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Abstract

The conjugacy length function of a group Γ determines, for a given a pair

of conjugate elements u, v ∈ Γ, an upper bound for the shortest γ ∈ Γ

such that uγ = γv, relative to the lengths of u and v. This thesis focuses

on estimating the conjugacy length function in certain finitely generated

groups.

We first look at a collection of solvable groups. We see how the lamplighter

groups have a linear conjugacy length function; we find a cubic upper

bound for free solvable groups; for solvable Baumslag–Solitar groups it is

linear, while for a larger family of abelian-by-cyclic groups we get either a

linear or exponential upper bound; also we show that for certain polycyclic

metabelian groups it is at most exponential. We also investigate how

taking a wreath product effects conjugacy length, as well as other group

extensions.

The Magnus embedding is an important tool in the study of free solvable

groups. It embeds a free solvable group into a wreath product of a free

abelian group and a free solvable group of shorter derived length. Within

this thesis we show that the Magnus embedding is a quasi-isometric em-

bedding. This result is not only used for obtaining an upper bound on

the conjugacy length function of free solvable groups, but also for giving

a lower bound for their Lp compression exponents.

Conjugacy length is also studied between certain types of elements in

lattices of higher-rank semisimple real Lie groups. In particular we obtain

linear upper bounds for the length of a conjugator from the ambient Lie

group within certain families of real hyperbolic elements and unipotent

elements. For the former we use the geometry of the associated symmetric

space, while for the latter algebraic techniques are employed.
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Chapter 1

Introduction

In 1912, motivated by problems in low-dimensional manifolds, Max Dehn set out his

celebrated list of decision problems in group theory. These are the word problem,

the conjugacy problem and the isomorphism problem. These three problems are the

most fundamental in combinatorial and geometric group theory and have received

much attention over the last century. Dehn originally described these problems in

group theory because of the significance he discovered they had in the geometry

of 3–manifolds. He observed the interplay that occurs between the fundamental

group of the manifold and its geometry. For example, the conjugacy problem in the

fundamental group is equivalent to determining when two loops in the manifold are

freely homotopic.

Let Γ be a recursively presented group with finite symmetric generating set A.

The word problem on Γ asks whether there is an algorithm which determines when

any given word on the generating set A represents the identity element of Γ. In the

1950’s, Novikov and Boone showed independently that such an algorithm does not

necessarily exist [Nov55], [Boo59]. Nevertheless, thanks to a century of hard work by

many mathematicians we know that in a wide variety of groups such algorithms can be

constructed. Examples include surface groups, shown by Dehn himself [Deh12], one-

relator groups [Mag32], finitely presented residually finite groups [McK43], [Mos66]

and hyperbolic groups [Gro87].

The Dehn function of a group Γ provides information on the geometric complexity

of the word problem. It is a measure of the minimal area required to fill a loop in

the Cayley 2–complex of Γ. Because of this geometric interpretation, determining the

Dehn function of groups has been a fundamental question in geometric group theory

over the last couple of decades.

1
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u v

w

Figure 1.1: An annular diagram for uw = wv.

The conjugacy problem is of a similar flavour to the word problem. We say the

conjugacy problem is solvable if we can write an algorithm which determines when

any two given elements of the group are conjugate. By putting one of the two elements

equal to the identity, we see that the word problem is a special case of the conjugacy

problem. It is worth noting that Dehn solved the conjugacy problem for certain 2–

manifold groups back in 1912 [Deh12], but a solution for 3–manifold groups has only

very recently been found by Préaux, [Pré06] and [Pré12].

Suppose for the moment that Γ = 〈A | R〉 is finitely presented. If we take a

word w on the (symmetric) generating set A of Γ such that w represents the identity

element in Γ then we can build a van Kampen diagram for w. That is, we have a

finite, planar, combinatorial 2–complex D with edges labelled by elements of A such

that around the perimeter of D we read the word w and around each 2–cell we read

an element of R or R−1. The key result here is that a word w represents the identity

in Γ if and only if it has a van Kampen diagram. The Dehn function measures the

minimal number of 2–cells necessary to fill a loop labelled by a word representing the

identity.

For the conjugacy problem there is an analogue to a van Kampen diagram: an

annular diagram. These are discussed in Bridson and Haefliger [BH99, Ch.III.Γ Re-

mark 2.13]. Given two words u and v on A and a third word w such that uw = wv

we can build a van Kampen diagram for w−1uwv−1. Suppose that w is chosen so that

the two boundary sections of the van Kampen diagram labelled by w and w−1 are
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disjoint, simple paths. In this case we can identify these two segments and obtain a

planar 2–complex which is homotopy equivalent to a circle (or to a point if one of u

or v is trivial). Around the interior boundary we read u and around the exterior we

read v. There is also an edge path from one boundary component to the other such

that from the interior to the exterior we read the word w.

1.1 The Conjugacy Length Function

In geometric group theory there has often been a tendency to produce more effective

results. For example, calculating the Dehn function of a group is an effective version

of the word problem and it gives us a better understanding of its complexity. We

can then use this extra information to determine more details of the group at hand.

For instance, we can say that if a finitely presented group has a linear Dehn function

then it is hyperbolic. Estimating the length of short conjugators in a group could be

described as an effective version of the conjugacy problem, and finding a control on

these lengths is the main motivation of this thesis.

Suppose we are given two words u and v which represent conjugate elements in

Γ = 〈A | R〉. Then, by choosing a word w of minimal length which satisfies uw = wv,

we can build an annular diagram as described above. The thickness of the annular

diagram measures the length of a minimal conjugator between u and v, relative to

the lengths of u and v. It is this measurement that we are interested in.

We relax the condition that Γ is finitely presented and just assume it is finitely

generated. Suppose word-lengths in Γ, with respect to the given generating set A, are

denoted by |·|. The conjugacy length function was introduced by T. Riley and is the

minimal function CLFΓ : N → N which satisfies the following: if u is conjugate to v

in Γ and |u|+ |v| ≤ n then there exists a conjugator γ ∈ Γ such that |γ| ≤ CLFΓ(n).

One can define it more concretely to be the function which sends an integer n to

max
{

min{|w| : wu = vw} : |u|+ |v| ≤ n and u is conjugate to v in Γ
}

.

The conjugacy length function is a geometric invariant of a group so, for example,

has the potential to be used as a tool when classifying groups. It has been applied

in the study of complexity of the conjugacy problem, for example in the recent work

of Calvez and Wiest [CW12], and also in work on the stronger `1–Bass conjecture by

Ji, Ogle and Ramsey [JOR10].
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We know various upper bounds for the conjugacy length function in certain classes

of groups. For example, Gromov–hyperbolic groups have a linear upper bound; this is

demonstrated by Bridson and Haefliger [BH99, Ch.III.Γ Lemma 2.9]. They also show

that CAT(0) groups have an exponential upper bound for conjugacy length [BH99,

Ch.III.Γ Theorem 1.12], though it is a significant open questions as to whether this

upper bound is sharp. In their study of the stronger `1–Bass conjecture, Ji, Ogle

and Ramsey show that 2–step nilpotent groups have a quadratic conjugacy length

function [JOR10]. In mapping class groups the conjugacy length function is linear.

This was shown for all elements by J. Tao [Tao11], though Masur and Minsky [MM00]

originally obtained the linear bound for pairs of conjugate pseudo-Anosov elements

and Behrstock and Druţu obtained it for purely reducible elements [BD11]. The work

of Crisp, Godelle and Wiest [CGW09] showing that the complexity of the conjugacy

problem in right-angled Artin groups is linear also implies that these groups have a

linear conjugacy length function.

1.2 Graphs and Cayley Graphs

A graph G consists of a vertex set V , an edge set E and two maps ι, τ : E → V (the

initial and terminal vertices). We will equip our graphs with an edge-inversion map,

that is a map from E to itself in which the image of e ∈ E is denoted by e and has

the property that ι(e) = τ(e) and τ(e) = ι(e). We will assume that all edges have a

unique inverse in E . The graph G is said to be simplicial if for any pair of vertices

u, v ∈ V there is at most one edge e ∈ E with the property that ι(e) = u and τ(e) = v

and for every e ∈ E the two end-points ι(e) and τ(e) are distinct.

An edge-path is a sequence of edges e0, e1, . . . , ek ∈ E such that ι(ei) = τ(ei−1)

for each i = 1, . . . , k. An edge-path is a loop if ι(e0) = τ(ek). A graph is said to be

connected if for every pair of vertices u, v ∈ V there exists an edge-path e0, e1, . . . , ek

such that ι(e0) = u and τ(ek) = v.

A graph G is said to be a simplicial tree if it is a connected, simplicial graph which

contains no loops.

An important example of a graph is that of a Cayley graph of a finitely generated

group G with respect to a finite generating set X, which we denote by Cay(G,X).

The vertex set of Cay(G,X) is identified with the elements of the group G and for

each g ∈ G and x ∈ X there is an edge e with ι(e) = g and τ(e) = gx.
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1.3 Subgroup Distortion

A recurring theme when studying conjugacy length is the notion of subgroup distor-

tion. Suppose we are looking at a finitely generated group G. We will often find

ourselves with an element h whose word length we know with respect to a finite gen-

erating set for some subgroup H, but what we really want to know is its word length

in G. By allowing ourselves to use elements in a finite generating set for G we may

be able to reduce the number of letters needed to write a word representing h. The

degree to which we can shorted these words is measured by the subgroup distortion

function.

Suppose H and G have, with respect to some pair of finite generating sets, word

lengths denoted by |.|H and |.|G respectively. The subgroup distortion function δGH

compares the size of an element in H with its size in G. It is defined as

δGH(n) = max{|h|H | |h|G ≤ n}.

Subgroup distortion is studied up to an equivalence relation of functions. For func-

tions f, g : N → [0,∞) we write f � g if there exists an integer C > 0 such that

f(n) ≤ Cg(Cn) for all n ∈ N. The two functions are equivalent if both f � g and

g � f . In this case we write f � g. Up to this equivalence we can talk about the

distortion function for a group. If the distortion function of a subgroup H satisfies

δGH(n) � n then we say H is undistorted in G, otherwise H is distorted.

As an example, consider the solvable Baumslag–Solitar group BS(1,m) with pre-

sentation given by

〈a, b | aba−1 = bm〉.

The subgroup 〈b〉 is exponentially distorted in BS(1,m). We can see the lower bound

on the distortion function quite clearly because for any k ∈ N we can write the

element bm
k

as akba−k.

1.4 Wreath Products

Let A,B be groups. Denote by A(B) the set of all functions from B to A with

finite support and equip it with pointwise multiplication to make it a group. The

(restricted) wreath product A o B is the semidirect product A(B) o B. To be more
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precise, the elements of AoB are pairs (f, b) where f ∈ A(B) and b ∈ B. Multiplication

in A oB is given by

(f, b)(g, c) = (fgb, bc), f, g ∈ A(B), b, c,∈ B

where gb(x) = g(b−1x) for each x ∈ B. The identity element in B will be denoted by

eB, while we use 1 to denote the trivial function from B to A.

The following Lemma deals with the word-length of elements in Γ = A o B when

A,B are finitely generated. It was given by de Cornulier (whose proof we follow here)

in the Appendix of [dC06] in a slightly more general context, and also by Davis and

Olshanskii [DO11, Theorem 3.4]. We fix a generating set X for B, let S = X ∪X−1,

and for each b ∈ B denote the corresponding word-length as |b|B. We consider the

left-invariant word metric on B, given by dB(x, y) := |x−1y|B. Similarly, fix a finite

generating set T for A and let |·|A denote the word-length. For f ∈ A(B), let

|f | =
∑
x∈B

|f(x)|A .

