MATH 4130 FINAL EXAM

Math 4130 final exam, 18 May 2010. The exam starts at 7:00 pm and you have 150 minutes. No textbooks or calculators may be used during the exam. This exam is printed on both sides of the paper. Good luck!

- (1) (20 marks.) Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers. Let $L \in \mathbb{R}$.
 - (a) Explain what it means to say $\lim_{n\to\infty} x_n = L$. It means that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > N then $|x_n - L| < \varepsilon$.
 - (b) Explain what is meant by lim sup_n y_n.
 One definition: lim sup_n y_n is the supremum of the set of limit-points (limits of subsequences) of the sequence {y_n}. Another definition: lim sup_n y_n is the limit of the sequence {sup_{k≥n} y_k} as n → ∞.
 - (c) Show that if $\lim_{n\to\infty} x_n = L$ then $\lim_{n\to\infty} |x_n| = |L|$. Suppose $\lim_{n\to\infty} x_n = L$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that if n > Nthen $|x_n - L| < \varepsilon$. If n > N then $||x_n| - |L|| \le |x_n - L| < \varepsilon$.
 - (d) Suppose lim sup_n y_n = L. Is it necessarily true that lim sup_n |y_n| = |L|? Explain your answer.
 No. For example, take the sequence 0, −1, 0, −1, ... for {y_n}. Then lim sup_n y_n = 0 but lim sup_n |y_n| = 1.
- (2) (20 marks) A real number α is said to be *algebraic* if for some $n \in \mathbb{N}$ there is a polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ of degree n with $a_i \in \mathbb{Q}$ for all i, and with $f(\alpha) = 0$. (In this case, we say that α is a *root* of f.) If α is not algebraic, it is said to be *transcendental*.
 - (a) Show that the set of all algebraic numbers is countable. (You may use without proof the fact that a polynomial of degree n has at most n roots.)

The set of all algebraic numbers is the union

$$\bigcup_{n \ge 1} \bigcup_{p \in P_n} (roots \ of \ p).$$

Where P_n denotes the set of all polynomials with rational coefficients of degree n. The set P_n is in bijection with \mathbb{Q}^n , a countable set. We see that the set of algebraic numbers is a countable union of countable sets, so it is countable.

- (b) Show that there exists a transcendental number.
 Since ℝ is uncountable, it cannot be equal to the set of algebraic numbers. So there must be a real number which is not algebraic.
- (c) Now consider the expression $g(x) = \sum_{n=1}^{\infty} x^{n!}$. Show that the series defines a C^{∞} function $g: (-1,1) \to \mathbb{R}$. [Remark: the number g(1/10) is known to be transcendental. Do not prove this!]

This is a power series $g(x) = \sum a_n x^n$ with coefficients

$$a_n = \begin{cases} 1 & n = k! \\ 0 & otherwise. \end{cases}$$

We see that $\limsup_n |a_n|^{1/n} = 1$ and so the power series has radius of convergence 1. Therefore, by theorems on power series, it defines a C^{∞} function on the interval (-1, 1).

- (3) (20 marks) Let $f : \mathbb{R} \to \mathbb{R}$ be a function.
 - (a) State what it means for f to be uniformly continuous on R.
 It means that for all ε > 0 there exists δ > 0 such that if x, y ∈ R and |x y| < δ then |f(x) f(y)| < ε.
 - (b) State the Mean Value Theorem.
 Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists x ∈ (a, b) with

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

(c) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function and that the derivative f' is bounded. Show that f is uniformly continuous on \mathbb{R} .

Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable and suppose there exists M > 0 with $|f'(x)| \leq M$ for all $x \in \mathbb{R}$. Then if a < b, then $\frac{f(b)-f(a)}{b-a} = f'(x_0) \leq M$ for some $x_0 \in (a,b)$. So $|f(b) - f(a)| \leq M|b-a|$. Therefore, given $\varepsilon > 0$, if $\delta < \varepsilon/M$ then $|b-a| < \delta$ implies $|f(b) - f(a)| < \varepsilon$. So f is uniformly continuous.

