MATH 2310 QUIZ

Friday 2 October 2009. You have 50 minutes. No calculators are permitted. Please show all working.
(1) True or False? (Explain your answer.)
(a) No linear system has exactly two solutions.

True: a linear system has either 0,1 or infinitely many solutions.
(b) If A is any $n \times n$ matrix, then the matrix $I_{n}-A A^{T}$ is symmetric. (Here, I_{n} denotes the identity matrix of size $n \times n$.)
True: if A is any $n \times n$ matrix, then $\left(I_{n}-A A^{T}\right)^{T}=\left(I_{n}\right)^{T}-\left(A A^{T}\right)^{T}=I_{n}-$ $\left(A^{T}\right)^{T} A^{T}=I_{n}-A A^{T}$ according to the rules about transposes. So $I_{n}-A A^{T}$ is symmetric.
(2) Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 4 & 6 \\
0 & 1 & 0
\end{array}\right] \quad C=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
0 & 2
\end{array}\right]
$$

Calculate each of the following. If it is not defined, say so.
(a) $A\left(C+B^{T}\right)$

$$
\begin{gathered}
=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left(\left[\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
0 & 2
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
4 & 1 \\
6 & 0
\end{array}\right]\right) \\
\left.=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\right)\left[\begin{array}{ll}
4 & 1 \\
3 & 1 \\
6 & 2
\end{array}\right] \\
=\left[\begin{array}{ll}
4 & 1
\end{array}\right]
\end{gathered}
$$

(b) B^{-1}

Not defined because B is not square.
(3) Let $X=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$.
(a) Show that $X^{2}-7 X+I_{2}=0$.

$$
\begin{gathered}
X^{2}-7 X+I_{2}=\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]-7\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
=\left[\begin{array}{ll}
13 & 21 \\
21 & 34
\end{array}\right]-\left[\begin{array}{ll}
14 & 21 \\
21 & 35
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

(b) Determine whether X is invertible, and find X^{-1} if it exists.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
X & I_{2}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 1 & 0 \\
3 & 5 & 0 & 1
\end{array}\right]} \\
& \rightarrow_{r_{2}-(3 / 2) r_{1}}\left[\begin{array}{cccc}
2 & 3 & 1 & 0 \\
0 & 1 / 2 & -3 / 2 & 1
\end{array}\right] \\
& \rightarrow_{r_{1}-6 r_{2}}\left[\begin{array}{cccc}
2 & 0 & 10 & -6 \\
0 & 1 / 2 & -3 / 2 & 1
\end{array}\right] \\
& \rightarrow(1 / 2) r_{1}\left[\begin{array}{cccc}
1 & 0 & 5 & -3 \\
0 & 1 / 2 & -3 / 2 & 1
\end{array}\right] \\
& \rightarrow 2 r_{2}\left[\begin{array}{cccc}
1 & 0 & 5 & -3 \\
0 & 1 & -3 & 2
\end{array}\right]
\end{aligned}
$$

So X is invertible and $X^{-1}=\left[\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right]$.
(4) Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
1 & 0 & 9 \\
3 & 1 & 12
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Find all solutions to the linear system $A \mathbf{x}=\mathbf{b}$.

The augmented matrix of this system is

$$
A=\left[\begin{array}{ccccc}
2 & 1 & 3 & \vdots & 1 \\
1 & 0 & 9 & \vdots & 1 \\
3 & 1 & 12 & \vdots & 1
\end{array}\right]
$$

Perform row operations:

$$
\begin{aligned}
& \rightarrow_{r_{3}-r_{1}}\left[\begin{array}{llllc}
2 & 1 & 3 & \vdots & 1 \\
1 & 0 & 9 & \vdots & 1 \\
1 & 0 & 9 & \vdots & 0
\end{array}\right] \\
& \rightarrow_{r_{3}-r_{2}}\left[\begin{array}{ccccc}
2 & 1 & 3 & \vdots & 1 \\
1 & 0 & 9 & \vdots & 1 \\
0 & 0 & 0 & \vdots & -1
\end{array}\right]
\end{aligned}
$$

We have obtained the equation $0=-1$, which has no solutions. Thus, the original system also has not solutions.
(b) Is A invertible? Explain why or why not.
A is not invertible because there is some \mathbf{b} for which the equation $A \mathbf{x}=\mathbf{b}$ does not have a unique solution, by part (a).
(5) Determine whether the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -2 \\
0 & -1 & 2
\end{array}\right]
$$

is invertible, and find A^{-1} if it exists.
Form the matrix

$$
\left[\begin{array}{rrrrrr}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -2 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

and reduce it to rref as follows:

$$
\begin{aligned}
& \rightarrow_{2 r_{2}}\left[\begin{array}{rrrrrr}
2 & -1 & 0 & 1 & 0 & 0 \\
-2 & 4 & -4 & 0 & 2 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow_{r_{2}+r_{1}}\left[\begin{array}{rrrrrr}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & 3 & -4 & 1 & 2 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\rightarrow_{r_{2}+3 r_{3}}\left[\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 2 & 3 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
\rightarrow_{\text {swap }} r_{2}, r_{3}\left[\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & 2 & 3
\end{array}\right] \\
\rightarrow r_{r_{2}-r_{3}}\left[\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & -2 & -2 \\
0 & 0 & 2 & 1 & 2 & 3
\end{array}\right] \\
\rightarrow r_{1}-r_{2}
\end{gathered}\left[\begin{array}{cccccc}
2 & 0 & 0 & 2 & 2 & 2 \\
0 & -1 & 0 & -1 & -2 & -2 \\
0 & 0 & 2 & 1 & 2 & 3
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 / 2) r_{1},-r_{2},(1 / 2) r_{3}
\end{array}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 1 & 1 / 2 & 1 & 3 / 2
\end{array}\right] .\right.
$$

Conclusion: A is invertible (because the rref of A is I) and

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 / 2 & 1 & 3 / 2
\end{array}\right]
$$

[END]

