrally punctured octagon in Section 4.5. In continuing analogy with the oc-

tagon case, there is a set of coherence conditions on the restrictions n(w)
∣∣
B

to B2n

of normalized sequences in A
⊙
2n. Coherence conditions apply only the restric-

tions n(w)
∣∣
B

to B2n of normalied words in A
⊙
2n, which is to say these conditions
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ignore the puncture in P
⊙

2n. For this reason all definitions and all results on the

role of coherence in characterizing cutting sequences on non-punctured regular

2n-gons in [76] carries over to the centrally punctured case without alteration.

Corollary 5.0.1.13 combined with Theorem 6.3.2 from [76] yield a characteriza-

tion of linear trajectory cutting sequences on P
⊙

2n. The correspondence between

cutting sequences on P
⊙

2n and hitting sequences on the
(
π
n

)
-isosceles triangle

make this characterization of
(
π
n

)
-isosceles hitting sequences as well.

Theorem 5.0.1.14. The closure of the set of cutting sequences on P
⊙

2n coincides with

the set of infinitely coherent words in A
⊙
2n
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

We have completely characterized billiard trajectory hitting sequences in(
π
n

)
-isosceles triangles for n ≥ 2. These triangles constitute a significant sub-

class of triangles known to have the Veech property:

1. The acute
(
π
n

)
-isosceles triangles n ≥ 2 [85].

2. The acute right triangles with interior angles (π
n
, (n−2)π

2n
, π
2
) n ≥ 4 [85].

3. The obtuse
(

(n−2)π
n

)
-isosceles triangles n ≥ 5 [85].

4. The obtuse triangles with interior angles (π
n
, π
2n
, 2n−3

2n
) n ≥ 4 [90].

5. The acute triangles with interior angles (π
4
, π
3
, 5π
12
) [85], (π

5
, π
3
, 7π
12
) [89] and

(2π
9
, π
3
, 4π

9
) [47], and the obtuse triangle with interior angles ( π

12
, π
3
, 7π
12
) [33].

Our techniques exploit the fact that the
(
π
n

)
-isosceles triangle are not just

Veech triangles, but also strongly Veech in the sense of Definition 2.2.0.1.

For the
(
π
2

)
,
(
π
3

)
and

(
π
4

)
-isosceles triangles we have detailed a renormaliza-

tion scheme that operates on hitting sequences coded in the natural three-letter

triangle alphabet. Combined with appropriate “coherence conditions” which

85



can be translated directly from the coherence conditions that apply in the reg-

ular 2n-gon, this gives a different characterization of billiard trajectory hitting

sequences these triangles.

Moving forward, there are several directions that seem worth pursuing. The

most immediate follow-up to the work presented here would be a characteriza-

tion of billiard trajectory hitting sequence on the right triangles that tile regular

2n-gons. These triangles are also strongly Veech, and it is therefore not unrea-

sonable to expect that some extension of methods employed in this thesis would

suffice to characterize billiard trajectory hitting sequences
(

π
2n
, (2n−2)π

4n
, π
2

)
right

triangles as well.

The next step would be to apply the general philosophy of renormalization

here to other strongly Veech triangles from the list above. The Veech groups

of the translation surfaces induced by these triangles always contain parabolic

shears that shorten angular sectors of the directional flow. These triangles will

not have the symmetries that apply in triangles that tile regular 2n-gons. How-

ever, there is reason to believe that a tractable combinatorial renormalization

procedure adapted to specific angular sectors of the directional suface flow can

be developed from a finite collection of parabolic elements of the Veech group.

Finally, there are the
(
2π
n

)
-isosceles triangles that tile double centrally-punctured

regular n-gons for n ≥ 5 odd. These triangles are not Veech [52] but they tile

Veech polygons (the unpunctured double regular 2k+1-gons) in which the sym-

bolic dynamics are already understood [19].

Combinatorial renormalization of billiard trajectories on the double regular

(2k+1)-gon is the same as that on the regular 2k-gon [19]. In the case of the
(
π
n

)
-
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isosceles n = 2k triangle, a combinatorial derivation rule comes from tracking

the combinatorial consequences in P
⊙

2k of the same geometric renormalization

strategy applied to the regular 2k-gon. The situation in the double centrally-

punctured (2k + 1)-gon P
⊙

2k+1 is fundamentally different. The renormalizing

shear H+ =

1 2 cot π
2k+1

0 1

 is the derivative of an affine automorphism of

P2k+1 but not of P
⊙

2k+1 (Figure 6.2). In fact, the
(
2π
n

)
-isosceles n = 2k + 1 triangle

surface S
⊙

2k+1 is not a lattice surface and its Veech group need not contain any

parabolic elements.

A

A

C D

B
E

CD

E

ρ+

λ
−

ρ−

λ
+

A

C

λλλ

λλλ

Figure 6.1: The centrally-punctured isosceles-tiled double regular pentagon
with transverse cylinder decompositions in horizontal and angle-

(
π
5

)
directions.