Let AeB be the subgroup of A(B) consisting of those elements whose support is con-

tained in {eB}. Then AeB is generated by {ft | t ∈ T} where ft(eB) = t for each

t ∈ T and Γ is generated by {(1, s), (ft, eB) | s ∈ S, t ∈ T}. With respect to this

generating set, we will let |(f, b)| denote the corresponding word-length for (f, b) ∈ Γ.

The notation for the following Lemma was lifted from the analogous result for more

general wreath products in [dC06], whose proof we follow.

Lemma 1.4.1. Let (f, b) ∈ Γ = A oB, where A,B are finitely generated groups. Then

|(f, b)| = K(Supp(f), b) + |f |

where K(Supp(f), b) is the length of the shortest path in the Cayley graph Cay(B, S)

of B from eB to b, travelling via every point in Supp(f).

Proof. Let n = K(Supp(f), b), and suppose eB = c0, c1, . . . , cn = b are the vertices of

a path in the Cayley graph of B such that if x is in the support of f then x = ci for

some i ∈ {0, 1, . . . , n}. For each i, let si be the element in S so that ci+1 = cisi and

let fi ∈ AeB be the function such that fi(eB) = f(ci) unless ci = cj for some j < i, in

which case fi = 1. Then

(f, b) = (f0f
c1
1 . . . f cnn , b)

= (f0, s1)(f1, s2) . . . (fn−1, sn)(fn, eB)

= (f0, eB)(1, s1)(f1, eB)(1, s2) . . . (1, sn)(fn, eB).
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For each i, the element (fi, eB) has length equal to |fi(eB)|, hence we have the fol-

lowing upper bound:

|(f, b)| ≤ n+
n∑
i=1

|fi(eB)|

= K(Supp(f), b) + |f | .

Now suppose that |(f, b)| = k and consider a geodesic word for (f, b). After

clustering together the adjacent generators of the form (ft, eB) we can write

(f, b) = (f0, eB)(1, s1)(f1, eB)(1, s2) . . . (fm−1, eB)(1, sm)(fm, eB)

for some integer m. It follows from this expression that if ci = s1 . . . si then b = cm

and f = f0f
c1
1 . . . f cmm . Since each fi is in AeB the support of f is therefore contained in

the set {eB, c1, c2, . . . , cm = b}. Thus eB, c1, c2, . . . , cm describes a path in the Cayley

graph of B of length m starting at eB, passing through every point in Supp(f) and

finishing at b. Subsequently m ≥ K(Supp(f), b). Finally, note that each (fi, eB) has

word-length equal to |fi(eB)|. Hence

k = m+
m∑
i=1

|fi(eB)| = m+ |f | ≥ K(Supp(f), b) + |f |

and the Lemma follows.

1.5 Summary of Results

We will now outline the structure of this thesis, stating the main results that we

obtain in each section.

1.5.1 Solvable groups

The content of this section is based on the author’s results in the two papers, [Sal11]

and [Sal12], plus also some new results on group extensions.

We begin in Section 2.1 by investigating the conjugacy length function of lamp-

lighter groups Zq oZ. It was shown by Bartholdi, Neuhauser and Woess [BNW08] that,

when choosing an appropriate generating set, the Cayley graph of a lamplighter group

is a horocyclic product of two (q + 1)–regular trees, an example of a Diestel–Leader

graph. We use the geometry of Diestel–Leader graphs to show the following:
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Theorem 2.1.4 Let Γ = Zq o Z. Then the conjugacy length function for Γ is linear.

In particular, with respect to the generating set described above,

CLFΓ(n) ≤ 3n.

Theorem 2.1.4 was initially given in [Sal11], but the proof here is more geometric

and the potential for it to be applied to more general Diestel–Leader groups is more

transparent.

The main motivation for Section 2.2 was to study conjugacy length in free solvable

groups. When studying such groups, the Magnus embedding is a valuable tool. If

N is a normal subgroup of a (non-abelian) free group F of rank r, whose derived

subgroup is denoted N ′, then the Magnus embedding expresses F/N ′ as a subgroup

of the wreath product Zr oF/N . The embedding was introduced in 1939 by Wilhelm

Magnus [Mag39], and in the 1950’s Fox, with a series of papers [Fox53], [Fox54],

[Fox56], [CFL58], [Fox60], developed a notion of calculus on free groups which enabled

the Magnus embedding to be further exploited. The first result of [Sal12] and of

Section 2.2 is the following:

Theorem 2.2.5. The Magnus embedding ϕ : F/N ′ ↪→ Zr o F/N is 2–bi-Lipschitz for

an appropriate choice of word metrics.

The definition of a free solvable group is as follows: let F ′ = [F, F ] denote the

derived subgroup of F , where F is the free group of rank r. Denote by F (d) the

d–th derived subgroup, that is F (d) = [F (d−1), F (d−1)]. The free solvable group of

rank r and derived length d is the quotient Sr,d = F/F (d). The conjugacy problem

in free solvable groups was shown, using the Magnus embedding, to be solvable by

Kargapolov and Remeslennikov [KR66] (see also [RS70]) extending the same result

for free metabelian groups by Matthews [Mat66]. Recently, Vassileva [Vas11] has

looked at the computational complexity of algorithms to solve the conjugacy problem

and the conjugacy search problem in wreath products and free solvable groups. In

particular Vassileva showed that the complexity of the conjugacy search problem in

free solvable groups is at most polynomial. Using Theorem 2.2.5 we are able to

improve our understanding of the length of short conjugators in free solvable groups:

Theorem 2.2.24. Let r, d > 1. Then the conjugacy length function of the free

solvable group Sr,d is bounded above by a cubic polynomial.

In order to use the Magnus embedding we must understand conjugacy in wreath

products. For such groups the conjugacy problem was studied by Matthews [Mat66],
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who showed that for two recursively presented groups A,B with solvable conjugacy

problem, their wreath product A oB has solvable conjugacy problem if and only if B

has solvable power problem. In Section 2.2.2 we show that for two finitely generated

groups A and B there is an upper bound for the conjugacy length function of A o B
which depends on the conjugacy length functions of A and B and on the subgroup

distortion of infinite cyclic subgroups of B. In the case when the B–component of the

conjugate elements are of infinite order, the conjugacy length does not depend on the

conjugacy length in A. Furthermore, when we avoid a certain collection of conjugacy

classes, the conjugacy length function of B will also not appear.

Theorems 2.2.10 & 2.2.12. Suppose A and B are finitely generated groups. Let

u = (f, b), v = (g, c) be elements in Γ = A oB. Then u, v are conjugate if and only if

there exists a conjugator γ ∈ Γ such that

dΓ(1, γ) ≤ (n+ 1)P (2δB〈b〉(P ) + 1) if b is of infinite order, or

dΓ(1, γ) ≤ P (N + 1)(2n+ CLFA(n) + 1) if b is of finite order N ,

where n = dΓ(1, u) + dΓ(1, v), δBH is the subgroup distortion function of H < B and

P = 2n if (f, b) is not conjugate to (1, b) and P = n+ CLFB(n) otherwise.

In the second half of Section 2.2.2 we look for lower bounds of CLFAoB. We develop

a technique for using subgroup distortion in B for this purpose, though it is not the

only tool we use. In particular, when considering wreath products of the form A o B
when B contains a copy of Z2 we make use of the quadratic Dehn function of Z2.

This is used to give a quadratic lower bound on the conjugacy length function of these

wreath products.

Theorems 2.2.14, 2.2.17 & Proposition 2.2.16 Let A and B be finitely generated

groups and let BS(1, q) denote a solvable Baumslag–Solitar group. Then

• for any x ∈ B of infinite order, CLFAoB(n) � δB〈x〉(n);

• if B contains a copy of Z2, CLFAoB(n) � n2;

• CLFAoBS(1,q)(n) � exp(n).

The final result of Section 2.2 concerns the Lp compression exponent of free solv-

able groups. Using Theorem 2.2.5 and results of Li [Li10] and Naor and Peres [NP11]

we can show that free solvable groups have non-zero Lp compression exponent:
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Corollary 2.2.27. For r, d ∈ N, r, d 6= 1, the Lp compression exponent for Sr,d

satisfies
1

d− 1
max

{
1

p
,
1

2

}
≤ α?p(Sr,d).

Moving on to Section 2.3, we consider group extensions with a short exact sequence

1 −→ F
α−→ G

β−→ H −→ 1

Bogopolski, Martino and Ventura [BMV10] investigate in what situations the solu-

bility of the conjugacy problem for F can imply its solubility in G. Their work only

applies to group extensions in which the quotient group H satisfies certain conditions

on the structure of centralisers of elements in H. In particular, the centraliser in H

of any h ∈ H must be virtually cyclic. We can relax this condition slightly, replacing

it with a geometric condition, asking for a function ρ : G → [0,∞) which measures

the diameter of the fundamental domain of β(ZG(u)) inside ZH(β(u)) for any u ∈ G,

where ZG(u) denotes the centraliser in G of u. If we let

ρn = max{ρ(u) | u ∈ G, |u| ≤ n}

then we show the following:

Theorem 2.3.1 The conjugacy length function of G satisfies

CLFG(n) ≤ CLFH(n) + max
{

RCLGF (n), ρn + T CLF
(
2δGF (n+ ρn);A

(n)
G

)}
where T CLF is the twisted conjugacy length function of F and RCLGF is the restricted

conjugacy length function of F in G, which are defined in Section 2.3.1.

We use this Theorem to study conjugacy length in certain abelian-by-cyclic groups

and abelian-by-abelian groups. Following the work of Bieri and Strebel [BS78], the

finitely presented, torsion-free, abelian-by-cyclic groups are given by presentations of

the form

ΓM = 〈t, a1, . . . , ad | [ai, aj] = 1, tait
−1 = ϕM(ai); i, j = 1, . . . , d〉

where M = (mij) is a d×d matrix with integer entries and non-zero determinant and

ϕM(ai) = am1i
1 . . . amdid for each i = 1, . . . , d.

Theorem 2.3.6 Suppose M is a diagonalisable matrix, all of whose eigenvalues have

absolute value greater than 1. Then there exists a constant C depending on M such

that

CLFΓM (n) ≤ Cλ28n
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where λ is the largest absolute value of an eigenvalue of M .

The next result was originally shown in [Sal11], though the proof has been slightly

modified here to fit with the framework of Theorem 2.3.1.

Theorem 2.3.15 Let Γ = ZdoϕZk, where the image of ϕ : Zk ↪→ SLd(Z) is contained

in an R–split torus T . Then there exist positive constants A,B such that

(1) if k = 1 then CLFΓ(n) ≤ Bn;

(2) if k > 1 then CLFΓ(n) ≤ An.

1.5.2 Semisimple Lie Groups and Higher-rank lattices

In the second half of this thesis we look at conjugacy length between elements in

an irreducible lattice Γ of a higher-rank semisimple real Lie group G. We focus our

attention on two types of elements. Firstly we look at real hyperbolic elements. To

study these we use the geometry of the symmetric space X associated to G. The

hyperbolic elements are those which translate a geodesic somewhere in X, while the

real hyperbolic elements satisfy the property that if they translate one geodesic then

they translate every other geodesic which is parallel to the first. We can assign a

slope to each geodesic, by looking at where it lies in a Weyl chamber in X, and we

can use this to assign a slope to hyperbolic elements of G.

