MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1. PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)

- (1) (9 marks) Let $X = (0, 1) \cup (2, 3) \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
 - (a) $3 \in \mathbb{R}$ is a cluster point (a.k.a. limit-point) of X.
 - (b) X is a closed set.
 - (c) The set $f^{-1}(X)$ is open, where $f : \mathbb{R} \to \mathbb{R}$ is the function $f(x) = x^5 + 2x^3 9x + 1$.
- (2) (25 marks) Let $\{x_n\}$ be a sequence of real numbers.
 - (a) (3 marks) Define what it means for $\{x_n\}$ to converge to a limit $L \in \mathbb{R}$.
 - (b) (10 marks) Show that if $\{x_n\}$ converges to the limits $L \in \mathbb{R}$ and to $M \in \mathbb{R}$ then L = M.
 - (c) (6 marks) Let a < b. Prove the following theorem using any method you wish:
 Theorem: If {x_n} is a monotonically increasing sequence of points in (a, b], then {x_n} converges to a point of (a, b].
 - (d) (6 marks) Show that the converse of the theorem in part (c) is false.
- (3) (16 marks) Here is an unfinished proof of the following theorem:
 Theorem: If {x_n} and {y_n} are bounded sequences then

$$\liminf\{x_n + y_n\} \ge \liminf\{x_n\} + \liminf\{y_n\}.$$

Proof: Let $n \in \mathbb{N}$. For each t > n, we have $x_t \ge \inf_{k>n} \{x_k\}$ and $y_t \ge \inf_{k>n} \{y_k\}$. Therefore, $x_t + y_t \ge \inf_{k>n} \{x_k\} + \inf_{k>n} \{y_k\}$. Therefore, the number $r = \inf_{k>n} \{x_k\} + \inf_{k>n} \{y_k\}$ is a lower bound for the set $\{x_t + y_t : t > n\}$...

- (a) (9 marks) Finish the proof of the theorem.
- (b) (7 marks) Give an example of bounded sequences $\{x_n\}$ and $\{y_n\}$ such that $\liminf\{x_n + y_n\} \neq \liminf\{x_n\} + \liminf\{y_n\}$. [END OF PAPER]