4130 HOMEWORK 4

Due Tuesday March 2

(1) Let $\mathbb{N}^{\mathbb{N}}$ denote the set of all sequences of natural numbers. That is,

$$\mathbb{N}^{\mathbb{N}} = \{ (a_1, a_2, a_3, \ldots) : a_i \in \mathbb{N} \}.$$

Show that $|\mathbb{N}^{\mathbb{N}}| = |\mathcal{P}(\mathbb{N})|.$

- (2) Let $\{x_n\}$ be a Cauchy sequence of rational numbers. Regarding $\{x_n\}$ as a sequence of real numbers, show that $\{x_n\}$ converges to the real number x defined as the equivalence class of the sequence $\{x_n\}$.
- (3) Section 2.2.4 # 4.
- (4) Show that every subset S of R which is bounded below has a greatest lower bound.
 (Hint: see p. 75 of the textbook.)
- (5) Find, if they exist, the supremum (least upper bound) and infimum (greatest lower bound) of the following subsets of ℝ.
 - (a) $\{1, 2, 3\}.$
 - (b) $(0,1) \cup \{2\} \cup [3,4) = \{x \in \mathbb{R} : 0 < x < 1 \text{ or } x = 2 \text{ or } 3 \le x < 4\}.$
 - (c) $\{1-\frac{1}{n}:n\in\mathbb{N}\}.$
 - (d) \mathbb{Q} .
- (6) Prove Theorem 2.3.2 in the textbook.