4130 HOMEWORK 4

Due Tuesday March 2

(1)

Let NV denote the set of all sequences of natural numbers. That is,
NY = {(a1,a9,as,...) : a; € N}.

Show that |NY| = |P(N)].

We use the Schroder-Bernstein Theorem. First, there is an injection from P(N)
to NN, because we may regard a subset of N as a sequence of zeroes and ones, or
equivalently as a sequence of 1’s and 2’s, and this gives the desired injection. The
hard part is showing that there is an injection NY¥ — P(N). To see this, note that
a sequence of natural numbers is the same thing as a function N — N. But by
definition, a function is a special kind of subset of N x N. In this way, we get an
injection NN — P(N x N). But it was shown in class that N x N and N have the
same cardinality, and hence so do their power sets. In this way, we get the desired
injection NN — P(N).

Working through the above proof, we can explicitly write down an injection if we

like. An example is:
(a1,as,...)—{2-3%,22.3%2 1} CN.

Let {z,} be a Cauchy sequence of rational numbers. Regarding {z,} as a sequence
of real numbers, show that {z,} converges to the real number z defined as the
equivalence class of the sequence {z,}.

The hardest part of this is working out what to prove in the first place.

Let € > 0 be a real number. Choose A € N with 3/2A4 < e. Since {z,} is a
Cauchy sequence of rational numbers, there exists N € N such that if m,n > N then
|z, — x| < 1/A. In other words, if m,n > N then —1/A < z,,, — z, < 1/A.

Now fix some m > N and consider the sequence of rational numbers {y,} where

Yn = Tm — Ty
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for n > 1. We have chosen N so that if n > N then —1/A < y,, < 1/A. This implies

that for n > N, we have

Yn +3/2A > 1/2A

and
3/2A —y, > 1/2A.
The first inequality is the statement that the real number defined as the equivalence

class of the Cauchy sequence {y, + 3/2A} is positive. (Ex: why is this sequence

Cauchy?) If we let y = [{yn}], then we have an inequality in the real numbers
y+3/2A > 0.
Similarly, the other inequality gives
3/2A —y > 0.
Putting these together, we have, for n > N,
—3/2A <y < 3/2A.

But y = {zm — Zntn>1] = {@m, Tm, - .-} — [{21, 22, .. .}] which is the real number

Tm — x, by definition of how the rationals are embedded in the reals. Thus, we have
—3/2A <z, —x < 3/2A

and hence
|z — x| < 3/2A < e.

This holds for any given m > N. So we have shown that for all ¢ > 0 we can find
N € N such that if m > N then |z, — x| < ¢, as required.
Section 2.2.4 # 4.

Let x € R be the equivalence class of the Cauchy sequence {z,} where z; € Q.
We construct a sequence g, of rational numbers which is increasing and converges
to x. To start with, take ¢ € Q with x > ¢ > = — 1. Now suppose we have
constructed ¢y, ...,¢,—1 with ¢,_1 < x. Let ¢, be a rational number with z > ¢, >

max{¢,_1,* — 1/n}. Then the sequence {¢,} is increasing and ¢, < x for all n. Also,
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(6)

Gn > x —1/n,s0 |x — q,| = ¢ — g, < 1/n, and thus {¢,} — z. In particular, {g,} is
Cauchy.

We now have an increasing Cauchy sequence of rational numbers {g,}, and it
remains to show that this sequence is equivalent to {x,}. For this, let ¢ > 0. Choose
N; € N such that if n > Ny then |z — ¢,| < /2. By the previous problem, we can
choose Ny € N such that if n > Ny then |z — x,| < /2. Now if n > max{Ny, N}
then |z, — qn| < |z, — x| + | — ¢.| < &, which shows that the sequences {z,} and
{q.} are equivalent sequences of rationals.

