
MATH 4130 FINAL EXAM

Math 4130 final exam, 18 May 2010. The exam starts at 7:00 pm and you have 150

minutes. No textbooks or calculators may be used during the exam. This exam is printed

on both sides of the paper. Good luck!

(1) (20 marks.) Let {xn} and {yn} be sequences of real numbers. Let L ∈ R.

(a) Explain what it means to say limn→∞ xn = L.

It means that for all ε > 0 there exists N ∈ N such that if n > N then |xn−L| <
ε.

(b) Explain what is meant by lim supn yn.

One definition: lim supn yn is the supremum of the set of limit-points (limits of

subsequences) of the sequence {yn}. Another definition: lim supn yn is the limit

of the sequence {supk≥n yk} as n →∞.

(c) Show that if limn→∞ xn = L then limn→∞ |xn| = |L|.
Suppose limn→∞ xn = L. Let ε > 0. Then there exists N ∈ N such that if n > N

then |xn − L| < ε. If n > N then ||xn| − |L|| ≤ |xn − L| < ε.

(d) Suppose lim supn yn = L. Is it necessarily true that lim supn |yn| = |L|? Explain

your answer.

No. For example, take the sequence 0,−1, 0,−1, . . . for {yn}. Then lim supn yn =

0 but lim supn |yn| = 1.

(2) (20 marks) A real number α is said to be algebraic if for some n ∈ N there is a

polynomial f(x) = xn + an−1x
n−1 + · · · + a0 of degree n with ai ∈ Q for all i, and

with f(α) = 0. (In this case, we say that α is a root of f .) If α is not algebraic, it is

said to be transcendental.

(a) Show that the set of all algebraic numbers is countable. (You may use without

proof the fact that a polynomial of degree n has at most n roots.)
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The set of all algebraic numbers is the union

⋃
n≥1

⋃
p∈Pn

(roots of p).

Where Pn denotes the set of all polynomials with rational coefficients of degree

n. The set Pn is in bijection with Qn, a countable set. We see that the set of

algebraic numbers is a countable union of countable sets, so it is countable.

(b) Show that there exists a transcendental number.

Since R is uncountable, it cannot be equal to the set of algebraic numbers. So

there must be a real number which is not algebraic.

(c) Now consider the expression g(x) =
∑∞

n=1 xn!. Show that the series defines a

C∞ function g : (−1, 1) → R. [Remark: the number g(1/10) is known to be

transcendental. Do not prove this!]

This is a power series g(x) =
∑

anxn with coefficients

an =





1 n = k!

0 otherwise.

We see that lim supn |an|1/n = 1 and so the power series has radius of convergence

1. Therefore, by theorems on power series, it defines a C∞ function on the

interval (−1, 1).

(3) (20 marks) Let f : R→ R be a function.

(a) State what it means for f to be uniformly continuous on R.

It means that for all ε > 0 there exists δ > 0 such that if x, y ∈ R and |x−y| < δ

then |f(x)− f(y)| < ε.

(b) State the Mean Value Theorem.

Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists

x ∈ (a, b) with

f ′(x) =
f(b)− f(a)

b− a
.

(c) Suppose that f : R→ R is a differentiable function and that the derivative f ′ is

bounded. Show that f is uniformly continuous on R.
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Let f : R→ R be differentiable and suppose there exists M > 0 with |f ′(x)| ≤ M

for all x ∈ R. Then if a < b, then f(b)−f(a)
b−a

= f ′(x0) ≤ M for some x0 ∈ (a, b).

So |f(b)− f(a)| ≤ M |b− a|. Therefore, given ε > 0, if δ < ε/M then |b− a| < δ

implies |f(b)− f(a)| < ε. So f is uniformly continuous.

(d) Show that f(x) = log(1 + x2) is uniformly continuous on R. [TURN OVER.]

In view of the previous problem, it suffices to show that the derivative of f is

bounded. So it suffices to show that 2|x|
1+x2 is bounded. If |x| ≥ 1 then 2|x|

1+x2 ≤ 2
|x| ≤

2 while if |x| ≤ 1 then also 2|x|
1+x2 ≤ 2|x| ≤ 2.