Using the geometry of the translated geodesics we are able to prove the following:

Theorem 3.2.12 Let p be any point in X. For each slope ξ there exists con-

stants `ξ, dξ > 0 such that two real hyperbolic elements a and b in G, satisfying

dX(p, ap), dX(p, bp) ≥ dξ, are conjugate if and only if there exists a conjugator g ∈ G
such that:

dX(p, gp) ≤ 2`ξ
(
dX(p, ap) + dX(p, bp)

)
.

This naturally leads to the following result for lattices:

Corollary 3.2.13 Let p be any point in X. For each slope ξ there exists a constant

Lξ > 0 such that two real hyperbolic elements a and b in Γ are conjugate if and only

if there exists a conjugator g ∈ G such that:

dΓ(1, g) ≤ Lξ
(
dΓ(1, a) + dΓ(1, b)

)
.
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Two questions arise from these results. Firstly, we would like to know whether

we can replace `ξ and dξ with a constant which is independent of the slope. In

Section 3.2.3 we show that when our conjugate elements are allowed to come from

G we cannot relax this condition. Secondly, the conjugator obtained in Corollary

3.2.13 comes from the ambient Lie group. We can ask how far we have to go to

find a conjugator from the lattice instead. In Section 3.2.4 we partially answer this

question by showing that in certain situations we can find a lattice conjugator while

maintaining the linear upper bound on its length.

The second type of element we look at are unipotent elements. These are elements

which in some finite-dimensional, faithful, linear representation are conjugate to an

upper triangular matrix with 1’s on the diagonal. For these elements we apply a more

algebraic approach. We look at pairs of conjugate unipotent elements for whom, in

the matrix representing them, the superdiagonal entries are non-zero. We describe

these elements as having non-zero simple entries. When the Lie algebra of G is split

we can obtain the following:

Theorem 3.3.13 Let u, v ∈ Γ be conjugate unipotent elements in the same unipotent

subgroup whose simple entries are all non-zero. We can construct g ∈ G such that

gug−1 = v and which satisfies

dG(1, g) ≤ L(dG(1, u) + dG(1, v))

where L is a positive constant depending on the root system associated to G and the

unipotent subgroup which contains u and v.
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Solvable Groups

The groups of interest in this section are in the most part finitely generated, recur-

sively presented and solvable. Kharlampovich [Har81] has shown that there exist

finitely presented solvable groups of derived length 3 which have unsolvable word

problem, and hence unsolvable conjugacy problem. However Noskov [Nos82] showed

that all finitely presented metabelian groups have solvable conjugacy problem. This

therefore includes the solvable Baumslag–Solitar groups, which we look at in Section

2.3.2.a, but excludes the lamplighter groups, which are the subject of Section 2.1, as

they are not finitely presented.

The lamplighter groups, however, are conjugacy separable, but this still isn’t

enough to show they have solvable conjugacy problem. A group G is said to be

conjugacy separable if for each pair of non-conjugate elements u, v in G there is a

homomorphism of G onto a finite group H in such a way that the images of u, v in

H are not conjugate. Mal′cev [Mal58] and Mostowski [Mos66] independently showed

that a finitely presented conjugacy separable group has solvable conjugacy problem;

but if the group in question is recursively presented and conjugacy separable, like the

lamplighter group, then it is still open as to whether these conditions imply solubility

of the conjugacy problem.

A different method though can be applied to the lamplighter group. Matthews

[Mat66] showed that if two recursively presented groups A,B have solvable conjugacy

problem then their wreath product A oB has solvable conjugacy problem if and only if

B has solvable power problem. The power problem is solvable if there is an algorithm

which determines whether for two elements x, y ∈ B there exists an integer n such

that y = xn. In particular, the lamplighter group Zq o Z satisfies these requirements

and hence, by the theorem of Matthews, has solvable conjugacy problem.

13
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In Section 2.1 we show that lamplighter groups enjoy a linear conjugacy length

function. The method we use for estimating this takes advantage of the geometry of

their Cayley graphs, which we may describe as the horocyclic product of two regular

trees. When looking at general wreath products the ideas used for the lamplighter

groups do not carry through and we need to use new techniques, which are based

on the work of Matthews [Mat66]. We obtain an upper bound on the length of

conjugators in a group A o B which depends on the conjugacy length function of

B and on the subgroup distortion of cyclic subgroups of B. The conjugacy length

function of A may also appear, but only when dealing with torsion elements of B.

The conjugacy problem in free solvable groups was shown, using the Magnus

embedding, to be solvable by Kargapolov and Remeslennikov [KR66] (see also [RS70])

extending the same result for free metabelian groups by Matthews [Mat66]. We show

in Section 2.2 that free solvable groups have a cubic conjugacy length function, but in

order to do this we show also that the image of the Magnus embedding is undistorted

in the ambient wreath product.

A recent paper of Bogopolski, Martino and Ventura [BMV10] analyses the solu-

bility of the conjugacy problem in certain group extensions. The group extensions to

which their work applies must satisfy a strong condition on the nature of centralisers

in the quotient, most notably the centralisers need to be virtually cyclic. In Section

2.3 we look at similar group extensions, though we replace their condition on the

centralisers in the quotient by a geometric condition which allows us to look at more

groups. We introduce the notions of a twisted conjugacy length function and a re-

stricted conjugacy length function and see how they relate to the conjugacy length

function in a group extension. We apply this work to show that the conjugacy length

function in solvable Baumslag–Solitar groups is linear, in certain other abelian-by-

cyclic groups it is at most exponential and in certain semidirect products Zd o Zk it

is linear if k = 1 or at most exponential otherwise.

2.1 Lamplighter Groups

In [Sal11] we gave an algebraic method for controlling conjugacy length in lamplighter

groups Zq o Z, using their geometry to understand the word lengths. Here we modify

these methods and give a more geometric proof of the same result.
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The lamplighter groups are both wreath products and cyclic extensions of abelian

groups. Hence we could apply techniques from either Section 2.2 or Section 2.3 to

obtain an upper bound for the conjugacy length function of Zq o Z. There is however

a bigger picture, as the lamplighter groups sit inside a larger class of groups, the

Diestel–Leader groups. The techniques introduced in this section for obtaining a

linear conjugacy length function for lamplighter groups are designed so that they

can be generalised to all Diestel-Leader groups. However, the nature of centralisers

of elements plays an important role in determining the conjugacy length function of

Zq oZ, and we do not yet know enough about centralisers in a general Diestel–Leader

group to apply these techniques and find a bound on their conjugacy length functions

as well.

2.1.1 Horocyclic products and Diestel–Leader graphs

We give here a brief introduction to horocyclic products and Diestel-Leader graphs.

For a more complete description see [BNW08].

Let T be a simplicial tree and ω a boundary point of T . For any vertex x in T

there is a unique geodesic ray emerging from x that is asymptotic to ω. Given a pair

of vertices, x, y, the corresponding rays will coincide from some vertex xfy onwards.

Using the terminology of [BNW08], x f y is called the greatest common ancestor of

x and y. After fixing a basepoint x0 in the vertex set of T we can define a Busemann

function h on the vertices of T as

h(y) = dT (y, x0 f y)− dT (x0, x0 f y).

The k–th horocycle of T based at ω is Hk = {y ∈ T | h(y) = k}.
Given a collection T1, . . . , Tn of simplicial trees together with a chosen collection

of respective Busemann functions h1, . . . , hn, we define the horocyclic product to be

n∏
i=1

hTi =

{
(y1, . . . , yn) ∈ T1 × . . .× Tn |

n∑
i=1

hi(yi) = 0

}
. (2.1)

The Diestel–Leader graph DL(q1, . . . , qd) is the horocyclic product of trees Tqi ,
where Tq is the q + 1 regular tree. When q1 = q2 = . . . = qd = q, the corresponding

Diestel-Leader graph is also denoted by DLd(q).

On a terminological note, the Busemann function described here coincides with

the standard definition in a non-positively curved space for a Busemann function at
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ω, with the zero level-set passing through x0. The level-sets of Busemann functions

on manifolds or CAT(0)–spaces are usually called horospheres. When dealing with

symmetric spaces, the term “horocycle” usually refers to the orbits of a maximal

unipotent subgroup of the group of isometries of the symmetric space. However,

when we look at the hyperbolic plane, the horocycles and horospheres are in fact

equal. And indeed, when we consider the action of the lamplighter group on DL2(q),

as described below, the orbit of all elements in Zq o Z of a unipotent type, that is all

elements of the form

γ =

(
t0 f
0 1

)
,

are indeed pairs of horocycles as defined above, one horocycle in each tree.

The horocyclic product (2.1) can be recognised as a horosphere in the CAT(0)–

space T1 × . . . × Tn. That is, the horocyclic product is the level set of a Busemann

function defined on T1 × . . . × Tn (see [BGS85]). The ray defining the horosphere is

the unit-speed reparametrisation of the ray (ρ1(t), . . . , ρn(t)), where ρi is a ray in the

tree Ti which determines the Busemann function hi.

2.1.2 Diestel–Leader groups

The fact that the Diestel–Leader graph DL2(q) is a Cayley graph for the lamplighter

group Zq o Z was explained in [Woe05]. This is a special case of the following result

of Bartholdi, Neuhauser and Woess:

Theorem 2.1.1 (Bartholdi–Neuhauser–Woess [BNW08, (3.14)]). The Diestel–Leader

graph DLd(q) is a Cayley graph of a group, denoted Γd(Lq).

The groups Γd(Lq) are called Diestel–Leader groups. We will not discuss them any

further, but just note that when d = 2 we obtain the lamplighter groups and when

d = 3 we obtain groups previously considered by Baumslag [Bau72], [Bau74]. The

descriptions given below for the lamplighter groups can be extended to the Diestel–

Leader groups of more than 2 trees. The word length in Diestel–Leader groups is

studied in a recent paper of Stein and Taback [ST12] where they give a formula for

its calculation.

Let Γ = Zq oZ be the lamplighter group. We can represent Γ as the group Γ2(Zq)
of affine matrices {(

tk P
0 1

)
: k ∈ Z, P ∈ Zq[t−1, t]

}
,
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which has a symmetric generating set{(
t b
0 1

)
: b ∈ Zq

}
.

With respect to this generating set, the Cayley graph of Γ is the Diestel–Leader graph

DL2(q).

The relationship between DL2(q) and these affine matrices comes about by iden-

tifying the vertices of the tree Tq with closed balls in the ring Zq((t)) of Laurent

series

f =
∞∑

k=−∞

akt
k

where ak ∈ Zq and there exists some n ∈ Z such that ak = 0 for all k < n. The

valuation v0(f) is defined to be the maximal such n (note that we define v0(0) =∞),

and the absolute value of f is defined to be q−v0(f). This absolute value determines

an ultrametric dq on Zq((t)):

dq(f, g) = q−v0(f−g), for f, g ∈ Zq((t)).

See [CKW94, §4] for a more complete picture.

Fix a boundary point ω ∈ ∂∞Tq. For each vertex x in the tree there is a unique

geodesic ray in the equivalence class ω which starts at x. Say that the first edge in

this ray is above x, and all others are below it. There are q edges below x, label these

with the elements of Zq. Apply this process to every vertex in Tq. We can number

the edges in such a way that the geodesic ray from any vertex in Tq asymptotic to

ω passes through finitely many edges which are labelled with non-zero elements from

Zq. To do this, first fix a basepoint o ∈ Tq and label with 0 each edge in the geodesic

ray emerging from o which is asymptotic to ω. The remaining edges can be labelled

arbitrarily, provided the labelling agrees with the description above. Every geodesic

ray asymptotic to ω will eventually merge with the geodesic ray emitted from o.

