4130 HOMEWORK 3

Due Thursday February 18

(1) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be Cauchy sequences of rational numbers. Prove that $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ if and only if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m, n>N,\left|x_{m}-y_{n}\right|<\varepsilon$.

Let $(*)$ be the condition:
for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m, n>N,\left|x_{m}-y_{n}\right|<\varepsilon$.
We need to prove that $(*)$ holds if and only if:
for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N,\left|x_{n}-y_{n}\right|<\varepsilon$.
Clearly, $(*)$ implies the second condition. So we just need to check that if $\left\{x_{n}\right\} \sim$ $\left\{y_{n}\right\}$ then $(*)$ holds. So suppose $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$. Then let $\varepsilon>0$. Choose $N_{1} \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-y_{n}\right|<\varepsilon / 2$. Since $\left\{y_{n}\right\}$ is a Cauchy sequence, we may also choose $N_{2} \in \mathbb{N}$ such that if $m, n>N_{2}$ then $\left|y_{m}-y_{n}\right|<\varepsilon / 2$. Now suppose $m, n>\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\left|x_{m}-y_{n}\right| \leq\left|x_{m}-y_{m}\right|+\left|y_{m}-y_{n}\right|<\varepsilon
$$

as required.
(2) (a) Using the formula for the partial sums of a geometric series, or otherwise, check that the sequence of rational numbers whose $n^{\text {th }}$ term is

$$
x_{n}=\sum_{i=1}^{n} \frac{e_{i}}{10^{i}}
$$

is a Cauchy sequence, for any integers e_{i} with $0 \leq e_{i} \leq 9$. (Remark: the real number defined by this Cauchy sequence is denoted $0 . e_{1} e_{2} e_{3} \ldots$)
Let $\varepsilon>0$ and choose $N \in \mathbb{N}$ with $\frac{1}{10^{N}}<\varepsilon$.
[Note: Why is there an N such that $1 / 10^{N}<\varepsilon$? It is tempting to take $N>$ $\log _{10}(1 / \varepsilon)$. This is not a good idea, because we haven't yet defined the logarithm function. Remember, all we know about \mathbb{R} is that it is a complete ordered field. Instead, we can show by induction on N that $1 / 10^{N}<1 / N$ for all $N \in \mathbb{N}$.

Then, using the archimedean property, we can take $1 / N<\varepsilon$ and then we are guaranteed to have $1 / 10^{N}<\varepsilon$ as well.
How do we show that $1 / 10^{N}<1 / N$ for all N ? We need to show that $N<10^{N}$. To see this, we use induction on N. The base step is $1<10$. Now suppose we have $N-1<10^{N-1}$. Then $N=N-1+1<10^{N-1}+1<10^{N-1} .2<10^{N-1} .10=$ 10^{N}, which proves the induction step.]

Now suppose $m, n>N$. Assume $n>m$. The sequence $\left\{x_{n}\right\}$ is increasing, so we have

$$
\left|x_{m}-x_{n}\right|=x_{n}-x_{m}=\sum_{i=m+1}^{n} \frac{e_{i}}{10^{i}}
$$

Since $e_{i} \leq 9$, we have

$$
\left|x_{m}-x_{n}\right| \leq 9 \sum_{i=m+1}^{n} \frac{1}{10^{i}}=\frac{9}{10^{m+1}} \sum_{i=0}^{n-m-1} \frac{1}{10^{i}}
$$

The sum on the right hand side is $\left(1-(1 / 10)^{n-m}\right) /(1-(1 / 10))$ and so the right hand side simplifies to:

$$
\frac{1}{10^{m}}\left(1-\left(\frac{1}{10}\right)^{n-m}\right)=\frac{1}{10^{m}}-\frac{1}{10^{n}}<\frac{1}{10^{m}}<\frac{1}{10^{N}}<\varepsilon
$$

This shows that the sequence is Cauchy.
(b) Show that $0.999 \ldots=1$.

The question is asking us whether the Cauchy sequence $\left\{x_{n}\right\}$ whose $n^{\text {th }}$ term is

$$
x_{n}=\sum_{i=1}^{n} \frac{9}{10^{i}}
$$

is equivalent to the Cauchy sequence of all 1's. To show this, let $\varepsilon>0$. Choose $N \in \mathbb{N}$ with $1 / 10^{N}<\varepsilon$. Suppose $n>N$. Then

$$
\left|\sum_{i=1}^{n} \frac{9}{10^{i}}-1\right|=\left|9\left(\frac{1-\frac{1}{10^{n+1}}}{1-\frac{1}{10}}-1\right)-1\right|=\left|10-\frac{1}{10^{n}}-9-1\right|=\frac{1}{10^{n}}<\frac{1}{10^{N}}<\varepsilon
$$

Therefore, the two Cauchy sequences are equivalent.
(3) Section 2.2.4 \#5.

We wish to show that between any two distinct real numbers x and y, there are infinitely many rationals. Without loss of generality, assume $x<y$. Then $y-x>0$.

By the archimedean property, there exists $A \in \mathbb{N}$ with $y-x>1 / A$. Therefore, $x<x+1 / A<y$. Now consider the set

$$
S=\left\{n \in \mathbb{N}: \frac{n}{A} \geq x\right\}
$$

By the well-ordering principle, S has a least element n. This n must satisfy

$$
\frac{n-1}{A}<x \leq \frac{n}{A}
$$

or else $n-1$ would be in S, contradicting that n is the least element. Therefore, we have $\frac{n}{A}<x+\frac{1}{A}<y$ and so $x \leq \frac{n}{A}<y$. Now use the archimedean property again to choose a $B \in \mathbb{N}$ with $y-\frac{n}{A}>\frac{1}{B}$. Then $x \leq \frac{n}{A}<\frac{n}{A}+\frac{1}{B}<y$ and so the set

$$
\left\{\frac{n}{A}+\frac{1}{k B}: k \in \mathbb{N}\right\}
$$

is an infinite set of rationals with lie between x and y.
(4) Using the triangle inequality, show that for any $a, b \in \mathbb{R}$, we have

$$
||a|-|b|| \leq|a-b|
$$

Using this, show that if $\left\{x_{n}\right\}$ is a sequence of real numbers which converges to L, then $\left\{\left|x_{n}\right|\right\}$ converges to $|L|$.

To show the inequality, let $a, b \in \mathbb{R}$. Then

$$
|a|=|a-b+b| \leq|a-b|+|b|
$$

by the triangle inequality. Therefore,

$$
|a|-|b| \leq|a-b|
$$

Because $|a-b|$ is always positive, we must have $||a|-|b|| \leq|a-b|$ as required.
To show the statement about convergence, let $\varepsilon>0$. Choose $N \in \mathbb{N}$ such that if $n>N$ then $\left|x_{n}-L\right|<\varepsilon$. Then for $n>N$, we have

$$
\left|\left|x_{n}\right|-|L|\right| \leq\left|x_{n}-L\right|<\varepsilon
$$

and so $\left\{\left|x_{n}\right|\right\} \rightarrow|L|$, as required.