Show that every subset S of R which is bounded below has a greatest lower bound.
(Hint: see p. 75 of the textbook.)
Let S be a subset of R which is bounded below. Let

—S={-z:2€S5}

Then —S is bounded above, so it has a least upper bound s := sup(—S5). We claim
that —s is the greatest lower bound of S. First, —s is a lower bound because if x € S
then —x < —s and so x > s. Also, if b is any other lower bound for —S, then —b
is an upper bound for S, and so —b > s, whence b < —s and so —s is the greatest
lower bound, as required.
Find, if they exist, the supremum (least upper bound) and infimum (greatest lower
bound) of the following subsets of R.
(a) {1,2,3}.
Sup = 3, inf = 1.
(b) (0,1))U{2}U3,4)={zeR:0<z<lorz=2o0r3<uz<4}.
Sup =4, inf = 0.
(c) {1—21:neN}
The set is {0,1/2,2/3,...}. The supremum is 1 and the infimum is the smallest
element, which is 0.
(d) Q.
This set is not bounded above or below, and so it does not have a finite sup or
inf.

Prove Theorem 2.3.2 in the textbook.
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Let {x,} and {y,} be sequences of real numbers.
(a) Suppose {zr} — = and {yx} — y. We must show that {z) +yx} — =+ y. Let
e > 0. Then there exists N; € N such that if £ > N; then |z, — 2| < /2. There also
exists Ny such that if & > Ny then |y, — y| < €/2. Now suppose k > max{N, No}.
Then
(e +ye) — (@ +y)| < o — [+ |y —y| <e.

Next, we need to show that {xyyr} — zy. To do this, we first show that a

convergent sequence of real numbers is bounded. We have
k| < [ — 2 + ).

Taking ¢ = 1, we know that there exists N such that if £ > N then |z, — x| < 1.
Therefore, if & > N then |xx| < 1+ z. It follows that for all k, |xx| < B where

B = max{|z1|, |za|, ..., |zN]|, 1 + |2|}.

Thus, every convergent sequence of real numbers is bounded.

Now we show that {xyyr} — zy. Let € > 0 and choose B such that |z;| < B for
all k and |y| < B. Choose N; such that if & > N; then |z, — x| < ¢/2B. Choose Ny
such that if n > N, then |y, — y| < ¢/2B. Then if N > max{Ny, No} then

[zrye — 2yl = |ve(ye — y) +y(zre — )| < |zellye — yl + ylloe — 2] <e.

Next, suppose y # 0. Then for all £ > 0 there exists N € N such that if n > N
then |y, —y| <e. Soy, € (y —e,y+e¢). Ilf y >0 then y—e > 0 for some € > 0. If
y < 0 then y + e < 0 for some € > 0. In either case, we have y, # 0 for sufficiently
large n, as desired.

We show that {1/yx} — 1/y. As stated in the book, we may as well assume that
yr # 0 for all k; otherwise we can neglect the terms with y, = 0. By convergence of

{yn}, there exists N € N such that if n > N then

=yl < |yl/2.

Then if n > N, we have

[ynl 2 1yl =1y = yul > [yl = lyl/2 = [yl/2.
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Therefore,
1 1 _ |yn - y|

2
vy lwallyl T 2T
for n > N. Let ¢ > 0. Choose N, such that if n > N; then |y, — y| < e|y|*/2. Then
for n > max{N, Ny}, we get
1 1

—— | <e
Yn Yy

as required.
Now the statement that {x/yx} — x/y follows from writing xy/yx = x - (1/yx).
(b) Suppose there is m € N such that z; > y,, for & > m. Suppose for a contradic-
tion that z < y. Thenlet 0 < e < (y—x)/2. There exists N; € N such that if n > N;
then |z, — z| < e and there exists Ny € N such that if n > Ny then |y, — y| < e.

Therefore, if n > max{Ny, No, m} then
r,<rte<z+(y—n)2=@+y)2=y—-(y—1)2<y—c<y,

which contradicts x,, > y,.