Hence, after a finite distance, it will travel only along edges labelled by 0.

Suppose the vertex x is in the k–th horocycle with respect to ω. Then we can

read off an element of Zq((t)) from the ray emerging from x: along each edge is a

label, and each edge connects two distinct, adjacent horocycles. The ray consists of

exactly one edge between the j–th horocycle and the (j − 1)–th horocycle for j ≤ k,

suppose it is labelled by aj ∈ Zq. We assign to x the Laurent series

fx =
k∑

j=−∞

ajt
j. (2.2)
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ω

H−1

H0

H1

H2
H3

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x

Figure 2.1: The vertex labelled x is associated with the Laurent series fx = t2 + 1,
and identified with the ball B(fx, q

−2).

Suppose we are given a closed ball

B(f, q−n) = {P ∈ Zq((t)) | v0(f − P ) ≥ n}

in Zq((t)) with respect to the ultrametric determined by the absolute value defined

above. We identify this with a vertex in the tree as follows: the radius q−n of the ball

tells us which horocycle the vertex is in, while the Laurent series f tells us precisely

which vertex to take. To be more precise, given a radius q−n, this tells us we should

be in the n–th horocycle. Hence we only care about the coefficients in f for the terms

tk where k ≤ n. So we obtain f ′ from f by setting the coefficient of tm to be zero for

each m > n. That is, if

f =
∞∑

j=−∞

ajt
j

then

f ′ =
n∑

j=−∞

ajt
j.

Then we find the vertex x in Tq for which fx = f ′, where fx is as in (2.2), and identify

this vertex with B(f, q−n).

The above identification describes a map

V(Tq)→ B = {B(f, q−n) : f ∈ Zq((t)), n ∈ Z}
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where V(Tq) is the vertex set of Tq. Note that P ∈ B(f, q−n) is equivalent to saying

that the coefficients of qr in P and f agree for all r < n, and hence it is also equivalent

to B(f, q−n) = B(P, q−n). It follows from this that the above map is a bijection.

The group Γ2(Zq) has underlying set

Γ2(Zq) =

{(
ts P
0 1

)
| P ∈ Zq[t−1, t] and n ∈ Z

}
.

An element of Γ2(Zq) acts on B as(
ts P
0 1

)
·B(f, q−n) = B(P + tsf, q−n−s).

Before proceeding further, we make the following observation concerning the

height of a common ancestor under the action of Γ2(Zq).

Lemma 2.1.2. Let x, y be vertices in Tq and suppose γ = ( t
s P
0 1 ) ∈ Γ2(Zq). Then

h(γxf γy) = h(xf y) + s.

Proof. Let x be identified with B(X, q−α) and y with B(Y, q−β). The common ances-

tor of x and y must be above both x and y, and will correspond to the smallest ball

in Zq((t)) containing both X and Y . This tells us that

h(xf y) = min{v0(X − Y )− 1, h(x), h(y)}.

Consider γx f γy. The vertex γx will be identified with the ball B(P + tsX, q−α−s)

and γy with B(P + tsY, q−β−s). We obtain the analogous expression to the above

equation for h(γxf γy), noting that the terms in P both cancel, leaving

h(γxf γy) = min{v0(tsX − tsY )− 1, h(γx), h(γy)}.

Since v0(tsX − tsY ) = v0(X − Y ) + s, h(γx) = h(x) + s and similarly for γy, the

Lemma holds.

We have so far described the action of the lamplighter group on only one tree.

We must ask how it acts on the second tree in the horocyclic product. To answer

this, instead of considering f as an element of Zq((t)) we see it as an element in

Zq((t−1)); we can do this because f ∈ Zq[t−1, t]. The (negative of the) valuation of

f ∈ Zq((t−1)) will be denoted by v−0 (f) and will be equal to the largest integer k such

that the coefficient of tk is non-zero. The absolute value of f will be qv
−
0 (f). We can
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v1 v2

w1
w2

Figure 2.2: Moving in DL2(q) from (v1, v2) to (w1, w2): the dotted lines demonstrate
the routes each bead needs to take. When we move the left-hand bead we need to
keep the elastic horizontal, so the right hand bead will have to move upwards as well.
Similarly, once the left-hand bead has reached w1, we need to keep moving it while
we move the right-hand bead to get it to w2.

identify vertices of the second tree with closed balls B−(f, q−n) in Zq((t−1)) in much

the same way as we did before, but this time round the n–th horocycle will instead

consist of the balls of radius q−n−1. The reason for this slight adjustment is so that

we consider each coefficient in f exactly once. The action on the horocyclic product

is (
ts P
0 1

)
· (B(0, q0), B−(0, q−1)) = (B(P, q−s), B−(P, qs−1)).

This takes into account each coefficient exactly once because the ball B(P, q−s) is

determined by the coefficients in P of tk for each k ≤ s. Meanwhile, B−(P, qs−1) is

determined by coefficients in P of (t−1)k for k ≤ s − 1, or equivalently tj for each

j > s.

One can visualise the action of the lamplighter group on DL2(q) with two beads

and a piece of elastic. Woess has previously described this method, see for example

[Woe05, §2]. The idea is as follows: take your two trees and, as in Figure 2.2, draw

the first tree on the left-hand side with the chosen boundary point at the top and the

second tree on the right with the boundary point below. Place the two trees so that

the two 0–th horocycles appear on the same horizontal line, and in general the n–th

horocycle in the left-hand tree lines up with the (−n)–th horocycle on the right. In

each tree fix a basepoint in the 0–th horocycle. Place one bead on each tree, one at

each of the basepoints. Connect the two beads by a piece of elastic (we may assume

the elastic can stretch infinitely long). By construction, the elastic will be horizontal.
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Any point in DL2(q) can now be obtained by moving the two beads in their respective

trees in any way we like, provided the piece of elastic is always kept horizontal.

2.1.3 Conjugacy length for lamplighter groups

In order to estimate the conjugacy length function we need to be able to understand

the word lengths of elements in Zq o Z.

2.1.3.a Word length

The word length of elements in a general Diestel–Leader group has been studied by

Stein and Taback [ST12]. They give a formula for the word length of an element by

looking at the climb and fall of a geodesic path in each tree from the basepoint to its

image under the action of the element. Let oi denote the basepoint of the i–th tree.

For g ∈ Γd(Lq), denote by mi(g) the length of the climb of the geodesic from oi to

goi and li(g) the length of the fall. More concretely we mean:

mi(g) = d(oi, oi f goi), li(g) = d(goi, oi f goi).

A consequence of Stein and Taback’s formula are the following upper and lower

bounds for the word length of g:

d∑
i=1

mi(g) ≤ |g| ≤ 3
d∑
i=1

mi(g)

where |g| is the word length of u with respect to the generating set described above.

Each generator of Γd(Lq) corresponds to an instruction: go up in tree i and down in

tree j. When given a word, these instructions are read from left to right.

oi

goi

mi(g)
li(g)

Figure 2.3: The climb and fall of g in the i–th tree.
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The notion of climbing and falling can be extended to paths describing the con-

catenation of words. In particular, for g, h ∈ Γd(Lq) let

mh,i(g) = d(hoi, hoi f goi), lh,i = d(goi, hoi f goi).

Stein and Taback show that |g−1h| behaves in the same way but instead with respect

to the climb and fall functions mh,i(g) and lh,i(g). Hence

d∑
i=1

mh,i(g) ≤
∣∣g−1h

∣∣ ≤ 3
d∑
i=1

mh,i(g). (2.3)

Please note that in these bounds for |g−1h| we may replace mh,i with lh,i since their

sums are equal.

A consequence of Lemma 2.1.2 is that we can measure the length of the word by

looking at its action on different points in each tree:

Lemma 2.1.3. For every g, h ∈ Γd(Lq) and each i = 1, . . . , d we have the following:

mi(g) = mh,i(hg), li(g) = lh,i(hg).

Proof. By Lemma 2.1.2, in each tree, the height of the common ancestor oi f goi

never strays too far from the height of hoi f hgoi. To be precise:

hi(oi f goi) = hi(hoi f hgoi) + ri

where ri = hi(hoi). Hence

mi(g) = d(oi, oi f goi)

= −hi(oi f goi)

= −hi(hoi f hgoi)− ri

But d(hoi, hoifhgoi) = hi(hoi)−hi(hoi, hoifhgoi), so we get mi(g) = mh,i(hg). The

result for li(g) follows from the result for mi(g), the relationships:

mi(g)− li(g) = hi(goi) and mh,i(hg)− lh,i(hg) = hi(hgoi)− hi(hoi)

and the fact that hi(goi) = hi(hgoi)− hi(hoi).
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2.1.3.b The conjugacy length function

Theorem 2.1.4. Let Γ = Zq oZ. Then the conjugacy length function for Γ is linear.

In particular, with respect to the generating set described above,

CLFΓ(n) ≤ 3n.

Proof. We use the representation of elements of Γ as matrices. Suppose

u =

(
ts P
0 1

)
, v =

(
tr Q
0 1

)
, γ =

(
tk f
0 1

)
.

Then, by direct calculation, uγ = γv if and only if the following equations hold:

s+ k = k + r (2.4)

P + tsf = f + tkQ (2.5)

We therefore split into the two cases according to whether r is zero or not.

Case 1: r = 0.

This corresponds to the case when u and v map each basepoint to a vertex of the same

height. Equation (2.5) becomes P = tkQ, so we may set f = 0. This means that γ

will act on each tree by either a sequence of consecutive up movements or a sequence

of consecutive down movements, but never a mixture of both. Suppose γ acts in a

purely downwards motion on tree i. Figure 2.4 demonstrates what is happening in

this tree.

As long as v is non-trivial, we may assume that voi 6= oi because otherwise we can

just replace oi with some other basepoint corresponding to a ball B(0, q−α), in which

γoi

oi
u

voi

γuoi

Figure 2.4: The action of u on γoi in Case 1.
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α is large enough to ensure that the action of v on this ball is non-trivial. Since the

action of γ on the i–th tree corresponds to a consecutive list of downward movements,

the path read out by u from γoi to γuoi must pass through voi. Hence mγ,i(γu) ≥ |k|.
Using equation 2.3 we then obtain

|u| =
∣∣(γu)−1γ

∣∣ ≥ mγ,i(γu) ≥ |k| = |γ|

giving a linear upper bound in this case.

Case 2: r 6= 0.

By exchanging u and v with their inverses if necessary, we may assume that r > 0.

The important step here is to pick the right conjugator. Take any conjugator γ′,

satisfying uγ = γv, and premultiply it by a suitable power of u so that we obtain an

element γ = umγ′, written as above, with 0 ≤ k < r. We claim that for each i

mi(γ) ≤ max{mi(u),mi(v)}+ r.

To prove this claim we will show that if this were not true then γuoi and vγoi would

have to be on different branches of their respective trees.

If we were to assume that mi(u) < mi(γ) − r then we would have ensured that

oi f γuoi = oi f γoi — since, by Lemma 2.1.3, d(γoi, γoi f γuoi) ≤ d(γoi, γoi f oi).

On the other hand, the common ancestor voi f vγoi will lie in a different horocycle

to oi f γoi. Indeed, considering the values of the Busemann functions:

hi(oi f γoi) = −mi(γ) 6= −mi(γ)± r = hi(voi f vγoi).

o1

uo1 vo1

γo1

γuo1

to vγo1

o2

uo2 vo2
γo2

γuo2

to vγo2

γ

u

γ

u

o1 f γuo1

o1 f vγo1

o2 f γuo2

o2 f vγo2

Figure 2.5: The common ancestor oi f γuoi lies in a different horocycle to oi f vγoi.
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If mi(γ) > mi(v) + r then this guarantees that voi f vγoi = oi f vγoi. Hence,

oif γuoi 6= oif vγoi since they lie in different horocycles, contradicting the fact that

γu = vγ.

