MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1. PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)
(1) ($\mathbf{9}$ marks) Let $X=(0,1) \cup(2,3) \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
(a) $3 \in \mathbb{R}$ is a cluster point (a.k.a. limit-point) of X.
(b) X is a closed set.
(c) The set $f^{-1}(X)$ is open, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f(x)=x^{5}+2 x^{3}-9 x+1$.
(2) ($\mathbf{2 5}$ marks) Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) (3 marks) Define what it means for $\left\{x_{n}\right\}$ to converge to a limit $L \in \mathbb{R}$.
(b) (10 marks) Show that if $\left\{x_{n}\right\}$ converges to the limits $L \in \mathbb{R}$ and to $M \in \mathbb{R}$ then $L=M$.
(c) (6 marks) Let $a<b$. Prove the following theorem using any method you wish: Theorem: If $\left\{x_{n}\right\}$ is a monotonically increasing sequence of points in $(a, b]$, then $\left\{x_{n}\right\}$ converges to a point of $(a, b]$.
(d) (6 marks) Show that the converse of the theorem in part (c) is false.
(3) (16 marks) Here is an unfinished proof of the following theorem:

Theorem: If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences then

$$
\liminf \left\{x_{n}+y_{n}\right\} \geq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}
$$

Proof: Let $n \in \mathbb{N}$. For each $t>n$, we have $x_{t} \geq \inf _{k>n}\left\{x_{k}\right\}$ and $y_{t} \geq \inf _{k>n}\left\{y_{k}\right\}$. Therefore, $x_{t}+y_{t} \geq \inf _{k>n}\left\{x_{k}\right\}+\inf _{k>n}\left\{y_{k}\right\}$. Therefore, the number $r=\inf _{k>n}\left\{x_{k}\right\}+$ $\inf _{k>n}\left\{y_{k}\right\}$ is a lower bound for the set $\left\{x_{t}+y_{t}: t>n\right\} \ldots$
(a) (9 marks) Finish the proof of the theorem.
(b) (7 marks) Give an example of bounded sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\liminf \left\{x_{n}+y_{n}\right\} \neq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}$. [END OF PAPER]