- (d) Show that $f(x) = \log(1 + x^2)$ is uniformly continuous on \mathbb{R} . [TURN OVER.] In view of the previous problem, it suffices to show that the derivative of f is bounded. So it suffices to show that $\frac{2|x|}{1+x^2}$ is bounded. If $|x| \ge 1$ then $\frac{2|x|}{1+x^2} \le \frac{2}{|x|} \le 2$ while if $|x| \le 1$ then also $\frac{2|x|}{1+x^2} \le 2|x| \le 2$.
- (4) (20 marks.) Recall that for x > 0 and $a \in \mathbb{R}$, we define $x^a = \exp(a \log(x))$.
 - (a) Let a ∈ ℝ. Show that d/dx(x^a) = ax^{a-1}.
 We use the chain rule to differentiate e^{a log(x)}. This gives a/x e^{a log(x)} = ae^{-log(x)}e^{a log(x)} = ae^{(a-1)log(x)}.
 - (b) Let a > 1. Show that

$$\int_{1}^{N} \frac{1}{x^{a}} dx = \frac{1}{1-a} (N^{1-a} - 1).$$

By the previous problem, the derivative of $\frac{1}{1-a}x^{1-a}$ is x^{-a} . Therefore, by the fundamental theorem of calculus, we have

$$\int_{1}^{N} \frac{1}{x^{a}} dx = \frac{1}{1-a} x^{1-a} |_{1}^{N}.$$

(c) Let I be a closed interval. Explain what is meant by the upper and lower Riemann sums $S^+(f, P)$ and $S^-(f, P)$ of a continuous function $f: I \to \mathbb{R}$ with respect to a partition P of I.

Let $P = \{x_0 < x_1 < \dots < x_n\}$ be a partition. The upper Riemann sum $S^+(f, P)$ is the sum

$$\sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} f(x)(x_i - x_{i-1}).$$

The lower Riemann sum $S^{-}(f, P)$ is the sum

$$\sum_{i=1}^{n} \inf_{x \in [x_{i-1}, x_i]} f(x)(x_i - x_{i-1}).$$

(d) For $N \ge 2$ and a > 1, show that

$$\sum_{n=2}^{N} \frac{1}{n^a} \le \int_1^N \frac{1}{x^a} dx.$$

The function $f(x) = x^{-a}$ is decreasing, because its derivative is $-ax^{a-1}$, which is -a times the exponential of something, which must be negative. So the sum on the left hand side is the lower Riemann sum for the function f on [1, N] with respect to the partition $P = \{1, 2, ..., N\}$. The lower Riemann sum is \leq the integral since the integral is the supremum of the set of lower Riemann sums of all partitions P.

(e) Show that if a > 1, then the series ∑_{n=1}[∞] 1/n^a converges.
 The Nth partial sum of the series is bounded above by the integral, whose value is

$$\int_{1}^{N} \frac{1}{x^{a}} dx = \frac{1}{1-a} (N^{1-a} - 1).$$

Since a > 1, the sequence

$$b_N = \frac{1}{1-a}(N^{1-a} - 1)$$

converges, and so is bounded. Therefore, the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^a}$ is an increasing bounded sequence, so it converges.

(5) (20 marks.) The following problem is set in an analysis exam which you are grading: **Problem:** (10 marks) Suppose $f : A \to \mathbb{R}$ where $A \subset \mathbb{R}$. Let x be a cluster point of A. Suppose $\lim_{x\to a} f(x) = L \neq 0$. Show that $\lim_{x\to a} \frac{1}{f(x)} = \frac{1}{L}$.

A student writes the following solution:

"My solution:

$$\left|\frac{1}{f(x)} - \frac{1}{L}\right| = \left|\frac{L - f(x)}{f(x)L}\right| = \frac{|f(x) - L|}{|f(x)||L|} < \frac{\varepsilon}{|f(x)||L|}$$

if $|f(x) - L| < \varepsilon$.

So given $\varepsilon > 0$, choose $\delta > 0$ such that, if $|x - a| < \delta$, then $|f(x) - L| < \varepsilon \cdot \inf |f(x)| \cdot |L|$. Then

$$|x-a| < \delta \implies \left| \frac{1}{f(x)} - \frac{1}{L} \right| < \varepsilon.$$

QED."

(a) Comment on any aspects of the solution which you think are incorrect, or which could be improved.

The proof is OK except for $|f(x) - L| < \varepsilon \cdot \inf |f(x)| \cdot |L|$. There is not necessarily any such thing as $\inf |f(x)|$. No set is specified over which the infimum is taken. The student should have shown that f is bounded below near a. That is, there exists δ_1 such that $|x - a| < \delta_1$ implies $||f(x)| - |L|| \le |f(x) - L| < |L|/2$ and then $|f(x)| \ge |L| - |L|/2 = |L|/2$. Now replace the $\inf by |L|/2$ in the above proof, and replace δ by the minimum of δ and δ_1 . Then the proof works.

(b) How many marks (out of a maximum possible 10) would you award the student? Explain your answer.

The proof is mostly, but not wholly, correct. Therefore, any answer < 10 is acceptable here.

[END.]