A geometric approach to the conjugacy problem for semisimple Lie groups

Andrew Sale
Vanderbilt University
January 11, 2015

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)
$\mathrm{CLF}_{G}:[0, \infty) \rightarrow[0, \infty)$ minimal function satisfying:

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\mathrm{CLF}_{G}:[0, \infty) \rightarrow[0, \infty)$ minimal function satisfying:
For $x \geq 0, u, v \in G$ such that $|u|+|v| \leq x$, then

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\mathrm{CLF}_{G}:[0, \infty) \rightarrow[0, \infty)$ minimal function satisfying:
For $x \geq 0, u, v \in G$ such that $|u|+|v| \leq x$, then
u is conjugate to $v \Longleftrightarrow \exists g \in G$ such that (i) $g u g^{-1}=v$ and

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\mathrm{CLF}_{G}:[0, \infty) \rightarrow[0, \infty)$ minimal function satisfying:
For $x \geq 0, u, v \in G$ such that $|u|+|v| \leq x$, then
u is conjugate to $v \Longleftrightarrow \exists g \in G$ such that (i) $g u g^{-1}=v$ and
(ii) $|g| \leq \operatorname{CLF}_{G}(x)$.

Conjugacy Length Function

G group with length function $|\cdot|: G \rightarrow[0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\mathrm{CLF}_{G}:[0, \infty) \rightarrow[0, \infty)$ minimal function satisfying:
For $x \geq 0, u, v \in G$ such that $|u|+|v| \leq x$, then
u is conjugate to $v \Longleftrightarrow \exists g \in G$ such that (i) $g u g^{-1}=v$ and
(ii) $|g| \leq \operatorname{CLF}_{G}(x)$.

Lemma

Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:
Conjugacy problem is solvable $\Longleftrightarrow \mathrm{CLF}_{\Gamma}$ is recursive.

Example: free groups

F free group, finite generating set X.
u, v reduced words on $X \cup X^{-1}$.

$$
\begin{aligned}
& \text { e.g. } u=a a b b b a b a^{-1} \\
& v=b a b a b a b b a^{-1} b^{-1}
\end{aligned}
$$

Example: free groups

F free group, finite generating set X.
u, v reduced words on $X \cup X^{-1}$.

$$
\begin{aligned}
& \text { e.g. } u=a a b b b a b a^{-1} \\
& v=b a b a b a b b a^{-1} b^{-1}
\end{aligned}
$$

Algorithm to solve conjugacy problem

Example: free groups

F free group, finite generating set X.
u, v reduced words on $X \cup X^{-1}$.

$$
\begin{aligned}
& \text { e.g. } u=a a b b b a b a^{-1} \\
& v=b a b a b a b b a^{-1} b^{-1}
\end{aligned}
$$

Algorithm to solve conjugacy problem
(i) Cyclically reduce u, v to u^{\prime}, v^{\prime},
(i) $u^{\prime}=a^{-1} u a=a b^{3} a b$
$v^{\prime}=(b a)^{-1} v b a=b a b a b^{2}$

Example: free groups

F free group, finite generating set X.
u, v reduced words on $X \cup X^{-1}$.

$$
\begin{gathered}
\text { e.g. } \quad u=a a b b b a b a^{-1} \\
v=b a b a b a b b a^{-1} b^{-1}
\end{gathered}
$$

Algorithm to solve conjugacy problem
(i) Cyclically reduce u, v to u^{\prime}, v^{\prime},
(i) $u^{\prime}=a^{-1} u a=a b^{3} a b$
$v^{\prime}=(b a)^{-1} v b a=b a b a b^{2}$
(ii) $v^{\prime}=b a b u^{\prime}(b a b)^{-1}$

Example: free groups

F free group, finite generating set X.
u, v reduced words on $X \cup X^{-1}$.

$$
\begin{gathered}
\text { e.g. } \quad u=a a b b b a b a^{-1} \\
v=b a b a b a b b a^{-1} b^{-1}
\end{gathered}
$$

Algorithm to solve conjugacy problem
(i) Cyclically reduce u, v to u^{\prime}, v^{\prime},
(i) $u^{\prime}=a^{-1} u a=a b^{3} a b$
$v^{\prime}=(b a)^{-1} v b a=b a b a b^{2}$
(ii) $v^{\prime}=b a b u^{\prime}(b a b)^{-1}$

