4130 HOMEWORK 5

Due Tuesday March 9

(1) A subset I of \mathbb{R} is called an *interval* if for all $x, y \in I$ and all $z \in \mathbb{R}$, if x < z < ythen $z \in I$.

Show that if I is a bounded interval, then $(\inf I, \sup I) \subset I$. Using this, show that I must be one of the following four intervals:

 $(\inf I, \sup I)$ $[\inf I, \sup I)$ $(\inf I, \sup I]$ $[\inf I, \sup I]$.

- (2) For each of the following $S \subset \mathbb{R} \cup \{\pm \infty\}$, state whether there is a sequence whose set of limit-point is S. If there is, find one. If not, give a reason.
 - (a) $S = \{0\}.$
 - (b) $S = \{\infty, -\infty\}.$
 - (c) $S = \{\frac{1}{n} : n \in \mathbb{N}\}$
 - (d) $S = \mathbb{N}$.

(e)
$$S = \mathbb{N} \cup \{\infty\}.$$

(3) Let \mathcal{U} be the following collection of subsets of \mathbb{R} .

$$\mathcal{U} = \{ (q, r) : q, r \in \mathbb{Q}, q < r \}.$$

- (a) Show that \mathcal{U} is countable.
- (b) Show that every open set can be expressed as a union of intervals from \mathcal{U} .
- (c) Let \mathcal{X} denote the set of all open subsets of \mathbb{R} . Show that $|\mathcal{X}| = |\mathbb{R}|$. (Hint: recall that $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$.)
- (d) Show that the set of all *closed* subsets of \mathbb{R} also has cardinality $|\mathbb{R}|$.
- [Remark: Let \mathcal{Y} denote the set of all subsets of \mathbb{R} that are either open or closed. One can now show that $|\mathcal{Y}| < |\mathcal{P}(\mathbb{R}) \setminus \mathcal{Y}|$. In other words, loosely speaking, "most" subsets of \mathbb{R} are neither open nor closed.]