MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1. PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)
(1) ($\mathbf{9}$ marks) Let $X=(0,1) \cup(2,3) \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
(a) $3 \in \mathbb{R}$ is a cluster point (a.k.a. limit-point) of X.

Answer: True. For every $1 / n$, the intersection $(3-1 / n, 3+1 / n) \cap X$ is an open set and therefore contains infinitely many points of X. So 3 is a cluster point.
(b) X is a closed set.

Answer: False. Since 3 is a cluster point of X but $3 \notin X, X$ cannot be closed.
(c) The set $f^{-1}(X)$ is open, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function $f(x)=x^{5}+2 x^{3}-9 x+1$. Answer: True. The function f is continuous, since it is a polynomial function. Its domain is \mathbb{R}, which is open. The set X is open. Therefore, $f^{-1}(X)$ is an open set.
(2) ($\mathbf{2 5}$ marks) Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) (3 marks) Define what it means for $\left\{x_{n}\right\}$ to converge to a limit $L \in \mathbb{R}$.

Answer: $\left\{x_{n}\right\}$ converges to L if for all $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that if $n>N$ then $\left|x_{n}-L\right|<\varepsilon$.
(b) ($\mathbf{1 0}$ marks) Show that if $\left\{x_{n}\right\}$ converges to the limits $L \in \mathbb{R}$ and to $M \in \mathbb{R}$ then $L=M$.

Answer: Let $\left\{x_{n}\right\}$ be a sequence which converges to L and to M. Let $\varepsilon>0$. Then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|x_{n}-L\right|<\varepsilon$ and there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|x_{n}-M\right|<\varepsilon$. Therefore by the triangle inequality, if $n>\max \left\{N_{1}, N_{2}\right\}$, we get

$$
\begin{equation*}
|L-M| \leq\left|L-x_{n}\right|+\left|x_{n}-M\right|<2 \epsilon . \tag{*}
\end{equation*}
$$

By the Archimedian property, if $L \neq M$ then there exists $t \in \mathbb{N}$ with $1 / t<$ $|L-M|$. But then if we take $\varepsilon<1 / 2 t$, we get a contradiction to (*). So $L=M$.
(c) (6 marks) Let $a<b$. Prove the following theorem using any method you wish: Theorem: If $\left\{x_{n}\right\}$ is a monotonically increasing sequence of points in $(a, b]$, then $\left\{x_{n}\right\}$ converges to a point of $(a, b]$.
Answer: Let $\left\{x_{n}\right\}$ be a monotonically increasing sequence of points with $x_{n} \in$ ($a, b]$ for all n. By a theorem from the lectures, every monotonically increasing sequence of real numbers which is bounded above converges. The sequence $\left\{x_{n}\right\}$ is bounded above by b, so it converges to a real number x. We must show $x \in(a, b]$.
One way to do this is to observe that since $a<x_{1} \leq b$, we have $x_{n} \in\left[x_{1}, b\right]$ for all n. So $\left\{x_{n}\right\}$ is a convergent sequence of points in the closed set $\left[x_{1}, b\right]$ and therefore its limit x must also belong to $\left[x_{1}, b\right] \subset(a, b]$. So $x \in(a, b]$ as required.
(d) (6 marks) Show that the converse of the theorem in part (c) is false. Answer: Recall that the converse of a statement $A \Rightarrow B$ is the statement $B \Rightarrow A$. So the converse states that if $\left\{x_{n}\right\}$ is a sequence of points in $(a, b]$ which converges to a point of $(a, b]$, then $\left\{x_{n}\right\}$ is monotonically increasing. But there are lots of sequences which converge to a point of ($a, b]$ but are not monotonically increasing. For example, choose c with $a<c<b$ and choose $t \in \mathbb{N}$ with $c+1 / t<b$. Then the sequence $\left\{c+\frac{1}{t+n}\right\}$ converges to c and is not monotonically increasing.
(3) (16 marks) Here is an unfinished proof of the following theorem:

Theorem: If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences then

$$
\liminf \left\{x_{n}+y_{n}\right\} \geq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}
$$

Proof: Let $n \in \mathbb{N}$. For each $t>n$, we have $x_{t} \geq \inf _{k>n}\left\{x_{k}\right\}$ and $y_{t} \geq \inf _{k>n}\left\{y_{k}\right\}$. Therefore, $x_{t}+y_{t} \geq \inf _{k>n}\left\{x_{k}\right\}+\inf _{k>n}\left\{y_{k}\right\}$. Therefore, the number $r=\inf _{k>n}\left\{x_{k}\right\}+$ $\inf _{k>n}\left\{y_{k}\right\}$ is a lower bound for the set $\left\{x_{t}+y_{t}: t>n\right\} \ldots$
(a) (9 marks) Finish the proof of the theorem.

Answer: ... and therefore, since $\inf _{t>n}\left\{x_{t}+y_{t}\right\}$ is the greatest lower bound for the set $\left\{x_{t}+y_{t}: t>n\right\}$, we have

$$
\inf _{t>n}\left\{x_{t}+y_{t}\right\} \geq r=\inf _{k>n}\left\{x_{k}\right\}+\inf _{k>n}\left\{y_{k}\right\} .
$$

This holds for every n and therefore since non-strict inequalities are preserved by limits, we get

$$
\lim _{n \rightarrow \infty} \inf _{t>n}\left\{x_{t}+y_{t}\right\} \geq \lim _{n \rightarrow \infty}\left(\inf _{k>n}\left\{x_{k}\right\}+\inf _{k>n}\left\{y_{k}\right\}\right) .
$$

(Here, we used the fact that the limits must exist since we know that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ (and hence $\left\{x_{n}+y_{n}\right\}$) are bounded sequences and therefore they have a finite limsup and liminf.) Now we use the fact that the limit of a sum of convergent sequences is the sum of the limits, to get

$$
\left.\lim _{n \rightarrow \infty} \inf _{t>n}\left\{x_{t}+y_{t}\right\} \geq \lim _{n \rightarrow \infty} \inf _{k>n}\left\{x_{k}\right\}+\lim _{n \rightarrow \infty} \inf _{k>n}\left\{y_{k}\right\}\right) .
$$

Finally, we use the theorem that the $\lim \inf$ of a sequence $\left\{a_{n}\right\}$ is $\lim _{n \rightarrow \infty} \inf _{k>n}\left\{a_{k}\right\}$, to obtain

$$
\liminf \left\{x_{n}+y_{n}\right\} \geq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}
$$

(b) (7 marks) Give an example of bounded sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\liminf \left\{x_{n}+y_{n}\right\} \neq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}$.
Answer: There are many possible answers. For example, let $\left\{x_{n}\right\}$ be the sequence $\left\{(-1)^{n}\right\}$ and let $\left\{y_{n}\right\}$ be the sequence $\left\{(-1)^{n+1}\right\}$. Then $x_{n}+y_{n}=0$ for all n, so $\liminf \left\{x_{n}+y_{n}\right\}=0$. But $\liminf \left\{x_{n}\right\}=\liminf \left\{y_{n}\right\}=-1$, so

$$
0=\lim \inf \left\{x_{n}+y_{n}\right\} \neq \liminf \left\{x_{n}\right\}+\liminf \left\{y_{n}\right\}=-2 .
$$

[END OF PAPER]

