4130 HOMEWORK 2

Due Thursday February 11

(1) In this exercise, we will show that the ordered field \mathbb{Q} is not complete.
(a) Suppose $q \in \mathbb{Q}$ and $q^{2}<2$. Let $n \in \mathbb{N}$ and suppose that $n>\max \left\{\frac{2|q|+1}{2-q^{2}}, 1\right\}$. Show that $\left(q+\frac{1}{n}\right)^{2}<2$.
If $n>\max \left\{\frac{2|q|+1}{2-q^{2}}, 1\right\}$ then $n>\frac{2|q|+1}{2-q^{2}}$, so $2-q^{2}>\frac{2|q|+1}{n}$ and thus $2>q^{2}+\frac{2|q|+1}{n}$. We therefore have:

$$
\begin{aligned}
\left(q+\frac{1}{n}\right)^{2} & =q^{2}+\frac{2 q}{n}+\frac{1}{n^{2}} \\
& <q^{2}+\frac{2 q}{n}+\frac{1}{n} \quad \text { because } n>1 \\
& \leq q^{2}+\frac{2|q|+1}{n} \quad \text { because } q \leq|q| . \\
& <2
\end{aligned}
$$

(b) Suppose $r \in \mathbb{Q}$ and $r^{2}>2$. Let $n \in \mathbb{N}$ and suppose $n>\frac{2 r}{r^{2}-2}$. Show that $\left(r-\frac{1}{n}\right)^{2}>2$.
Since $n>\frac{2 r}{r^{2}-2}$, we have $r^{2}-2>\frac{2 r}{n}$ and so $r^{2}-\frac{2 r}{n}>2$.
We therefore have:

$$
\begin{aligned}
\left(r-\frac{1}{n}\right)^{2} & =r^{2}-\frac{2 r}{n}+\frac{1}{n^{2}} \\
& >r^{2}-\frac{2 r}{n} \\
& >2 .
\end{aligned}
$$

(c) Using the results of (a) and (b), together with the fact that there is no $s \in \mathbb{Q}$ with $s^{2}=2$ (do not prove this), show that \mathbb{Q} is not complete. (Hint: show that $S=\left\{x \in \mathbb{Q}: 0<x^{2}<2\right\}$ is bounded above but has no least upper bound.) It is clear that S is bounded above, for example by $b=2$. We must show that there is no least upper bound.

Suppose for a contradiction that $b \in \mathbb{Q}$ is the least upper bound for S. Then $b^{2} \neq 2$ by the hint, so either $b^{2}<2$ or $b^{2}>2$. Suppose $b^{2}<2$. Then by (a), there exists $n \in \mathbb{N}$ with $\left(b+\frac{1}{n}\right)^{2}<2$. Thus, $b<b+\frac{1}{n} \in S$, which contradicts that b is an upper bound for S.

Therefore, we must have $b^{2}>2$. But then, by (b) there exists $n \in \mathbb{N}$ with $\left(b-\frac{1}{n}\right)^{2}>2$.
We claim that $b-\frac{1}{n}$ is an upper bound for S. Indeed, if $x \in S$ and $x>b-\frac{1}{n}$ then $x^{2}>\left(b-\frac{1}{n}\right)^{2}>2$, which contradicts that $x \in S$. Therefore, if $x \in S$ then $x \leq b-\frac{1}{n}$, and so $b-\frac{1}{n}$ is an upper bound for S.
But $b-\frac{1}{n}<b$, which contradicts that b is the least upper bound.
This contradiction shows that S has no least upper bound.
(2) By looking in some books or on the internet, find two examples of ordered fields other than \mathbb{Q} and \mathbb{R}, including one which does not satisfy the archimedean property.

There are many possible examples. An ordered field which is not \mathbb{R} or \mathbb{Q} is $\mathbb{Q}(\sqrt{2})=$ $\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$. Another example, which is not archimedean, is the field $\mathbb{Q}(x)$ of rational functions in a variable x, equipped with an appropriate ordering.
(3) Show that any convergent sequence of rational numbers has a unique limit.

