MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1.
 TUESDAY 11 MARCH 2008

(Note: attempt all questions. You have 70 minutes. Good luck!)
(1) (9 marks) Let $X=[0,1] \cup\{3\} \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
(a) X is bounded.
(b) X can be written as an intersection of countably many open sets.
(c) There is a point $x_{0} \in X$ at which the function $f(x)=x^{4}-3 x^{2}+4$ achieves its infimum on X (that is, $f\left(x_{0}\right)=\inf \{f(x): x \in X\}$).
(2) ($\mathbf{2 5}$ marks) Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) (3 marks) Define what it means for $\left\{x_{n}\right\}$ to converge to a limit $L \in \mathbb{R}$.
(b) (10 marks) Show that if $\left\{x_{n}\right\}$ converges, then $\left\{x_{n}\right\}$ is bounded.
(c) (6 marks) Prove the following theorem using any method you wish:

Theorem: If $\left\{x_{n}\right\}$ converges to L then $\left\{x_{n}^{4}-3 x_{n}^{2}+4\right\}$ converges to $L^{4}-3 L^{2}+4$.
(d) (6 marks) Show that the converse of the theorem in part (c) is false.
(3) (16 marks) Sally took an analysis exam and in the final question was asked to prove the following theorem:

Theorem. If $s=\sup \left\{x \in \mathbb{Q}: x^{2}<2\right\}$ then $s^{2} \geq 2$.

Her proof began as follows:
Proof: Suppose for a contradiction that $s^{2}<2$. Let $\varepsilon=2-s^{2}>0$. By the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $\frac{2 s}{n}<\varepsilon / 2$. Choose such an n which is large enough so that $\frac{1}{n^{2}}<\varepsilon / 2$. Then $\left(s+\frac{1}{n}\right)^{2}=s^{2}+\frac{2 s}{n}+\frac{1}{n^{2}}<s^{2}+\varepsilon \ldots$
(a) ($\mathbf{9}$ marks) Unfortunately, Sally ran out of time here. Finish her proof of the theorem.
(b) (7 marks) Prove that $s^{2}=2$. [END OF PAPER]

