4130 HOMEWORK 1

Due Thursday February 4

(1) Section 1.1.3 Exercise 2b.
"The only even prime is $2 . "$ There are many different ways of approaching the problem. One way is

$$
\forall n \in \mathbb{N}(n \text { is even } \wedge n \text { is prime } \Longrightarrow n=2)
$$

The negation is

$$
\exists n \in \mathbb{N}(n \text { is even } \wedge n \text { is prime } \wedge n \neq 2)
$$

That is, "There exists an even prime which is not equal to 2. ."
(2) Section 1.1.3 Exercise 3b.
"Every nonzero rational number has a rational reciprocal."

$$
\forall x \in \mathbb{Q} \backslash\{0\} \exists y \in \mathbb{Q}(x y=1) .
$$

The corresponding statement with quantifiers reversed is:

$$
\exists y \in \mathbb{Q} \forall x \in \mathbb{Q} \backslash\{0\}(x y=1) .
$$

This is false, because if $y \in \mathbb{Q}$ is such that $y x=1$ for all $x \in \mathbb{Q} \backslash\{0\}$ then $y=2 y=1$ which is impossible.
(3) Let A be a set and let $P(a)$ be a statement about an element of a. We write

$$
\exists!a \in A P(a)
$$

for "there exists a unique $a \in A$ such that $P(a)$ ".
(a) Write the statement $\exists!a \in A P(a)$ in a form which uses the quantifiers \forall and \exists, and no connectives apart from \wedge, \vee and \neg.
It can be written as

$$
\exists a \in A(P(a) \wedge \forall b \in A(\neg P(b) \vee b=a))
$$

(b) Write the negation of the statement from part (a).

$$
\forall a \in A(\neg P(a) \vee \exists b \in A(P(b) \wedge b \neq a))
$$

(4) Section 1.2.3 Exercise 2.

The set of all finite subsets of \mathbb{N} is countable.
Proof: Let A denote the set of all finite subsets of \mathbb{N}. We need to define an injection $f: A \rightarrow \mathbb{N}$. Let $p_{1}<p_{2}<p_{3}<\cdots$ denote the prime numbers listed in increasing order. Given a finite subset $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{N}$, relabel the x_{i} if necessary so that $x_{1}<x_{2} \cdots<x_{n}$. Then define

$$
f(S)=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{n}^{x_{n}}
$$

By uniqueness of the decomposition of a natural number into a product of primes, if $S \neq T$ then $f(S) \neq f(T)$. Thus f is injective, as required.
(5) Section 1.2.3 Exercise 4.

Proof: Let A be an uncountable set. Let $C \subset A$ be countable. Suppose for a contradiction that $A \backslash C$ is countable. Then

$$
A=(A \backslash C) \cup C
$$

is a union of two countable sets. But, by a theorem from the lectures, a countable union of countable sets is countable. Thus, A is countable. This is a contradiction.

Therefore, $A \backslash C$ is uncountable.
(6) Section 1.2.3 Exercise 7. Let A be an infinite set. We wish to show that $|\mathcal{P}(A)|>|A|$. First, we show that there is an injection $A \rightarrow \mathcal{P}(A)$. This is clear, since we can map $x \in A$ to $\{x\} \in \mathcal{P}(A)$.

Next, we must show that there is no bijection $A \rightarrow \mathcal{P}(A)$. Suppose $f: A \rightarrow \mathcal{P}(A)$ is a bijection. Let

$$
Z=\{a \in A: a \notin f(a)\}
$$

Since f is surjective, there exists $b \in A$ with $f(b)=Z$. Either $b \in f(b)$ or $b \notin f(b)$. If $b \in f(b)$ then $b \notin Z$ by definition of Z. But this contradicts $b \in f(b)=Z$. On the other hand, if $b \notin f(b)$ then $b \in Z$ by definition of Z. But then $b \in Z=f(b)$, a contradiction. So in either case, we get a contradiction. Therefore, the bijection f does not exist.