With the claim justified, we see that

|γ| ≤ 3m1(γ) + 3m2(γ) ≤ 3 max{m1(u),m1(v)}+ 3 max{m2(u),m2(v)}+ 3r.

The last term is bounded above by 3n, where n = |u|+ |v|, thus proving the Theorem.

The nature of this proof gives an idea of how it may be transferred to prove a

similar statement for more general Diestel-Leader groups Γd(Lq), groups for which the

Cayley graph is the horocyclic product of more than two trees. The main obstacle

in doing this seems to be in understanding the nature of the centralisers in Γd(Lq).

In case 2 of the above proof, the first thing we did was to premultiply an arbitrary

conjugator by a suitable power of u so that we obtained a conjugator γ for which r =

h1(γo1) ∈
[
0, h1(uo1)

)
. This was enough to ensure also that h2(γo2) ∈

(
h2(uo2), 0

]
,

then allowing us to proceed and show γ is of bounded length.

However, if we have more than two trees, naively forcing γoi into the correct

horocycle in one tree is not enough to control which horocycles the other vertices γoj

will lie in. Suppose ri = hi(uoi) for i = 1, . . . , d. In the case when d = 2 we have

r1 = r = −r2. Given any γ ∈ Γ2(Lq) it is clear that we can premultiply it by a

suitable power of u and get that |hi(γoi)| < |r| for i = 1, 2. However, if d > 2 then

using 〈u〉 on its own is not enough to bound each hi(γoi). In order to do this we

would have to extend our reach into the wider depths of the centraliser ZΓ(u) of u

inside Γ = Γd(Lq).

We will observe a similar problem in Section 2.3.4 when studying the groups

ZdoZk. When k = 1 we can deal with this problem in the same way as we did here.

But when k > 1 we need to look at the projection of the centraliser of u into the

Zk component. In Theorem 2.3.15 we will show that, essentially, the fundamental

domain of this projection in Rk is compact and we can control the diameter by an

exponential function. In the case of Γd(Lq), we consider the projection onto Zd−1,

which we see as {(
h1(go1), . . . , hd(god)

)
∈ Zd | g ∈ Γd(Lq)

}
and ask if we can find a similar control on the fundamental domain of this projection

inside Rd−1.
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2.2 Wreath Products and Free Solvable Groups

In this section we look at the effect that taking wreath products has on conjugacy

length. The lamplighter group that we saw in the previous section is a special case of

this, but we used very different techniques for it than we will use for general wreath

products. The main motivation for this section is to find a control on the conjugacy

length function of free solvable groups. The majority of the content of this section is

taken from [Sal12].

The structure is as follows: we begin in Section 2.2.1 with the appropriate pre-

liminary definitions, including a brief account of Fox calculus. This section builds up

to Theorem 2.2.5 which asserts that the image of the Magnus embedding is undis-

torted in the ambient wreath product. In Section 2.2.2 we study conjugacy in wreath

products, first obtaining an upper bound and then a lower bound for the length of

short conjugators. The subgroup distortion of cyclic subgroups of Sr,d is discussed

in Section 2.2.3, before we move onto conjugacy length in free solvable groups in the

penultimate section.

Finally, in Section 2.2.5, we apply Theorem 2.2.5 to study the Lp compression

exponents for free solvable groups. Compression exponents were first introduced

by Guentner and Kaminker [GK04], building on the idea of uniform embeddings

introduced by Gromov [Gro93] and Yu [Yu00]. In particular we show that free solvable

groups have non-zero Lp compression exponent.

2.2.1 Preliminaries

2.2.1.a Fox calculus

In Section 2.2.1.b we will introduce the Magnus embedding. This is a classical tool

that plays an important role in the study of free solvable groups Sr,d. In order to

make effective use of the Magnus embedding we need to understand Fox derivatives.

These were introduced by Fox in the 1950’s in a series of papers [Fox53], [Fox54],

[Fox56], [CFL58], [Fox60].

Recall that a derivation on a group ring Z(G) is a mapping D : Z(G) → Z(G)

which satisfies the following two conditions for every a, b ∈ Z(G):

D(a+ b) = D(a) +D(b)

D(ab) = D(a)ε(b) + aD(b)
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where ε : Z(G) → Z sends each element of G to 1. That is, for g1, . . . , gn ∈ G and

κ1, . . . , κn integers, ε(κ1g1 + . . .+ κngn) = κ1 + . . .+ κn.

Suppose G = F , the free group on generators X = {x1, . . . , xr}. For each genera-

tor we can define a unique derivation ∂
∂xi

which satisfies

∂xj
∂xi

= δij

where δij is the Kronecker delta. Any derivation D can be expressed as a linear

combination of these: for each D there exists some elements ki ∈ Z(F ) such that

D(a) =
n∑
i=1

ki
∂a

∂xi

for each a ∈ Z(F ).

Fox describes the following Lemma as the “fundamental formula” and it can be

found in [Fox53, (2.3)].

Lemma 2.2.1 (Fundamental formula of Fox calculus). Let a ∈ Z(F ). Then

a− ε(a)1 =
r∑
i=1

∂a

∂xi
(xi − 1).

Fox derivatives also accept a form of integration, see [CF63, Ch.VII (2.10)]. In

particular, given β1, . . . , βr ∈ Z(F ) one can find c ∈ Z(F ) such that ∂c
∂xi

= βi for each

i. The element c is unique up to addition of scalar multiples of the identity.

Given a normal subgroup N in F and a derivation D of Z(F ) we can define a

derivation D? : Z(F )→ Z(F/N) through the composition of maps

Z(F ) Z(F )

Z(F/N)

D

D?
α?

where α? is the extension of the quotient homomorphism α : F → F/N .

The following Lemma can be deduced from the Magnus embedding, but it also

follows from [Fox53, (4.9)].

Lemma 2.2.2. Let g ∈ F . Then D?(g) = 0 for every derivation D if and only if

g ∈ N ′ = [N,N ].
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Strictly speaking, α? is a map from Z(F ) to Z(F/N), but if instead we consider the

canonical map ᾱ : F/N ′ → F/N then ᾱ? becomes a map from Z(F/N ′) to Z(F/N).

Understanding the kernel of ᾱ? will be helpful in Section 2.2.4.

Lemma 2.2.3 (See also Gruenberg [Gru67, §3.1 Theorem 1]). An element of the

kernel of ᾱ? : Z(F/N ′)→ Z(F/N) can be written in the form

m∑
j=1

rj(hj − 1)

for some integer m, where rj ∈ F/N ′ and hj ∈ N/N ′ for each j = 1, . . . ,m.

Proof. Take an arbitrary element a in the kernel of ᾱ?. Suppose we can write

a =
∑

g∈F/N ′
βgg

where βg ∈ Z for each g ∈ F/N ′. Fix a coset xN . Then∑
ᾱ(g)=xN

βg = 0

since this is the coefficient of xN in ᾱ?(a). Notice that ᾱ(g) = xN if and only if there

is some h ∈ N such that g = xh. Thus the sum can be rewritten as∑
h∈N\{1}

βxh = −βx.

This leads us to ∑
ᾱ(g)=xN

βgg =
∑

h∈N\{1}

βxhx(h− 1)

which implies the Lemma after summing over all left-cosets.

2.2.1.b The Magnus embedding

Let F be the free group of rank r with generators X = {x1, . . . , xr} and let N

be a normal subgroup of F . The Magnus embedding gives a way of recognising

F/N ′, where N ′ is the derived subgroup of N , as a subgroup of the wreath product

M(F/N) = Zr o F/N .

Consider the group ring Z(F/N) and let R be the free Z(F/N)–module with

generators t1, . . . , tr. We define a homomorphism

ϕ : F −→M(F/N) =

(
F/N R

0 1

)
=

{(
g a
0 1

)
| g ∈ F/N, a ∈ R

}
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by

ϕ(w) =

(
α(w) ∂w

∂x1
t1 + . . .+ ∂w

∂xr
tr

0 1

)
where α is the quotient homomorphism α : F → F/N . Magnus [Mag39] recognised

that the kernel of ϕ is equal to N ′ and hence ϕ induces an injective homomorphism

from F/N ′ to M(F/N) which is known as the Magnus embedding. In the rest of this

paper we will use ϕ to denote both the homomorphism defined above and the Magnus

embedding it induces.

Given w ∈ F , its image under the Magnus embedding can be identified with

(f, b) ∈ Zr o F/N in the following way: we take b = α(w) and f will be the function

fw = (fw1 , . . . , f
w
r ), where for each i the function fwi : F/N → Z satisfies the equation∑

g∈F/N

fwi (g)g =
∂?w

∂xi
∈ Z(F/N).

Let dF/N ′ denote the word metric in F/N ′ with respect to the generators deter-

mined by the elements of X and let dM denote the word metric on M(F/N) with

respect to the generating set{(
α(x1) 0

0 1

)
, . . . ,

(
α(xr) 0

0 1

)
,

(
1 t1
0 1

)
, . . . ,

(
1 tr
0 1

)}
.

Note that this generating set is the same as that used for Lemma 1.4.1. The aim is

to compare the metrics dF/N ′ and dM . We first give a result of Droms, Lewin and

Servatius [DLS93, Theorem 2] on the word-length of elements in F/N ′. In order to

do so we need to set up some notation.

Let E be the edge set of the Cayley graph Cay(F/N,X) of F/N with respect to

the generating set determined by X. Given a word w on X we obtain a path ρw in

Cay(F/N,X) labelled by w. Define a function πw : E → Z such that for each edge

(g, gx) ∈ E the value of πw(g, gx) is equal to the net number of times the path ρw

traverses this edge — for each time the path travels from g to gx count +1; for each

time the path goes from gx to g count −1. Since the path is finite, πw has finite

support.

Let Supp(πw) denote the subgraph of Cay(F/N,X) containing all edges e such

that πw(e) 6= 0. Consider a new path σ(πw) which is a path travelling through every

point in Supp(πw) ∪ {1} so that it minimises the number of edges not contained in

Supp(πw). Let W (πw) denote this number.
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Lemma 2.2.4 (Droms–Lewin–Servatius [DLS93]). Let w be a word on generators X

which determines the element g ∈ F/N ′. Then

dF/N ′(1, g) =
∑
e∈E

|πw(e)|+ 2W (πw).

The next Theorem tells us how word lengths behave under the Magnus embedding.

We see in particular that with respect to the chosen generating sets described above for

F/N ′ and for the wreath product M(F/N) the Magnus embedding is 2-bi-Lipschitz.

Geometrically, we take a geodesic word w for g ∈ F/N ′ and construct a path ρw

from this word in the Cayley graph of F/N . The length of ρw is equal to dF/N ′(1, g)

so we need to compare its length with the size of ϕ(g) in the wreath product. We

will see how, if ϕ(g) = (fw, α(w)), then the function fw describes the route which ρw

takes, telling us the net number of times ρw transverses each edge. From this we can

deduce a relationship between the size of g and the size of ϕ(g).

Theorem 2.2.5. The subgroup ϕ(F/N ′) is undistorted in M(F/N). To be precise,

for each g ∈ F/N ′

1

2
dF/N ′(1, g) ≤ dM(1, ϕ(g)) ≤ 2dF/N ′(1, g).

