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This short note is based on a talk I gave at the student dynamical systems
seminar about using your computer to figure out what the Lyapunov exponents of
a matrix-valued cocycle are. I will focus only on discrete cocycles, that is, cocycles
over Z-actions. It is based on [ER85, §V.C], which also treats the continuous-time
case. I tried to make it as self-contained as possible and completely accessible to
graduate students of all levels.

1. Theory

Let G be “time” and T : X ×G→ X a dynamical system.

Definition 1. A linear cocycle over T is a map A : G × X → GL(n,F) which
satisfies the cocycle condition

A(g1 + g2, x) = A(g2, T g1(x)) ·A(g1, x)

for all g1, g2 ∈ G and x ∈ X.

Cocycles act on vector bundles: For a bundle p : V → X we have

T ◦ p(q) = p ◦A(q)

for all q ∈ V . Let’s look at some examples.

Example 1. The most famous and well-known cocycle is the tangent or derivative
cocycle. Let f : M →M be a diffeomorphism of a manifold M . Then Df : TxM →
Tf(x)M is the tangent cocycle of f acting on the tangent bundle of M , TM . The
cocycle condition is satisfied by the chain rule. Studying this cocycle tells you about
the contracting/expanding properties of your dynamical system f .

Example 2. Another semi-famous cocycle in dynamical systems is the Rauzy-
Veech-Zorich (RVZ) cocycle (which is a cocycle over a Z-action) or its continuous-
time version, the Kontsevich-Zorich (KZ) cocycle. The base dynamics of the RVZ
cocycle is a translation flow on a Riemann surface (or an interval exchange trans-
formation) while the base dynamics for the KZ cocycle is the Teichmuller flow on
the moduli space of quadratic differentials for Riemann surfaces. Both cocycles act
on the (co)homology bundle of Riemann surfaces. I mention this example not only
to impress you, but to show you that there are other interesting bundles to consider
aside from the tangent bundle. Studying these cocycles tells us much about how
flows wind around flat surfaces and about the behavior of ergodic averages.

From now on we will adopt the notational convention A
(n)
x = A(n, x).

Definition 2. Let A be a linear cocycle over f : X → X and let µ be an f -invariant
probability measure. Then A is a measurable cocycle if

log+ ‖A(±1)
x ‖ ∈ L1(X,µ),
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where log+(z) = max{0, z}.

We now state the main/best theorem about measurable cocycles.

Theorem 1 (Oseledec Multiplicative Ergodic Theorem). Let A be a measurable
cocycle over f acting on the bundle V and µ and f -invariant probability measure.
Then

(1) There is an A-invariant, pointwise decomposition of V

(1) V = X ×
k(x)⊕
i=1

Hi(x)

such that
(2) The limit

lim
n→±∞

1
|n|

log
‖A(n)

x · v‖
‖v‖

= ±λi(x)

exists and is the ith Lyapunov exponent of A for any nonzero v ∈ Hi(x)
µ-almost everywhere. The dimension of the sub-bundle Hi(x) equals the multiplicity
of the Lyapunov exponent λi.

The decomposition (1) is called the Oseledec decomposition of V . The Lyapunov
exponents measure the infinitesimal expansion of the cocycle along a trajectory.
More precisely, there is a fiber-wise splitting of the bundle V

p−1(x) ≈ {x} × Es(x)⊕ Ec(x)⊕ Eu(x)

where Es, Ec, and Eu are, respectively, the stable, center and unstable bundles of
A. They measure exponential contraction or expansion for the case of the stable or
unstable bundles while the center bundle has some sort of intermediate behavior.
If Ec = ∅ and the stable/unstable bundles do not depend on x, A is uniformly
hyperbolic. This is a very special case, since the theorem holds only µ-almost
everywhere, and we can only expect non-uniform hyperbolicity. If Ec 6= ∅ the
cocycle is called partially hyperbolic.

Example 3. Let X = R2/Z2, A ∈ SL(2,Z), where A has no eigenvalues of modulus
1. Since A is a linear map it is easy to see that the Oseledec decomposition is given
by the eigenvectors of A and Lyapunov exponents by the eigenvalues. This system
is uniformly hyperbolic.

