
4130 HOMEWORK 7

Due Tuesday April 13

(1) Let D ⊂ R. Let f, g : D → R and let a be a cluster point of D. Suppose

limx→a f(x) = L and limx→a g(x) = M . Show that limx→a f(x)g(x) = LM .

First, we show that f(x) and g(x) are bounded near a. Since limx→a f(x) = L,

there exists δ > 0 such that if x ∈ D and |x − a| < δ then |f(x) − L| < 1, whence

|f(x)| ≤ |f(x)− L|+ |L| = 1 + |L|. Similarly, there exists δ′ such that if |x− a| < δ′

then |g(x)| ≤ 1+ |M |. Replacing δ by the minimum of δ and δ′, we may assume that

|x− a| < δ implies |f(x)| ≤ 1 + |L|, |g(x)| ≤ 1 + |M |.
Now, there is δ1 > 0 such that |x − a| < δ1 implies |f(x) − L| < ε/2(1 + |M |).

Similarly, there is δ2 > 0 such that |x − a| < δ2 implies |g(x) −M | < ε/2(1 + |L|).
Let δ3 = min{δ1, δ2, δ}. Then |x− a| < δ3 implies:

|f(x)g(x)− LM | ≤ |f(x)||g(x)−M |+ |M ||f(x)− L| < ε.

(2) Section 5.2.4 Exercise 3.

The converse of the Mean Value Theorem is false. For example, let f(x) = x3 on

(−1, 1). Then f is strictly increasing and so if x1 < x2 then

f(x2)− f(x1)

x2 − x1

> 0

but f ′(0) = 0, so there cannot be x1, x2 with the Newton quotient equal to f ′(0).

We could construct a similar example for any strictly increasing/decreasing function

with a critical point which is not a local max/min.

(3) Section 5.2.4 Exercise 4.

An example of such a function is h(x) = |x|, which can be written as

h(x) =




−x, x ≤ 0

x, x ≥ 0.

We already know that this is not differentiable at x = 0 but it is of the required form.
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For the one-sided derivatives, we make the following definition. Suppose f is

defined on a half-open interval (a, b]. Define

f ′−(b) = lim
x→b−

f(b)− f(x)

b− x
.

Similarly, if g is defined on [b, c) define

g′+(b) = lim
x→b+

g(x)− g(b)

x− b
.

We wish to to prove the following theorem:

Theorem: If f is differentiable on (a, b) and g is differentiable on (b, c) then the

function h defined by

h(x) =





f(x) a < x < b

g(x) b < x < c

is differentiable at b if and only if f ′−(b) and g′+(b) exist and are equal.

Proof: h is differentiable at b if and only if the limit

lim
x→b

h(x)− h(b)

x− b

exists. But this limit exists if and only if both of the one-sided limits

lim
x→b−

h(x)− h(b)

x− b

and

lim
x→b+

h(x)− h(b)

x− b

exist and are equal. By definition of h, these one-sided limits are precisely f ′−(b) and

g′+(b), so we are done.

(4) Let U be an open subset of R and suppose f : U → U is a C1 bijection and that

f ′(x) 6= 0 for all x ∈ U .

(a) Use the Inverse Function Theorem to show that the inverse function f−1 : U → U

is also C1.

Let x ∈ U . We need to show that f−1 is C1 at x. By hypothesis, f is C1 at

f−1(x). Furthermore, f ′(f−1(x)) 6= 0. Therefore, there exists a neighborhood

(a, b) of f−1(x) such that f : (a, b) → (c, d) is a bijection, for some (c, d). By

the Inverse Function Theorem, the inverse function g : (c, d) → (a, b) is C1.
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But if x ∈ (c, d) then f(g(x)) = x = f(f−1(x)), so g coincides with f−1 on

(c, d). Therefore, f−1 is C1 at each point of (c, d). In particular, f−1 is C1 at

x = f(f−1(x)) ∈ (c, d).

(b) Give an example to show that f−1 may not be C1 if f ′(x) = 0 for some x ∈ U .

We can take f(x) = x3 (again). Take U = R. Then f−1 = x1/3 is not differen-

tiable at x = 0.

(5) Section 5.4.6 Exercise 22(b). (Hint: let y = p1x1 + · · · + pnxn. For each 1 ≤ i ≤ n,

estimate f(xi) using the Taylor expansion of f about the point y, applying the

Lagrange Remainder Theorem from page 188.)

Following the hint, for each i, we have

f(xi) = f(y) + f ′(y)(xi − y) +
1

2
f ′′(ui)(xi − y)2

for some ui between y and xi.

We sum these up for i between 1 and n to get

n∑
i=1

pif(xi) = (
∑

pi)f(y) +
n∑

i=1

pif
′(y)(xi − y) +

n∑
i=1

pi

2
f ′′(ui)(xi − y)2.

The third term on the RHS is nonnegative by hypothesis. The second term is

n∑
i=1

pif
′(y)(xi − y) = f ′(y)(

n∑
i=1

pixi − (
n∑

i=1

pi)y) = f ′(y)(y − y) = 0.

We therefore get
n∑

i=1

pif(xi) ≥ f(y)

as required.
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