For a group G, we define two functions:
For a group G, we define two functions:

1. **Conjugacy length function**
 - Bounds length of short conjugators.

2. **Permutation conjugacy length function**
 - Inspired by fast solutions to the conjugacy problem in hyperbolic and relatively hyperbolic groups (Bridson–Howie, Epstein–Holt, Bumagin).

Andrew Sale
Geometry of the conjugacy problem
For a group G, we define two functions:

1. Conjugacy length function
 - Bounds length of short conjugators.

2. Permutation conjugacy length function
 - Inspired by fast solutions to the conjugacy problem in hyperbolic and relatively hyperbolic groups (Bridson–Howie, Epstein–Holt, Bumagin).
Conjugacy Length Function

G group with length function $|\cdot| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

CLF$_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then u is conjugate to v \iff $\exists g \in G$ such that (i) $gug^{-1} = v$ and (ii) $|g| \leq \text{CLF}_G(x)$.

Lemma

If Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:

Conjugacy problem is solvable \iff CLF$_\Gamma$ is recursive.

Andrew Sale
Geometry of the conjugacy problem
G group with length function $|\cdot| : G \to [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \to [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u,v \in G$ such that $|u| + |v| \leq x$, then u is conjugate to v $\iff \exists g \in G$ such that (i) $gug^{-1} = v$ and (ii) $|g| \leq \text{CLF}_G(x)$.

Lemma

Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:

Conjugacy problem is solvable $\iff \text{CLF}_\Gamma$ is recursive.
Conjugacy Length Function

A group \(G \) with length function \(|\cdot| : G \rightarrow [0, \infty) \)
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

\(\text{CLF}_G : [0, \infty) \rightarrow [0, \infty) \) minimal function satisfying:

For \(x \geq 0, u, v \in G \) such that \(|u| + |v| \leq x \), then

\(u \) is conjugate to \(v \) \(\iff \exists g \in G \) such that

(i) \(gug^{-1} = v \) and

(ii) \(|g| \leq \text{CLF}_G(x) \).
Conjugacy Length Function

A group G with length function $|·| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

CLF$_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and...
Conjugacy Length Function

G group with length function $|\cdot| : G \to [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \to [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then

u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and

(ii) $|g| \leq \text{CLF}_G(x)$.

Lemma

If Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:

Conjugacy problem is solvable \iff CLF_Γ is recursive.
Conjugacy Length Function

G group with length function $\cdot : G \to [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \to [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then

u is conjugate to $v \iff \exists g \in G$ such that

(i) $gug^{-1} = v$

(ii) $|g| \leq \text{CLF}_G(x)$.

Lemma

Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:

Conjugacy problem is solvable $\iff \text{CLF}_\Gamma$ is recursive.
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$
F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

\[u' = a^{-1}ua = ab^3ab \]
\[v' = (ba)^{-1}vba = babab^2 \]
Example: free groups

\(F \) free group, finite generating set \(X \).

\(u, v \) reduced words on \(X \cup X^{-1} \).

Algorithm to solve conjugacy problem

(i) Cyclically reduce \(u, v \) to \(u', v' \),

(ii) Cyclically conjugate \(u' \) to \(v' \).

e.g. \(u = aabbbaba^{-1} \)
\(v = babababba^{-1}b^{-1} \)

(i) \(u' = a^{-1}ua = ab^3ab \)
\(v' = (ba)^{-1}vba = babab^2 \)

(ii) \(v' = babu'(bab)^{-1} \)
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(ii) Cyclically conjugate u' to v'.

