4130 HOMEWORK 4

Due Tuesday March 2

(1) Let $\mathbb{N}^{\mathbb{N}}$ denote the set of all sequences of natural numbers. That is,

$$
\mathbb{N}^{\mathbb{N}}=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in \mathbb{N}\right\} .
$$

Show that $\left|\mathbb{N}^{\mathbb{N}}\right|=|\mathcal{P}(\mathbb{N})|$.
We use the Schröder-Bernstein Theorem. First, there is an injection from $\mathcal{P}(\mathbb{N})$ to $\mathbb{N}^{\mathbb{N}}$, because we may regard a subset of \mathbb{N} as a sequence of zeroes and ones, or equivalently as a sequence of 1 's and 2 's, and this gives the desired injection. The hard part is showing that there is an injection $\mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$. To see this, note that a sequence of natural numbers is the same thing as a function $\mathbb{N} \rightarrow \mathbb{N}$. But by definition, a function is a special kind of subset of $\mathbb{N} \times \mathbb{N}$. In this way, we get an injection $\mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N} \times \mathbb{N})$. But it was shown in class that $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} have the same cardinality, and hence so do their power sets. In this way, we get the desired injection $\mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$.

Working through the above proof, we can explicitly write down an injection if we like. An example is:

$$
\left(a_{1}, a_{2}, \ldots\right) \mapsto\left\{2 \cdot 3^{a_{1}}, 2^{2} \cdot 3^{a_{2}}, \ldots\right\} \subset \mathbb{N} .
$$

(2) Let $\left\{x_{n}\right\}$ be a Cauchy sequence of rational numbers. Regarding $\left\{x_{n}\right\}$ as a sequence of real numbers, show that $\left\{x_{n}\right\}$ converges to the real number x defined as the equivalence class of the sequence $\left\{x_{n}\right\}$.

The hardest part of this is working out what to prove in the first place.
Let $\varepsilon>0$ be a real number. Choose $A \in \mathbb{N}$ with $3 / 2 A<\varepsilon$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence of rational numbers, there exists $N \in \mathbb{N}$ such that if $m, n>N$ then $\left|x_{n}-x_{m}\right|<1 / A$. In other words, if $m, n>N$ then $-1 / A<x_{m}-x_{n}<1 / A$.

Now fix some $m>N$ and consider the sequence of rational numbers $\left\{y_{n}\right\}$ where

$$
\begin{gathered}
y_{n}=x_{m}-x_{n} \\
1
\end{gathered}
$$

for $n \geq 1$. We have chosen N so that if $n>N$ then $-1 / A<y_{n}<1 / A$. This implies that for $n>N$, we have

$$
y_{n}+3 / 2 A>1 / 2 A
$$

and

$$
3 / 2 A-y_{n}>1 / 2 A .
$$

The first inequality is the statement that the real number defined as the equivalence class of the Cauchy sequence $\left\{y_{n}+3 / 2 A\right\}$ is positive. (Ex: why is this sequence Cauchy?) If we let $y=\left[\left\{y_{n}\right\}\right]$, then we have an inequality in the real numbers

$$
y+3 / 2 A>0
$$

Similarly, the other inequality gives

$$
3 / 2 A-y>0
$$

Putting these together, we have, for $n>N$,

$$
-3 / 2 A<y<3 / 2 A
$$

But $y=\left[\left\{x_{m}-x_{n}\right\}_{n \geq 1}\right]=\left[\left\{x_{m}, x_{m}, \ldots\right\}\right]-\left[\left\{x_{1}, x_{2}, \ldots\right\}\right]$ which is the real number $x_{m}-x$, by definition of how the rationals are embedded in the reals. Thus, we have

$$
-3 / 2 A<x_{m}-x<3 / 2 A
$$

and hence

$$
\left|x_{m}-x\right|<3 / 2 A<\varepsilon
$$

This holds for any given $m>N$. So we have shown that for all $\varepsilon>0$ we can find $N \in \mathbb{N}$ such that if $m>N$ then $\left|x_{m}-x\right|<\varepsilon$, as required.
(3) Section 2.2.4 \# 4.

