4130 HOMEWORK 7

Due Tuesday April 13

(1) Let $D \subset \mathbb{R}$. Let $f, g: D \rightarrow \mathbb{R}$ and let a be a cluster point of D. Suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Show that $\lim _{x \rightarrow a} f(x) g(x)=L M$.

First, we show that $f(x)$ and $g(x)$ are bounded near a. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta>0$ such that if $x \in D$ and $|x-a|<\delta$ then $|f(x)-L|<1$, whence $|f(x)| \leq|f(x)-L|+|L|=1+|L|$. Similarly, there exists δ^{\prime} such that if $|x-a|<\delta^{\prime}$ then $|g(x)| \leq 1+|M|$. Replacing δ by the minimum of δ and δ^{\prime}, we may assume that $|x-a|<\delta$ implies $|f(x)| \leq 1+|L|,|g(x)| \leq 1+|M|$.

Now, there is $\delta_{1}>0$ such that $|x-a|<\delta_{1}$ implies $|f(x)-L|<\varepsilon / 2(1+|M|)$. Similarly, there is $\delta_{2}>0$ such that $|x-a|<\delta_{2}$ implies $|g(x)-M|<\varepsilon / 2(1+|L|)$. Let $\delta_{3}=\min \left\{\delta_{1}, \delta_{2}, \delta\right\}$. Then $|x-a|<\delta_{3}$ implies:

$$
|f(x) g(x)-L M| \leq|f(x)||g(x)-M|+|M||f(x)-L|<\varepsilon .
$$

(2) Section 5.2.4 Exercise 3.

The converse of the Mean Value Theorem is false. For example, let $f(x)=x^{3}$ on $(-1,1)$. Then f is strictly increasing and so if $x_{1}<x_{2}$ then

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0
$$

but $f^{\prime}(0)=0$, so there cannot be x_{1}, x_{2} with the Newton quotient equal to $f^{\prime}(0)$. We could construct a similar example for any strictly increasing/decreasing function with a critical point which is not a local max/min.
(3) Section 5.2.4 Exercise 4.

An example of such a function is $h(x)=|x|$, which can be written as

$$
h(x)=\left\{\begin{array}{lr}
-x, & x \leq 0 \\
x, & x \geq 0
\end{array}\right.
$$

We already know that this is not differentiable at $x=0$ but it is of the required form.

For the one-sided derivatives, we make the following definition. Suppose f is defined on a half-open interval $(a, b]$. Define

$$
f_{-}^{\prime}(b)=\lim _{x \rightarrow b^{-}} \frac{f(b)-f(x)}{b-x}
$$

Similarly, if g is defined on $[b, c)$ define

$$
g_{+}^{\prime}(b)=\lim _{x \rightarrow b^{+}} \frac{g(x)-g(b)}{x-b}
$$

We wish to to prove the following theorem:
Theorem: If f is differentiable on (a, b) and g is differentiable on (b, c) then the function h defined by

$$
h(x)= \begin{cases}f(x) & a<x<b \\ g(x) & b<x<c\end{cases}
$$

is differentiable at b if and only if $f_{-}^{\prime}(b)$ and $g_{+}^{\prime}(b)$ exist and are equal.
Proof: h is differentiable at b if and only if the limit

$$
\lim _{x \rightarrow b} \frac{h(x)-h(b)}{x-b}
$$

exists. But this limit exists if and only if both of the one-sided limits

$$
\lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b}
$$

and

$$
\lim _{x \rightarrow b^{+}} \frac{h(x)-h(b)}{x-b}
$$

exist and are equal. By definition of h, these one-sided limits are precisely $f_{-}^{\prime}(b)$ and $g_{+}^{\prime}(b)$, so we are done.
(4) Let U be an open subset of \mathbb{R} and suppose $f: U \rightarrow U$ is a C^{1} bijection and that $f^{\prime}(x) \neq 0$ for all $x \in U$.
(a) Use the Inverse Function Theorem to show that the inverse function $f^{-1}: U \rightarrow U$ is also C^{1}.
Let $x \in U$. We need to show that f^{-1} is C^{1} at x. By hypothesis, f is C^{1} at $f^{-1}(x)$. Furthermore, $f^{\prime}\left(f^{-1}(x)\right) \neq 0$. Therefore, there exists a neighborhood (a, b) of $f^{-1}(x)$ such that $f:(a, b) \rightarrow(c, d)$ is a bijection, for some (c, d). By the Inverse Function Theorem, the inverse function $g:(c, d) \rightarrow(a, b)$ is C^{1}.

But if $x \in(c, d)$ then $f(g(x))=x=f\left(f^{-1}(x)\right)$, so g coincides with f^{-1} on (c, d). Therefore, f^{-1} is C^{1} at each point of (c, d). In particular, f^{-1} is C^{1} at $x=f\left(f^{-1}(x)\right) \in(c, d)$.
(b) Give an example to show that f^{-1} may not be C^{1} if $f^{\prime}(x)=0$ for some $x \in U$.

We can take $f(x)=x^{3}$ (again). Take $U=\mathbb{R}$. Then $f^{-1}=x^{1 / 3}$ is not differentiable at $x=0$.
(5) Section 5.4.6 Exercise 22(b). (Hint: let $y=p_{1} x_{1}+\cdots+p_{n} x_{n}$. For each $1 \leq i \leq n$, estimate $f\left(x_{i}\right)$ using the Taylor expansion of f about the point y, applying the Lagrange Remainder Theorem from page 188.)

Following the hint, for each i, we have

$$
f\left(x_{i}\right)=f(y)+f^{\prime}(y)\left(x_{i}-y\right)+\frac{1}{2} f^{\prime \prime}\left(u_{i}\right)\left(x_{i}-y\right)^{2}
$$

for some u_{i} between y and x_{i}.
We sum these up for i between 1 and n to get

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)=\left(\sum p_{i}\right) f(y)+\sum_{i=1}^{n} p_{i} f^{\prime}(y)\left(x_{i}-y\right)+\sum_{i=1}^{n} \frac{p_{i}}{2} f^{\prime \prime}\left(u_{i}\right)\left(x_{i}-y\right)^{2} .
$$

The third term on the RHS is nonnegative by hypothesis. The second term is

$$
\sum_{i=1}^{n} p_{i} f^{\prime}(y)\left(x_{i}-y\right)=f^{\prime}(y)\left(\sum_{i=1}^{n} p_{i} x_{i}-\left(\sum_{i=1}^{n} p_{i}\right) y\right)=f^{\prime}(y)(y-y)=0
$$

We therefore get

$$
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq f(y)
$$

as required.

