A geometric approach to the conjugacy problem for semisimple Lie groups

Andrew Sale

Vanderbilt University

January 11, 2015

 $\label{eq:G} G \mbox{ group with length function } |\cdot|:G \to [0,\infty) \mbox{ (e.g. word length if finitely generated)}.$

 $\label{eq:G} G \text{ group with length function } |\cdot|:G \to [0,\infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\operatorname{CLF}_G: [0,\infty) \to [0,\infty)$ minimal function satisfying:

伺 ト イ ヨ ト イ ヨ ト

 $\label{eq:G} G \text{ group with length function } |\cdot|:G \to [0,\infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

 $u \text{ is conjugate to } v \iff \exists g \in G \text{ such that (i) } gug^{-1} = v \text{ and}$ (ii) $|g| \leq \operatorname{CLF}_G(x)$.

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x\geq 0,\ u,v\in G$ such that $|u|+|v|\leq x,$ then

 $u \text{ is conjugate to } v \iff \exists g \in G \text{ such that (i) } gug^{-1} = v \text{ and}$ (ii) $|g| \leq \operatorname{CLF}_G(x)$.

Lemma

 Γ finitely generated with solvable WP, $|\cdot|$ word length. Then: Conjugacy problem is solvable \iff CLF_{Γ} is recursive.

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$ $v = bababbab^{-1}b^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$ $v = bababba^{-1}b^{-1}$

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(i)
$$u' = a^{-1}ua = ab^3ab$$

 $v' = (ba)^{-1}vba = babab^2$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

- (i) Cyclically reduce u, v to u', v',
- (ii) Cyclically conjugate u' to v'.

e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

(i) $u' = a^{-1}ua = ab^3ab$ $v' = (ba)^{-1}vba = babab^2$ (ii) $v' = babu'(bab)^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(ii) Cyclically conjugate u' to v'.

The conjugator will be a product of subwords of u and v. Hence $\operatorname{CLF}_F(x) < x.$ e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

(i)
$$u' = a^{-1}ua = ab^3ab$$

 $v' = (ba)^{-1}vba = babab^2$
(ii) $v' = babu'(bab)^{-1}$

 $g = \frac{bababa^{-1}}{v}$ $v = gug^{-1}$

Known results include:

Class of groups	$\operatorname{CLF}(x)$	
Hyperbolic groups	linear	Bridson–Haefliger
CAT(0) and biautomatic groups	$\leq \exp(x)$	Bridson–Haefliger
RAAGs & special subgroups	linear	Crisp–Godelle–Wiest
2-Step Nilpotent	quadratic	Ji–Ogle–Ramsey
$\pi_1(M)$ where M prime 3-manifold	$\preceq x^2$	Behrstock–Druțu, S
Free solvable groups	$\preceq x^3$	S
Plus		

```
wreath products (S),
group extensions (S),
relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O'Conner, Bumagin).
```

Mapping class groups

 \boldsymbol{S} connected, oriented surface of genus \boldsymbol{g} and \boldsymbol{p} punctures.

 $Mod(S) = Homeo^+(S) / \sim$

Mapping class groups

 ${\boldsymbol{S}}$ connected, oriented surface of genus ${\boldsymbol{g}}$ and ${\boldsymbol{p}}$ punctures.

 $Mod(S) = Homeo^+(S) / \sim$

Theorem (Masur-Minsky '00; Behrstock-Druțu '11; J. Tao '13)

 $\operatorname{CLF}_{\operatorname{Mod}(S)}(x) \preceq x.$

伺 ト イ ヨ ト イ ヨ ト

Mapping class groups

 ${\boldsymbol{S}}$ connected, oriented surface of genus ${\boldsymbol{g}}$ and ${\boldsymbol{p}}$ punctures.

 $Mod(S) = Homeo^+(S) / \sim$

Theorem (Masur-Minsky '00; Behrstock-Druțu '11; J. Tao '13)

 $\operatorname{CLF}_{\operatorname{Mod}(S)}(x) \preceq x.$

Question: What about for arithmetic groups? Or $Out(F_n)$?

ヨッ イヨッ イヨッ

Semisimple Lie groups

 ${\it G}$ real semisimple Lie group, finite centre and no compact factors.

 d_G left-invariant Riemannian metric.

X = G/K associated symmetric space.

 $\Gamma < G$ non-uniform lattice.

e.g. $\operatorname{SL}_n(\mathbb{Z}) < \operatorname{SL}_n(\mathbb{R})$ and $X = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SO}(n)$.

Semisimple Lie groups

 ${\boldsymbol{G}}$ real semisimple Lie group, finite centre and no compact factors.

 d_G left-invariant Riemannian metric.