The conjugator will be a product of subwords of u and v. Hence

$$\text{CLF}_F(x) \leq x.$$
State of the art

Known results include:

<table>
<thead>
<tr>
<th>Class of groups</th>
<th>CLF(x)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperbolic groups</td>
<td>linear</td>
<td>Lysenok</td>
</tr>
<tr>
<td>CAT(0) & biautomatic groups</td>
<td>$\leq \exp(x)$</td>
<td>Bridson–Haefliger</td>
</tr>
<tr>
<td>RAAGs & special subgroups</td>
<td>linear</td>
<td>Crisp–Godelle–Wiest</td>
</tr>
<tr>
<td>Mapping class groups</td>
<td>linear</td>
<td>Masur–Minsky; Behrstock–Druţu; J. Tao.</td>
</tr>
<tr>
<td>2-Step Nilpotent</td>
<td>quadratic</td>
<td>Ji–Ogle–Ramsey</td>
</tr>
<tr>
<td>$\pi_1(M)$, M prime 3–manifold</td>
<td>$\leq x^2$</td>
<td>Behrstock–Druţu, S</td>
</tr>
<tr>
<td>Free solvable groups</td>
<td>$\leq x^3$</td>
<td>S</td>
</tr>
</tbody>
</table>

Plus:

- wreath products (S),
- group extensions (S),
- relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O’Conner, Bumagin).
G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

$PCL_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

(i) For geodesic words u, v on X such that $|u| + |v| \leq n$, then u, v represent conjugate elements of G iff there exist cyclic permutations u', v' of u, v and $g \in G$ such that

$$gu'g^{-1} = v' \quad \text{and} \quad |g| \leq PCL_{G,X}(n).$$

(ii) For a free group $PCL = 0$.

Andrew Sale

Geometry of the conjugacy problem
G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

\[\text{PCL}_{G,X} : \mathbb{N} \to \mathbb{N} \text{ minimal function satisfying:} \]

For geodesic words u, v on X such that $|u| + |v| \leq n$, then u, v represent conjugate elements of G iff

\[(i) \quad gu'g^{-1} = v' \]
\[(ii) \quad |g| \leq \text{PCL}_{G,X}(n) \]
G group, X (finite) generating set, $|\cdot|$ word length.

Definition (Permutation conjugacy length function)

$\text{PCL}_{G,X} : \mathbb{N} \to \mathbb{N}$ minimal function satisfying:

For geodesic words u, v on X such that $|u| + |v| \leq n$, then u, v represent conjugate elements of G iff

\exists cyclic permutations u', v' of u, v and $g \in G$ such that

(i) $gu'g^{-1} = v'$ and

(ii) $|g| \leq \text{PCL}_{G,X}(n)$.
Definition (Permutation conjugacy length function)

\[\text{PCL}_{G,X} : \mathbb{N} \to \mathbb{N} \] minimal function satisfying:

For geodesic words \(u, v \) on \(X \) such that \(|u| + |v| \leq n \), then \(u, v \) represent conjugate elements of \(G \) iff

\[\exists \ \text{cyclic permutations} \ u', v' \ \text{of} \ u, v \ \text{and} \ g \in G \ \text{such that} \]

\[
\begin{align*}
\text{(i)} \ & gu'g^{-1} = v' \ \text{and} \\
\text{(ii)} \ & |g| \leq \text{PCL}_{G,X}(n).
\end{align*}
\]

e.g. For a free group \(\text{PCL} = 0 \).
Relationship to CLF:

\[PCL_{G,X}(n) \leq CLF_G(n) \leq PCL_{G,X}(n) + n. \]
Relationship to CLF:

\[\text{PCL}_{G,X}(n) \leq \text{CLF}_G(n) \leq \text{PCL}_{G,X}(n) + n. \]

If \(\text{PCL}_{G,X}(n) \leq K \) for all \(n \), then conjugacy problem is almost as fast as word problem: (on input geodesic words).

