
4130 HOMEWORK 6

Due Thursday April 1

(1) Let A ⊂ R. A point x ∈ A is called isolated if it is not a cluster point of A.

(a) Can an open set have an isolated point? Can a closed set have one?

An open set U cannot have an isolated point because if x ∈ U and δ > 0 then

(x − δ, x + δ) contains an interval and hence contains infinitely many points of

U . On the other hand, for any x, {x} is a closed set which does have an isolated

point, namely x itself.

(b) Give an example of a countable set with no isolated points.

The set Q is countable and has no isolated points because if q ∈ Q and δ > 0,

then (q−δ, q+δ) contains infinitely many rational numbers, and so q is a cluster

point of Q.

(2) Section 3.3.1 # 8.

If A ⊂ R is compact, then A is bounded, so sup(A) and inf(A) exist. For each

n ∈ N, there exists a point an ∈ A with sup(A) ≥ an > sup(A) − 1
n
. The sequence

{an} converges in R to sup(A). Since A is compact, we have that

lim
n→∞

an ∈ A

and thus sup(A) ∈ A. Similarly, inf(A) ∈ A.

For the counterexample, take [−1, 0)∪(0, 1]. This is not closed, hence noncompact,

but it contains its sup and inf.

(3) Section 4.2.4 # 3. (Recall that an interval is, by definition, a subset I of R such that

for all x, y ∈ I and all z ∈ R with x < z < y, we have z ∈ I.)

We are asked to show that the continuous image of an interval is an interval. Let

I be an interval. Let f : I → R be a continuous function. Let X = f(I). We need

to show that X is an interval. Let x, y ∈ X. Let z ∈ R be a number such that

x < z < y. We need to show that z ∈ X.
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Since x, y ∈ X, we have x = f(a) and y = f(b) for some a, b ∈ I. There are three

cases: either a < b or b < a or a = b.

If a < b, then [a, b] ⊂ I. The function f restricted to [a, b] is continuous, and

therefore by the intermediate value theorem, it takes on the value z, since f(a) <

z < f(b). Thus, there exists t ∈ [a, b] ⊂ I with f(t) = z and so z ∈ f(I) = X.

If a > b then [b, a] ⊂ I and we can apply the Intermediate Value Theorem in the

same way to conclude that z ∈ X.

If a = b then x = y, which is a contradiction since we assumed x < y.

Thus, in all possible cases, we have z ∈ X. Thus, X is an interval, as required.

For the example part, take f(x) = x and let I be any open interval.

(4) In this question, we will show that every positive real number has an nth root.

(a) Let x ∈ (0,∞) and n ∈ N. Show that there exist α, β ∈ R with αn < x < βn.

Let 0 < α < min{x, 1} and let β > max{x, 1}. Then αn < α since α < 1 and

βn > β since β > 1. Thus,

αn < α < x < β < βn.

(b) Show that there exists y ∈ R with x = yn.

Define f : (0,∞) → (0,∞) by f(x) = xn. Then f is continuous and f(α) =

αn < x < βn = f(β). By the Intermediate Value Theorem, f must assume the

value x. Thus, there exists y with yn = x.

(c) For x ∈ [0,∞), show that there exists a unique y ∈ [0,∞) with x = y2. We

denote this y by
√

x.

By the previous part, such a y exists. Suppose y1 and y2 are both positive and

satisfy y2
1 = y2

2 = x. Then y2
1 − y2

2 = 0 = (y1 − y2)(y1 + y2). Since y1 + y2 > 0,

we have y1 − y2 = 0 and so y1 = y2.

(d) Define f : [0,∞) → R by f(x) =
√

x. Show that f is a continuous function.

Let x ∈ [0,∞). We must show that for all ε > 0 there exists δ > 0 such that if

|x− y| < δ then |√x−√y| < ε.

For all y, we have

|√x−√y| = |√x−√y||√x +
√

y|/|√x +
√

y| = |x− y|/|√x +
√

y|.
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This is ≤ |x − y|/√x since y ≥ 0. Thus, given ε > 0, we may choose δ <
√

xε.