X = G/K associated symmetric space.

 $\Gamma < G$ non-uniform lattice.

e.g. $\operatorname{SL}_n(\mathbb{Z}) < \operatorname{SL}_n(\mathbb{R})$ and $X = \operatorname{SL}_n(\mathbb{R}) / \operatorname{SO}(n)$.

Jordan decomposition:

Each $g \in G$ has unique decomposition as

g = su

where:

• s is semisimple (translates along an axis in X);

• *u* is unipotent (fixes a point in the boundary of *X*), and *s*, *u* commute.

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic
- a is real hyperbolic

• *u* is unipotent and *k*, *a*, *u* commute.

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic (fixes a point of X a rotation);
- a is real hyperbolic

• *u* is unipotent and *k*, *a*, *u* commute.

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic (fixes a point of X a rotation);
- *a* is real hyperbolic (translates along an axis, *and all parallel axes*);
- *u* is unipotent

and k, a, u commute.

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic (fixes a point of X a rotation);
- *a* is real hyperbolic (translates along an axis, *and all parallel axes*);
- *u* is unipotent (fixes a point in the boundary of *X*), and *k*, *a*, *u* commute.

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic (fixes a point of X a rotation);
- *a* is **real hyperbolic** (translates along an axis, *and all parallel axes*);

• *u* is unipotent (fixes a point in the boundary of *X*), and *k*, *a*, *u* commute.

Slope

Let $a \in G$ be real hyperbolic. The *slope* of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X/G$).

3 N

Slope

Let $a \in G$ be real hyperbolic. The *slope* of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X/G$).

Theorem (S '14)

Fix slope ξ . Then there exists $d_{\xi}, \ell_{\xi} > 0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|, |b| > d_{\xi}$

Note: $|a| = d_G(1,g)$

Slope

Let $a \in G$ be real hyperbolic. The *slope* of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X/G$).

Theorem (S '14)

Fix slope ξ . Then there exists $d_{\xi}, \ell_{\xi} > 0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|, |b| > d_{\xi}$

$$a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and}$$

(ii) $|g| \le \ell_{\xi}(|a| + |b|)$.

Note: $|a| = d_G(1,g)$

Assume G is higher rank and $\Gamma < G$ is an irreducible lattice.

Corollary

Fix a slope ξ . Then there exists $\ell_{\xi} > 0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ , are conjugate if and only if there is a conjugator $g \in G$ such that

$$|g| \le \ell_{\xi}(|a|_{\Gamma} + |b|_{\Gamma}).$$

Note: $|a|_{\Gamma}$ is word length.

Assume G is higher rank and $\Gamma < G$ is an irreducible lattice.

Corollary

Fix a slope ξ . Then there exists $\ell_{\xi} > 0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ , are conjugate if and only if there is a conjugator $g \in G$ such that

$$|g| \le \ell_{\xi}(|a|_{\Gamma} + |b|_{\Gamma}).$$

Note: $|a|_{\Gamma}$ is word length.

If $Z_{\Gamma}(a)$ is virtually \mathbb{Z} , then g can be "pushed" to a conjugator γ in Γ , retaining the linear bound on its length.

Theorem

 $\begin{array}{ll} a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and} \\ (ii) \ |g| \leq \ell_{\xi}(|a| + |b|). \end{array}$

B b d B b

< A > <

э

Theorem

 $a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and}$ (ii) $|g| \le \ell_{\xi}(|a| + |b|).$

Assume slope ξ is regular. Then

$$\operatorname{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\}$$

and Min(b) are maximal flats.

Theorem

 $a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and}$ (ii) $|g| \le \ell_{\xi}(|a| + |b|).$

Assume slope ξ is regular. Then

$$\operatorname{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\}$$

and Min(b) are maximal flats.

Lemma

• If ga = bg then $g \operatorname{Min}(a) = \operatorname{Min}(b)$;

Theorem

 $\begin{array}{l} a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and} \\ (ii) \ |g| \leq \ell_{\xi}(|a| + |b|). \end{array}$

Assume slope ξ is regular. Then

$$\operatorname{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\}$$

and Min(b) are maximal flats.

Lemma

- If ga = bg then $g \operatorname{Min}(a) = \operatorname{Min}(b)$;
- if g Min(a) = Min(b) then ∃ k ∈ G fixing a point in Min(a) such that

$$(gk)a = b(gk).$$

Idea of proof, continued

э

э

Idea of proof, continued

Minimal distance between the flats is important — corresponds to length of shortest conjugator.

Thank you for your attention!

э