Let $x \in \mathbb{R}$ be the equivalence class of the Cauchy sequence $\left\{x_{n}\right\}$ where $x_{i} \in \mathbb{Q}$. We construct a sequence q_{n} of rational numbers which is increasing and converges to x. To start with, take $q_{1} \in \mathbb{Q}$ with $x>q_{1}>x-1$. Now suppose we have constructed q_{1}, \ldots, q_{n-1} with $q_{n-1}<x$. Let q_{n} be a rational number with $x>q_{n}>$ $\max \left\{q_{n-1}, x-1 / n\right\}$. Then the sequence $\left\{q_{n}\right\}$ is increasing and $q_{n}<x$ for all n. Also,
$q_{n}>x-1 / n$, so $\left|x-q_{n}\right|=x-q_{n}<1 / n$, and thus $\left\{q_{n}\right\} \rightarrow x$. In particular, $\left\{q_{n}\right\}$ is Cauchy.

We now have an increasing Cauchy sequence of rational numbers $\left\{q_{n}\right\}$, and it remains to show that this sequence is equivalent to $\left\{x_{n}\right\}$. For this, let $\varepsilon>0$. Choose $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|x-q_{n}\right|<\varepsilon / 2$. By the previous problem, we can choose $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|x-x_{n}\right|<\varepsilon / 2$. Now if $n>\max \left\{N_{1}, N_{2}\right\}$ then $\left|x_{n}-q_{n}\right| \leq\left|x_{n}-x\right|+\left|x-q_{n}\right|<\varepsilon$, which shows that the sequences $\left\{x_{n}\right\}$ and $\left\{q_{n}\right\}$ are equivalent sequences of rationals.
(4) Show that every subset S of \mathbb{R} which is bounded below has a greatest lower bound. (Hint: see p. 75 of the textbook.)

Let S be a subset of \mathbb{R} which is bounded below. Let

$$
-S=\{-x: x \in S\}
$$

Then $-S$ is bounded above, so it has a least upper bound $s:=\sup (-S)$. We claim that $-s$ is the greatest lower bound of S. First, $-s$ is a lower bound because if $x \in S$ then $-x \leq-s$ and so $x \geq s$. Also, if b is any other lower bound for $-S$, then $-b$ is an upper bound for S, and so $-b \geq s$, whence $b \leq-s$ and so $-s$ is the greatest lower bound, as required.
(5) Find, if they exist, the supremum (least upper bound) and infimum (greatest lower bound) of the following subsets of \mathbb{R}.
(a) $\{1,2,3\}$.
$\operatorname{Sup}=3, \inf =1$.
(b) $(0,1) \cup\{2\} \cup[3,4)=\{x \in \mathbb{R}: 0<x<1$ or $x=2$ or $3 \leq x<4\}$. $\operatorname{Sup}=4, \inf =0$.
(c) $\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.

The set is $\{0,1 / 2,2 / 3, \ldots\}$. The supremum is 1 and the infimum is the smallest element, which is 0 .
(d) \mathbb{Q}.

This set is not bounded above or below, and so it does not have a finite sup or inf.
(6) Prove Theorem 2.3.2 in the textbook.

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers.
(a) Suppose $\left\{x_{k}\right\} \rightarrow x$ and $\left\{y_{k}\right\} \rightarrow y$. We must show that $\left\{x_{k}+y_{k}\right\} \rightarrow x+y$. Let $\varepsilon>0$. Then there exists $N_{1} \in \mathbb{N}$ such that if $k>N_{1}$ then $\left|x_{k}-x\right|<\varepsilon / 2$. There also exists N_{2} such that if $k>N_{2}$ then $\left|y_{k}-y\right|<\varepsilon / 2$. Now suppose $k>\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\left|\left(x_{k}+y_{k}\right)-(x+y)\right| \leq\left|x_{k}-x\right|+\left|y_{k}-y\right|<\varepsilon .
$$

