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Conjugacy Length Function

G group with length function |·| : G→ [0,∞)
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

CLFG : [0,∞)→ [0,∞) minimal function satisfying:

For x ≥ 0, u, v ∈ G such that |u|+ |v| ≤ x, then

u is conjugate to v ⇐⇒ ∃ g ∈ G such that (i) gug−1 = v and
(ii) |g| ≤ CLFG(x).

Lemma

Γ finitely generated with solvable WP, |·| word length. Then:

Conjugacy problem is solvable ⇐⇒ CLFΓ is recursive.
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Example: free groups

F free group, finite generating set X.

u, v reduced words on X ∪X−1.
e.g. u = aabbbaba−1

v = babababba−1b−1

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u′, v′,
(i) u′ = a−1ua = ab3ab
v′ = (ba)−1vba = babab2

(ii) Cyclically conjugate u′ to v′. (ii) v′ = babu′(bab)−1

The conjugator will be a product
of subwords of u and v. Hence

CLFF (x) ≤ x.

g = bababa−1

v = gug−1
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State of the art

Known results include:

Class of groups CLF(x)

Hyperbolic groups linear Bridson–Haefliger
CAT(0) and biautomatic groups � exp(x) Bridson–Haefliger
RAAGs & special subgroups linear Crisp–Godelle–Wiest
2-Step Nilpotent quadratic Ji–Ogle–Ramsey
π1(M) where M prime 3–manifold � x2 Behrstock–Druţu, S
Free solvable groups � x3 S

Plus:

wreath products (S),
group extensions (S),
relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O’Conner, Bumagin).
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State of the art, continued

Mapping class groups

S connected, oriented surface of genus g and p punctures.

Mod(S) = Homeo+(S)/ ∼

Theorem (Masur-Minsky ’00; Behrstock-Druţu ’11; J. Tao ’13)

CLFMod(S)(x) � x.

Question: What about for arithmetic groups? Or Out(Fn)?
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CLFMod(S)(x) � x.

Question: What about for arithmetic groups? Or Out(Fn)?

Andrew Sale A geometric approach to the conjugacy problem



Semisimple Lie groups

G real semisimple Lie group, finite centre and no compact factors.

dG left-invariant Riemannian metric.

X = G/K associated symmetric space.

Γ < G non-uniform lattice.

e.g. SLn(Z) < SLn(R) and X = SLn(R)/SO(n).

Jordan decomposition:

Each g ∈ G has unique decomposition as

g = su

where:

s is semisimple (translates along an axis in X);

u is unipotent (fixes a point in the boundary of X),

and s, u commute.
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Complete Jordan decomposition

Complete Jordan decomposition:

Each g ∈ G has unique decomposition as

g = kau

where:

k is elliptic

(fixes a point of X — a rotation);

a is real hyperbolic

(translates along an axis, and all parallel
axes);

u is unipotent

(fixes a point in the boundary of X),

and k, a, u commute.
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Conjugacy of real hyperbolic elements

Slope

Let a ∈ G be real hyperbolic. The slope of a tells you the location
of translated geodesics in Weyl chambers. (It lies in ∂X/G).

Theorem (S ’14)

Fix slope ξ. Then there exists dξ, `ξ > 0 such that for a, b ∈ G real
hyperbolic of slope ξ and such that |a| , |b| > dξ

a is conjugate to b ⇐⇒ ∃ g ∈ G such that (i) ga = bg and
(ii) |g| ≤ `ξ(|a|+ |b|).

Note: |a| = dG(1, g)
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Consequence for lattices

Assume G is higher rank and Γ < G is an irreducible lattice.

Corollary

Fix a slope ξ. Then there exists `ξ > 0 such that a, b ∈ Γ, real
hyperbolic of slope ξ, are conjugate if and only if there is a
conjugator g ∈ G such that

|g| ≤ `ξ(|a|Γ + |b|Γ).

Note: |a|Γ is word length.

If ZΓ(a) is virtually Z, then g can be “pushed” to a conjugator γ
in Γ, retaining the linear bound on its length.
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Idea of proof

Theorem

a is conjugate to b ⇐⇒ ∃ g ∈ G such that (i) ga = bg and
(ii) |g| ≤ `ξ(|a|+ |b|).

Assume slope ξ is regular. Then

Min(a) :=

{
x ∈ X | d(x, ax) = inf

y∈X
d(y, ay)

}
and Min(b) are maximal flats.

Lemma

If ga = bg then gMin(a) = Min(b);

if gMin(a) = Min(b) then ∃ k ∈ G fixing a point in Min(a)
such that

(gk)a = b(gk).
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Idea of proof, continued

p

ap

gp

bgp = gap

Min(a)

Min(b)

Minimal distance between the flats is important — corresponds to
length of shortest conjugator.
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Thank you for your attention!
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