Proof. The aim is to compare the word-lengths given by Lemma 2.2.4 and Lemma

1.4.1. Let w be a word on X representing g ∈ F/N . The image of g under the Magnus

embedding is ϕ(w) = (fw, α(w)), with fw = (fw1 , . . . , f
w
r ) satisfying∑

g∈F/N

fwi (g)g =
∂?w

∂xi
∈ Z(F/N).

We claim that fwi (g) = πw(g, gxi), and will prove this by induction on the word-length

of w. If w = xj then ∂?w
∂xi

= δij. The path ρw consists of just one edge: (1, xj). Hence

πw(g, gxi) is zero everywhere except when g = 1 and i = j, where it takes the value

1. Thus, in this case, the claim holds. If w = x−1
j then ∂?w

∂xi
= −δijx−1

j . The path ρw

this time consists of the edge (x−1
j , 1) and one can check that the claim holds here

too.

Now suppose w has length at least 2 and that the claim holds for all words shorter

than w. Suppose also that w is of the form w = w′xεj where w′ is a non-trivial word

and ε = ±1. Then
∂?(w′xεj)

∂xi
=
∂?w′

∂xi
+ α(w′)

∂?xεj
∂xi
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and it follows that fwi (g) = fw
′

i (g) whenever i 6= j. When i = j we get

fwi (g) =


fw
′

i (g) if ε = 1 and g 6= α(w′), or ε = −1 and g 6= α(w),
fw
′

i (g) + 1 if ε = 1 and g = α(w′),
fw
′

i (g)− 1 if ε = −1 and g = α(w).

Meanwhile, ρw is obtained from ρw′ by attaching one extra edge on to its final vertex,

namely the edge (w′, w′xi) if ε = 1 or (w,wxi) is ε = −1. Hence πw(g, gxi) = πw′(g, gxi)

whenever i 6= j and when i = j we get

πw(g, gxi) =


πw′(g, gxi) if ε = 1 and g 6= α(w′), or ε = −1 and g 6= α(w)
πw′(g, gxi) + 1 if ε = 1 and g = α(w′),
πw′(g, gxi)− 1 if ε = −1 and g = α(w).

Thus, applying the inductive hypothesis gives fwi (g) = πw(g, gxi) and the claim there-

fore holds for all words w.

From Lemma 1.4.1 the word-length in M(F/N) is given by

dM(1, (fw, α(w))) = K(Supp(fw), α(w)) +
∑
y∈F/N

‖fw(y)‖

where ‖·‖ is the `1–norm on Zr. The above expression of fw in terms of πw leads us

to the equation ∑
y∈F/N

‖fw(y)‖ =
∑
e∈E

|πw(e)| .

Since an edge e is in Supp(πw) only if one of its ends is in Supp(fw), we see that

Supp(fw) is contained in the subgraph Supp(πw). Take a path q starting at 1 and

travelling through every point in Supp(fw), in particular we may take q to be a

path realising K(Supp(fw), α(w)). Any edge in Supp(πw) which is not in this path

must have one vertex lying in the path q. Adding these edges to q (along with

the corresponding backtracking) gives a new path q′ passing though every point of

Supp(πw) ∪ {1}. Note that every edge in q′ that is not in Supp(πw) was already

in q. Hence the length of q is bounded below by the size of W (πw). In particular

W (πw) ≤ K(Supp(fw), α(w)) and hence

1

2
dF/N ′(1, g) ≤ dM(1, ϕ(g)).

On the other hand, suppose w = xε1i1 . . . x
εm
im

is a minimal word representing g, that

is dF/N ′(1, g) = m. Then ϕ(g) = ϕ(xi1)ε1 . . . ϕ(xim)εm gives an expression for ϕ(g) in
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terms of 2m generators, since for each ij

ϕ(xij) =

(
xij tij
0 1

)
=

(
1 tij
0 1

)(
xij 0
0 1

)
.

Hence dM(1, ϕ(g)) ≤ 2m and the result follows.

2.2.2 Conjugacy in wreath products

Let A and B be finitely generated groups. By a result of Matthews [Mat66], when

A and B are recursively presented with solvable conjugacy problem and when B also

has solvable power problem, the group Γ = A oB has solvable conjugacy problem. In

what follows we will not need these assumptions, we will only assume that A and B

are finitely generated.

Fix b ∈ B and let {ti | i ∈ I} be a set of right-coset representatives for 〈b〉 in B.

We associate to this a family of maps π
(z)
ti : A(B) → A for each z in B as follows:

π
(z)
ti (f) =


N−1∏
j=0

f(z−1bjti) for b of finite order N

∞∏
j=−∞

f(z−1bjti) for b of infinite order.

The products above are taken so that the order of multiplication is such that f(tib
jz−1)

is to the left of f(tib
j−1z−1) for each j. When z = eB we denote π

(z)
ti by πti .

Proposition 2.2.6 (Matthews [Mat66]). Fix a family {ti | i ∈ I} of right-coset

representatives for 〈b〉 in B. Two elements (f, b) and (g, c) are conjugate in A o B if

and only if there exists an element z in B such that bz = zc and for all i ∈ I either

• π(z)
ti (g) = πti(f) if b is of infinite order; or

• π(z)
ti (g) is conjugate to πti(f) if b is of finite order.

For such z in B, a corresponding function h such that (f, b)(h, z) = (h, z)(g, c) is

defined as follows: if b is of infinite order then for each i ∈ I and each k ∈ Z we set

h(bkti) =

(∏
j≤k

f(bjti)

)(∏
j≤k

g(z−1bjti)

)−1
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or if b is of finite order N , then for each i ∈ I and each k = 0, . . . , N − 1 we set

h(bkti) =

(
k∏
j=0

f(bjti)

)
αti

(
k∏
j=0

g(z−1bjti)

)−1

where αti is any element satisfying πti(f)αti = αtiπ
(z)
ti (g).

2.2.2.a Upper bounds for lengths of short conjugators

Proposition 2.2.6 gives us an explicit description of a particular conjugator for two

elements in A o B. The following Lemma tells us that any conjugator between two

elements has a concrete description similar to that given by Matthews in the preceding

Proposition. With this description at our disposal we will be able to determine their

size and thus find a short conjugator.

Lemma 2.2.7. Let (h, z), (f, b), (g, c) ∈ A o B be such that (f, b)(h, z) = (h, z)(g, c).

Then there is a set of right-coset representatives {ti | i ∈ I} of 〈b〉 in B such that, if

b is of infinite order then

h(bkti) =

(∏
j≤k

f(bjti)

)(∏
j≤k

g(z−1bjti)

)−1

for every i ∈ I and k ∈ Z; if b is of finite order N then

h(bkti) =

(
k∏
j=0

f(bjti)

)
αti

(
k∏
j=0

g(z−1bjti)

)−1

for every i ∈ I and k = 0, . . . , N − 1 and where αti satisfies πti(f)αti = αtiπ
(z)
ti (g).

Furthermore, for any element αti satisfying this relationship there exists some conju-

gator (h, z) with h of the above form.

Proof. Fix a set of coset representatives {si | i ∈ I}. By Matthews’ argument there

exists a conjugator (h1, z1) ∈ AoB for (f, b) and (g, c) as described in Proposition 2.2.6,

with respect to the coset representatives {si | i ∈ I}. Since (h, z) and (h1, z1) are

both conjugators, it follows that there exists some (ψ, y) in ZΓ(f, b) such that (h, z) =

(ψ, y)(h1, z1). This tells us that z = yz1 and also that h(x) = ψ(x)h1(y−1x) for each

x ∈ B. Since (ψ, y) is in the centraliser of (f, b), we obtain two identities:

yb = by (2.6)

ψ(x)f(y−1x) = f(x)ψ(b−1x) ∀x ∈ B. (2.7)
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For each i ∈ I we set ti = ysi. First suppose that b is of infinite order. Then

h(bkti) = ψ(bkti)h1(y−1bkti)

= ψ(bkti)h1(bksi)

= ψ(bkti)

(∏
j≤k

f(bjsi)

)(∏
j≤k

g(z−1
1 bjsi)

)−1

= ψ(bkti)

(∏
j≤k

f(y−1bjti)

)(∏
j≤k

g(z−1bjti)

)−1

.

We can apply equation (2.7) once, and then repeat this process to shuffle the ψ term

past all the terms involving f . This process terminates and the ψ term vanishes

because of the finiteness of support of both ψ and of f . Hence, as required, we

obtain:

h(bkti) = f(bkti)ψ(bk−1ti)

( ∏
j≤k−1

f(y−1bjti)

)(∏
j≤k

g(z−1bjti)

)−1

...

=

(∏
j≤k

f(bjti)

)(∏
j≤k

g(z−1bjti)

)−1

.

If instead b is of finite order, N say, then for 0 ≤ k ≤ N − 1 we obtain

h(bkti) = ψ(bkti)

(
k∏
j=0

f(y−1bjti)

)
αsi

(
k∏
j=0

g(z−1bjti)

)−1

where αsi is some element satisfying πsi(f)αsi = αsiπ
(z1)
si (g). With equation (2.7) the

ψ(bkti) term can be shuffled past the terms involving f . Unlike in the infinite order

case, however, the ψ term will not vanish:

h(bkti) =

(
k∏
j=0

f(bjti)

)
ψ(b−1ti)αsi

(
k∏
j=0

g(z−1bjti)

)−1

.

To confirm that h is of the required form, all that is left to do is to verify that if

we set αti = ψ(b−1ti)αsi then it will satisfy πti(f)αti = αtiπ
(z)
ti (g). We will prove

this while proving the final statement of the Lemma: that any element αti satisfying

πti(f)αti = αtiπ
(z)
ti (g) will appear in this expression for some conjugator between (f, b)

and (g, c). Set

Cti = {α | πti(f)α = απ
(z)
ti (g)} and Csi = {α | πsi(f)α = απ(z1)

si
(g)}.
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By Proposition 2.2.6, we can choose h1 above so that any element of Csi appears

above in the place of αsi . We need to check that Cti = ψ(b−1ti)Csi . Observe that we

have two equalities:

ψ(b−1ti)πsi(f) = πti(f)ψ(b−1ti) (2.8)

π
(z)
ti (g) = π(z1)

si
(g) (2.9)

Equation (2.9) is straight-forward to show and was used above in the infinite order

argument, while equation (2.8) follows by applying equation (2.7) N times:

ψ(b−1ti)
N−1∏
j=0

f(bjsi) =
N−1∏
j=0

f(y−1bjsi)ψ(b−(N+1)ti)

and then using the facts that b has order N and y is in the centraliser of b.

Suppose that αsi ∈ Csi . Then, using equations (2.8) and (2.9):

eA = α−1
si
πsi(f)−1αsiπ

(z1)
si

(g)

= α−1
si
ψ(b−1ti)

−1πti(f)−1ψ(b−1ti)αsiπ
(z)
ti (g).

This confirms that ψ(b−1ti)Csi ⊆ Cti . On the other hand, suppose instead that αti ∈
Cti . Then

eA = α−1
ti
πti(f)−1αtiπ

(z)
ti (g)

= α−1
ti
ψ(b−1ti)πsi(f)−1ψ(b−1ti)

−1αtiπ
(z1)
si

(g).

Hence ψ(b−1ti)
−1αti ∈ Csi . In particular we get Cti = ψ(t−1)Csi as required.

Obtaining a short conjugator will require two steps. Lemma 2.2.8 is the first of

these steps. Here we actually find the short conjugator, while in Lemma 2.2.9 we

show that the size of a conjugator (h, z) can be bounded by a function involving the

size of z but independent of h altogether.

