4130 HOMEWORK 7

Due Tuesday April 13

(1) Let D C R. Let f,g : D — R and let a be a cluster point of D. Suppose

lim, ., f(z) = L and lim,_,, g(z) = M. Show that lim,_., f(z)g(x) = LM.

First, we show that f(x) and g(x) are bounded near a. Since lim,_, f(z) = L,
there exists § > 0 such that if z € D and |z — a|] < 0 then |f(x) — L] < 1, whence
|f(z)| < |f(x) = L|+|L| =1+ |L|. Similarly, there exists ¢’ such that if |z — a| < ¢’
then |g(z)| < 1+ |M]|. Replacing 6 by the minimum of § and §’, we may assume that
2 — af <& inmplies ()] < 1+ |L], |g(a)] <1+ |M].

Now, there is §; > 0 such that |x — a| < 6y implies |f(z) — L| < /2(1 + |M]).
Similarly, there is 02 > 0 such that |z — a| < 5 implies |g(z) — M| < €/2(1 + |L]).
Let d3 = min{dy, d2,d}. Then |z — a|] < 3 implies:

[f(2)g(x) — LM| < [f(2)[lg(x) — M|+ |M]|f(z) - L] <e.

Section 5.2.4 Exercise 3.
The converse of the Mean Value Theorem is false. For example, let f(z) = 2% on

(—1,1). Then f is strictly increasing and so if z; < x5 then

f(x2) — f(x1)

To — T1

>0

but f'(0) = 0, so there cannot be z1, x5 with the Newton quotient equal to f'(0).
We could construct a similar example for any strictly increasing/decreasing function
with a critical point which is not a local max/min.

Section 5.2.4 Exercise 4.

An example of such a function is h(x) = |x|, which can be written as

x, x> 0.

We already know that this is not differentiable at x = 0 but it is of the required form.
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For the one-sided derivatives, we make the following definition. Suppose f is

defined on a half-open interval (a, b]. Define

: f(b) = (=)
= lim
f (b) rib* b—=x
Similarly, if g is defined on [b, ¢) define
, o(@) ~ a(b)

We wish to to prove the following theorem:
Theorem: If f is differentiable on (a,b) and ¢ is differentiable on (b, ¢) then the

function h defined by
f(z a<x<b
W) — ()
g(x) b<z<c
is differentiable at b if and only if f’ (b) and ¢/, (b) exist and are equal.
Proof: h is differentiable at b if and only if the limit
lim h(z) — h(b)
z—b x—b

exists. But this limit exists if and only if both of the one-sided limits

lim h(z) — h(b)

x—b— r—>b
and

lim h(z) — h(b)

T—bT x—0b

exist and are equal. By definition of h, these one-sided limits are precisely f’ (b) and
g'.(b), so we are done.
(4) Let U be an open subset of R and suppose f : U — U is a C! bijection and that

f'(x) #0 for all x € U.

(a) Use the Inverse Function Theorem to show that the inverse function f=' : U — U
is also C'1.
Let x € U. We need to show that f~! is C' at x. By hypothesis, f is C! at
f~Y(z). Furthermore, f'(f~'(x)) # 0. Therefore, there exists a neighborhood
(a,b) of f~'(x) such that f : (a,b) — (c,d) is a bijection, for some (c,d). By

the Inverse Function Theorem, the inverse function g : (¢,d) — (a,b) is C.
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But if x € (c,d) then f(g(x)) = = = f(f~(z)), so g coincides with f~! on
(c,d). Therefore, f~!is C! at each point of (c,d). In particular, f=1 is C! at
v = F((2)) € (c.d).

(b) Give an example to show that f~! may not be C* if f'(x) = 0 for some x € U.
We can take f(r) = 2* (again). Take U = R. Then f~' = 2'/? is not differen-
tiable at z = 0.

(5) Section 5.4.6 Exercise 22(b). (Hint: let y = pyxy + -+« + py,. For each 1 < i < n,

estimate f(x;) using the Taylor expansion of f about the point y, applying the
Lagrange Remainder Theorem from page 188.)

Following the hint, for each i, we have

Fe) = F) + P @)~ o) + 5w~ y)?

for some u; between y and x;.

We sum these up for ¢« between 1 and n to get
S el @) = (w0 F6) + 3o )l — ) + 30 2 ) o — )
i=1 i=1 i=1
The third term on the RHS is nonnegative by hypothesis. The second term is
S nif W) @i —y) = £ piri— O py) = £ )y —y) =0.
i=1 i=1 i=1
We therefore get .
S pif (@) = f(y)
i=1

as required.



