
MATH 413 HONORS INTRODUCTION TO ANALYSIS I
PRELIM 1.
PRACTICE

(Note: attempt all questions. You have 70 minutes. Good luck!)

(1) (9 marks) Let X = (0, 1)∪(2, 3) ⊂ R. State whether the following statements about

X are true or false and give a brief reason in each case.

(a) 3 ∈ R is a cluster point (a.k.a. limit-point) of X.

Answer: True. For every 1/n, the intersection (3− 1/n, 3+1/n)∩X is an open

set and therefore contains infinitely many points of X. So 3 is a cluster point.

(b) X is a closed set.

Answer: False. Since 3 is a cluster point of X but 3 /∈ X, X cannot be closed.

(c) The set f−1(X) is open, where f : R→ R is the function f(x) = x5+2x3−9x+1.

Answer: True. The function f is continuous, since it is a polynomial function.

Its domain is R, which is open. The set X is open. Therefore, f−1(X) is an

open set.

(2) (25 marks) Let {xn} be a sequence of real numbers.

(a) (3 marks) Define what it means for {xn} to converge to a limit L ∈ R.

Answer: {xn} converges to L if for all ε > 0 there exists n ∈ N such that if

n > N then |xn − L| < ε.

(b) (10 marks) Show that if {xn} converges to the limits L ∈ R and to M ∈ R
then L = M .

Answer: Let {xn} be a sequence which converges to L and to M . Let ε > 0.

Then there exists N1 ∈ N such that if n > N1 then |xn − L| < ε and there

exists N2 ∈ N such that if n > N2 then |xn −M | < ε. Therefore by the triangle

inequality, if n > max{N1, N2}, we get

|L−M | ≤ |L− xn|+ |xn −M | < 2ε. (∗)



By the Archimedian property, if L 6= M then there exists t ∈ N with 1/t <

|L−M |. But then if we take ε < 1/2t, we get a contradiction to (∗). So L = M .

(c) (6 marks) Let a < b. Prove the following theorem using any method you wish:

Theorem: If {xn} is a monotonically increasing sequence of points in (a, b],

then {xn} converges to a point of (a, b].

Answer: Let {xn} be a monotonically increasing sequence of points with xn ∈
(a, b] for all n. By a theorem from the lectures, every monotonically increasing

sequence of real numbers which is bounded above converges. The sequence {xn} is

bounded above by b, so it converges to a real number x. We must show x ∈ (a, b].

One way to do this is to observe that since a < x1 ≤ b, we have xn ∈ [x1, b] for

all n. So {xn} is a convergent sequence of points in the closed set [x1, b] and

therefore its limit x must also belong to [x1, b] ⊂ (a, b]. So x ∈ (a, b] as required.

(d) (6 marks) Show that the converse of the theorem in part (c) is false.

Answer: Recall that the converse of a statement A ⇒ B is the statement B ⇒ A.

So the converse states that if {xn} is a sequence of points in (a, b] which converges

to a point of (a, b], then {xn} is monotonically increasing. But there are lots of

sequences which converge to a point of (a, b] but are not monotonically increasing.

For example, choose c with a < c < b and choose t ∈ N with c + 1/t < b. Then

the sequence {c + 1
t+n
} converges to c and is not monotonically increasing.

(3) (16 marks) Here is an unfinished proof of the following theorem:

Theorem: If {xn} and {yn} are bounded sequences then

lim inf{xn + yn} ≥ lim inf{xn}+ lim inf{yn}.

Proof: Let n ∈ N. For each t > n, we have xt ≥ infk>n{xk} and yt ≥ infk>n{yk}.

Therefore, xt+yt ≥ infk>n{xk}+infk>n{yk}. Therefore, the number r = infk>n{xk}+
infk>n{yk} is a lower bound for the set {xt + yt : t > n}. . .
(a) (9 marks) Finish the proof of the theorem.



Answer: . . . and therefore, since inft>n{xt + yt} is the greatest lower bound for

the set {xt + yt : t > n}, we have

inf
t>n
{xt + yt} ≥ r = inf

k>n
{xk}+ inf

k>n
{yk}.

This holds for every n and therefore since non-strict inequalities are preserved

by limits, we get

lim
n→∞

inf
t>n
{xt + yt} ≥ lim

n→∞
(inf
k>n
{xk}+ inf

k>n
{yk}).

(Here, we used the fact that the limits must exist since we know that {xn} and

{yn} (and hence {xn+yn}) are bounded sequences and therefore they have a finite

lim sup and lim inf.) Now we use the fact that the limit of a sum of convergent

sequences is the sum of the limits, to get

lim
n→∞

inf
t>n
{xt + yt} ≥ lim

n→∞
inf
k>n
{xk}+ lim

n→∞
inf
k>n
{yk}).

Finally, we use the theorem that the lim inf of a sequence {an} is limn→∞ infk>n{ak},
to obtain

lim inf{xn + yn} ≥ lim inf{xn}+ lim inf{yn}.

(b) (7 marks) Give an example of bounded sequences {xn} and {yn} such that

lim inf{xn + yn} 6= lim inf{xn}+ lim inf{yn}.
Answer: There are many possible answers. For example, let {xn} be the sequence

{(−1)n} and let {yn} be the sequence {(−1)n+1}. Then xn + yn = 0 for all n, so

lim inf{xn + yn} = 0. But lim inf{xn} = lim inf{yn} = −1, so

0 = lim inf{xn + yn} 6= lim inf{xn}+ lim inf{yn} = −2.

[END OF PAPER]


