MATH 413 FINAL EXAM

Math 413 final exam, 13 May 2008. The exam starts at 9:00 am and you have 150 minutes. No textbooks or calculators may be used during the exam. This exam is printed on both sides of the paper. Good luck!

- (1) (20 marks) Let $X = (0, 1] \subset \mathbb{R}$. State whether each of the following statements about X is true or false, giving a brief reason for each answer.
 - (a) X is bounded. True. For all $x \in X$, $|x| \le 1$.
 - (b) X can be written as a countable union of open sets. False. Any union of open sets is open, but X is not open.
 - (c) X is compact. False. X is not closed (it does not contain the cluster point 0), so by the Heine-Borel Theorem cannot be compact.
 - (d) There is a point $x_0 \in X$ at which the function $f(x) = \log(x) + x^5 8x^4 3$ achieves its supremum on X (that is, $f(x_0) = \sup\{f(x) : x \in X\}$). True. Since $\log(x) \to -\infty$ as $x \to 0$, we have also that $f(x) \to -\infty$ as $x \to 0$. So there exists $n \in \mathbb{N}$ such that f(x) < f(1) if $x < \frac{1}{n}$. Therefore, $\sup_{x \in X} f(x) = \sup_{x \in [\frac{1}{n}, 1]} f(x)$ and this is attained by f since $[\frac{1}{n}, 1]$ is a compact set.
- (2) (20 marks) Let $A \subset \mathbb{R}$. Recall that a function $f : A \to \mathbb{R}$ is said to satisfy a Lipschitz condition on A if there is some $M \in \mathbb{R}$ such that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x, y \in A$.

(a) Let $n \in \mathbb{N}$. Show that the function $f_n : [0,1] \to \mathbb{R}$ defined by $f_n(x) = \sqrt{x + \frac{1}{n}}$ satisfies a Lipschitz condition on [0,1].

(Hint: you may wish to use the fact that for all a, b > 0, $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$.)

We need to show that there exists M such that

$$|f_n(x) - f_n(y)| \le M|x - y|$$

for all $x, y \in [0, 1]$. Using the hint, if $x \ge y$, we have $|f_n(x) - f_n(y)| = |\sqrt{x + \frac{1}{n}} - \sqrt{y + \frac{1}{n}}| = \frac{(x + \frac{1}{n}) - (y + \frac{1}{n})}{\sqrt{x + \frac{1}{n}} + \sqrt{y + \frac{1}{n}}}$. Since $x, y \ge 0$, we get $|f_n(x) - f_n(y)| \le (x - y)/(2/\sqrt{n}) = M|x - y|$ where $M = \sqrt{n}/2$.

(b) Show that the sequence of functions $\{f_n\}$ converges uniformly on [0, 1] to the function $f(x) = \sqrt{x}$.

We need to show that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > N then $|f_n(x) - f(x)| < \varepsilon$ for all $x \in [0, 1]$. We have $|f_n(x) - f(x)| = \sqrt{x + \frac{1}{n}} - \sqrt{x} = \frac{x + \frac{1}{n} - x}{\sqrt{x + \frac{1}{n}} + \sqrt{x}} \leq \frac{1}{n} / \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}}$. So given $\varepsilon > 0$, we choose N with $1/\sqrt{N} < \varepsilon$, and then if n > N and $x \in [0, 1]$, we have $|f_n(x) - f(x)| \leq \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} < \varepsilon$ as required.

- (c) Show that $f(x) = \sqrt{x}$ does not satisfy a Lipschitz condition on [0, 1]. There are several ways of doing this. One way is to observe that if \sqrt{x} was Lipschitz, then $\frac{\sqrt{x}-0}{x-0} = \frac{1}{\sqrt{x}}$ would be bounded for $x \in (0, 1)$, but this is false.
- (d) Now suppose $A \subset \mathbb{R}$ and $f_n : A \to \mathbb{R}$ are functions such that there exists $M \in \mathbb{R}$ such that $|f_n(x) f_n(y)| \leq M|x y|$ for all $n \in \mathbb{N}$ and all $x, y \in A$. Suppose the sequence of functions $\{f_n\}$ converges uniformly on A to a function $f : A \to \mathbb{R}$. Show that f satisfies a Lipschitz condition on A. Why does this not contradict your answer to part (c)?

To prove the statement, let $x, y \in A$. Let $\varepsilon > 0$. Choose $n \in \mathbb{N}$ such that $|f_n(z) - f(z)| < \varepsilon$ for all $z \in A$. Then

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

by the triangle inequality. But by the choice of n, the first and third terms are $< \varepsilon$, while $|f_n(x) - f_n(y)| \le M|x-y|$ by hypothesis. So $|f(x) - f(y)| \le 2\varepsilon + M|x-y|$. But since this holds for all $\varepsilon > 0$, we must have $|f(x) - f(y)| \le M|x-y|$ as required. This does not contradict part (c) because although the f_n were Lipschitz, they do not have a common bound M, so their uniform limit does not necessarily have to be Lipschitz. In fact, parts (a)-(c) show that a uniform limit of Lipschitz functions need not be Lipschitz.

