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Please attempt all questions. You have 70 minutes. You may use any theorems

from the lecture notes, but please clearly state any theorems which you use.

(1) (9 marks) Let X = (0, 1)∪ [3, 4] ⊂ R. State whether the following statements about

X are true or false and give a brief reason in each case.

(a) sup(X) = 4.

(b) X can be written as a union of open sets.

(c) |X| = |R|.

(2) (19 marks) Let {xn} be a sequence of real numbers.

(a) (3 marks) State what it means for {xn} to converge to the limit L ∈ R.

(b) (8 marks) Let k ∈ N and define a sequence {yn} by yn = xn+k, n ≥ 1. Suppose

{xn} converges to L. Show that {yn} also converges to L.

(c) (8 marks) Let x1 ∈ R and define a sequence of real numbers {xn} by

xn+1 = x2
n + xn + 1, n ≥ 1.

Show that the sequence {xn} does not converge.

(3) (22 marks) Let A ⊂ R.

(a) (3 marks) Explain what it means to say that x ∈ R is a cluster point (a.k.a.

limit-point; accumulation point) of A.

(b) (3 marks) Explain what it means to say that the set A is bounded.

(c) Now let

S = {x ∈ R : x is a cluster point of A}.
(i) (8 marks) Show that S is a closed set.

(ii) (8 marks) Suppose A is bounded. Show that S is a compact set.
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