Recall that the conjugacy length function of B is the minimal function

CLFB : N→ N

such that if b is conjugate to c in B and dB(eB, b) + dB(eB, c) ≤ n then there exists a

conjugator z ∈ B such that dB(eB, z) ≤ CLFB(n).

Lemma 2.2.8. Suppose u = (f, b), v = (g, c) are conjugate elements in Γ = A o B
and let n = dΓ(1, u) + dΓ(1, v). Then there exists γ = (h, z) ∈ Γ such that uγ = γv

and either:
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(1) dB(eB, z) ≤ CLFB(n) if (f, b) is conjugate to (1, b); or

(2) dB(eB, z) ≤ n if (f, b) is not conjugate to (1, b).

Proof. Without loss of generality we may assume that dΓ(1, u) ≤ dΓ(1, v). By Lemma

2.2.7, if (h0, z0) is a conjugator for u and v then there exists a family of right-coset

representatives {ti | i ∈ I} for 〈b〉 in B such that

π
(z0)
ti (g) = πti(f) or π

(z0)
ti (g) is conjugate to πti(f)

for every i ∈ I according to whether b is of infinite or finite order respectively (the

former follows from the finiteness of the support of the function h given by Lemma

2.2.7).

By Proposition 2.2.6, (f, b) is conjugate to (1, b) if and only if πti(f) = eA for

every i ∈ I. In this case we take

h(bkti) =


∏
j≤k

f(bjti) if b is of infinite order;

k∏
j=0

f(bjti) if b is of finite order N and 0 ≤ k < N .

One can then verify that (f, b)(h, eB) = (h, eB)(1, b). Thus we have reduced (1) to

the case when u = (1, b) and v = (1, c). For this we observe that any conjugator z

for b, c in B will give a conjugator (1, z) for u, v in A oB. Thus (1) follows.

If on the other hand (f, b) is not conjugate to (1, b) then by Proposition 2.2.6,

πti(f) 6= eA for some i ∈ I. Fix some such i, observe that there exists k ∈ Z satisfying

bkti ∈ Supp(f) and there must also exist some j ∈ Z so that z−1
0 bjti ∈ Supp(g). Pre-

multiply (h0, z0) by (f, b)k−j to get γ = (h, z), where z = bk−jz0 and γ is a conjugator

for u and v since (f, b)k−j belongs to the centraliser of u in Γ. By construction,

z−1bkti = z−1
0 bjti and hence is contained in the support of g. We finish by applying

the triangle inequality and using the left-invariance of the word metric dB as follows:

dB(eB, z
−1) ≤ dB(eB, z

−1bkti) + dB(z−1bkti, z
−1)

≤ dB(eB, b
kti) + dB(eB, z

−1bkti)

≤ K(Supp(f), b) +K(Supp(g), c)

≤ dΓ(1, u) + dΓ(1, v).

This completes the proof.
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Soon we will give Theorem 2.2.10, which will describe the length of short con-

jugators in wreath products A o B where B is torsion-free. Before we dive into this

however, it will prove useful in Section 2.2.4, when we look at conjugacy in free solv-

able groups, to understand how the conjugators are constructed. In particular, it is

important to understand that the size of a conjugator (h, z) ∈ A oB can be expressed

in terms of the size of z in B with no need to refer to the function h at all. This is

what we explain in Lemma 2.2.9.

For b ∈ B, let δB〈b〉(n) = max{m ∈ Z | dB(eB, b
m) ≤ n} be the subgroup distortion

of 〈b〉 in B. Fix a finite generating set X for B and let Cay(B,X) be the corresponding

Cayley graph.

Lemma 2.2.9. Suppose u = (f, b), v = (g, c) are conjugate elements in Γ = A o B
and let n = dΓ(1, u) + dΓ(1, v). Suppose also that b and c are of infinite order in B.

If γ = (h, z) is a conjugator for u and v in Γ then

dΓ(1, γ) ≤ (n+ 1)P (2δB〈b〉(P ) + 1)

where P = dB(1, z) + n.

Proof. Without loss of generality we may assume dΓ(1, u) ≤ dΓ(1, v). From Lemma

2.2.7 we have an explicit expression for h. We use this expression to give an upper

bound for the size of (h, z), making use of Lemma 1.4.1 which tells us

dΓ(1, γ) = K(Supp(h), z) + |h|

where K(Supp(h), z) is the length of the shortest path in Cay(B,X) from eB to z

travelling via every point in Supp(h) and |h| is the sum of terms dA(eA, f(x)) over all

x ∈ B.

We begin by obtaining an upper bound on the size of K(Supp(h), z). To do this

we build a path from eB to z, zig-zagging along cosets of 〈b〉, see Figure 2.6. Lemma

2.2.7 tells us that there is a family of right-coset representatives {ti}i∈I such that

h(bkti) =

(∏
j≤k

f(bjti)

)(∏
j≤k

g(z−1bjti)

)−1

for every i ∈ I and k ∈ Z. This expression for h tells us where in each coset the

support of h will lie. In particular, note that if we set C = Supp(f)∪ zSupp(g), then

Supp(h) ∩ 〈b〉ti 6= ∅ =⇒ C ∩ 〈b〉ti 6= ∅.
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eB

z

q0

p1

qs

ps

〈b〉t1

〈b〉t2

〈b〉ts−1

〈b〉ts

Figure 2.6: We build a path from eB to b by piecing together paths qi and pi, where
the paths pi run though the intersection of Supp(h) with a coset 〈b〉ti and the paths
qi connect these cosets.

Furthermore, in each coset the support of h must lie between some pair of elements

in C. Let t1, . . . , ts be all the coset representatives for which Supp(h) intersects the

coset 〈b〉ti. The number s of such cosets is bounded above by the size of the set

Supp(f) ∪ Supp(g), which is bounded above by dΓ(1, u) + dΓ(1, v) = n.

If we restrict our attention to one of these cosets, 〈b〉ti, then there exist integers

m1 < m2 such that bjti ∈ Supp(h) implies m1 ≤ j ≤ m2. We can choose m1 and

m2 so that bmti ∈ C for m ∈ {m1,m2}. Let pi be a piecewise geodesic in the Cayley

graph of B which connects bm1ti to bm2ti via bjti for every m1 < j < m2. The length

of pi will be at most

dB(bjti, b
j+1ti)δ

B
〈b〉(diam(C))

for any j ∈ Z. Choose j ∈ Z such that bjti ∈ C. In that case that bjti ∈ Supp(f) we

get that

dB(bjti, b
j+1ti) ≤ dB(bjti, b) + dB(b, bj+1ti)

= dB(bjti, b) + dB(eB, b
jti)

≤ K(Supp(f), b) ≤ n

where the last line follows because any path from eB to b via all points in Supp(f)

will have to be at least as long as the path from eB to b via the point bjti. Similarly,
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eB

z

Supp(f)

zSupp(g)

b

bz = zc

Figure 2.7: The concatenation of three paths: a path from b to eB through Supp(f),
followed by a path from eB to z, then finish off with a path from z to zc through each
point in zSupp(g).

in the case when z−1bjti ∈ Supp(g), we get

dB(bjti, b
j+1ti) ≤ dB(bjti, zc) + dB(zc, bj+1ti)

= dB(bjti, zc) + dB(z, bjti)

≤ K(Supp(g), c) ≤ n

where we obtain the last line because a shortest path from z to zc via zSupp(g) will

have length precisely K(Supp(g), c). Hence, in either case we get that the path pi

has length bounded above by nδB〈b〉(diam(C)).

We will now show that diam(C ∪ {eB, z}) ≤ n+ dB(1, z) = P . This diameter will

be given by the length of a path connecting some pair of points in this set. We take

a path through eB, z and all points in the set C, a path such as that in Figure 2.7.

The length of this path will certainly be bigger than the diameter. Hence we have

diam(C) ≤ K(Supp(f), b) + dB(1, z) +K(Supp(g), c)

≤ n+ dB(1, z) = P.

For i = 1, . . . , s − 1 let qi be a geodesic path which connects the end of pi with

the start of pi+1. Let q0 connect eB with the start of p1 and qs connect the end of ps

with z. Then the concatenation of paths q0, p1, q1, . . . , qs−1, ps, qs is a path from eB to

z via every point in Supp(h).

For each i, the path qi will be a geodesic connecting two points of C ∪ {eB, z}.
The above upper bound for the diameter of this set tells us that each qi will have

length at most n+ dB(1, z) = P .
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Hence our path q0, p1, q1, . . . , qs−1, ps, qs has length bounded above by

(n+ 1)P + n2δB〈b〉(P ) ≤ (n+ 1)P (δB〈b〉(P ) + 1)

thus giving an upper bound for K(Supp(h), z).

Now we need to turn our attention to an upper bound for |h|. By the value of

h(bkti) given to us by Lemma 2.2.7 we see that

dA(eA, h(bkti)) ≤
∑
j≤k

dA(eA, g(z−1bjti)) +
∑
j≤k

dA(eA, f(bjti))

≤ |g|+ |f | ≤ n

The number of elements bkti in the support of h can be counted in the following way.

Firstly, the number of i ∈ I for which 〈b〉ti ∩ Supp(h) 6= ∅ is equal to s, which we

showed above to be bounded by n. Secondly, for each such i, recall that there exists

m1 ≤ m2 such that bjti ∈ Supp(h) implies m1 ≤ j ≤ m2. Hence for each i the number

of k ∈ Z for which bkti ∈ Supp(h) is bounded above by m2 − m1 ≤ δB〈b〉(P ). So in

conclusion we have

dΓ(1, γ) = K(Supp(h), z) + |h|

≤ (n+ 1)P (δB〈b〉(P ) + 1) + n2δB〈b〉(P )

≤ (n+ 1)P (2δB〈b〉(P ) + 1)

where n = dΓ(1, u) + dΓ(1, v) and P = dB(eB, z) + n.

Theorem 2.2.10. Suppose A and B are finitely generated and B is also torsion-free.

Let u = (f, b), v = (g, c) ∈ Γ = A o B, with b, c 6= eB, and set n = dΓ(1, u) + dΓ(1, v).

Then u, v are conjugate if and only if there exists a conjugator γ ∈ Γ such that

dΓ(1, γ) ≤ (n+ 1)P (2δB〈b〉(P ) + 1)

where P = 2n if (f, b) is not conjugate to (1, b) and P = n+ CLFB(n) otherwise.

Proof. By Lemma 2.2.8 we can find a conjugator γ = (h, z) which satisfies the inequal-

ity dB(eB, z) ≤ CLFB(n) if (f, b) is conjugate to (1, b) or dB(eB, z) ≤ n otherwise.

Therefore if we set P = n+ CLFB(n) if (f, b) is conjugate to (1, b) and P = 2n other-

wise then the result follows immediately by applying Lemma 2.2.9 to the conjugator

γ obtained from Lemma 2.2.8.
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When we look at elements whose B–components are non-trivial, or in general when

they may be of finite order, we can still obtain some information on the conjugator

length. Theorem 2.2.10 does the work when we look at elements in A o B such that

the B–components are of infinite order. However, if they have finite order we need to

understand the size of the conjugators αi as in Proposition 2.2.6 and Lemma 2.2.7.

When the order of b is finite, the construction of the function h by Matthews in

Proposition 2.2.6 will work for any conjugator αti between π
(z)
ti (g) and πti(f). Then,

since

|π(z)
ti (g)|+ |πti(f)| ≤ |g|+ |f | ≤ n

where n = dΓ(1, u) + dΓ(1, v), for each coset representative ti and each bk ∈ 〈b〉 we

have

dB(eB, h(bkti)) ≤ |f |+ |g|+ CLFA(n) ≤ n+ CLFA(n).

