4130 HOMEWORK 6

Due Thursday April 1

(1) Let $A \subset \mathbb{R}$. A point $x \in A$ is called isolated if it is not a cluster point of A.
(a) Can an open set have an isolated point? Can a closed set have one?
(b) Give an example of a countable set with no isolated points.
(2) Section 3.3.1 \# 8.
(3) Section 4.2.4 \# 3. (Recall that an interval is, by definition, a subset I of \mathbb{R} such that for all $x, y \in I$ and all $z \in \mathbb{R}$ with $x<z<y$, we have $z \in I$.)
(4) In this question, we will show that every positive real number has an $n^{\text {th }}$ root.
(a) Let $x \in(0, \infty)$ and $n \in \mathbb{N}$. Show that there exist $\alpha, \beta \in \mathbb{R}$ with $\alpha^{n}<x<\beta^{n}$.
(b) Show that there exists $y \in \mathbb{R}$ with $x=y^{n}$.
(c) For $x \in[0, \infty)$, show that there exists a unique $y \in[0, \infty)$ with $x=y^{2}$. We denote this y by \sqrt{x}.
(d) Define $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(x)=\sqrt{x}$. Show that f is a continuous function.
(5) Two monasteries, A and B, are joined by exactly one path $A B$ which is 20 miles long. One morning, Brother Albert (a monk) sets out from monastery A at 9 am, arriving at monastery B at 9 pm . The next day, he sets out from monastery B at 9 am, arriving at monastery A at 9 pm . On both journeys, he may have stopped to rest, or even walked backwards for some of the time.
(a) Prove that there is a point x on the path $A B$ such that Brother Albert was at x at exactly the same time on both days. (Hint: let $f_{i}(t)$ be the distance of Brother Albert from A at time t on day $i, i=1,2$. Apply the Intermediate Value Theorem to a suitable combination of f_{1} and f_{2}.)
(b) Another monk, Brother Gilbert, has been dabbling in forbidden knowledge. Once per day, by snapping his fingers, he can instantaneously teleport himself to any point within a 3 ft . radius of his current location. Suppose Brother Gilbert makes the same journey as Brother Albert. Does the conclusion from part (a) still hold?
(6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let $a>0$. We say that f is periodic with period a if

$$
f(x+a)=f(x)
$$

for all $x \in \mathbb{R}$.
Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic with period a and define

$$
g(x)=f(1 / x)
$$

for $x>0$.
(a) Show that for all $x>0$, we have

$$
f([x, x+a])=g\left(\left[\frac{1}{x+a}, \frac{1}{x}\right]\right) .
$$

(b) Suppose f is not constant. Show that g is not uniformly continuous on $(0, \infty)$. [Remark: In particular, taking $f(x)=\sin (x)$ and $a=2 \pi$, we see that $\sin (1 / x)$ is not uniformly continuous.]