[TURN OVER]

- (3) (20 marks) Let $f : \mathbb{R} \to \mathbb{R}$ be a function.
 - (a) State what it means for f to be uniformly continuous on R.
 f is uniformly continuous on R if and only if for all ε > 0 there exists δ > 0 such that for all x, y ∈ R, if |x y| < δ then |f(x) f(y)| < ε.
 - (b) State the Mean Value Theorem.
 Let f: [a, b] → ℝ be continuous on [a, b] and differentiable on (a, b). Then there exists x₀ ∈ (a, b) such that f(b)-f(a)/b-a = f'(x₀).
 - (c) Suppose that f: R→ R is a differentiable function and that the derivative f' is bounded. Show that f is uniformly continuous on R.
 Let f: R→ R be differentiable and suppose there exists M > 0 with |f'(x)| ≤ M for all x ∈ R. Then if a < b, then f(b)-f(a)/b-a = f'(x_0) ≤ M for some x_0 ∈ (a, b). So |f(b) f(a)| ≤ M|b-a|. Therefore, given ε > 0, if δ < ε/M then |b-a| < δ implies |f(b) f(a)| < ε. So f is uniformly continuous.
 - (d) Show that $f(x) = e^{-x^2}$ is uniformly continuous on \mathbb{R} .

In view of the previous problem, it suffices to show that the derivative of f is bounded. We have $f'(x) = -2xe^{-x^2}$ for all $x \in \mathbb{R}$. Therefore, $|f'(x)| = 2|x|e^{-x^2}$. Now, there are many ways of showing this is bounded, for example $e^{x^2} \ge 1 + x^2$ for all x, by the power series expansion of e^{x^2} . So it suffices to show that $\frac{2|x|}{1+x^2}$ is bounded. If $|x| \ge 1$ then $\frac{2|x|}{1+x^2} \le \frac{2}{|x|} \le 2$ while if $|x| \le 1$ then also $\frac{2|x|}{1+x^2} \le 2|x| \le 2$.

- (4) (20 marks) Let $f : [a, b] \to \mathbb{R}$ be a bounded function.
 - (a) State what it means for f to be Riemann integrable.

Define a partition P of [a, b] to be a sequence of points $x_0 < x_1 < \ldots < x_n$ with $x_0 = a$ and $x_n = b$. For a partition P, define $|P| = \max(x_i - x_{i-1})$. Define a Cauchy sum of f for the partition P to be a sum of the form $\sum_i f(q_i)(x_i - x_{i-1})$ where $q_i \in [x_{i-1}, x_i]$ for each i.

Then $f : [a,b] \to \mathbb{R}$ is Riemann integrable if and only if there exists a number L such that for all $\varepsilon > 0$ there exists $\delta > 0$, such that whenever P is a partition with $|P| < \delta$, we have $|S(f,P) - L| < \varepsilon$, where S(f,P) is any Cauchy sum of f for the partition P.

(b) Show that if $f, g: [a, b] \to \mathbb{R}$ are Riemann integrable, then so is f + g.

This is difficult to do from the above definition, so instead we use a theorem from the textbook, which says that a function f is Riemann integrable if and only if there exists a sequence of partitions P_j such that $\operatorname{Osc}(f, P_j) \to 0$ as $j \to \infty$, where $\operatorname{Osc}(f, P_j) = \sum_i (\sup_{q \in [x_{i-1}, x_i]} f(q) - \inf_{q \in [x_{i-1}, x_i]} f(q))(x_i - x_{i-1})$. We have $\sup_{q \in [x_{i-1}, x_i]}(f(q) + g(q)) \leq \sup_{q \in [x_{i-1}, x_i]} f(q) + \sup_{q \in [x_{i-1}, x_i]} g(q)$ and $\inf_{q \in [x_{i-1}, x_i]}(f(q) + g(q)) \geq \inf_{q \in [x_{i-1}, x_i]} f(q) + \inf_{q \in [x_{i-1}, x_i]} g(q)$. From these two facts it follows that for any partition P, $\operatorname{Osc}(f + g, P) \leq \operatorname{Osc}(f, P) + \operatorname{Osc}(g, P)$ and so if $\operatorname{Osc}(f, P_j)$ and $\operatorname{Osc}(g, P_j)$ tend to 0 as $j \to \infty$, so does $\operatorname{Osc}(f + g, P_j)$ (we have left out some details). This theorem can also be proved by various other similar methods.

(c) Show that the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

is not Riemann integrable.

