
4130 HOMEWORK 2

Due Thursday February 11

(1) In this exercise, we will show that the ordered field Q is not complete.

(a) Suppose q ∈ Q and q2 < 2. Let n ∈ N and suppose that n > max{2|q|+1
2−q2 , 1}.

Show that (q + 1
n
)2 < 2.

If n > max{2|q|+1
2−q2 , 1} then n > 2|q|+1

2−q2 , so 2− q2 > 2|q|+1
n

and thus 2 > q2 + 2|q|+1
n

.

We therefore have:

(q +
1

n
)2 = q2 +

2q

n
+

1

n2

< q2 +
2q

n
+

1

n
because n > 1.

≤ q2 +
2|q|+ 1

n
because q ≤ |q|.

< 2.

(b) Suppose r ∈ Q and r2 > 2. Let n ∈ N and suppose n > 2r
r2−2

. Show that

(r − 1
n
)2 > 2.

Since n > 2r
r2−2

, we have r2 − 2 > 2r
n

and so r2 − 2r
n

> 2.

We therefore have:

(r − 1

n
)2 = r2 − 2r

n
+

1

n2

> r2 − 2r

n

> 2.

(c) Using the results of (a) and (b), together with the fact that there is no s ∈ Q
with s2 = 2 (do not prove this), show that Q is not complete. (Hint: show that

S = {x ∈ Q : 0 < x2 < 2} is bounded above but has no least upper bound.)

It is clear that S is bounded above, for example by b = 2. We must show that

there is no least upper bound.
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Suppose for a contradiction that b ∈ Q is the least upper bound for S. Then

b2 6= 2 by the hint, so either b2 < 2 or b2 > 2. Suppose b2 < 2. Then by (a),

there exists n ∈ N with (b + 1
n
)2 < 2. Thus, b < b + 1

n
∈ S, which contradicts

that b is an upper bound for S.

Therefore, we must have b2 > 2. But then, by (b) there exists n ∈ N with

(b− 1
n
)2 > 2.

We claim that b − 1
n

is an upper bound for S. Indeed, if x ∈ S and x > b − 1
n

then x2 > (b− 1
n
)2 > 2, which contradicts that x ∈ S. Therefore, if x ∈ S then

x ≤ b− 1
n
, and so b− 1

n
is an upper bound for S.

But b− 1
n

< b, which contradicts that b is the least upper bound.

This contradiction shows that S has no least upper bound.

(2) By looking in some books or on the internet, find two examples of ordered fields other

than Q and R, including one which does not satisfy the archimedean property.

There are many possible examples. An ordered field which is not R orQ isQ(
√

2) =

{a + b
√

2 : a, b ∈ Q}. Another example, which is not archimedean, is the field Q(x)

of rational functions in a variable x, equipped with an appropriate ordering.

(3) Show that any convergent sequence of rational numbers has a unique limit.

Let {xn} be a sequence of rational numbers and suppose that {xn} converges to

L ∈ Q and to M ∈ Q. We must show that L = M .

We have the following facts:

∀ε > 0∃N ∈ N∀n > N |xn − L| < ε.

∀ε > 0∃N ′ ∈ N∀n > N ′|xn −M | < ε.

Let ε > 0. Choose N1 ∈ N such that if n > N1, we have |xn − L| < ε/2. Choose

N2 ∈ N such that if n > N2, we have |xn − M | < ε/2. Now suppose n > N1, N2.

Then

|L−M | = |L− xn + xn −M | ≤ |xn − L|+ |xn −M | < ε

by the triangle inequality.

This shows that for all ε > 0, |L −M | < ε. Thus, we must have |L −M | = 0, so

L = M .
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(4) Section 2.1.3 # 1.

Let {xn} be a Cauchy sequence in Q. Our task is to show that there are un-

countably many Cauchy sequences equivalent to {xn}. Let S be the set of Cauchy

sequences equivalent to {xn}. It suffices to give an injection f : P(N) → S.

Given a subset A of N, define a sequence {yn} by

yn =





xn + 1
n

n ∈ A

xn n /∈ A.

We show that {yn} is a Cauchy sequence. Given ε > 0, choose N1 ∈ N such that

if m,n > N1 then |xm − xn| < ε/3. Now suppose N > max{N1, 3/ε}. Then if

m,n > N , we have:

|ym − yn| ≤ |xm − xn|+ 1

n
+

1

m
< ε/3 + ε/3 + ε/3 = ε,

which shows that {yn} is Cauchy.

Now we show that {yn} ∼ {xn}. We have |yn − xn| ≤ 1
n
. Thus, given ε > 0, if we

choose N > 1/ε, then for n > N we will have |yn − xn| ≤ 1
n

< ε, which shows that

{yn} ∼ {xn}.
Thus, we have a well-defined function f : P(N) → S, defined by f(A) = {yn}. We

show that f is injective. Indeed, if A 6= B are subsets of N, then either A \ B 6= ∅

or B \ A 6= ∅. Suppose A \ B 6= ∅. Then if n ∈ A \ B, the nth term of f(A) is

xn + 1
n

and the nth term of f(B) is xn, so f(A) 6= f(B). Similarly, if B \A 6= ∅ then

f(A) 6= f(B). Thus, f is one-to-one.

(5) Section 2.1.3 # 8.

It is possible to have a Cauchy sequence of negative rationals which is equivalent

to a Cauchy sequence of positive rationals. An example is

{ 1

n
} ∼ {−1

n
}.

Both of these sequences converge to 0, so they are Cauchy. They are equivalent

because, given ε > 0, we can choose N > 2/ε, and then for n > N we have |1/n −
(−1/n)| = 2/n < ε.
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