Math 2310 Take-home prelim 2

Due Monday 16 November
You should hand in your solutions in class on Monday 16 November. This prelim will count towards your final grade. There are 8 questions in total. You are supposed to work on the problems on your own.

1. Find the area of the quadrilateral $O A B C$ on the figure below, coordinates given in brackets. [See pp. 160-163 of the book.]

2. Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 4 & 7 & 1
\end{array}\right]
$$

(a) Calculate the nullspace of the matrix A.
(b) Let $B=A^{T}$. Find the rank of B.
(c) Find a basis for the column space of B.
3. Let

$$
A=\left[\begin{array}{lll}
3 & 1 & 2 \\
1 & 1 & 1 \\
4 & 2 & 3
\end{array}\right]
$$

(a) Find the reduced row echelon form of A.
(b) Do the rows of A span \mathbb{R}^{3} ? Explain your answer.
(c) Do the columns of A span \mathbb{R}^{3} ? Explain your answer.
(d) Your friend Bob claims that there exist bases $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $T=$ $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ of \mathbb{R}^{3} such that $[\mathbf{x}]_{S}=A[\mathbf{x}]_{T}$ for all \mathbf{x} in \mathbb{R}^{3}. Explain why this cannot possibly be true.
4. Let A be an $n \times n$ matrix with integer entries.
(a) If $\operatorname{det}(A)=1$, show that A^{-1} has integer entries.
(b) Suppose A^{-1} has integer entries. What are the possibilities for $\operatorname{det}(A)$? Explain.
5. Find out whether the matrices

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right],\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right]
$$

form a basis in the space of all 2×2 matrices.
6. Find all vectors in \mathbb{R}^{3} of length ≤ 2 with integer entries. Which of them are orthogonal to the vector $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$?
7. The population of sapsuckers in Sapsucker Woods is described by the following model. Let c_{k} denote the number of chicks in year k, let j_{k} denote the number of juveniles in year k, and let a_{k} denote the number of adults in year k. Then

$$
\left[\begin{array}{l}
c_{k+1} \\
j_{k+1} \\
a_{k+1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0.2 \\
0.25 & 0.875 & 0 \\
0 & 0.5 & 0.8
\end{array}\right]\left[\begin{array}{l}
c_{k} \\
j_{k} \\
a_{k}
\end{array}\right]
$$

Let A be the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0.2 \\
0.25 & 0.875 & 0 \\
0 & 0.5 & 0.8
\end{array}\right]
$$

(a) A vector \mathbf{v} in \mathbb{R}^{3} is called a steady-state vector of A if $A \mathbf{v}=\mathbf{v}$. Explain what this means in terms of the model.
(b) Find all steady-state vectors for A.
(c) After heavy logging in Sapsucker woods, biologists find that the model is no longer accurate. Instead, a more suitable model is

$$
\left[\begin{array}{c}
c_{k+1} \\
j_{k+1} \\
a_{k+1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0.2 \\
0.25 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right]\left[\begin{array}{l}
c_{k} \\
j_{k} \\
a_{k}
\end{array}\right]
$$

Under this new model, what do you think will happen to the population of sapsuckers in the long term? Explain your answer.
8. Let

$$
A=\left[\begin{array}{lllll}
3 & 5 & 7 & 3 & 2 \\
2 & 1 & 0 & 2 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
3 & 2 & 4 & 5 & 2
\end{array}\right]
$$

(a) Calculate $\operatorname{det}(A)$.
(b) Is A invertible? Explain your answer.
(c) Calculate $\operatorname{det}\left(A A^{T}\right)$.