The middle horizontal cylinders have rationally incommensurable inverse mod-
uli. The ratio of the moduli of these two cylinders is in fact 1

10

√
70 + 30

√
5 − 1.

This means there cannot be an affine automorphism of the surface that is simul-
taneously an integer number of Dehn twists in each of the middle two horizon-
tal cylinders and thus that H+ cannot be the derivative of such an automor-
phism.

87



1

2

3

4

5

6

7

8

1
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7
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Figure 6.2: Although H+ is not the derivative of an affine automorphism of
the double centrally-punctured regular pentagon, it is in the Veech group of
the non-punctured double regular pentagon surface. This is illustrated in the
top subfigure. The grayscale centerpoints map to the orange/yellow points in
the shears. In the bottom subfigure we see that postcomposing the indicated
cut-and-paste map with H+ is an automorphism of the double regular pen-
tagon surface that does not map central punctures back to central punctures. It
is not, therefore, an automorphism of the double centrally-punctured regular
pentagon surface.

The methods of this thesis do not apply to the
(
2π
5

)
-isosceles triangle or to

the double centrally-punctured pentagon. As an isosceles triangle that unfolds

into a larger Veech polygon, the double-regular pentagon, with known symbolic

dynamics [19], the
(
2π
5

)
-isosceles triangle is a compelling setting in which to

start developing methods for characterizing billiard trajectory hitting sequences

in non-Veech polygons.
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APPENDIX A

RENORMALIZATION SCHEMES ADAPTED FOR THREE LABELED

TRIANGLE SIDES

A.1 Isosceles triangles that tile the plane

In the body of this thesis we have provide complete characterizations of
(
π
n

)
-

isosceles triangle billiard trajectory hitting sequences for all n ≥ 2. These charac-

terizations have been achieved indirectly, by identifying the set of
(
π
n

)
-isosceles

hitting sequences with the set of cutting sequences on a centrally-punctured reg-

ular 2n-gon. It would be satisfying however to achieve a characterization based

on conditions that apply directly to sequences in coded in the “intrinsic” three-

letter alphabet {β, λ, ρ} consisting of the labeled sides of the individual triangle

in which the billiard trajectory is defined.

A.1.1 Characterization of hitting sequences for
(
π
2

)
-isosceles

triangle hitting sequences

Reviewing Section 3.2 with an eye to the renormalizing the hitting sequences

of
(
π
2

)
-isosceles billiard trajectories that are encoded in the “natural” three let-

ter alphabet of labeled triangle sides, we note that the derivation process with

respect to B ∪ B ≡ {A,B} ∪ {R±, L±} is actually performed on the two sub-

alphabets B and B independently: for Σ0 trajectories, B’s sandwiched between

two A’s or between two other B’s in w
∣∣
B

are retained, and R±’s sandwiched
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between two L±’s or R±’s in w
∣∣
B

are retained, then reorganized according to

the 3 letter subword swap operation from Section 3.2. So in this case, a cen-

trally punctured 2n-gon point of view suffices to solve the coding problem for

three labeled triangle sides. Working in the square unfolding of the
(
π
2

)
-triangle

with edges simply labelled by B ∪ B ≡ {β} ∪ {λ, ρ} according to the side

of the horizontally-positioned base triangle they unfolded from (Figure A.1),

D0 captures possible one-step transitions for a trajectory leaving the horizon-

tal base at angle θ ∈ ∪4
j=0Σ2j and the “almost-dual” diagram D∗

0 (Figure A.3)

shows gives two-step transitions. Transition diagrams for trajectories in angu-

lar sectors ∪3
j=0Σ2j+1 are obtained from D0 and D∗

0 by applying the permutation

π1 = (λρ) to edge and vertex labels.

Recall that cutting sequences on T2 are almost constant (Definition 3.1.0.1).

Furthermore, recall that a β-free subword is a subword with no β’s and which

is maximal in the sense that it cannot be expanded in either direction while re-

taining this property.

Definition A.1.1.1 (Almost constant sequences in {β, λ, ρ}). A word w ∈

{β, λ, ρ}Z is almost constant if there exists n ∈ N such that between any two β-

free subwords of length one, there are either n or n+ 1 β-free subwords of length two.

Note that if [ABA] is a subword of the restricted cutting sequence w
∣∣
B

of

some τ ∈ T0 from Section 3.2, then the cutting sequence of τ coded in the 3-

letter triangle alphabet {β, λ, ρ} contains the subword [β ρβ ρβ]. Similarly, if

[ABBBA] is a subword of the restricted cutting sequence w
∣∣
B

of τ ∈ T0, then
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the same trajectory coded in {β, λ, ρ} contains the subword [βρβ λρβ ρλβ ρβ].

Following terminology introduced in Section 3.2 we say that the sequence

w ∈ {β, λ, ρ}Z is weakly admissible if w is almost constant and w or π1(w) can

be realized in D0. When w is weakly admissible, whichever of w or π1(w) is real-

izable in D0 is referred to as the normalization, n(w) of w. A weakly admissible

word w whose normalization can be realized in D∗
0 is admissible.

