## MATH 4130 FINAL EXAM

Math 4130 final exam, 18 May 2010. The exam starts at 7:00 pm and you have 150 minutes. No textbooks or calculators may be used during the exam. This exam is printed on both sides of the paper. Good luck!
(1) (20 marks.) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers. Let $L \in \mathbb{R}$.
(a) Explain what it means to say $\lim _{n \rightarrow \infty} x_{n}=L$.

It means that for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|x_{n}-L\right|<$ $\varepsilon$.
(b) Explain what is meant by $\lim \sup _{n} y_{n}$.

One definition: $\lim \sup _{n} y_{n}$ is the supremum of the set of limit-points (limits of subsequences) of the sequence $\left\{y_{n}\right\}$. Another definition: $\lim \sup _{n} y_{n}$ is the limit of the sequence $\left\{\sup _{k \geq n} y_{k}\right\}$ as $n \rightarrow \infty$.
(c) Show that if $\lim _{n \rightarrow \infty} x_{n}=L$ then $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|L|$.

Suppose $\lim _{n \rightarrow \infty} x_{n}=L$. Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|x_{n}-L\right|<\varepsilon$. If $n>N$ then $\left|\left|x_{n}\right|-|L|\right| \leq\left|x_{n}-L\right|<\varepsilon$.
(d) Suppose $\lim \sup _{n} y_{n}=L$. Is it necessarily true that $\lim \sup _{n}\left|y_{n}\right|=|L|$ ? Explain your answer.

No. For example, take the sequence $0,-1,0,-1, \ldots$ for $\left\{y_{n}\right\}$. Then $\limsup _{n} y_{n}=$ 0 but $\lim \sup _{n}\left|y_{n}\right|=1$.
(2) (20 marks) A real number $\alpha$ is said to be algebraic if for some $n \in \mathbb{N}$ there is a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ of degree $n$ with $a_{i} \in \mathbb{Q}$ for all $i$, and with $f(\alpha)=0$. (In this case, we say that $\alpha$ is a root of $f$.) If $\alpha$ is not algebraic, it is said to be transcendental.
(a) Show that the set of all algebraic numbers is countable. (You may use without proof the fact that a polynomial of degree $n$ has at most $n$ roots.)

The set of all algebraic numbers is the union

$$
\bigcup_{n \geq 1} \bigcup_{p \in P_{n}}(\text { roots of } p) \text {. }
$$

Where $P_{n}$ denotes the set of all polynomials with rational coefficients of degree $n$. The set $P_{n}$ is in bijection with $\mathbb{Q}^{n}$, a countable set. We see that the set of algebraic numbers is a countable union of countable sets, so it is countable.
(b) Show that there exists a transcendental number.

Since $\mathbb{R}$ is uncountable, it cannot be equal to the set of algebraic numbers. So there must be a real number which is not algebraic.
(c) Now consider the expression $g(x)=\sum_{n=1}^{\infty} x^{n!}$. Show that the series defines a $C^{\infty}$ function $g:(-1,1) \rightarrow \mathbb{R}$. [Remark: the number $g(1 / 10)$ is known to be transcendental. Do not prove this!]
This is a power series $g(x)=\sum a_{n} x^{n}$ with coefficients

$$
a_{n}= \begin{cases}1 & n=k! \\ 0 & \text { otherwise }\end{cases}
$$

We see that $\lim \sup _{n}\left|a_{n}\right|^{1 / n}=1$ and so the power series has radius of convergence 1. Therefore, by theorems on power series, it defines a $C^{\infty}$ function on the interval $(-1,1)$.
(3) (20 marks) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
(a) State what it means for $f$ to be uniformly continuous on $\mathbb{R}$.

It means that for all $\varepsilon>0$ there exists $\delta>0$ such that if $x, y \in \mathbb{R}$ and $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$.
(b) State the Mean Value Theorem.

Suppose $f$ is continuous on $[a, b]$ and differentiable on $(a, b)$. Then there exists $x \in(a, b)$ with

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

(c) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function and that the derivative $f^{\prime}$ is bounded. Show that $f$ is uniformly continuous on $\mathbb{R}$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and suppose there exists $M>0$ with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$. Then if $a<b$, then $\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(x_{0}\right) \leq M$ for some $x_{0} \in(a, b)$. So $|f(b)-f(a)| \leq M|b-a|$. Therefore, given $\varepsilon>0$, if $\delta<\varepsilon / M$ then $|b-a|<\delta$ implies $|f(b)-f(a)|<\varepsilon$. So $f$ is uniformly continuous.
(d) Show that $f(x)=\log \left(1+x^{2}\right)$ is uniformly continuous on $\mathbb{R}$. [TURN OVER.] In view of the previous problem, it suffices to show that the derivative of $f$ is bounded. So it suffices to show that $\frac{2|x|}{1+x^{2}}$ is bounded. If $|x| \geq 1$ then $\frac{2|x|}{1+x^{2}} \leq \frac{2}{|x|} \leq$ 2 while if $|x| \leq 1$ then also $\frac{2|x|}{1+x^{2}} \leq 2|x| \leq 2$.
(4) (20 marks.) Recall that for $x>0$ and $a \in \mathbb{R}$, we define $x^{a}=\exp (a \log (x))$.
(a) Let $a \in \mathbb{R}$. Show that $\frac{d}{d x}\left(x^{a}\right)=a x^{a-1}$.