Since in these notes we are interested in computing the Lyapunov exponents,
we will sketch the proof of the second part of the theorem above. We do this
because the way of proving this part gives an algorithm to compute the exponents
numerically.

Sketch of proof of second part. The clever trick used to prove this is that we can
perform a QR-factorization of the cocycle at every iteration. This factorization
expresses a matrix M as the product of an orthogonal matrix Q and an upper-
triangular matrix R. This factorization is unique if M is non-singular.

To use this for our cocycle, let A(1)
x = Q1 ·R1. Define successively for k > 1

A′k = A
(1)

fk−1(x)
Qk−1
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in order to get the next Q and R:

A′k = A
(1)

fk−1(x)
Qk−1 = QkRk.

It follows then that the cocycle is

A(n)
x = QnRnRn−1 · · ·R1.

Since the Qi are orthogonal (that is, you can think of them as a change of basis),
you can assume that the cocycle is given by upper-triangular matrices. By the
Birkhoff Ergodic Theorem,

(2) lim
n→∞

1
n

n−1∑
k=0

log |aii(fk(x))| = λi(x),

where aii is the ith diagonal entry of Rk, exists µ-almost everywhere. These are
then the Lyapunov exponents. �

As you can see, the method of proof gives a nice algorithm to approximate the
Lyapunov exponents numerically. If you want to code this, everything is figured
out for you with the exception of how to perform QR factorization of matrices.
There are two major ways of doing this:

Gram-Schmidt Process: You can QR-factorize matrices using this process,
but it is quite numerically unstable. Even methods known as modified
Gram-Schmidt processes perform under-par for this task: they yield matri-
ces Q which are not really orthogonal.

Householder transformations/reflections: Although I will not go over
what these are, this is the most reliable way of performing QR factoriza-
tions numerically. For more background see [TB97, §II.7]. This method of
factorization is well-known and can be obtained from a number of public
linear algebra tools libraries, like the Numerical Recipes libraries [PTVF07,
§2.10].

2. Practice

Using the algorithms listed in the previous section we can start computing Lyua-
punov exponents for as many matrix-valued cocycles as we want. We will only do
it for one system here.

Consider a three-generation Leslie model1, which is a non-linear version of an old
model from population dynamics introduced by Leslie in the 1940’s. To be honest,
I am not sure what this model has been used for in the real world and/or to what
degree of success, but it’s fun to play with it using a computer.

This system is based on modeling a population which has three major genera-
tional changes and thus at any time the population is represented by a point in R3

+.
The system is

F : (x, y, z) 7→
(
f(x+ y + z)e−λ(x+y+z), p1x, p2y

)
,

where f, λ, p1, p2 are some predetermined constants (the pi is the survival rate of
going from the ith generation to the (i+ 1)st generation).

1Specifically, the three-generation overcompensatory Leslie population model where the fertility
rates decay exponentially with population size.
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Fix λ = 0.1, p1 = 0.8, p2 = 0.6, and f > 0 a free parameter. This system
was studied computationally in [UW04] where it was reported that this system
undergoes many qualitative changes as f varies: creation and destruction of strange
attractors, crises, period doubling route to chaos, et cetera. It should be pointed
out that for all f there is a global attractor, that is, all initial conditions in R3

+

eventually get sucked into a compact region of R3. In the results below, we pick
random points in R3

+ and compute Lyapunov exponents using the method described
above. We compute Lyapunov exponents for this system for varying values of f .
The results are described in the figures below.
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Figure 1. Lyapunov exponents for the three-generation Leslie
model with parameters λ = 0.1, p1 = 0.8, p2 = 0.6, and f > 0
a free parameter between 25 and 100. In the three intervals where
there seem to be multiple Lyapunov exponents, the lowest two
Lyapunov exponents are very negative and do not appear in the
plot.
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Figure 2. For f roughly between 27 and 41 the lowest two Lya-
punov exponents are the same and thus the spectrum of the cocycle
is not simple. For some values of f the highest exponent seems to
oscilate and is positive for some f (thus Eu 6= ∅ for these values).
The oscilation seems to be due to the existence of multiple attrac-
tors.
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Figure 3. The top two Lyapunov exponents merge at first and
then diverge.
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Figure 4. The Lyapunov exponents go from having one value to
many. My guess is that for these values of f there are very many
attractors each with different Lyapunov exponents.