β

β

ββ

ρ

ρ

λ

λ

(a) Centrally Punc-
tured Square from(
π
2

)
-Isosceles Triangle

β β

ρ

λ
ρ

λ

ρ

ρ

(b) One-Step Transi-
tion Diagram D0 for
0 ≤ θ ≤ π

4

Figure A.1

β

β

β

ρ

ρ

λ

λ

λ

λ

(a) Stage 0. Cut and
paste along diago-
nal, then shear back
to square shape.

β

β

β

ρ

ρ

λ

λ

λ

λ

(b) Stage 1. Flip
main diagonal.

β

β

β

ρ

ρ

λ

λ

λ

λ

(c) Stage 2. Reflect
about central verti-
cal axis.

β

β

β

ρ

ρ

λ

λ

λ

λ

(d) Stage 3. Flip
main diagonal
again.

Figure A.2
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λ
ρρ

ρ ρρ ρ β
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β

(a) D(0).

λ

ββ

ρ
ρ

λ
ρρ

ρ ρρ ρ β

(b) D(1)′ .

λ

ββ

ρ

λ
ρ

ρ ρ β

(c) D(2)′ .

λ

ββ

ρ

λ
ρ

ρ ρ

β

β

β

(d) D(3)′ .

Figure A.3: Possible transitions of renormalized Σ0 trajectories, in “almost dual”
form: horizontal and vertical edges of Figure A.2 (a) are vertices, remaining
edge(s) in Figure A.2 (a) label directed graph edges.

Let w be a word in {β, λ, ρ}Z and w
∣∣
B

, w
∣∣
B

the restrictions of w to B = {β}

and B = {λ, ρ} respectively. The geometric renormalization (Figure A.2) is the

shear-cut-paste-reflect operation from Section A.2 whose combinatorial effect

(Figure A.3) on n(w) ∈ {β, λ, ρ}Z is:

1. Drop every β in n(w) that is not sandwiched between two subwords from

B of the same length, either exactly length 1 or exactly length 2.

2. Drop every ρ that is not sandwiched between two λ’s or two ρ’s in n(w)
∣∣
B

.

3. (3-letter subword swap) Replace every occurance of [λρβ] with [λβ ρ], and

every occurance of [β ρλ] with [ρβ λ].
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Example A.1.1.1. Suppose

w = ...β ρβ λρβ λρβ λρβ ρλβ ρλβ ρλβ ρβ...

encodes part of a billiard trajectory τ ∈ T0 in the
(
π
2

)
-isosceles triangle. Since w is ad-

missible, n(w) can be realized in D∗
0. By Proposition 3.2.0.1, n(w) can also be realized by

a path p in D(0). The effect of tracking p through transition diagrams D(0), D(1)′ , D(2)′

and D(3)′ from Figure A.3 successively are shown in Table A.1. The word w′ in the bot-

tom row of Table A.1, obained by tracing p through D(3)′ , is the derived sequence of w.

The word w′ is the cutting sequence of the trajectory τ (3) that results from applying the

affine automorphism illustrated in Figure ?? (a) through (d) to the isosceles-tiled square.

Start β ρ β λ ρ β λ ρ β λ ρ β ρ λ β ρ λ β ρ λ β ρ β

Step 1 β ρ λ ρ λ ρ λ ρ β ρ λ ρ λ ρ λ ρ β
Step 2 β λ ρ λ ρ λ β λ ρ λ ρ λ β

Final β λ β ρ λ β ρ λ β λ ρ β λ ρ β λ β

Table A.1

Definition A.1.1.2. The derived sequence w′ = D(w) of an admissible word

w ∈ {β, λ, ρ}Z is obtained from n(w) by deleting the first and last β from each block of

two or more consecutive β’s in w
∣∣
B

and every ρ that is not sandwiched between two λ’s

or two ρ’s in w
∣∣
B

, then performing the subword swap (point 3. above).

Proposition A.1.1.1. If w ∈ {β, λ, ρ}Z is the hitting sequence of a billiard trajectory

in the
(
π
2

)
-isosceles triangle, then w′ = D(w) is as well.
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The proof of Proposition A.1.1.1 follows the same chain of reasoning as cases

detailed in previous sections. This reasoning produces a geometric trajectory τ ′

such that w′ = c(τ)′ = c(τ ′), leading to the following corollary:

Corollary A.1.1.2. The cutting sequence w = c(τ) ∈ {β, λ, ρ}Z of any billiard trajec-

tory τ on the
(
π
2

)
-isosceles triangle is infinitely deriveable.

Theorem A.1.1.3. The word w ∈ {β, λ, ρ}Z is in the closure of the set of billiard

trajectory hitting sequences in the
(
π
2

)
-isosceles triangle if and only if it is infinitely

deriveable.

Proof of Theorem A.1.1.3. One direction follows from Corollary A.1.1.2. The

other direction combines Corollary A.1.1.2, Proposition 2.3.1.1 and [71] (among

others), but requires some additional steps. Following Series [71] and Smillie,

Ulcigrai [76], we reason as follows:

Proposition A.1.1.4. (Series) Every finite admissible word u ∈ {A,B} is realized by

at least one line segment in R2.

