
4130 HOMEWORK 4

Due Tuesday March 2

(1) Let NN denote the set of all sequences of natural numbers. That is,

NN = {(a1, a2, a3, . . .) : ai ∈ N}.

Show that |NN| = |P(N)|.
We use the Schröder-Bernstein Theorem. First, there is an injection from P(N)

to NN, because we may regard a subset of N as a sequence of zeroes and ones, or

equivalently as a sequence of 1’s and 2’s, and this gives the desired injection. The

hard part is showing that there is an injection NN → P(N). To see this, note that

a sequence of natural numbers is the same thing as a function N → N. But by

definition, a function is a special kind of subset of N × N. In this way, we get an

injection NN → P(N × N). But it was shown in class that N × N and N have the

same cardinality, and hence so do their power sets. In this way, we get the desired

injection NN → P(N).

Working through the above proof, we can explicitly write down an injection if we

like. An example is:

(a1, a2, . . .) 7→ {2 · 3a1 , 22 · 3a2 , . . .} ⊂ N.

(2) Let {xn} be a Cauchy sequence of rational numbers. Regarding {xn} as a sequence

of real numbers, show that {xn} converges to the real number x defined as the

equivalence class of the sequence {xn}.
The hardest part of this is working out what to prove in the first place.

Let ε > 0 be a real number. Choose A ∈ N with 3/2A < ε. Since {xn} is a

Cauchy sequence of rational numbers, there exists N ∈ N such that if m,n > N then

|xn − xm| < 1/A. In other words, if m,n > N then −1/A < xm − xn < 1/A.

Now fix some m > N and consider the sequence of rational numbers {yn} where

yn = xm − xn
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for n ≥ 1. We have chosen N so that if n > N then −1/A < yn < 1/A. This implies

that for n > N , we have

yn + 3/2A > 1/2A

and

3/2A− yn > 1/2A.

The first inequality is the statement that the real number defined as the equivalence

class of the Cauchy sequence {yn + 3/2A} is positive. (Ex: why is this sequence

Cauchy?) If we let y = [{yn}], then we have an inequality in the real numbers

y + 3/2A > 0.

Similarly, the other inequality gives

3/2A− y > 0.

Putting these together, we have, for n > N ,

−3/2A < y < 3/2A.

But y = [{xm − xn}n≥1] = [{xm, xm, . . .}] − [{x1, x2, . . .}] which is the real number

xm − x, by definition of how the rationals are embedded in the reals. Thus, we have

−3/2A < xm − x < 3/2A

and hence

|xm − x| < 3/2A < ε.

This holds for any given m > N . So we have shown that for all ε > 0 we can find

N ∈ N such that if m > N then |xm − x| < ε, as required.

(3) Section 2.2.4 # 4.

Let x ∈ R be the equivalence class of the Cauchy sequence {xn} where xi ∈ Q.

We construct a sequence qn of rational numbers which is increasing and converges

to x. To start with, take q1 ∈ Q with x > q1 > x − 1. Now suppose we have

constructed q1, . . . , qn−1 with qn−1 < x. Let qn be a rational number with x > qn >

max{qn−1, x− 1/n}. Then the sequence {qn} is increasing and qn < x for all n. Also,
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qn > x− 1/n, so |x− qn| = x− qn < 1/n, and thus {qn} → x. In particular, {qn} is

Cauchy.

We now have an increasing Cauchy sequence of rational numbers {qn}, and it

remains to show that this sequence is equivalent to {xn}. For this, let ε > 0. Choose

N1 ∈ N such that if n > N1 then |x − qn| < ε/2. By the previous problem, we can

choose N2 ∈ N such that if n > N2 then |x − xn| < ε/2. Now if n > max{N1, N2}
then |xn − qn| ≤ |xn − x| + |x − qn| < ε, which shows that the sequences {xn} and

{qn} are equivalent sequences of rationals.

(4) Show that every subset S of R which is bounded below has a greatest lower bound.

(Hint: see p. 75 of the textbook.)

Let S be a subset of R which is bounded below. Let

−S = {−x : x ∈ S}.

