MATH 413 HONORS INTRODUCTION TO ANALYSIS I PRELIM 1. SOLUTIONS

(Note: attempt all questions. You have 70 minutes. Good luck!)

- (1) (9 marks) Let $X = [0, 1] \cup \{3\} \subset \mathbb{R}$. State whether the following statements about X are true or false and give a brief reason in each case.
 - (a) X is bounded.

Answer: True. For all $x \in X$, $|x| \leq 3$, so X is a bounded set.

(b) X can be written as an intersection of countably many open sets. Answer: True. For example,

$$X = \bigcap_{n=1}^{\infty} \left((-1/n, 1+1/n) \cup (3-1/n, 3+1/n) \right).$$

- (c) There is a point x₀ ∈ X at which the function f(x) = x⁴ 3x² + 4 achieves its infimum on X (that is, f(x₀) = inf{f(x) : x ∈ X}).
 Answer: True. Since X is a closed and bounded set, it is compact. The given function f is continuous, being a polynomial function, and so f achieves its
- (2) (25 marks) Let $\{x_n\}$ be a sequence of real numbers.

infimum on X, by a theorem from class.

- (a) (3 marks) Define what it means for {x_n} to converge to a limit L ∈ ℝ.
 Answer: {x_n} converges to L if for all ε > 0 there exists n ∈ N such that if n > N then |x_n L| < ε.
- (b) (10 marks) Show that if $\{x_n\}$ converges, then $\{x_n\}$ is bounded.
 - Answer: Suppose $\{x_n\}$ is a convergent sequence of real numbers. We need to show that there is a real number B such that $|x_n| \leq B$ for all $n \in \mathbb{N}$. Let $L = \lim_{n \to \infty} x_n$. Taking $\varepsilon = 1$ in the definition of convergence, we see that there exists $N \in \mathbb{N}$ such that if n > N then $|x_n - L| < 1$. By the triangle inequality,

$$|x_n| \le |x_n - L| + |L| \le 1 + |L|$$

if n > N. Now let $B = \max\{|x_1|, |x_2|, \dots, |x_n|, |L| + 1\}$. Then if n < N, we have $|x_n| \le B$, and if n > N then $|x_n| < |L| + 1 \le B$. So for all $n \in \mathbb{N}$, $|x_n| \le B$ and therefore $\{x_n\}$ is a bounded sequence.

- (c) (6 marks) Prove the following theorem using any method you wish:
 Theorem: If {x_n} converges to L then {x⁴_n-3x²_n+4} converges to L⁴-3L²+4.
 Answer: The easiest way to do this is to observe that the function f : ℝ → ℝ
 defined by f(x) = x⁴ + 3x² + 4 is a continuous function. Therefore, if {x_n}
 converges to L then {f(x_n)} converges to f(L), as required.
- (d) (6 marks) Show that the converse of the theorem in part (c) is false.
 Answer: The converse is the statement that if {x_n} is a sequence of real numbers and {x_n⁴ 3x_n² + 4} converges to L⁴ 3L² + 4, then {x_n} converges to L. This is not true. For example, take x_n = -1 for all n, and take L = 1.
- (3) (16 marks) Sally took an analysis exam and in the final question was asked to prove the following theorem:

Theorem. If $s = \sup\{x \in \mathbb{Q} : x^2 < 2\}$ then $s^2 \ge 2$.

Her proof began as follows:

Proof: Suppose for a contradiction that $s^2 < 2$. Let $\varepsilon = 2 - s^2 > 0$. By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{2s}{n} < \varepsilon/2$. Choose such an n which is large enough so that $\frac{1}{n^2} < \varepsilon/2$. Then $\left(s + \frac{1}{n}\right)^2 = s^2 + \frac{2s}{n} + \frac{1}{n^2} < s^2 + \varepsilon \dots$

 (a) (9 marks) Unfortunately, Sally ran out of time here. Finish her proof of the theorem.

Answer: ... = 2. So $(s + \frac{1}{n})^2 < 2$. Now, by a theorem from the assignments, there exists $q \in \mathbb{Q}$ with $s < q < s + \frac{1}{n}$. Therefore, $s^2 < q^2 < (s + \frac{1}{n})^2 < 2$. So $q \in \{x \in \mathbb{Q} : x^2 < 2\}$ and q > s. This contradicts the fact that s is supposed to be an upper bound for the set $\{x \in \mathbb{Q} : x^2 < 2\}$. Therefore, we must have $s^2 \ge 2$.

(b) (7 marks) Prove that $s^2 = 2$.

Answer: One way to do this is to observe that for each $n \in \mathbb{N}$, there must be a point $x_n \in \mathbb{R}$ with $x_n \in \{x \in \mathbb{Q} : x^2 < 2\}$ and $s - \frac{1}{n} < x_n < s$ (indeed, if this were not the case then $s - \frac{1}{n}$ would be an upper bound for $\{x \in \mathbb{Q} : x^2 < 2\}$

which was less than s). The sequence $\{x_n\}$ converges to s, and $x_n^2 < 2$ for all n. Therefore, by properties of limits, we have

$$s^{2} = (\lim_{n \to \infty} x_{n})^{2} = \lim_{n \to \infty} x_{n}^{2} \le 2.$$

So $s^2 \leq 2$, and we have shown above that $s^2 \geq 2$. Therefore, $s^2 = 2$. [END OF PAPER]