Proof of Proposition A.1.1.3. (following [71]) The proof follows from an elemen-

tary continued fraction argument based the first torus renormalization proce-

dure detailed in Section 2.3.1. See [71] for details.
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(a) D∗

β

β

β

β

λ
ρ

λ
ρ

(b) D∗′

Figure A.4: Possible transitions of Σ0 (Left) and Σ3 (Right) trajectories, in “al-
most dual” form: horizontal and interior triangle edges are vertices, remaining
exterior polygon edge(s) label directed graph edges

Let v ∈ {β, λ, ρ}m m ≥ 5 be a finite admissible word realizable in D∗′ . Words

of this length can be realized by a unique path in only one of D∗ or D∗′ (Fig-

ure A.4). Let p(v) be the path in D∗′ realizing v. Tracing p(v) through any of

the almost-dual diagrams Di, i = {2, 3, 6, 7} gives a word w ∈ {A,B,L±, R±}m

whose restriction to {A,B} encodes a collection Λ(w) of line segments in R2

with angles Ω(w) ⊂ ±[π
4
, 3π

4
]. By a classical continued fraction argument and,

for example, Series [71], we know that as m → ∞, |Ω| → 0. The important point

is that Λ(v) = Λ(w) and Ω(v) = Ω(w), ensuring that v codes at least one linear

segment τ(v) ∈ R2. The geometric process of derivation on finite line segments

in R2 (ie., finite billiard trajectory segments on Tπ
2
) is an affine automorphism,

thus invertible. The inverse operation and its combinatorial counterpart will be

referred to as generation. From Figure A.5 we construct the generation diagram

G∗′ (Figure A.6) that interpolates between letters of v the labels of edges crossed

by a Σ0-trajectory segment τ (1) with combinatorial derivative v. The generation

operator g replaces v with an interpolated word v(1) = g(v) ∈ Σ′ obtained by

tracing p(v) through G∗′ and sending the result back to Σ′ via the permutation

π′ = (λ ρ).
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Figure A.5: Final renormalization (stage 3) in bold primary colors, large edge
labels; initial renormalization (stage 0) dashed lines, brown edge labels.
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ρ

β

cc

β
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λρβ

VV

β
##
ρ

β

[[

Figure A.6: (Left) Σ′ = [3π
4
, π] Nearly-Dual Transition Diagram; (Right) The

(
π
2

)
-

Isosceles Generation Diagram, interpolated letters framed.

Example A.1.1.2. Suppose

v = ...β λβ ρλβ ρλβ λρβ λρβ λβ...

is the renormalization of the word
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w = ...β ρβ λρβ λρβ λρβ ρλβ ρλβ ρλβ ρβ...

from Example A.1.1.1. Tracing p(v) through G∗′ returns the original word, w =

π′(g(v)).

v β λ β ρ λ β ρ λ β λ ρ β λ ρ β λ β

π′(g(v)) β ρ β λ ρ β λ ρ β λ ρ β ρ λ β ρ λ β ρ λ β ρ β

Table A.2

Proposition A.1.1.5. For finite Σ′-admissible v ∈ {β, λ, ρ}m m ≥ 5, the interpolated

word v(1) = g(v) has at most 3m letters (see Table A.6) and is realized by a linear seg-

ment τ (1) ∈ Λ(v(1)), generated by inverse geometric derivation from a segment τ coded

by v.

Proof of Propositon A.1.1.5. This follows from the invertibility of geometric

derivation and inspection of Figures A.5 and A.6.

Corollary A.1.1.6. For any m ≥ 5, k ∈ N, and Σ′-admissible v ∈ {β, λ, ρ}m satis-

fying the n, n + 1 property, there exists a linear segment τ (k) in R2 realizing the kth

generated interpolate v(k) = gk(v) of v.

Proposition A.1.1.7. If u, |u| ≥ 2 is the longest common subword of two bi-infinite

Σ′-admissible words v and v′, then |g(u)| > |u| where |∗| denotes wordlength and the
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inequality is strict.

Proof. Generation clearly cannot strictly decrease the length of any Σ′-

adimissible word. Further, the proof of Proposition A.1.1.7 is immediate from

Figure A.6 when |u| ≥ 4. Suppose u, 2 ≤ |u| ≤ 3 with |g(u)| = |u| is common to

Σ′-admissible v and v′. In this case u is realized along one of the loops on the top

or bottom right corners of D′∗ (Figure A.4). However, any two such subwords

by necessity have a common subword of length at least 4. Thus, if u satisfied

the supposition, it would not be the longest subword common to v and v′.

As a subshift of finite type, the set of Σ′-admissible words is closed. Thus,

Proposition A.1.1.7 together with Corollary A.1.1.6 imply that v = lim
k→∞

gk(v) is

a limit of cutting sequences, proving theorem A.1.1.3.

