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For a group G, we define two functions:

1 Conjugacy length function

Bounds length of short conjugators.

2 Permutation conjugacy length function

Inspired by fast solutions to the conjugacy problem in hyerbolic
and relatively hyperbolic groups (Bridson–Howie,
Epstein–Holt, Bumagin).
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Conjugacy Length Function

G group with length function |·| : G→ [0,∞)
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

CLFG : [0,∞)→ [0,∞) minimal function satisfying:

For x ≥ 0, u, v ∈ G such that |u|+ |v| ≤ x, then

u is conjugate to v ⇐⇒ ∃ g ∈ G such that (i) gug−1 = v and
(ii) |g| ≤ CLFG(x).

Lemma

Γ finitely generated with solvable WP, |·| word length. Then:

Conjugacy problem is solvable ⇐⇒ CLFΓ is recursive.
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Example: free groups

F free group, finite generating set X.

u, v reduced words on X ∪X−1.
e.g. u = aabbbaba−1

v = babababba−1b−1

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u′, v′,
(i) u′ = a−1ua = ab3ab
v′ = (ba)−1vba = babab2

(ii) Cyclically conjugate u′ to v′. (ii) v′ = babu′(bab)−1

The conjugator will be a product
of subwords of u and v. Hence

CLFF (x) ≤ x.

g = bababa−1

v = gug−1
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State of the art

Known results include:

Class of groups CLF(x)

Hyperbolic groups linear Lysenok
CAT(0) & biautomatic groups � exp(x) Bridson–Haefliger
RAAGs & special subgroups linear Crisp–Godelle–Wiest
Mapping class groups linear Masur–Minsky;

Behrstock–Druţu; J. Tao.
2-Step Nilpotent quadratic Ji–Ogle–Ramsey
π1(M), M prime 3–manifold � x2 Behrstock–Druţu, S
Free solvable groups � x3 S

Plus:

wreath products (S),
group extensions (S),
relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O’Conner, Bumagin).
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Permutation conjugacy length function, j/w Y. Antoĺın.

G group, X (finite) generating set, |·| word length.

Definition (Permutation conjugacy length function)

PCLG,X : N→ N minimal function satisfying:

For geodesic words u, v on X such that |u|+ |v| ≤ n, then u, v
represent conjugate elements of G iff

∃ cyclic permutations u′, v′ of u, v and g ∈ G such that

(i) gu′g−1 = v′ and

(ii) |g| ≤ PCLG,X(n).

e.g. For a free group PCL = 0.
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Sublinear PCL

Relationship to CLF:

PCLG,X(n) ≤ CLFG(n) ≤ PCLG,X(n) + n.

1

w v

u u

uw = wv

CLFG(n) PCLG,X(n)

If PCLG,X(n) ≤ K for all n, then conjugacy problem is almost as
fast as word problem: (on input geodesic words).

Apply the word problem n2 times, on words of length n+ 2K,
where n is the sum of the length of the input words.
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Relatively hyperbolic groups

Theorem (Antoĺın–S ’15)

Let G be hyperbolic relative to a finite collection of subgroups
{Hω}ω∈Ω. There exists a finite generating set X such that
〈X ∩Hω〉 = Hω and

PCLG,X(n) � max
ω∈Ω

{
PCLHω ,X∩Hω(n)

}
.

In particular, hyperbolic groups and groups that are hyperbolic
relative to abelian groups will all have PCL bounded by a constant.
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Consequences of constant PCL

Suppose PCLG,X(n) ≤ K.

1 Potentially fast algorithm to solve the conjugacy problem.

2 Exponential conjugacy growth rate controlled by exponential
growth rate.

3 (Ciobanu-Hermiller-Holt-Rees)
ConjGeo(G,X) is a regular language whenever either

Geo(G,X) has a biautomatic structure,
(G,X) has falsification by fellow traveller property.
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PCLG,X(n) < K for hyperbolic groups

G hyperbolic. Take u, v geodesic words, conjugate in G.
Cyclic permutations u′ = u2u1, v′ = v2v1 and v′w = wu′ with |w|
minimal. Let wi be prefix of w.

Claim: If 4δ < i < |w| − 4δ then d(wi, u
′wi) < 8δ.

Use that geodesic hexagons are 4δ–thin.

1

w

v2 v1

wi u′wi

> 4δ
> 4δ

u2 u1

v2 v1

wi u′wi

x u′x< 4δ
< 4δ

u2 u1
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PCLG,X(n) < K for hyperbolic groups, cont.

v2 v1

wi u′wi

wj u′wj

1

w

u2 u1

u′

wv′ = u′w

If w−1
j v′wj = w−1

i v′wj then cut
middle chunk out of diagram:
obtains shorter conjugator.

So w−1
i v′wi are distinct.

=⇒ |w| ≤ 8δ +BX(8δ).

=⇒ PCLG,X(n) ≤ 8δ +BX(8δ).
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Yago says:

“Please don’t feed the hexagons!!”

Thank you for your attention!
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