
4130 HOMEWORK 8

Due Tuesday May 3

(1) Let fn : A → R be functions which converge uniformly on A to a function f . Let x0 be

a cluster point of A. Suppose limx→x0 fn(x) exists for all n. Let Ln = limx→x0 fn(x).

(a) Show that the sequence {Ln} converges.

We show that {Ln} is a Cauchy sequence.

Let ε > 0.

Since the sequence {fn} converges uniformly, it is uniformly Cauchy, and so

there exists N ∈ N such that if m,n > N then |fn(x) − fm(x)| < ε/3 for all

x ∈ A.

Let m,n > N .

There exists δ1 > 0 such that if |x− x0| < δ1, we have |fn(x)− Ln| < ε/3.

There exists δ2 > 0 such that if |x− x0| < δ2, we have |fm(x)− Lm| < ε/3.

By the triangle inequality:

|Ln − Lm| ≤ |Ln − fn(x)|+ |fn(x)− fm(x)|+ |fm(x)− Lm|

for all x ∈ A. In particular, we can choose some x with |x− x0| < δ1, δ2. Then

we get

|Ln − Lm| < ε.

Therefore, for all ε > 0 there exists N ∈ N such that if m,n > N then |Lm−Ln| <
ε. So {Ln} is a Cauchy sequence, and hence it converges.

(b) Show that limx→x0 f(x) exists and equals limn→∞ Ln.

Let ε > 0. Let L = limn→∞ Ln, which exists by part (a).

There exists N1 ∈ N such that if n > N1 then |f(x)− fn(x)| < ε/3 for all x ∈ A.

There exists N2 ∈ N such that if n > N2 then |L− Ln| < ε/3.

Let n > N1, N2.

There exists δ > 0 such that if |x− x0| < δ then |fn(x)− Ln| < ε/3.
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Let |x− x0| < δ. By the triangle inequality:

|f(x)− L| ≤ |f(x)− fn(x)|+ |fn(x)− Ln|+ |Ln − L| < ε.

Therefore, given ε > 0 there exists δ > 0 such that if |x−x0| < δ then |f(x)−L| <
ε, and so limx→x0 f(x) = L.

(2) Section 7.3.4 Exercise 11.

Define fn(x) to be a function given by a “spike” of the following form:

fn(x) is zero if 0 ≤ x ≤ 1− 1/n.

fn(x) is a straight line on the interval [1 − 1/n, 1 − 1/2n], which joins the point

(1− 1/n, 0) to the point (1− 1/2n, h), where h is chosen so that the area under the

graph of this straight line is 1/2.

fn(x) is a straight line on the interval [1−1/2n, 1], which joins the point (1−1/2n, h)

to the point (1, 0).

You can write a formula for the function if you like. It is continuous and piecewise-

linear and has the property that

∫ 1

0

fn(x)dx = 1.

The fn converge pointwise to zero, because at x = 1, fn(x) = 0 for all n, and

if x < 1 then x < 1 − 1/N for N sufficiently large, and so fn(x) = 0 for n > N .

Therefore, {fn(x)} → 0 for all x, yet the sequence {∫ 1

0
fn(x)dx} converges to 1.

(3) Find the radius of convergence of the power series

f(x) =
∞∑

n=0

(n2 + n + 1)xn.

Find a pair of polynomials p(x) and q(x) such that f(x) = p(x)
q(x)

within its radius of

convergence.

The coefficient of xn is an = n2 + n + 1. We have

n ≤ an ≤ 3n2

for all n ∈ N.

Therefore,

n1/n ≤ a1/n
n ≤ 31/n(n1/n)2
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for all n ∈ N. We know from class that {31/n} and {n1/n} tend to 1 as n → ∞,

and so by the Sandwich Principle, we have limn→∞ |an|1/n = 1. It follows that

lim supn |an|1/n = 1 and so the radius of convergence is R = 1/1 = 1.

We can use term-by-term differentiation inside (−1, 1). From the sum of a geo-

metric series, we know that

∞∑
n=0

xn =
1

1− x
,

for |x| < 1. From this, we get

∞∑
n=0

nxn−1 =
1

(1− x)2
,

and so ∞∑
n=0

nxn =
x

(1− x)2
.

Differentiating again and simplifying, we get

∞∑
n=0

n2xn−1 =
1 + x

(1− x)3
,

and so ∞∑
n=0

n2xn =
x + x2

(1− x)3
.

Adding together, we get

f(x) =
∞∑

n=0

(n2 + n + 1)xn =
∞∑

n=0

n2xn +
∞∑

n=0

nxn +
∞∑

n=0

xn =
1 + x2

(1− x)3
.
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