4130 HOMEWORK 3

Due Thursday February 18

(1) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be Cauchy sequences of rational numbers. Prove that $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ if and only if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m, n>N,\left|x_{m}-y_{n}\right|<\varepsilon$.
(2) (a) Using the formula for the partial sums of a geometric series, or otherwise, check that the sequence of rational numbers whose $n^{\text {th }}$ term is

$$
x_{n}=\sum_{i=1}^{n} \frac{e_{i}}{10^{i}}
$$

is a Cauchy sequence, for any integers e_{i} with $0 \leq e_{i} \leq 9$. (Remark: the real number defined by this Cauchy sequence is denoted $0 . e_{1} e_{2} e_{3} \ldots$)
(b) Show that $0.999 \ldots=1$.
(3) Section 2.2.4 \#5.
(4) Using the triangle inequality, show that for any $a, b \in \mathbb{R}$, we have

$$
||a|-|b|| \leq|a-b| .
$$

Using this, show that if $\left\{x_{n}\right\}$ is a sequence of real numbers which converges to L, then $\left\{\left|x_{n}\right|\right\}$ converges to $|L|$.