Apply the word problem \(n^2 \) times, on words of length \(n + 2K \), where \(n \) is the sum of the length of the input words.
Theorem (Antolín–S ’15)

Let G be hyperbolic relative to a finite collection of subgroups \{${H_\omega}\}_{\omega \in \Omega}$. There exists a finite generating set X such that $\langle X \cap H_\omega \rangle = H_\omega$ and

$$\text{PCL}_{G,X}(n) \leq \max_{\omega \in \Omega} \left\{ \text{PCL}_{H_\omega,X \cap H_\omega}(n) \right\}.$$
Relatively hyperbolic groups

Theorem (Antolín–S ’15)

Let G be hyperbolic relative to a finite collection of subgroups $\{H_\omega\}_{\omega \in \Omega}$. There exists a finite generating set X such that $\langle X \cap H_\omega \rangle = H_\omega$ and

$$PCL_{G,X}(n) \preceq \max_{\omega \in \Omega} \left\{ PCL_{H_\omega,X \cap H_\omega}(n) \right\}. $$

In particular, hyperbolic groups and groups that are hyperbolic relative to abelian groups will all have PCL bounded by a constant.
Suppose \(\text{PCL}_{G,X}(n) \leq K \).

1. **Potentially fast algorithm** to solve the conjugacy problem.
Suppose $\text{PCL}_{G,X}(n) \leq K$.

1. **Potentially fast algorithm** to solve the conjugacy problem.

2. Exponential conjugacy growth rate controlled by exponential growth rate.
Suppose $\text{PCL}_{G,X}(n) \leq K$.

1. **Potentially fast algorithm** to solve the conjugacy problem.

2. Exponential conjugacy growth rate controlled by exponential growth rate.

3. (Ciobanu-Hermiller-Holt-Rees) $\text{ConjGeo}(G, X)$ is a regular language whenever either

 - $\text{Geo}(G, X)$ has a biautomatic structure,
 - (G, X) has falsification by fellow traveller property.
G hyperbolic. Take u, v geodesic words, conjugate in G. Cyclic permutations $u' = u_2u_1$, $v' = v_2v_1$ and $v'w = wu'$ with $|w|$ minimal. Let w_i be prefix of w.

Claim: If $4\delta < i < |w| - 4\delta$ then $d(w_i, u'w_i) < 8\delta$. Use that geodesic hexagons are 4δ–thin.
$PCL_{G,X}(n) < K$ for hyperbolic groups

G hyperbolic. Take u,v geodesic words, conjugate in G. Cyclic permutations $u' = u_2u_1$, $v' = v_2v_1$ and $v'w = wu'$ with $|w|$ minimal. Let w_i be prefix of w.

Claim: If $4\delta < i < |w| - 4\delta$ then $d(w_i, u'w_i) < 8\delta$.

Use that geodesic hexagons are 4δ–thin.
G hyperbolic. Take u, v geodesic words, conjugate in G. Cyclic permutations $u' = u_2 u_1$, $v' = v_2 v_1$ and $v'w = wu'$ with $|w|$ minimal. Let w_i be prefix of w.

Claim: If $4\delta < i < |w| - 4\delta$ then $d(w_i, u'w_i) < 8\delta$.

Use that geodesic hexagons are 4δ–thin.
If $w_{j-1}v_{i+1}w_j = w_{i-1}v_{i+1}w_j$ then cut middle chunk out of diagram:

obtains shorter conjugator.

So $w_{j-1}v_{i+1}w_j$ are distinct.

$\Rightarrow |w| \leq 8\delta + B_{X}(8\delta)$.

$\Rightarrow PCL_{G,X}(n) \leq 8\delta + B_{X}(8\delta)$.
If \(w_j^{-1} v' w_j = w_i^{-1} v' w_j \) then cut middle chunk out of diagram: obtains shorter conjugator.
If $w_j^{-1}v'w_j = w_i^{-1}v'w_j$ then cut middle chunk out of diagram: obtains shorter conjugator.

So $w_i^{-1}v'w_i$ are distinct.

$$\implies |w| \leq 8\delta + B_X(8\delta).$$

$$\implies \text{PCL}_{G,X}(n) \leq 8\delta + B_X(8\delta).$$
Yago says:
Yago says: “Please don’t feed the hexagons!!”

Thank you for your attention!