The conjugator will be a product of subwords of u and v. Hence

$$
\operatorname{CLF}_{F}(x) \leq x
$$

$$
\begin{array}{r}
g=b a b a b a^{-1} \\
v=g u g^{-1}
\end{array}
$$

Known results include:

Class of groups
Hyperbolic groups
CAT(0) and biautomatic groups
RAAGs \& special subgroups 2-Step Nilpotent
$\pi_{1}(M)$ where M prime 3-manifold Free solvable groups

CLF (x)
linear Bridson-Haefliger
$\preceq \exp (x) \quad$ Bridson-Haefliger
linear Crisp-Godelle-Wiest
quadratic Ji-Ogle-Ramsey
$\preceq x^{2}$
$\preceq x^{3}$

Plus:
wreath products (S),
group extensions (S),
relatively hyperbolic groups (Ji-Ogle-Ramsey, Z. O'Conner, Bumagin).

State of the art, continued

Mapping class groups
S connected, oriented surface of genus g and p punctures.

$$
\operatorname{Mod}(S)=\operatorname{Homeo}^{+}(S) / \sim
$$

State of the art, continued

Mapping class groups
S connected, oriented surface of genus g and p punctures.

$$
\operatorname{Mod}(S)=\operatorname{Homeo}^{+}(S) / \sim
$$

Theorem (Masur-Minsky '00; Behrstock-Druțu '11; J. Tao '13)

$$
\operatorname{CLF}_{\operatorname{Mod}(S)}(x) \preceq x .
$$

State of the art, continued

Mapping class groups
S connected, oriented surface of genus g and p punctures.

$$
\operatorname{Mod}(S)=\operatorname{Homeo}^{+}(S) / \sim
$$

Theorem (Masur-Minsky '00; Behrstock-Druțu '11; J. Tao '13)

$$
\operatorname{CLF}_{\operatorname{Mod}(S)}(x) \preceq x .
$$

Question: What about for arithmetic groups? Or $\operatorname{Out}\left(F_{n}\right)$?

Semisimple Lie groups

G real semisimple Lie group, finite centre and no compact factors. d_{G} left-invariant Riemannian metric.
$X=G / K$ associated symmetric space.
$\Gamma<G$ non-uniform lattice.
e.g. $\mathrm{SL}_{n}(\mathbb{Z})<\mathrm{SL}_{n}(\mathbb{R})$ and $X=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$.

Semisimple Lie groups

G real semisimple Lie group, finite centre and no compact factors. d_{G} left-invariant Riemannian metric.
$X=G / K$ associated symmetric space.
$\Gamma<G$ non-uniform lattice.
e.g. $\mathrm{SL}_{n}(\mathbb{Z})<\mathrm{SL}_{n}(\mathbb{R})$ and $X=\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}(n)$.

Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=s u
$$

where:

- s is semisimple (translates along an axis in X);
- u is unipotent (fixes a point in the boundary of X), and s, u commute.

Complete Jordan decomposition

Complete Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=k a u
$$

where:

- k is elliptic
- a is real hyperbolic
- u is unipotent
and k, a, u commute.

Complete Jordan decomposition

Complete Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=k a u
$$

where:

- k is elliptic (fixes a point of X - a rotation);
- a is real hyperbolic
- u is unipotent
and k, a, u commute.

Complete Jordan decomposition

Complete Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=k a u
$$

where:

- k is elliptic (fixes a point of X - a rotation);
- a is real hyperbolic (translates along an axis, and all parallel axes);
- u is unipotent
and k, a, u commute.

Complete Jordan decomposition

Complete Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=k a u
$$

where:

- k is elliptic (fixes a point of X - a rotation);
- a is real hyperbolic (translates along an axis, and all parallel axes);
- u is unipotent (fixes a point in the boundary of X), and k, a, u commute.

Complete Jordan decomposition

Complete Jordan decomposition:
Each $g \in G$ has unique decomposition as

$$
g=k a u
$$

where:

- k is elliptic (fixes a point of X - a rotation);
- a is real hyperbolic (translates along an axis, and all parallel axes);
- u is unipotent (fixes a point in the boundary of X), and k, a, u commute.

Conjugacy of real hyperbolic elements

Slope
Let $a \in G$ be real hyperbolic. The slope of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X / G$).