A.1.2 The
(
π
3

)
-isosceles triangle

The transparent connection between combinatorial
(
π
n

)
-isosceles renormaliza-

tion in the three letter triangle alphabet and the larger 2n-gon alphabet breaks

down for n ≥ 3. Determining the specific sequence λ’s and ρ’s between two re-

tained β’s requires inputting subwords of length that grows quadratically in n.

First observe from Figures A.7, A.8 and A.9 that the renormalization scheme

for linear trajectories on the centrally-punctured square torus applies to the
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centrally-punctured hexagonal torus as well.
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Figure A.8: Geometric renormalization of cutting sequences in the centrally
punctured hexagon, 0 ≤ θ ≤ π

6
.

A

R
+

L
-Ba

b B

B

B

B

B

B

CA B

(a) Original transitions, pre-
served by shear-cut-paste

C A

R
+

L
-a

b

B

B
BA B

(b) Transitions following ini-
tial Delaunay flip and reflec-
tion

CA

R
+

L
-a

b

B

B

B

BA

(c) Transitions following sec-
ond flip of horizontal

Figure A.9: Possible transitions of renormalized Σ0 trajectories, in ‘almost dual’
form: horizontal and auxiliary edge are vertices, remaining exterior polygon
edge(s) label directed graph edges.

Pulling the faded L±’s and R±’s from Figure back into the analysis we might

hope, based on recent experience with the square torus, for a nearly direct trans-
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lation from renormalization of cutting sequences in A
⊙ to renormalization of

hitting sequences given in the triangle alphabet A
△ . The differences in the

hexagon case are immediately apparent. Auxiliary horizontals (Figure A.10)

that bound punctured hexagon cylinders do not respect triangle edges, so a tra-

jectory segment in Σ0 = [0, π
6
] that intersects edges coded in {a, b, C,R+, L−}

only at its endpoints need not have a unique combinatorial path. For example

(Figure A.10, (far left)), even before any geometric transformations are applied,

a trajectory segment joining edge a to edge L− can cross either L0 and B, or R−

followed by L0 and B (figure A.10).
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Figure A.10: Geometric renormalization of the centrally punctured hexagon
with auxilliary horizontals, tiled by equilateral triangles.

The solution to this problem exploits the fact that cylinders of the sheared

puctured hexagon are bounded by exterior edge β2 and Delaunay flips of trian-

gle legs λ±, ρ± in the sheared hexagon (see Figure A.11). Geometric renormal-

ization is really happening in the shear and the reflected shear, so we start there,

working backwards and forwards from the shear to renormalize combinatori-

ally.

101



β2

ρ0

λ0

λ+

λ−

ρ−

ρ+

β2

β1 β1

β0

β0

(a) Stage 0:
Isosceles Tri-
angulated
Hexagon (De-
launay)

β2

β1
ρ−

β0

β2

λ−

λ+

β1
ρ0

β0

ρ+

λ0

(b) Shear

β2

β1
ρ−

β0

β2

λ−

λ+

β1
ρ0

β0

ρ+

λ0

(c) First Edge Flip

β2

β1

ρ−

λ+

ρ0

β0 β2

ρ+

λ−

ρ+

λ+

λ−λ0

(d) Cut-Paste into
Rectangles

β2

β1

ρ−

λ+

ρ0

β0 β2

ρ+

λ−

ρ+

λ+

λ−λ0

(e) Stage 1: Second
Edge Flip (Delau-
nay in Shear)

β2

β1

ρ−

λ+

ρ0

β0 β2

ρ+

λ−

ρ+

λ+

λ−λ0

(f) Stage 2: Reflect
about central verti-
cal axis (Delaunay
in Reflected Shear)

β2

β1

ρ−

λ+

ρ0

β0 β2

ρ+

λ−

ρ+

λ+

λ−
λ0

(g) Third Edge Flip

β2

β1
λ+

ρ0

β0 β2

ρ+

λ−

ρ+

λ+

λ−λ0
ρ−

(h) Stage 3: Fourth
Edge Flip (Delau-
nay in Hexagon)

Figure A.11: Geometric renormalization of the centrally punctured hexagon,
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102



Let τ ∈ T0 = {τ θ : θ ∈ [0, π
6
]} be a linear trajectory on the triangulated hexag-

onal torus Thex (Figure A.11) and τ̃ =

1 − cot π
6

0 1

 · τ . The edges of D∗
0 are

labeled in the usual way: by the isosceles-triangulated hexagon edges τ ∈ T0

crosses in moving between edges represented by the diagram vertex labels.

Let Ψ denote the composition of transformations shown in Figure A.11.

Definition A.1.2.1. The image τ ′ in Ψ(Thex) of τ ∈ T0 is called the geometric deriva-

tive or renormalization of τ .

Proposition A.1.2.1. The geometric derivative of a trajectory τ ∈ T0 is also a linear

trajectory in Thex.

Proof. It suffices to oberve that Ψ is an affine automorphism of the centrally-

punctured hexagon.

Definition A.1.2.2. A word w in {β0, β1, β2} will be be called almost constant if there

exists k ∈ {0, 1, 2} and n ∈ N such that every occurance of βj , j ̸= k is isolated, and

every βk-block in w has length n or n+ 1.