Next, we need to show that $\left\{x_{k} y_{k}\right\} \rightarrow x y$. To do this, we first show that a convergent sequence of real numbers is bounded. We have

$$
\left|x_{k}\right| \leq\left|x_{k}-x\right|+|x| .
$$

Taking $\varepsilon=1$, we know that there exists N such that if $k>N$ then $\left|x_{k}-x\right|<1$. Therefore, if $k>N$ then $\left|x_{k}\right|<1+x$. It follows that for all $k,\left|x_{k}\right| \leq B$ where

$$
B=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|, 1+|x|\right\}
$$

Thus, every convergent sequence of real numbers is bounded.
Now we show that $\left\{x_{k} y_{k}\right\} \rightarrow x y$. Let $\varepsilon>0$ and choose B such that $\left|x_{k}\right| \leq B$ for all k and $|y| \leq B$. Choose N_{1} such that if $k>N_{1}$ then $\left|x_{k}-x\right|<\varepsilon / 2 B$. Choose N_{2} such that if $n>N_{2}$ then $\left|y_{k}-y\right|<\varepsilon / 2 B$. Then if $N>\max \left\{N_{1}, N_{2}\right\}$ then

$$
\left|x_{k} y_{k}-x y\right|=\left|x_{k}\left(y_{k}-y\right)+y\left(x_{k}-x\right)\right| \leq\left|x_{k}\right|\left|y_{k}-y\right|+|y|\left|x_{k}-x\right|<\varepsilon .
$$

Next, suppose $y \neq 0$. Then for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|y_{n}-y\right|<\varepsilon$. So $y_{n} \in(y-\varepsilon, y+\varepsilon)$. If $y>0$ then $y-\varepsilon>0$ for some $\varepsilon>0$. If $y<0$ then $y+\varepsilon<0$ for some $\varepsilon>0$. In either case, we have $y_{n} \neq 0$ for sufficiently large n, as desired.

We show that $\left\{1 / y_{k}\right\} \rightarrow 1 / y$. As stated in the book, we may as well assume that $y_{k} \neq 0$ for all k; otherwise we can neglect the terms with $y_{k}=0$. By convergence of $\left\{y_{n}\right\}$, there exists $N \in \mathbb{N}$ such that if $n>N$ then

$$
\left|y_{n}-y\right|<|y| / 2
$$

Then if $n>N$, we have

$$
\left|y_{n}\right| \geq|y|-\left|y-y_{n}\right|>|y|-|y| / 2=|y| / 2 .
$$

Therefore,

$$
\left|\frac{1}{y_{n}}-\frac{1}{y}\right|=\frac{\left|y_{n}-y\right|}{\left|y_{n}\right||y|} \leq \frac{2}{|y|^{2}}\left|y_{n}-y\right|
$$

for $n>N$. Let $\varepsilon>0$. Choose N_{2} such that if $n>N_{2}$ then $\left|y_{n}-y\right|<\varepsilon|y|^{2} / 2$. Then for $n>\max \left\{N, N_{2}\right\}$, we get

$$
\left|\frac{1}{y_{n}}-\frac{1}{y}\right|<\varepsilon
$$

as required.
Now the statement that $\left\{x_{k} / y_{k}\right\} \rightarrow x / y$ follows from writing $x_{k} / y_{k}=x_{k} \cdot\left(1 / y_{k}\right)$.
(b) Suppose there is $m \in \mathbb{N}$ such that $x_{k} \geq y_{k}$ for $k>m$. Suppose for a contradiction that $x<y$. Then let $0<\varepsilon<(y-x) / 2$. There exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|x_{n}-x\right|<\varepsilon$ and there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|y_{n}-y\right|<\varepsilon$. Therefore, if $n>\max \left\{N_{1}, N_{2}, m\right\}$ then

$$
x_{n}<x+\varepsilon<x+(y-x) / 2=(x+y) / 2=y-(y-x) / 2<y-\varepsilon<y_{n}
$$

which contradicts $x_{n} \geq y_{n}$.