We use the chain rule to differentiate $e^{a \log (x)}$. This gives $\frac{a}{x} e^{a \log (x)}=a e^{-\log (x)} e^{a \log (x)}=$ $a e^{(a-1) \log (x)}$.
(b) Let $a>1$. Show that

$$
\int_{1}^{N} \frac{1}{x^{a}} d x=\frac{1}{1-a}\left(N^{1-a}-1\right)
$$

By the previous problem, the derivative of $\frac{1}{1-a} x^{1-a}$ is $x^{-a}$. Therefore, by the fundamental theorem of calculus, we have

$$
\int_{1}^{N} \frac{1}{x^{a}} d x=\left.\frac{1}{1-a} x^{1-a}\right|_{1} ^{N}
$$

(c) Let $I$ be a closed interval. Explain what is meant by the upper and lower Riemann sums $S^{+}(f, P)$ and $S^{-}(f, P)$ of a continuous function $f: I \rightarrow \mathbb{R}$ with respect to a partition $P$ of $I$.

Let $P=\left\{x_{0}<x_{1}<\cdots<x_{n}\right\}$ be a partition. The upper Riemann sum $S^{+}(f, P)$ is the sum

$$
\sum_{i=1}^{n} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right) .
$$

The lower Riemann sum $S^{-}(f, P)$ is the sum

$$
\sum_{i=1}^{n} \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)
$$

(d) For $N \geq 2$ and $a>1$, show that

$$
\sum_{n=2}^{N} \frac{1}{n^{a}} \leq \int_{1}^{N} \frac{1}{x^{a}} d x
$$

The function $f(x)=x^{-a}$ is decreasing, because its derivative is $-a x^{a-1}$, which is $-a$ times the exponential of something, which must be negative. So the sum on the left hand side is the lower Riemann sum for the function $f$ on $[1, N]$ with respect to the partition $P=\{1,2, \ldots, N\}$. The lower Riemann sum is $\leq$ the integral since the integral is the supremum of the set of lower Riemann sums of all partitions $P$.
(e) Show that if $a>1$, then the series $\sum_{n=1}^{\infty} \frac{1}{n^{a}}$ converges.

The $N^{\text {th }}$ partial sum of the series is bounded above by the integral, whose value is

$$
\int_{1}^{N} \frac{1}{x^{a}} d x=\frac{1}{1-a}\left(N^{1-a}-1\right)
$$

Since $a>1$, the sequence

$$
b_{N}=\frac{1}{1-a}\left(N^{1-a}-1\right)
$$

converges, and so is bounded. Therefore, the sequence of partial sums of $\sum_{n=1}^{\infty} \frac{1}{n^{a}}$ is an increasing bounded sequence, so it converges.
(5) (20 marks.) The following problem is set in an analysis exam which you are grading:

Problem: (10 marks) Suppose $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$. Let $x$ be a cluster point of $A$. Suppose $\lim _{x \rightarrow a} f(x)=L \neq 0$. Show that $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{L}$.

A student writes the following solution:
"My solution:

$$
\left|\frac{1}{f(x)}-\frac{1}{L}\right|=\left|\frac{L-f(x)}{f(x) L}\right|=\frac{|f(x)-L|}{|f(x)||L|}<\frac{\varepsilon}{|f(x)||L|}
$$

if $|f(x)-L|<\varepsilon$.
So given $\varepsilon>0$, choose $\delta>0$ such that, if $|x-a|<\delta$, then $|f(x)-L|<$ $\varepsilon \cdot \inf |f(x)| \cdot|L|$. Then

$$
|x-a|<\delta \Longrightarrow\left|\frac{1}{f(x)}-\frac{1}{L}\right|<\varepsilon
$$

QED."
(a) Comment on any aspects of the solution which you think are incorrect, or which could be improved.
The proof is OK except for $|f(x)-L|<\varepsilon \cdot \inf |f(x)| \cdot|L|$. There is not necessarily any such thing as $\inf |f(x)|$. No set is specified over which the infimum is taken. The student should have shown that $f$ is bounded below near $a$. That is, there exists $\delta_{1}$ such that $|x-a|<\delta_{1}$ implies $||f(x)|-|L|| \leq|f(x)-L|<|L| / 2$ and then $|f(x)| \geq|L|-|L| / 2=|L| / 2$. Now replace the $\inf$ by $|L| / 2$ in the above proof, and replace $\delta$ by the minimum of $\delta$ and $\delta_{1}$. Then the proof works.
(b) How many marks (out of a maximum possible 10) would you award the student?

Explain your answer.
The proof is mostly, but not wholly, correct. Therefore, any answer $<10$ is acceptable here.
[END.]