For each angular sector Σk = [kπ
6
, (k+1)π

6
], k = 0, 1, 2, ..., 11 there is a diagram

Dk with the same topology as D0 that captures the possible one-step transitions
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for trajectories in directions θ ∈ Σk.

Definition A.1.2.3. A word w ∈ A
⊙ ≡ {β0, β,β2, λ

0,±, ρ0,±}Z is weakly admissible if

w is almost constant and can be realized by a path p in Di, i ∈ {0, 1, 2, ..., 11}. If w is

realizable in Di then n(w) = πi(w) is realizable in D0 and is called the normalization

of w.

Definition A.1.2.4. The weakly admissible word w is admissible if its augmented

normalization ñ(w) can be realized in the almost-dual Σ0 transition diagram D∗
0 (Fig-

ure A.9,(a)).

The symmetries of P2n discussed in Chapters 4 and 5 apply to the centrally-

punctued hexagon. Elements νk of the dihedral group D6 send trajectories in di-

rections θ ∈ (π
6
, 2π) to Σ0 trajectories. Transition diagrams for Sectors 1, 2, ..., 11

are obtained by corresponding permutations π−1
k on edge and vertex labels of

D0, where the notation πk is used both for the permutation on diagram labels

and the associated mapping on admissible words (see Remark 4).

Proposition A.1.2.2. If w = c(τ) ∈
(
A

⊙
)Z

is the cutting sequence of a trajectory

τ ∈ T0 then w is admissible.

Proof. If w is the cutting sequence of a linear trajectory on the hexagonal torus,

then by construction of the one-step transition diagrams, w is realizable in Di

for some i ∈ {0, 1, 2, ..., 11}. Basic geometry constrains cutting sequences to be
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almost constant (see Figure 3.3), and symmetries of the hexagonal torus allow

us to consider only Σ0 trajectories: a fixed-slope line in direction θ ∈ Σ0 cannot

intersect β1 both n times and n+2 times. Furthermore, simple inspection of Fig-

ure A.7 indicates that normalized cutting sequences of linear trajectories cannot

contain the forbidden subword [R+L−R+]. Therefore the augmented normal-

ization ñ(w) of w is realizable in D∗
0

Definition A.1.2.5. If w is admissible, then the result w′ = D(w) of sending n(w)

successively through Stage 1, Stage 2 and Stage 3 diagrams in Figure A.12 is called the

derived or renormalized sequence w′ of w.

Definition A.1.2.6. The admissible word w ∈
(
A

⊙
)Z

is deriveable if the derivative

w′ of w is also admissible.

Proposition A.1.2.3. If w = c(τ) is the cutting sequence of a trajectory on the hexag-

onal torus, then w is deriveable and the derivative w′ of w is the cutting sequence of a

linear trajectory.

Corollary A.1.2.4. If w = c(τ) is the cutting sequence of a linear trajectory on the

hexagonal torus, then w infinitely deriveable.

The proofs of Proposition A.1.2.3 and Corollary A.1.2.4 follow the same steps

as our proofs of Propositions 3.1.0.3 and 4.4.0.1. The important point is that all

of this remains true when we drop superscripts and subscripts of edge and ver-

tex labels. Defining realizability and derivation from exisiting figures and dia-
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grams without subscripts and superscripts, this observation combined with the

propositions above yields a necessary condition for hitting sequences of billiard

trajectories in the equilateral triangle (Figure A.13):

λ ρβ

β

β
β

λρ

λ

ρ

β
ββ

β

ρ
ρ

λ

ρ

λ

ρ
λ

βλρ

ρ

λβ β
β
ρ
λ

λ

β
ρ

ρ
λ

λ

(a) Stage 0 Transition Diagram D∗
0

β β β

ρ

λ

ρ

β
ρ

λ

β λ

ρ

λβ ρ

λ
βρ λ

ρ

λ

(b) Stage 3 Transition Diagram D∗′

Figure A.13: Combinatorial transitions in successive transformations of the un-
folded equilateral triangle.

Theorem A.1.2.5. If w = c(τ) ∈ {β, λ, ρ}Z is the hitting sequence of a billiard trajec-

tory in the equilateral triangle, then it is infinitely deriveable.

Proof. Theorem A.1.2.5 follows from Corollary A.1.2.4 and by the construction

of diagrams D∗
0 and D∗′ in Figure A.13.