(4) (20 marks.) Recall that for x > 0 and a ∈ R, we define xa = exp(a log(x)).

(a) Let a ∈ R. Show that d
dx

(xa) = axa−1.

We use the chain rule to differentiate ea log(x). This gives a
x
ea log(x) = ae− log(x)ea log(x) =

ae(a−1) log(x).

(b) Let a > 1. Show that

∫ N

1

1

xa
dx =

1

1− a
(N1−a − 1).

By the previous problem, the derivative of 1
1−a

x1−a is x−a. Therefore, by the

fundamental theorem of calculus, we have

∫ N

1

1

xa
dx =

1

1− a
x1−a|N1 .

(c) Let I be a closed interval. Explain what is meant by the upper and lower

Riemann sums S+(f, P ) and S−(f, P ) of a continuous function f : I → R with

respect to a partition P of I.

Let P = {x0 < x1 < · · · < xn} be a partition. The upper Riemann sum S+(f, P )

is the sum
n∑

i=1

sup
x∈[xi−1,xi]

f(x)(xi − xi−1).

The lower Riemann sum S−(f, P ) is the sum

n∑
i=1

inf
x∈[xi−1,xi]

f(x)(xi − xi−1).
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(d) For N ≥ 2 and a > 1, show that

N∑
n=2

1

na
≤

∫ N

1

1

xa
dx.

The function f(x) = x−a is decreasing, because its derivative is −axa−1, which

is −a times the exponential of something, which must be negative. So the sum

on the left hand side is the lower Riemann sum for the function f on [1, N ] with

respect to the partition P = {1, 2, . . . , N}. The lower Riemann sum is ≤ the

integral since the integral is the supremum of the set of lower Riemann sums of

all partitions P .

(e) Show that if a > 1, then the series
∑∞

n=1
1

na converges.

The N th partial sum of the series is bounded above by the integral, whose value

is ∫ N

1

1

xa
dx =

1

1− a
(N1−a − 1).

Since a > 1, the sequence

bN =
1

1− a
(N1−a − 1)

converges, and so is bounded. Therefore, the sequence of partial sums of
∑∞

n=1
1

na

is an increasing bounded sequence, so it converges.

(5) (20 marks.) The following problem is set in an analysis exam which you are grading:

Problem: (10 marks) Suppose f : A → R where A ⊂ R. Let x be a cluster

point of A. Suppose limx→a f(x) = L 6= 0. Show that limx→a
1

f(x)
= 1

L
.

A student writes the following solution:

“My solution:
∣∣∣∣

1

f(x)
− 1

L

∣∣∣∣ =

∣∣∣∣
L− f(x)

f(x)L

∣∣∣∣ =
|f(x)− L|
|f(x)||L| <

ε

|f(x)||L|
if |f(x)− L| < ε.

So given ε > 0, choose δ > 0 such that, if |x − a| < δ, then |f(x) − L| <

ε · inf |f(x)| · |L|. Then

|x− a| < δ =⇒
∣∣∣∣

1

f(x)
− 1

L

∣∣∣∣ < ε.
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QED.”

(a) Comment on any aspects of the solution which you think are incorrect, or which

could be improved.

The proof is OK except for |f(x)−L| < ε · inf |f(x)| · |L|. There is not necessarily

any such thing as inf |f(x)|. No set is specified over which the infimum is taken.

The student should have shown that f is bounded below near a. That is, there

exists δ1 such that |x − a| < δ1 implies ||f(x)| − |L|| ≤ |f(x) − L| < |L|/2 and

then |f(x)| ≥ |L| − |L|/2 = |L|/2. Now replace the inf by |L|/2 in the above

proof, and replace δ by the minimum of δ and δ1. Then the proof works.

(b) How many marks (out of a maximum possible 10) would you award the student?

Explain your answer.

The proof is mostly, but not wholly, correct. Therefore, any answer < 10 is

acceptable here.

[END.]
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