Then if |x− y| < δ, then |√x−√y| < |x− y|/√x < ε, as required.

(5) Two monasteries, A and B, are joined by exactly one path AB which is 20 miles

long. One morning, Brother Albert (a monk) sets out from monastery A at 9 am,

arriving at monastery B at 9 pm. The next day, he sets out from monastery B at

9 am, arriving at monastery A at 9 pm. On both journeys, he may have stopped to

rest, or even walked backwards for some of the time.

(a) Prove that there is a point x on the path AB such that Brother Albert was at x

at exactly the same time on both days. (Hint: let fi(t) be the distance of Brother Albert from

A at time t on day i, i = 1, 2. Apply the Intermediate Value Theorem to a suitable combination of f1 and f2.)

Using the hint, consider the function g = f1 − f2. This is continuous and

g(9am) = f1(9am) − f2(9am) = 0 − 20 = −20 , while g(9pm) = 20. Thus, by

the Intermediate Value Theorem, there exists a time t between 9am and 9pm

with g(t) = 0 and so f1(t) = f2(t). The desired point is the point on the path

AB which at distance exactly f1(t) from A.

(b) Another monk, Brother Gilbert, has been dabbling in forbidden knowledge.

Once per day, by snapping his fingers, he can instantaneously teleport him-

self to any point within a 3 ft. radius of his current location. Suppose Brother

Gilbert makes the same journey as Brother Albert. Does the conclusion from

part (a) still hold?

No. Brother Gilbert’s motion is no longer necessarily continuous, so we cannot

apply the IVT. As an exercise, you can try to construct an example to show that

it is indeed possible that there might be no such point.

(6) Let f : R→ R be a function. Let a > 0. We say that f is periodic with period a if

f(x + a) = f(x)

for all x ∈ R.

Suppose f : R→ R is periodic with period a and define

g(x) = f(1/x)

for x > 0.
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(a) Show that for all x > 0, we have

f([x, x + a]) = g

([
1

x + a
,
1

x

])
.

Let u ∈ [x, x+a]. Then 1/u ∈ [
1

x+a
, 1

x

]
, and f(u) = g(1/u) ∈ g(

[
1

x+a
, 1

x

]
). Thus,

f([x, x + a]) ⊂ g

([
1

x + a
,
1

x

])
.

Now let v ∈ [
1

x+a
, 1

x

]
. Then 1/v ∈ [x, x+a] and so g(v) = f(1/v) ∈ f([x, x+a]).

Thus,

f([x, x + a]) ⊃ g

([
1

x + a
,
1

x

])
.

This proves the result.

(b) Suppose f is not constant. Show that g is not uniformly continuous on (0,∞).

Suppose f is not constant. Let r ∈ R. Then there exist b0, b1 ∈ [r, r + a] with

f(b0) 6= f(b1). Indeed, if not, then f is constant on [r, r + a] and therefore

constant on all of R, by periodicity.

Choose and fix r > 0. Let n ∈ N.

By periodicity of f , we have f([r + na, r + na + a]) = f([r, r + a]).

By (a), there exist c0, c1 ∈ [ 1
r+na+a

, 1
r+na

] with g(c0) = f(b0) and g(c1) = f(b1).

In particular, |c0 − c1| ≤ 1
r+na

. Let ε = |g(c0)− g(c1)| > 0. Given δ > 0, choose

n > (1/a)(1/δ − r). Then |c0 − c1| < δ, but |g(c0)− g(c1)| ≥ ε.

Thus, ∃ε > 0∀δ > 0∃c0, c1 ∈ (0,∞) with |c0 − c1| < δ but |g(c0) − g(c1)| ≥ ε.

This is precisely the negation of the definition of uniform continuity. So g is not

uniformly continuous.

[Remark: In particular, taking f(x) = sin(x) and a = 2π, we see that sin(1/x)

is not uniformly continuous.]

4