A.2 The
(
π
4

)
-isosceles triangle

To suport our claim that the approach in Section A.1.2 scales with n, we sketch

an extension of the method to a triangle that does not tile the plane: the
(
π
4

)
-

isosceles triangle.
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In Section 4 we described an orientation-reversing affine automorphism

Ψ = h−1 ◦κ−1 ◦ rv ◦κ◦ h of the centrally punctured octagon O⊙ that is conjugate

to an isometry by the linear transformation h =

−1 cot π
4

0 1

. Following the

procedure from Section A.1.2 we apply h to the isosceles-triangulated octagon

(Figure A.14 (a)), flip edges until the resulting triangulation is Delaunay (Figure

A.14 (b),(c)) in the sheared octagon. Cut and paste into the familiar L-shaped

diagram L (Figure A.14 (d)). After reflecting rectangles of L about their cen-

tral vertical axes, flip edges until the resulting triangulation is Delaunay in O⊙

(Figure A.14 (e), (f), (g)). Finally apply h−1 ◦ κ−1 to go back to the isosceles-

triangulated octagon.
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(f) Stage 2: Undo first Delaunay edge-
flip
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(g) Stage 3: Undo second Delaunay edg-
flip (Delaunay in Octagon

Figure A.14: Geometric renormalization of the centrally punctured octagon,
tiled by

(
π
4

)
-isosceles triangles.

Using the edges that bound rectangles in the Delaunay-triangulation of the

sheared isosceles-triangulated octagon, create the ‘almost-dual’ Σ0 transition di-

agram (Figure A.15, (a) ). Arguments from Section 4 suggest that hitting se-

quences of Σi, i ̸= 0 trajectories are realizable in D∗
0 after applying appropriate

permutations to vertex and edge labels. Combinatorial derivation will involve
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recoding sequences which can be realized by the path p in D∗
0 after appropriate

permutations according to the labels picked up following the same path through

D∗′ (Figure A.15, (b) ).
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(a) Stage 0: Transition Diagram D∗
0 for

(
π
4

)
-isosceles trianglulated oc-

tagon (Triangulation Delaunay in Octagon)
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(b) Stage 3: Transition Diagram D∗′
for renormalized octagon (Tri-

angulation Delaunay in Octagon)

Figure A.15: Combinatorial transitions in successive transformations of the
(
π
4

)
-

isosceles triangulated octagon.

Removing subscripts and superscripts Figure A.16 yields a corresponding

intrinsic combinatorial derivation on the
(
π
4

)
-isosceles triangle.
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(b) Stage 3: Transition Diagram D∗′
for unfolded

(
π
4

)
-isosceles tri-

angle after renormalization(Delaunay in Octagon)

Figure A.16: Combinatorial transitions in successive transformations of the un-
folded

(
π
4

)
-isosceles triangle.

The coherence conditions from Section 4.5 and [76] can be translated,

dictionary-style, into the intrinsic three-letter triangle alphabet.

Definition A.2.0.1. The word in {β, λ, ρ}Z obtained from

w ∈
(
{βi}i∈{0,...,3} ∪ {ρj.ρj, λk, λ

k}j=0,1;k=1,3

)Z
by stripping off all subscripts and superscripts is the triangle projection of w.
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Definition A.2.0.2. A β-free subword of w ∈ {β, λ, ρ}Z is a subword consisting

only of λ’s and ρ’s that is maximal, in that cannot be extended in either direction while

retaining this property.

Example A.2.0.1. The successive β-free subwords of the finite word:

w = β ρβ ρλβ λρλρβ λ ρλβ

are [ρ], [ρλ], [λρλ], [λρλρ] and [λρλ].

Definition A.2.0.3. The word w ∈ {β, λ, ρ}Z is deriveable if w or (λρ) · w is real-

izable in D∗
0. In this case, whichever of w or λρ) · w can be realized in D∗

0 called the

normalization n(w) of w.

Definition A.2.0.4. The combinatorial derivative of a normalizable word w ∈

{β, λ, ρ}Z is the word D(w) ≡ w′ obtained by tracing the path p realizing n(w) in

D∗
0 through D∗′ . A normalizable word is deriveable if its derivative is also normaliz-

able.
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Coherence Conditions:  A          -deriveable word w is       -coherent if the pairs of adjacent same-length 

β-free subwords in the  triangle-projection  of its normalization n(w) fall only into the categories 

given for Gk, k = 0,1,2,3  shown below.
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[ρλρλ] [ρλρλ]
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Figure A.17: Coherence conditions from Section 4.5 and [76] translated into
identical conditions on the three letter triangle alphabet {β, λ, ρ} labeling sides
of the

(
π
4

)
-isosceles triangle.

Definition A.2.0.5. If pairs of successive same-length β-free subwords of the normal-

ized derivative n(w′) of a deriveable word w ∈ {β, λ, ρ}Z fall exclusively into one of the

categories from the table in Figure A.17 then w is coherent.

Theorem A.2.0.1. The closure of the set of hitting sequences on the
(
π
4

)
-isosceles tri-

angle is exactly the set of infinitely coherent sequences in {β, λ, ρ}Z.

Conjecture A.2.1. The closure of the set of hitting sequences on the
(

π
4n

)
-isosceles

triangle is exactly the set of infinitely coherent sequences in {β, λ, ρ}Z, where the prop-

erties of deriveability and coherence follow from appropriate, immediate analogues, of

figures from Figure A.14, diagrams in Figure A.16 and the table in Figure A.17.
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APPENDIX B

PLANE GEOMETRY AND ISOSCELES TRIANGLE HITTING

SEQUENCES

A simple necessary condition for general isosceles triangle hitting sequences

can be obtained directly from plane geometry.

