Geometry of the conjugacy problem

Andrew Sale

Vanderbilt University

May 14, 2015

Andrew Sale Geometry of the conjugacy problem

For a group G, we define two functions:

э

For a group G, we define two functions:

- Conjugacy length function
 - Bounds length of short conjugators.

For a group G, we define two functions:

- Conjugacy length function
 - Bounds length of short conjugators.
- Permutation conjugacy length function
 - Inspired by fast solutions to the conjugacy problem in hyerbolic and relatively hyperbolic groups (Bridson-Howie, Epstein-Holt, Bumagin).

 $\label{eq:G} G \text{ group with length function } |\cdot|:G \to [0,\infty)$ (e.g. word length if finitely generated).

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

 $\label{eq:G} G \text{ group with length function } |\cdot|:G \to [0,\infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

A B + A B +

 $\label{eq:G} G \text{ group with length function } |\cdot|:G \to [0,\infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

 $u \text{ is conjugate to } v \iff \exists g \in G \text{ such that (i) } gug^{-1} = v \text{ and}$ (ii) $|g| \leq \operatorname{CLF}_G(x)$.

G group with length function $|\cdot|: G \to [0, \infty)$ (e.g. word length if finitely generated).

Definition (Conjugacy length function)

 $\mathrm{CLF}_G:[0,\infty)\to[0,\infty)$ minimal function satisfying:

For $x \ge 0$, $u, v \in G$ such that $|u| + |v| \le x$, then

 $u \text{ is conjugate to } v \iff \exists g \in G \text{ such that (i) } gug^{-1} = v \text{ and}$ (ii) $|g| \leq \operatorname{CLF}_G(x)$.

Lemma

 Γ finitely generated with solvable WP, $|\cdot|$ word length. Then: Conjugacy problem is solvable \iff CLF_{Γ} is recursive.

・ 同 ト ・ ヨ ト ・ ヨ ト

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$ $v = bababba^{-1}b^{-1}$

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(i)
$$u' = a^{-1}ua = ab^3ab$$

 $v' = (ba)^{-1}vba = babab^2$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

- (i) Cyclically reduce u, v to u', v',
- (ii) Cyclically conjugate u' to v'.

e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

(i) $u' = a^{-1}ua = ab^3ab$ $v' = (ba)^{-1}vba = babab^2$ (ii) $v' = babu'(bab)^{-1}$

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(ii) Cyclically conjugate u' to v'.

The conjugator will be a product of subwords of u and v. Hence $\operatorname{CLF}_F(x) < x.$ e.g. $u = aabbbaba^{-1}$ $v = babababba^{-1}b^{-1}$

(i)
$$u' = a^{-1}ua = ab^3ab$$

 $v' = (ba)^{-1}vba = babab^2$
(ii) $v' = babu'(bab)^{-1}$

 $g = bababa^{-1}$ $v = gug^{-1}$

Known results include:

Class of groups	$\operatorname{CLF}(x)$	
Hyperbolic groups	linear	Lysenok
CAT(0) & biautomatic groups	$\leq \exp(x)$	Bridson–Haefliger
RAAGs & special subgroups	linear	Crisp–Godelle–Wiest
Mapping class groups	linear	Masur–Minsky;
		Behrstock–Druțu; J. Tao.
2-Step Nilpotent	quadratic	Ji–Ogle–Ramsey
$\pi_1(M)$, M prime 3–manifold	$\preceq x^2$	Behrstock–Druțu, S
Free solvable groups	$\preceq x^3$	S
51		

Plus:

wreath products (S), group extensions (S), relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O'Conner, Bumagin).

Permutation conjugacy length function, j/w Y. Antolín.

G group, X (finite) generating set, $\left|\cdot\right|$ word length.

Definition (Permutation conjugacy length function)

 $\operatorname{PCL}_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

Permutation conjugacy length function, j/w Y. Antolín.

G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

 $\operatorname{PCL}_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

For geodesic words u,v on X such that $|u|+|v|\leq n,$ then u,v represent conjugate elements of G iff

G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

 $\operatorname{PCL}_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

For geodesic words u,v on X such that $|u|+|v|\leq n,$ then u,v represent conjugate elements of G iff

 \exists cyclic permutations u', v' of u, v and $g \in G$ such that

(i)
$$gu'g^{-1} = v'$$
 and
(ii) $|g| \leq \operatorname{PCL}_{G,X}(n)$.

G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

 $\operatorname{PCL}_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

For geodesic words u,v on X such that $|u|+|v|\leq n,$ then u,v represent conjugate elements of G iff

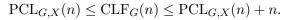
 \exists cyclic permutations u',v' of u,v and $g\in G$ such that

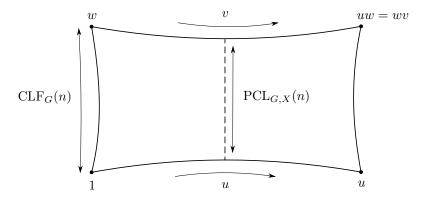
(i)
$$gu'g^{-1} = v'$$
 and
(ii) $|g| \leq \operatorname{PCL}_{G,X}(n)$

e.g. For a free group PCL = 0.

Sublinear PCL

Relationship to CLF:

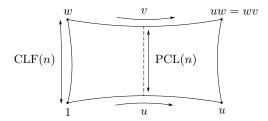




3) 3

Relationship to CLF:

 $\operatorname{PCL}_{G,X}(n) \le \operatorname{CLF}_G(n) \le \operatorname{PCL}_{G,X}(n) + n.$



If $PCL_{G,X}(n) \le K$ for all n, then conjugacy problem is almost as fast as word problem: (on input geodesic words).