Then −S is bounded above, so it has a least upper bound s := sup(−S). We claim

that −s is the greatest lower bound of S. First, −s is a lower bound because if x ∈ S

then −x ≤ −s and so x ≥ s. Also, if b is any other lower bound for −S, then −b

is an upper bound for S, and so −b ≥ s, whence b ≤ −s and so −s is the greatest

lower bound, as required.

(5) Find, if they exist, the supremum (least upper bound) and infimum (greatest lower

bound) of the following subsets of R.

(a) {1, 2, 3}.
Sup = 3, inf = 1.

(b) (0, 1) ∪ {2} ∪ [3, 4) = {x ∈ R : 0 < x < 1 or x = 2 or 3 ≤ x < 4}.
Sup = 4, inf = 0.

(c) {1− 1
n

: n ∈ N}.
The set is {0, 1/2, 2/3, . . .}. The supremum is 1 and the infimum is the smallest

element, which is 0.

(d) Q.

This set is not bounded above or below, and so it does not have a finite sup or

inf.

(6) Prove Theorem 2.3.2 in the textbook.
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Let {xn} and {yn} be sequences of real numbers.

(a) Suppose {xk} → x and {yk} → y. We must show that {xk + yk} → x + y. Let

ε > 0. Then there exists N1 ∈ N such that if k > N1 then |xk − x| < ε/2. There also

exists N2 such that if k > N2 then |yk − y| < ε/2. Now suppose k > max{N1, N2}.
Then

|(xk + yk)− (x + y)| ≤ |xk − x|+ |yk − y| < ε.

Next, we need to show that {xkyk} → xy. To do this, we first show that a

convergent sequence of real numbers is bounded. We have

|xk| ≤ |xk − x|+ |x|.

Taking ε = 1, we know that there exists N such that if k > N then |xk − x| < 1.

Therefore, if k > N then |xk| < 1 + x. It follows that for all k, |xk| ≤ B where

B = max{|x1|, |x2|, . . . , |xN |, 1 + |x|}.

Thus, every convergent sequence of real numbers is bounded.

Now we show that {xkyk} → xy. Let ε > 0 and choose B such that |xk| ≤ B for

all k and |y| ≤ B. Choose N1 such that if k > N1 then |xk − x| < ε/2B. Choose N2

such that if n > N2 then |yk − y| < ε/2B. Then if N > max{N1, N2} then

|xkyk − xy| = |xk(yk − y) + y(xk − x)| ≤ |xk||yk − y|+ |y||xk − x| < ε.

Next, suppose y 6= 0. Then for all ε > 0 there exists N ∈ N such that if n > N

then |yn − y| < ε. So yn ∈ (y − ε, y + ε). If y > 0 then y − ε > 0 for some ε > 0. If

y < 0 then y + ε < 0 for some ε > 0. In either case, we have yn 6= 0 for sufficiently

large n, as desired.

We show that {1/yk} → 1/y. As stated in the book, we may as well assume that

yk 6= 0 for all k; otherwise we can neglect the terms with yk = 0. By convergence of

{yn}, there exists N ∈ N such that if n > N then

|yn − y| < |y|/2.

Then if n > N , we have

|yn| ≥ |y| − |y − yn| > |y| − |y|/2 = |y|/2.
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Therefore,

| 1

yn

− 1

y
| = |yn − y|

|yn||y| ≤
2

|y|2 |yn − y|,
for n > N . Let ε > 0. Choose N2 such that if n > N2 then |yn − y| < ε|y|2/2. Then

for n > max{N,N2}, we get

| 1

yn

− 1

y
| < ε

as required.

Now the statement that {xk/yk} → x/y follows from writing xk/yk = xk · (1/yk).

(b) Suppose there is m ∈ N such that xk ≥ yk for k > m. Suppose for a contradic-

tion that x < y. Then let 0 < ε < (y−x)/2. There exists N1 ∈ N such that if n > N1

then |xn − x| < ε and there exists N2 ∈ N such that if n > N2 then |yn − y| < ε.

Therefore, if n > max{N1, N2,m} then

xn < x + ε < x + (y − x)/2 = (x + y)/2 = y − (y − x)/2 < y − ε < yn

which contradicts xn ≥ yn.
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