Theorem B.0.0.2. Let α ≤ π
2

be the apex angle of an isosceles triangle Tα. For

w ∈
(
B ∪ B

)Z
, B = {β}, B = {λ, ρ} to be the hitting sequence of a billiard tra-

jectory on Tα, it must satisfy the following conditions:

1. No letter immediately succeeds itself in w.

2. There exists n ≥ 2 such that every B-block separating successive β’s in w has

length at most n.

3. The B-blocks separating a given β in w from its predecessor and successor β’s

differ in length by at most 1.

Proof. Condition (1) is self-evident and holds in any triangle whatsoever. For

conditions (2) and (3), let 0 < α ≤ π
2
, and nα = ⌈π

α
⌉ where ⌈·⌉ denotes ‘smallest

integer larger than.’ Let T0
α be situated with its base β0 horizontal and apex ly-

ing above β0 (Figure B.1). Take τ to be an arbitrary billiard trajectory segment in

T0
α that departs β0 at t = t0 and next intersects β0 at t = t1 > t0. Due to symme-

try, the conditions of Theorem B.0.0.2 are invariant under reflection through the
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horizontal and vertical axes, so without loss of generality, we may assume that

τ leaves β0 at angle θ ∈ [0, π
2
] and makes its next subsequent edge-intersection

with ρ0.

α

γ11

5

18

π
α =

13

2 36

π α π−
=

13

36 2

π π α−
=

Γ3

c

γ(c)

β ρ λ ρ β

β0

ρ0λ0

Cα

(a)

Figure B.1

Setting up the figures (Figures B.1, B.2 and B.3) that will be used to prove

(2) and (3): Let Cα be the circumscribed circle about the polygonal unfolding of

T0
α nα = ⌈π

α
⌉ times counterclockwise exclusively through ρ’s and λ’s. Oriented

counterclockwise βnα will have nonpositive direction with respect to the hori-

zontal.

Definition B.0.0.6. A reflection of Tα through either λ or ρ is a side-reflection, while

its reflection through β is a base-reflection.

The piecewise linear ordered concatenation of βi, i = 0, 1, .., j will be Bj ; the
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minor arc on Cα subtended by βi is γi and Γj is the ordered concatenation of γi,

i = 1, 2, .., j. Finally, if c is an oriented chord or concatenated sequence of chords

in Cα, γ(c) is the counterclockwise arc bounded by its initial and terminal point;

its arclength is ℓ(γ(c)).

β0

ρ0λ0

β
(1)

= β3

β
(2)

= β−3

θ0

θ1

0
τ

1
τ

β3

β0

τ

θ1

θ1

θ0

(3α−θ0 )

(a)

Figure B.2

Proof of Theorem B.0.0.2, Part (2): Any point on Cα will be contained in an

arc subtended by βi, where i ≤ nα = ⌈π
α
⌉ is the ith successive clockwise or ith

successive counterclockwise side-reflection of T0
α. Suppose τ is the unfolding of

a billiard trajectory segment in T0
α that starts at β0, next hits ρ0 and terminates

upon its second intersection with β0. The line in R2 containing τ also contains

the chord c(τ) of Cα. The endpoints of c(τ) are necessarily both contained in

Γnα . So τ intersects at most nα successive counterclockwise side-reflections of

T0
α, which is to say it hits at most nα ρ’s and λ’s between any two consecutive

intersections with β.
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Figure B.3

Proof of Theorem B.0.0.2, Part (3): Now let τ be the concatenation of two par-

allel β-to-β trajectory segments τ 0 and τ 1 of the type described above (Figure

B.3). Assume that τ 0 makes k0 side-crossings between β0 and its next base-

intersection, β(1) = βk0 . By Figure B.3 (Figure (left) and Table (right)), this im-

plies that τ 0 has angle

θ0 ∈ Σk0−1∪Σk0 ≡
[
(k0 − 1)α

2
,
k0α

2

]
∪
[
k0α

2
,
(k0 + 1)α

2

]
=

[
(k0 − 1)α

2
,
(k0 + 1)α

2

]

with respect to the horizontal edge β0. Setting θ1 to be the angle that the exten-

sion τ 1 of τ 0 through β(1) = βk0 makes with βk0 , we get:
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θ1 = π − θ0 − (π − (k0 − 1)α) = k0α− θ0

∈
[
(k0 − 1)α

2
,
(k0 + 1)α

2

]
= Σk0−1 ∪ Σk0

for θ0 ∈
[
(k0−1)α

2
, (k0+1)α

2

]
. Trajectories in Σk0−1 can make (k0 − 1) or k0 side-

crossings before their next base-intersection (Table in Figure B.3), while trajec-

tories in Σk0 can make k0 or k0 + 1 such side-crossings (Table in Figure B.3). To

summarize: the extension through β(1) of a trajectory segment τ 0 that made k0

side-crossings getting from β0 to β(1) makes k1 ∈ {k0−1, k0, k0+1} side-crossings

before next intersecting β, proving that successive B-blocks in α-isosceles hit-

ting sequences differ in length by at most 1.
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