Conjugacy of real hyperbolic elements

Slope
Let $a \in G$ be real hyperbolic. The slope of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X / G$).

Theorem (S '14)

Fix slope ξ. Then there exists $d_{\xi}, \ell_{\xi}>0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|,|b|>d_{\xi}$

Note: $|a|=d_{G}(1, g)$

Conjugacy of real hyperbolic elements

Slope
Let $a \in G$ be real hyperbolic. The slope of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X / G$).

Theorem (S '14)

Fix slope ξ. Then there exists $d_{\xi}, \ell_{\xi}>0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|,|b|>d_{\xi}$
a is conjugate to $b \Longleftrightarrow \exists g \in G$ such that (i) $g a=b g$ and

$$
\text { (ii) }|g| \leq \ell_{\xi}(|a|+|b|) \text {. }
$$

Note: $|a|=d_{G}(1, g)$

Consequence for lattices

Assume G is higher rank and $\Gamma<G$ is an irreducible lattice.

Corollary

Fix a slope ξ. Then there exists $\ell_{\xi}>0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ, are conjugate if and only if there is a conjugator $g \in G$ such that

$$
|g| \leq \ell_{\xi}\left(|a|_{\Gamma}+|b|_{\Gamma}\right)
$$

Note: $|a|_{\Gamma}$ is word length.

Consequence for lattices

Assume G is higher rank and $\Gamma<G$ is an irreducible lattice.

Corollary

Fix a slope ξ. Then there exists $\ell_{\xi}>0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ, are conjugate if and only if there is a conjugator $g \in G$ such that

$$
|g| \leq \ell_{\xi}\left(|a|_{\Gamma}+|b|_{\Gamma}\right) .
$$

Note: $|a|_{\Gamma}$ is word length.
If $Z_{\Gamma}(a)$ is virtually \mathbb{Z}, then g can be "pushed" to a conjugator γ in Γ, retaining the linear bound on its length.

Idea of proof

> Theorem $\begin{aligned} & a \text { is conjugate to } b \Longleftrightarrow \exists g \in G \text { such that (i) } g a=b g \text { and } \\ & \qquad \text { (ii) }|g| \leq \ell_{\xi}(|a|+|b|) .\end{aligned}$

Idea of proof

Theorem

a is conjugate to $b \Longleftrightarrow \exists g \in G$ such that (i) $g a=b g$ and (ii) $|g| \leq \ell_{\xi}(|a|+|b|)$.

Assume slope ξ is regular. Then

$$
\operatorname{Min}(a):=\left\{x \in X \mid d(x, a x)=\inf _{y \in X} d(y, a y)\right\}
$$

and $\operatorname{Min}(b)$ are maximal flats.

Idea of proof

Theorem

a is conjugate to $b \Longleftrightarrow \exists g \in G$ such that (i) $g a=b g$ and

$$
\text { (ii) }|g| \leq \ell_{\xi}(|a|+|b|) \text {. }
$$

Assume slope ξ is regular. Then

$$
\operatorname{Min}(a):=\left\{x \in X \mid d(x, a x)=\inf _{y \in X} d(y, a y)\right\}
$$

and $\operatorname{Min}(b)$ are maximal flats.

Lemma

- If $g a=b g$ then $g \operatorname{Min}(a)=\operatorname{Min}(b)$;

Idea of proof

Theorem

a is conjugate to $b \Longleftrightarrow \exists g \in G$ such that (i) $g a=b g$ and

$$
\text { (ii) }|g| \leq \ell_{\xi}(|a|+|b|) \text {. }
$$

Assume slope ξ is regular. Then

$$
\operatorname{Min}(a):=\left\{x \in X \mid d(x, a x)=\inf _{y \in X} d(y, a y)\right\}
$$

and $\operatorname{Min}(b)$ are maximal flats.

Lemma

- If $g a=b g$ then $g \operatorname{Min}(a)=\operatorname{Min}(b)$;
- if $g \operatorname{Min}(a)=\operatorname{Min}(b)$ then $\exists k \in G$ fixing a point in $\operatorname{Min}(a)$ such that

$$
(g k) a=b(g k)
$$

Idea of proof, continued

Idea of proof, continued

Minimal distance between the flats is important - corresponds to length of shortest conjugator.

Thank you for your attention!

