4130 HOMEWORK 5

Due Tuesday March 9

(1) A subset I of \mathbb{R} is called an interval if for all $x, y \in I$ and all $z \in \mathbb{R}$, if $x<z<y$ then $z \in I$.

Show that if I is a bounded interval, then $(\inf I, \sup I) \subset I$. Using this, show that I must be one of the following four intervals:

$$
(\inf I, \sup I) \quad[\inf I, \sup I) \quad(\inf I, \sup I] \quad[\inf I, \sup I]
$$

(2) For each of the following $S \subset \mathbb{R} \cup\{ \pm \infty\}$, state whether there is a sequence whose set of limit-point is S. If there is, find one. If not, give a reason.
(a) $S=\{0\}$.
(b) $S=\{\infty,-\infty\}$.
(c) $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
(d) $S=\mathbb{N}$.
(e) $S=\mathbb{N} \cup\{\infty\}$.
(3) Let \mathcal{U} be the following collection of subsets of \mathbb{R}.

$$
\mathcal{U}=\{(q, r): q, r \in \mathbb{Q}, q<r\} .
$$

(a) Show that \mathcal{U} is countable.
(b) Show that every open set can be expressed as a union of intervals from \mathcal{U}.
(c) Let \mathcal{X} denote the set of all open subsets of \mathbb{R}. Show that $|\mathcal{X}|=|\mathbb{R}|$. (Hint: recall that $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$.
(d) Show that the set of all closed subsets of \mathbb{R} also has cardinality $|\mathbb{R}|$.
[Remark: Let \mathcal{Y} denote the set of all subsets of \mathbb{R} that are either open or closed. One can now show that $|\mathcal{Y}|<|\mathcal{P}(\mathbb{R}) \backslash \mathcal{Y}|$. In other words, loosely speaking, "most" subsets of \mathbb{R} are neither open nor closed.]