Let $\left\{x_{n}\right\}$ be a sequence of rational numbers and suppose that $\left\{x_{n}\right\}$ converges to $L \in \mathbb{Q}$ and to $M \in \mathbb{Q}$. We must show that $L=M$.

We have the following facts:

$$
\begin{gathered}
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n>N\left|x_{n}-L\right|<\varepsilon . \\
\forall \varepsilon>0 \exists N^{\prime} \in \mathbb{N} \forall n>N^{\prime}\left|x_{n}-M\right|<\varepsilon .
\end{gathered}
$$

Let $\varepsilon>0$. Choose $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, we have $\left|x_{n}-L\right|<\varepsilon / 2$. Choose $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$, we have $\left|x_{n}-M\right|<\varepsilon / 2$. Now suppose $n>N_{1}, N_{2}$. Then

$$
|L-M|=\left|L-x_{n}+x_{n}-M\right| \leq\left|x_{n}-L\right|+\left|x_{n}-M\right|<\varepsilon
$$

by the triangle inequality.
This shows that for all $\varepsilon>0,|L-M|<\varepsilon$. Thus, we must have $|L-M|=0$, so $L=M$.
(4) Section 2.1.3 \# 1.

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in \mathbb{Q}. Our task is to show that there are uncountably many Cauchy sequences equivalent to $\left\{x_{n}\right\}$. Let S be the set of Cauchy sequences equivalent to $\left\{x_{n}\right\}$. It suffices to give an injection $f: \mathcal{P}(\mathbb{N}) \rightarrow S$.

Given a subset A of \mathbb{N}, define a sequence $\left\{y_{n}\right\}$ by

$$
y_{n}= \begin{cases}x_{n}+\frac{1}{n} & n \in A \\ x_{n} & n \notin A\end{cases}
$$

We show that $\left\{y_{n}\right\}$ is a Cauchy sequence. Given $\varepsilon>0$, choose $N_{1} \in \mathbb{N}$ such that if $m, n>N_{1}$ then $\left|x_{m}-x_{n}\right|<\varepsilon / 3$. Now suppose $N>\max \left\{N_{1}, 3 / \varepsilon\right\}$. Then if $m, n>N$, we have:

$$
\left|y_{m}-y_{n}\right| \leq\left|x_{m}-x_{n}\right|+\frac{1}{n}+\frac{1}{m}<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
$$

which shows that $\left\{y_{n}\right\}$ is Cauchy.
Now we show that $\left\{y_{n}\right\} \sim\left\{x_{n}\right\}$. We have $\left|y_{n}-x_{n}\right| \leq \frac{1}{n}$. Thus, given $\varepsilon>0$, if we choose $N>1 / \varepsilon$, then for $n>N$ we will have $\left|y_{n}-x_{n}\right| \leq \frac{1}{n}<\varepsilon$, which shows that $\left\{y_{n}\right\} \sim\left\{x_{n}\right\}$.

Thus, we have a well-defined function $f: \mathcal{P}(\mathbb{N}) \rightarrow S$, defined by $f(A)=\left\{y_{n}\right\}$. We show that f is injective. Indeed, if $A \neq B$ are subsets of \mathbb{N}, then either $A \backslash B \neq \varnothing$ or $B \backslash A \neq \varnothing$. Suppose $A \backslash B \neq \varnothing$. Then if $n \in A \backslash B$, the $n^{\text {th }}$ term of $f(A)$ is $x_{n}+\frac{1}{n}$ and the $n^{\text {th }}$ term of $f(B)$ is x_{n}, so $f(A) \neq f(B)$. Similarly, if $B \backslash A \neq \varnothing$ then $f(A) \neq f(B)$. Thus, f is one-to-one.
(5) Section 2.1.3 \# 8.

It is possible to have a Cauchy sequence of negative rationals which is equivalent to a Cauchy sequence of positive rationals. An example is

$$
\left\{\frac{1}{n}\right\} \sim\left\{\frac{-1}{n}\right\}
$$

Both of these sequences converge to 0 , so they are Cauchy. They are equivalent because, given $\varepsilon>0$, we can choose $N>2 / \varepsilon$, and then for $n>N$ we have $\mid 1 / n-$ $(-1 / n) \mid=2 / n<\varepsilon$.

