MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1. PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)

- (1) (9 marks) Let $X = (0, 1) \cup (2, 3) \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
 - (a) 3 ∈ R is a cluster point (a.k.a. limit-point) of X.
 Answer: True. For every 1/n, the intersection (3-1/n, 3+1/n) ∩ X is an open set and therefore contains infinitely many points of X. So 3 is a cluster point.
 - (b) X is a closed set.
 Answer: False. Since 3 is a cluster point of X but 3 ∉ X, X cannot be closed.
 - (c) The set f⁻¹(X) is open, where f : R → R is the function f(x) = x⁵+2x³-9x+1.
 Answer: True. The function f is continuous, since it is a polynomial function.
 Its domain is R, which is open. The set X is open. Therefore, f⁻¹(X) is an open set.
- (2) (25 marks) Let $\{x_n\}$ be a sequence of real numbers.
 - (a) (3 marks) Define what it means for {x_n} to converge to a limit L ∈ ℝ.
 Answer: {x_n} converges to L if for all ε > 0 there exists n ∈ N such that if n > N then |x_n − L| < ε.
 - (b) (10 marks) Show that if $\{x_n\}$ converges to the limits $L \in \mathbb{R}$ and to $M \in \mathbb{R}$ then L = M.

Answer: Let $\{x_n\}$ be a sequence which converges to L and to M. Let $\varepsilon > 0$. Then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|x_n - L| < \varepsilon$ and there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|x_n - M| < \varepsilon$. Therefore by the triangle inequality, if $n > \max\{N_1, N_2\}$, we get

$$|L - M| \le |L - x_n| + |x_n - M| < 2\epsilon.$$
 (*)

By the Archimedian property, if $L \neq M$ then there exists $t \in \mathbb{N}$ with 1/t < |L-M|. But then if we take $\varepsilon < 1/2t$, we get a contradiction to (*). So L = M.

(c) (6 marks) Let a < b. Prove the following theorem using any method you wish:
Theorem: If {x_n} is a monotonically increasing sequence of points in (a, b], then {x_n} converges to a point of (a, b].

Answer: Let $\{x_n\}$ be a monotonically increasing sequence of points with $x_n \in (a, b]$ for all n. By a theorem from the lectures, every monotonically increasing sequence of real numbers which is bounded above converges. The sequence $\{x_n\}$ is bounded above by b, so it converges to a real number x. We must show $x \in (a, b]$. One way to do this is to observe that since $a < x_1 \leq b$, we have $x_n \in [x_1, b]$ for all n. So $\{x_n\}$ is a convergent sequence of points in the closed set $[x_1, b]$ and therefore its limit x must also belong to $[x_1, b] \subset (a, b]$. So $x \in (a, b]$ as required.

- (d) (6 marks) Show that the converse of the theorem in part (c) is false.
 Answer: Recall that the converse of a statement A ⇒ B is the statement B ⇒ A. So the converse states that if {x_n} is a sequence of points in (a, b] which converges to a point of (a, b], then {x_n} is monotonically increasing. But there are lots of sequences which converge to a point of (a, b] but are not monotonically increasing. For example, choose c with a < c < b and choose t ∈ N with c + 1/t < b. Then the sequence {c + 1/t+n} converges to c and is not monotonically increasing.
- (3) (16 marks) Here is an unfinished proof of the following theorem:
 Theorem: If {x_n} and {y_n} are bounded sequences then

$$\liminf\{x_n + y_n\} \ge \liminf\{x_n\} + \liminf\{y_n\}.$$

Proof: Let $n \in \mathbb{N}$. For each t > n, we have $x_t \ge \inf_{k>n} \{x_k\}$ and $y_t \ge \inf_{k>n} \{y_k\}$.

Therefore, $x_t + y_t \ge \inf_{k>n} \{x_k\} + \inf_{k>n} \{y_k\}$. Therefore, the number $r = \inf_{k>n} \{x_k\} + \inf_{k>n} \{y_k\}$ is a lower bound for the set $\{x_t + y_t : t > n\}$...

(a) (9 marks) Finish the proof of the theorem.

Answer: ... and therefore, since $\inf_{t>n} \{x_t + y_t\}$ is the greatest lower bound for the set $\{x_t + y_t : t > n\}$, we have

$$\inf_{t>n} \{x_t + y_t\} \ge r = \inf_{k>n} \{x_k\} + \inf_{k>n} \{y_k\}.$$

This holds for every n and therefore since non-strict inequalities are preserved by limits, we get

$$\lim_{n \to \infty} \inf_{t > n} \{ x_t + y_t \} \ge \lim_{n \to \infty} (\inf_{k > n} \{ x_k \} + \inf_{k > n} \{ y_k \}).$$

(Here, we used the fact that the limits must exist since we know that $\{x_n\}$ and $\{y_n\}$ (and hence $\{x_n+y_n\}$) are bounded sequences and therefore they have a finite lim sup and lim inf.) Now we use the fact that the limit of a sum of convergent sequences is the sum of the limits, to get

$$\lim_{n \to \infty} \inf_{t > n} \{ x_t + y_t \} \ge \lim_{n \to \infty} \inf_{k > n} \{ x_k \} + \lim_{n \to \infty} \inf_{k > n} \{ y_k \}).$$

Finally, we use the theorem that the $\liminf of a \text{ sequence } \{a_n\} \text{ is } \lim_{n \to \infty} \inf_{k>n} \{a_k\},$ to obtain

$$\liminf\{x_n + y_n\} \ge \liminf\{x_n\} + \liminf\{y_n\}.$$

(b) (7 marks) Give an example of bounded sequences {x_n} and {y_n} such that lim inf{x_n + y_n} ≠ lim inf{x_n} + lim inf{y_n}.
Answer: There are many possible answers. For example, let {x_n} be the sequence {(-1)ⁿ} and let {y_n} be the sequence {(-1)ⁿ⁺¹}. Then x_n + y_n = 0 for all n, so lim inf{x_n + y_n} = 0. But lim inf{x_n} = lim inf{y_n} = -1, so

 $0 = \liminf\{x_n + y_n\} \neq \liminf\{x_n\} + \liminf\{y_n\} = -2.$

[END OF PAPER]