This time, the best characterization of Riemann integrability to use is the statement that f is Riemann integrable if and only if $\inf_P S^+(f, P) = \sup_P S^-(f, P)$ where $S^+(f, P)$ and $S^-(f, P)$ denote the upper and lower Riemann sums respectively. For every partition $P = \{x_0 < x_1 < \ldots < x_n\}$ of [0,1] and each i, $[x_{i-1}, x_i]$ contains a point of \mathbb{Q} and a point of $\mathbb{R} \setminus \mathbb{Q}$. So $S^+(f, P) = 1$ while $S^-(f, P) = 0$. Therefore, $\inf_P S^+(f, P) = 0$ and $\sup_P S^-(f, P) = 1$, so f is not Riemann integrable.

(d) Now let $f : \mathbb{R} \to \mathbb{R}$ be any continuous function. Define $F(x) = \int_0^1 f(x+t)dt$. Show that F is continuous on \mathbb{R} . We use the definition of continuity. Let $x_0 \in \mathbb{R}$. To show that F is continuous at x_0 , let $\varepsilon > 0$. We need to find $\delta > 0$ such that if $|x-x_0| < \delta$ then $|F(x)-F(x_0)| < \varepsilon$. We have

$$|F(x) - F(x_0)| = |\int_0^1 (f(x+t) - f(x_0+t))dt| \le \int_0^1 |f(x+t) - f(x_0+t)|dt.$$

Since f is continuous on \mathbb{R} , it is uniformly continuous on the compact set $[x_0 - 2, x_0 + 2]$. Therefore, we may choose a $\delta < 1$ such that if $a, b \in [x_0 - 2, x_0 + 2]$

with $|a - b| < \delta$ then $|f(a) - f(b)| < \varepsilon$. Now if $|x - x_0| < \delta$ then for all $t \in [0, 1]$, we have $x + t, x_0 + t \in [x_0 - 2, x_0 + 2]$ and so if $|x - x_0| < \delta$ then $|f(x + t) - f(x_0 + t)| < \varepsilon$. So $|F(x) - F(x_0)| < \int_0^1 \varepsilon dt = \varepsilon$ as required.

(5) (20 marks) Consider the power series

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{(4k+1)!} x^{4k+1}$$

(a) Prove that the series converges absolutely and uniformly on [-a, a] for all a > 0. Deduce that this power series defines a C^{∞} function $f : \mathbb{R} \to \mathbb{R}$.

The easiest way to prove this is to observe that for all $x \in [-a, a]$ and all r < s, we have $\sum_{k=r}^{s} \left| \frac{x^{4k+1}}{(4k+1)!} \right| = \sum_{k=r}^{s} \frac{|x|^{4k+1}}{(4k+1)!} \le \sum_{k=r}^{s} \frac{a^{4k+1}}{(4k+1)!} \le \sum_{b=4r+1}^{4s+1} \frac{a^{b}}{b!}$. The expression $\sum_{b=4r+1}^{4s+1} \frac{a^{b}}{b!}$ is the tail of a power series defining the number e^{a} . So given $\varepsilon > 0$, there exists $M \in \mathbb{N}$ such that if u, v > M then $\sum_{b=u}^{v} \frac{a^{b}}{b!} < \varepsilon$. Thus, $\sum_{k=r}^{s} \left| \frac{x^{4k+1}}{(4k+1)!} \right| < \varepsilon$ if r, s > M. So the given series converges absolutely and uniformly on [-a, a] as claimed. The power series defines a C^{∞} function by Theorem 7.3.4 of the textbook.

(b) Prove that

$$f(x) + f'(x) + f''(x) + f'''(x) = e^x$$

for all $x \in \mathbb{R}$.

We are allowed to differentiate the power series term-by-term at any x for which it converges. We have

$$f(x) = x + \frac{1}{5!}x^5 + \frac{1}{9!}x^9 + \cdots$$

$$f'(x) = 1 + \frac{1}{4!}x^4 + \frac{1}{8!}x^8 + \cdots$$

$$f''(x) = 0 + \frac{1}{3!}x^3 + \frac{1}{7!}x^7 + \cdots$$

$$f'''(x) = 0 + \frac{1}{2!}x^2 + \frac{1}{6!}x^6 + \cdots$$

Absolute convergence guarantees that we may rearrange these series as we wish, and the sum is the series for e^x , as required.

(c) Show that $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to-\infty} f(x) = -\infty$.

If x > 0 then $f(x) \ge x$ and if x < 0 then $f(x) \le -x$ since the series for f contains only odd powers of x. This is enough to show the required properties.

(d) Show that $f : \mathbb{R} \to \mathbb{R}$ is a bijection.

To show that f is onto, if $c \in \mathbb{R}$ then there exists a < 0 with f(a) < c and there exists b > 0 with f(b) > c, because we showed in the previous part that f in unbounded from above and from below. Since f is continuous, the intermediate value theorem now implies that there exists z with a < z < b and f(z) = c. To show that f is one-to-one, observe from above that $f'(x) \ge 1 > 0$ for all x, since the expression for f'(x) contains only even powers of x. So f is strictly increasing. Therefore, if a < b then f(a) < f(b), which implies that f is one-toone. Thus, f is a bijection.

[END.]