MATH 413 HONORS INTRODUCTION TO ANALYSIS I
PRELIM 1.
PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)

(1) (9 marks) Let X = (0,1)U(2,3) C R. State whether the following statements about
X are true or false and give a brief reason in each case.
(a) 3 € R is a cluster point (a.k.a. limit-point) of X.
Answer: True. For every 1/n, the intersection (3—1/n,34+1/n)NX is an open
set and therefore contains infinitely many points of X. So 3 is a cluster point.
(b) X is a closed set.
Answer: False. Since 3 is a cluster point of X but 3 ¢ X, X cannot be closed.
(c) Theset f~1(X) is open, where f : R — R is the function f(z) = x°+2x*>—9z+1.
Answer: True. The function f is continuous, since it is a polynomial function.
Its domain is R, which is open. The set X is open. Therefore, f~1(X) is an

open set.

(2) (25 marks) Let {x,} be a sequence of real numbers.

(a) (3 marks) Define what it means for {z,} to converge to a limit L € R.
Answer: {x,} converges to L if for all ¢ > 0 there exists n € N such that if
n > N then |z, — L| < e.

(b) (10 marks) Show that if {z,} converges to the limits L € R and to M € R
then L = M.
Answer: Let {x,} be a sequence which converges to L and to M. Let e > 0.
Then there exists Ny € N such that if n > Ny then |x, — L| < ¢ and there
exists Ny € N such that if n > Ny then |x,, — M| < . Therefore by the triangle
inequality, if n > max{Ny, N}, we get

|L — M| <|L—x,|+ |z, — M| < 2e. ()



By the Archimedian property, if L # M then there exists t € N with 1/t <
|L— M]|. But then if we take e < 1/2t, we get a contradiction to (x). So L = M.
(c) (6 marks) Let a < b. Prove the following theorem using any method you wish:
Theorem: If {z,} is a monotonically increasing sequence of points in (a,bl,
then {x,} converges to a point of (a,b].
Answer: Let {x,} be a monotonically increasing sequence of points with x,, €
(a,b] for all n. By a theorem from the lectures, every monotonically increasing
sequence of real numbers which is bounded above converges. The sequence {x,} is
bounded above by b, so it converges to a real number x. We must show x € (a,b].
One way to do this is to observe that since a < x; < b, we have x, € [x1,b] for
all n. So {x,} is a convergent sequence of points in the closed set [x1,b] and

therefore its limit x must also belong to [x1,b] C (a,b]. So x € (a,b] as required.

(d) (6 marks) Show that the converse of the theorem in part (c) is false.
Answer: Recall that the converse of a statement A = B is the statement B = A.
So the converse states that if {x,} is a sequence of points in (a,b] which converges
to a point of (a,b], then {x,} is monotonically increasing. But there are lots of
sequences which converge to a point of (a, b] but are not monotonically increasing.
For example, choose ¢ with a < ¢ < b and choose t € N with ¢ + 1/t < b. Then

the sequence {c + t+_n} converges to ¢ and is not monotonically increasing.

(3) (16 marks) Here is an unfinished proof of the following theorem:

Theorem: If {x,} and {y,} are bounded sequences then
liminf{x, + y,} > liminf{z,} + liminf{y, }.

Proof: Let n € N. For each ¢t > n, we have x; > infy~,{x;} and y, > infp~,. {yx}.

Therefore, z;+y; > infy~, {xy}+infr~, {yr}. Therefore, the number r = infy~, {x;}+
infy~,{yr} is a lower bound for the set {x; +y; : t > n}...
(a) (9 marks) Finish the proof of the theorem.



Answer: ... and therefore, since infi~, {x; + y;} is the greatest lower bound for

the set {x; + vy : t > n}, we have
inf > r = inf inf :
e 2= e+ it

This holds for every n and therefore since non-strict inequalities are preserved

by limats, we get

lim inf{x; +y} > lim (]icnf {zp} + ,icnf {ur}).
n—oo kK>n >n

n—oo t>n
(Here, we used the fact that the limits must exist since we know that {z,} and
{yn} (and hence {x,+y,}) are bounded sequences and therefore they have a finite
limsup and liminf.) Now we use the fact that the limit of a sum of convergent
sequences is the sum of the limits, to get
25 e = Doy fuleed + i Joltued)
Finally, we use the theorem that the iminf of a sequence {a,} is lim,, .o infg~,{ax},

to obtain
liminf{z, +y,} > liminf{z,} 4+ liminf{y,}.

(7 marks) Give an example of bounded sequences {z,} and {y,} such that
liminf{z, + y,} # liminf{z, } 4+ liminf{y, }.

Answer: There are many possible answers. For example, let {x,} be the sequence
{(=1)"} and let {y,} be the sequence {(—1)"*1}. Then x, +y, = 0 for all n, so
liminf{z, + y,} = 0. Butliminf{z,} = liminf{y,} = —1, so

0 = liminf{z, + y,} # liminf{z,} + liminf{y,} = —2.

[END OF PAPER]



