4130 HOMEWORK 8

Due Tuesday May 3

(1) Let $f_{n}: A \rightarrow \mathbb{R}$ be functions which converge uniformly on A to a function f. Let x_{0} be a cluster point of A. Suppose $\lim _{x \rightarrow x_{0}} f_{n}(x)$ exists for all n. Let $L_{n}=\lim _{x \rightarrow x_{0}} f_{n}(x)$.
(a) Show that the sequence $\left\{L_{n}\right\}$ converges.

We show that $\left\{L_{n}\right\}$ is a Cauchy sequence.
Let $\varepsilon>0$.
Since the sequence $\left\{f_{n}\right\}$ converges uniformly, it is uniformly Cauchy, and so there exists $N \in \mathbb{N}$ such that if $m, n>N$ then $\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon / 3$ for all $x \in A$.

Let $m, n>N$.
There exists $\delta_{1}>0$ such that if $\left|x-x_{0}\right|<\delta_{1}$, we have $\left|f_{n}(x)-L_{n}\right|<\varepsilon / 3$.
There exists $\delta_{2}>0$ such that if $\left|x-x_{0}\right|<\delta_{2}$, we have $\left|f_{m}(x)-L_{m}\right|<\varepsilon / 3$.
By the triangle inequality:

$$
\left|L_{n}-L_{m}\right| \leq\left|L_{n}-f_{n}(x)\right|+\left|f_{n}(x)-f_{m}(x)\right|+\left|f_{m}(x)-L_{m}\right|
$$

for all $x \in A$. In particular, we can choose some x with $\left|x-x_{0}\right|<\delta_{1}, \delta_{2}$. Then we get

$$
\left|L_{n}-L_{m}\right|<\varepsilon .
$$

Therefore, for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $m, n>N$ then $\left|L_{m}-L_{n}\right|<$ ε. So $\left\{L_{n}\right\}$ is a Cauchy sequence, and hence it converges.
(b) Show that $\lim _{x \rightarrow x_{0}} f(x)$ exists and equals $\lim _{n \rightarrow \infty} L_{n}$.

Let $\varepsilon>0$. Let $L=\lim _{n \rightarrow \infty} L_{n}$, which exists by part (a).
There exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|f(x)-f_{n}(x)\right|<\varepsilon / 3$ for all $x \in A$.
There exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|L-L_{n}\right|<\varepsilon / 3$.
Let $n>N_{1}, N_{2}$.
There exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ then $\left|f_{n}(x)-L_{n}\right|<\varepsilon / 3$.

Let $\left|x-x_{0}\right|<\delta$. By the triangle inequality:

$$
|f(x)-L| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-L_{n}\right|+\left|L_{n}-L\right|<\varepsilon
$$

Therefore, given $\varepsilon>0$ there exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$ then $|f(x)-L|<$ ε, and so $\lim _{x \rightarrow x_{0}} f(x)=L$.
(2) Section 7.3.4 Exercise 11.

Define $f_{n}(x)$ to be a function given by a "spike" of the following form:
$f_{n}(x)$ is zero if $0 \leq x \leq 1-1 / n$.
$f_{n}(x)$ is a straight line on the interval $[1-1 / n, 1-1 / 2 n]$, which joins the point $(1-1 / n, 0)$ to the point $(1-1 / 2 n, h)$, where h is chosen so that the area under the graph of this straight line is $1 / 2$.
$f_{n}(x)$ is a straight line on the interval [$\left.1-1 / 2 n, 1\right]$, which joins the point $(1-1 / 2 n, h)$ to the point $(1,0)$.

You can write a formula for the function if you like. It is continuous and piecewiselinear and has the property that

$$
\int_{0}^{1} f_{n}(x) d x=1
$$

The f_{n} converge pointwise to zero, because at $x=1, f_{n}(x)=0$ for all n, and if $x<1$ then $x<1-1 / N$ for N sufficiently large, and so $f_{n}(x)=0$ for $n>N$. Therefore, $\left\{f_{n}(x)\right\} \rightarrow 0$ for all x, yet the sequence $\left\{\int_{0}^{1} f_{n}(x) d x\right\}$ converges to 1 .
(3) Find the radius of convergence of the power series

$$
f(x)=\sum_{n=0}^{\infty}\left(n^{2}+n+1\right) x^{n}
$$

Find a pair of polynomials $p(x)$ and $q(x)$ such that $f(x)=\frac{p(x)}{q(x)}$ within its radius of convergence.

The coefficient of x^{n} is $a_{n}=n^{2}+n+1$. We have

$$
n \leq a_{n} \leq 3 n^{2}
$$

for all $n \in \mathbb{N}$.
Therefore,

$$
n^{1 / n} \leq a_{n}^{1 / n} \leq 3_{2}^{1 / n}\left(n^{1 / n}\right)^{2}
$$

for all $n \in \mathbb{N}$. We know from class that $\left\{3^{1 / n}\right\}$ and $\left\{n^{1 / n}\right\}$ tend to 1 as $n \rightarrow \infty$, and so by the Sandwich Principle, we have $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$. It follows that $\limsup \sin _{n}\left|a_{n}\right|^{1 / n}=1$ and so the radius of convergence is $R=1 / 1=1$.

We can use term-by-term differentiation inside $(-1,1)$. From the sum of a geometric series, we know that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

for $|x|<1$. From this, we get

$$
\sum_{n=0}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}
$$

and so

$$
\sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

Differentiating again and simplifying, we get

$$
\sum_{n=0}^{\infty} n^{2} x^{n-1}=\frac{1+x}{(1-x)^{3}},
$$

and so

$$
\sum_{n=0}^{\infty} n^{2} x^{n}=\frac{x+x^{2}}{(1-x)^{3}}
$$

Adding together, we get

$$
f(x)=\sum_{n=0}^{\infty}\left(n^{2}+n+1\right) x^{n}=\sum_{n=0}^{\infty} n^{2} x^{n}+\sum_{n=0}^{\infty} n x^{n}+\sum_{n=0}^{\infty} x^{n}=\frac{1+x^{2}}{(1-x)^{3}} .
$$