Apply the word problem n^2 times, on words of length n + 2K, where n is the sum of the length of the input words.

Theorem (Antolín–S '15)

Let G be hyperbolic relative to a finite collection of subgroups $\{H_{\omega}\}_{\omega\in\Omega}$. There exists a finite generating set X such that $\langle X \cap H_{\omega} \rangle = H_{\omega}$ and

$$\operatorname{PCL}_{G,X}(n) \preceq \max_{\omega \in \Omega} \Big\{ \operatorname{PCL}_{H_{\omega}, X \cap H_{\omega}}(n) \Big\}.$$

Theorem (Antolín–S '15)

Let G be hyperbolic relative to a finite collection of subgroups $\{H_{\omega}\}_{\omega\in\Omega}$. There exists a finite generating set X such that $\langle X \cap H_{\omega} \rangle = H_{\omega}$ and

$$\operatorname{PCL}_{G,X}(n) \preceq \max_{\omega \in \Omega} \Big\{ \operatorname{PCL}_{H_{\omega}, X \cap H_{\omega}}(n) \Big\}.$$

In particular, hyperbolic groups and groups that are hyperbolic relative to abelian groups will all have PCL bounded by a constant.

Suppose $PCL_{G,X}(n) \leq K$.

Operational Potentially fast algorithm to solve the conjugacy problem.

Suppose $PCL_{G,X}(n) \leq K$.

- **Operational Potentially fast algorithm** to solve the conjugacy problem.
- Exponential conjugacy growth rate controlled by exponential growth rate.

Suppose $PCL_{G,X}(n) \leq K$.

- **Operational Potentially fast algorithm** to solve the conjugacy problem.
- Exponential conjugacy growth rate controlled by exponential growth rate.
- (Ciobanu-Hermiller-Holt-Rees)
 ConjGeo(G, X) is a regular language whenever either
 - $\operatorname{Geo}(G,X)$ has a biautomatic structure,
 - $\bullet \ (G,X)$ has falsification by fellow traveller property.

$PCL_{G,X}(n) < K$ for hyperbolic groups

G hyperbolic. Take u, v geodesic words, conjugate in *G*. Cyclic permutations $u' = u_2u_1$, $v' = v_2v_1$ and v'w = wu' with |w| minimal. Let w_i be prefix of w.

$PCL_{G,X}(n) < K$ for hyperbolic groups

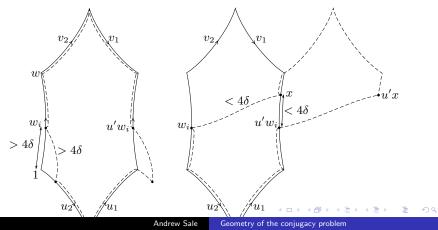
G hyperbolic. Take u, v geodesic words, conjugate in *G*. Cyclic permutations $u' = u_2u_1$, $v' = v_2v_1$ and v'w = wu' with |w| minimal. Let w_i be prefix of w.

Claim: If $4\delta < i < |w| - 4\delta$ then $d(w_i, u'w_i) < 8\delta$. Use that geodesic hexagons are 4δ -thin.

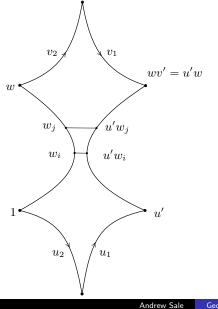
$PCL_{G,X}(n) < K$ for hyperbolic groups

G hyperbolic. Take u, v geodesic words, conjugate in *G*. Cyclic permutations $u' = u_2u_1$, $v' = v_2v_1$ and v'w = wu' with |w| minimal. Let w_i be prefix of w.

Claim: If $4\delta < i < |w| - 4\delta$ then $d(w_i, u'w_i) < 8\delta$. Use that geodesic hexagons are 4δ -thin.



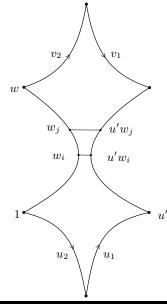
$PCL_{G,X}(n) < K$ for hyperbolic groups, cont.



ale Geometry of the conjugacy problem

э

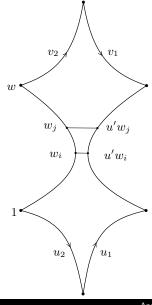
$PCL_{G,X}(n) < K$ for hyperbolic groups, cont.



If $w_j^{-1}v'w_j = w_i^{-1}v'w_j$ then cut middle chunk out of diagram: obtains shorter conjugator.

$PCL_{G,X}(n) < K$ for hyperbolic groups, cont.

u'



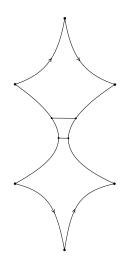
If $w_j^{-1}v'w_j = w_i^{-1}v'w_j$ then cut middle chunk out of diagram: obtains shorter conjugator.

So $w_i^{-1}v'w_i$ are distinct. $\implies |w| \le 8\delta + B_X(8\delta).$ $\implies \operatorname{PCL}_{G,X}(n) \le 8\delta + B_X(8\delta).$ Yago says:

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Yago says: "Please don't feed the hexagons!!"



Thank you for your attention!