With the aid of the conjugacy length function for A we can therefore give the following:

Lemma 2.2.11. Suppose u = (f, b), v = (g, c) are conjugate elements in Γ = A o B
and let n = dΓ(1, u) + dΓ(1, v). Suppose also that b and c are of finite order N . If

γ = (h, z) is a conjugator for u and v in Γ then

dΓ(1, γ) ≤ P (N + 1)(2n+ CLFA(n) + 1)

where P = dB(eB, z) + n.

Proof. For the most part this proof is the same as for Lemma 2.2.9. It will differ in

two places. As mentioned above, we obtain

dB(eB, h(bkti)) ≤ |f |+ |g|+ CLFA(n)

for each coset representative ti and bk ∈ 〈b〉. By a similar process as that in Lemma

2.2.9 we deduce the upper bound

|h| ≤ nN(n+ CLFA(n)).

The second place where we need to modify the proof is in the calculation of an

upper bound for the length of each path pi. Since b is of finite order, each coset will

give a loop in Cay(B,X). We will let pi run around this loop, so its length will be

bounded above by NdB(ti, bti). As before we get dB(ti, bti) ≤ n, so in the upper
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bound obtained for K(Supp(h), z) we need only replace the distortion function δB〈b〉

by the order N of b in B. Thus

K(Supp(h), z) ≤ P (N + 1)(n+ 1)

where P = dB(eB, z) + n. Combining this with the upper bound above for |h| we get

dΓ(1, γ) ≤ P (N + 1)(n+ 1) + nN(n+ CLFA(n))

≤ P (N + 1)(2n+ CLFA(n) + 1)

proving the Lemma.

We finish this section by applying Lemma 2.2.8 and Lemma 2.2.11 to give the

complete picture for the length of short conjugators in the case when B may contain

torsion.

Theorem 2.2.12. Suppose A and B are finitely generated groups. Let u = (f, b), v =

(g, c) ∈ Γ where the order of b and c is N ∈ N∪ {∞}. Then u, v are conjugate if and

only if there exists a conjugator γ ∈ Γ such that either

dΓ(1, γ) ≤ P (N + 1)(2n+ CLFA(n) + 1) if N is finite; or
dΓ(1, γ) ≤ (n+ 1)P (2δB〈b〉(P ) + 1) if N =∞,

where n = dΓ(1, u) + dΓ(1, v) and P = 2n if (f, b) is conjugate to (1, b) or P =

n+ CLFB(n) otherwise.

2.2.2.b Lower bounds for lengths of short conjugators

We saw in Section 2.2.2.a that the distortion of cyclic subgroups plays an important

role in the upper bound we obtained for the conjugacy length function. We will make

use of the distortion to determine lower bounds as well. Firstly, however, we give

a straightforward lower bound. In the following, let |.|B denote word length in the

finitely generated group B and |.| without the subscript denote word length in A oB.

Proposition 2.2.13. Let A and B be finitely generated groups. Then

CLFAoB(n) ≥ CLFB(n).
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Proof. Let n ∈ N. The value CLFB(n) is defined to be the smallest integer such that

whenever b, c are conjugate elements in B and satisfy |b|B + |c|B ≤ n then there is

a conjugator z ∈ B such that |z|B ≤ CLFB(n). Let bn, cn be elements which realise

this minimum. That is:

1. |bn|B + |cn|B ≤ n; and

2. a minimal length conjugator zn ∈ B satisfies |zn|B = CLFB(n).

Consider the elements un = (1, bn), vn = (1, cn) in A oB, where 1 represents the trivial

function. Then by Lemma 1.4.1

|un|+ |vn| ≤ n.

Any conjugator (h, x) must satisfy hbn = h and bnx = xcn. We may take h = 1 since

any non-trivial function h (only possible when bn is of finite order) will lead to a larger

conjugator. Thus a minimal length conjugator for un and vn will have the form (1, x)

where x can be chosen to be any conjugator for bn and cn. In particular, this shows

that the minimal length conjugator for un and vn has length CLFB(n).

Distorted elements. Let B be a finitely generated group containing an element x

of infinite order. If the centraliser of x in B, denoted ZB(x), is sufficiently large (see

Lemma 2.2.15), then we can use the distortion of 〈x〉 in B to construct two sequences

of functions from B to A that allow us to demonstrate a lower bound on the conjugacy

length function of A o B in terms of this distortion. Given any element b of infinite

order in B, by taking x = b3 we ensure that x has sufficiently large centraliser in

order to apply Lemma 2.2.15. Since the distortion of 〈b〉 in B is (roughly) a third of

that of 〈x〉, we can conclude that the distortion function of any cyclic subgroup in B

provides a lower bound for the conjugacy length function of A oB.

Theorem 2.2.14. Let A and B be finitely generated groups and let b ∈ B be any

element of infinite order. Then

CLFAoB
(
4n+ 4 + 10 |b|B

)
≥ 4

3
δB〈b〉 (n)− 4.

In order to prove Theorem 2.2.14 we will use the following closely-related Lemma:
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Lemma 2.2.15. If the set {y ∈ ZB(x) : y2 /∈ 〈x〉} is non-empty then

CLFAoB
(
4(n+ Lx + 1) + 2 |x|B

)
≥ 4δB〈x〉 (n)

where Lx = min{|y|B : y ∈ ZB(x), y2 /∈ 〈x〉}.

Proof of Theorem 2.2.14. To obtain the Theorem we need to apply Lemma 2.2.15,

taking x = b3. Then b ∈ ZB(x) and b2 /∈ 〈x〉, hence Lx ≤ |b|. The distortion function

for b satisfies δB〈b〉(n) ≥ 1
3
δB〈x〉(n) − 1. Hence the Theorem follows by application of

Lemma 2.2.15.

Proof of Lemma 2.2.15. Take an element y in ZB(x) which realises this minimum.

Let a be any element in the chosen generating set of A and consider two functions

fn, gn : B → A which take values of either eA or a and which have the following

supports:

Supp(fn) = {eB, y}

Supp(gn) = {x−δ(n), xδ(n)y}

where δ(n) = δB〈x〉(n). We use these functions to define a pair of conjugate elements:

un = (fn, x), vn = (gn, x). First we will show that the sum of the sizes of these

elements grows with n. Observe that

|un|+ |vn| = K(Supp(fn), x) + 2 +K(Supp(gn), x) + 2

where the notation is as in Lemma 1.4.1. For every n,

K(Supp(fn), x) ≤ 2 |y|B + |x|B
n ≤K(Supp(gn), x) ≤ 2 |y|B + 4n+ |x|B .

Hence n ≤ |un|+ |vn| ≤ 4n+ 4Lx + 2 |x|B + 4. As an example of a conjugator we may

take γn = (hn, eB), where hn is given by

hn(xiy) = a if 0 ≤ i ≤ δ(n)− 1;

hn(x−i) = a−1 if 1 ≤ i ≤ δ(n);

hn(b) = eA otherwise.

We will now verify that this is indeed a conjugator. To do so, we need to verify that

fnh
x
n = hngn. We need only check this holds for elements of the form xiy or x−i for
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〈x〉

eB

y

x−1

x−δ(n)

xδ(n)−1y
xδ(n)y

Figure 2.8: The support of hn is the union of the two shaded regions.

0 ≤ i ≤ δ(n) since otherwise both sides evaluate to the identity. The reader can verify

that

fn(xiy)hn(xi−1y) = a = hn(xiy)gn(xiy)

whenever 0 ≤ i ≤ δ(n). Provided 1 ≤ i ≤ δ(n)− 1 we get

fn(x−i)hn(x−i−1) = a−1 = hn(x−i)gn(x−i)

and in the last two cases, that is for i ∈ {0, δ(n)}, both sides equal the identity.

Now we will show that any conjugator for un and vn will have to have size bounded

below by 4δ(n). This is done by showing the support of the associated function will

contain at least 2δ(n) elements. We will first give the family of elements z ∈ B for

which there exists a conjugator for un and vn of the form (h, z) for some function h.

Suppose z is some such element. Lemma 2.2.7 then tells us what the corresponding

function h will look like. In particular, in order for the support of h to be finite, we

must have that

Supp(fn) ∩ 〈x〉t 6= ∅ if and only if zSupp(gn) ∩ 〈x〉t 6= ∅

for any t ∈ B (note that this does not apply in general, but it does here because the

functions have been designed so their supports intersect each coset with at most one

element). Hence zSupp(gn) will intersect the cosets 〈x〉yi exactly once for each i = 0, 1

and it will not intersect any other coset. Let σ be the permutation of {0, 1} such that

zxδ(n)y ∈ 〈x〉yσ(1) and zx−δ(n) ∈ 〈x〉yσ(0). Since y is in the centraliser of x it follows

that z ∈ 〈x〉yσ(i)−i for each i. If σ(i) 6= i then this implies that z ∈ 〈x〉y−1 ∩ 〈x〉y,

so y2 ∈ 〈x〉, contradicting our choice of y. Hence σ(i) = i for i ∈ {0, 1}, and thus

z ∈ 〈x〉.
The support of gn was chosen in such a way that it is sufficiently spread out in

the two cosets of 〈x〉. It means that shifting Supp(gn) by any power of x does not

prevent the support of h needing at least 2δ(n) elements. In particular, if z = xk
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for some −δ(n) < k < δ(n) then the support of h will consist of elements xiy for

0 ≤ i < δ(n) + k and x−i for 1 ≤ i ≤ δ(n)− k. Here the support has precisely 2δ(n)

elements. If k lies outside this range then the support will contain at least as many as

2δ(n) elements, for example if k ≥ δ(n) then the support will consist of elements xiy

for 0 ≤ i < δ(n) + k as well as xi for any i satisfying 0 ≤ i < −δ(n) + k. This implies

that, by Lemma 1.4.1, any conjugator for un and vn will have to have size at least

4δ(n), providing the required lower bound for the conjugacy length function.

Osin [Osi01] has described the distortion functions of subgroups of finitely gen-

erated nilpotent groups. In particular, for a c–step nilpotent group N his result

implies that the maximal distortion of a cyclic subgroup of N will be nc, and this

occurs when the subgroup is contained in the centre of N . A consequence of Theo-

rem 2.2.10, Theorem 2.2.14 and Osin’s work is that when restricting to elements in

A oN not conjugate to an element of the form (1, b), the (restricted) conjugacy length

function will be nα, where α ∈ [c, c + 2]. However, since we do not yet know the

conjugacy length function of a general c–step nilpotent group, apart from this lower

bound we cannot estimate the conjugacy length function of A oN . In the particular

case when N is 2–step nilpotent we know its conjugacy length function is quadratic

by Ji, Ogle and Ramsey [JOR10]. Hence the conjugacy length function of A oN , when

N is torsion-free, is nα for some α ∈ [2, 7].

Baumslag–Solitar groups. Using the exponential distortion of elements in the

solvable Baumslag–Solitar groups BS(1, q) we are able to show that the conjugacy

length function for A oBS(1, q) is exponential for any finitely generated group A. We

will write BS(1, q) with presentation

〈a, b | aba−1 = bq〉.

The subgroup generated by b is exponentially distorted since bq
n

= anba−n. Hence

by Theorem 2.2.14 the conjugacy length function of A o BS(1, q) will be at least

exponential. We must show that it also has an exponential upper bound. To do this

we will use a normal form which is admitted by the solvable Baumslag–Solitar groups:

every element g ∈ BS(1, q) can be written uniquely in the form g = a−rbtas, where

r, s ≥ 0 and if r, s > 0 then q does not divide t.

Proposition 2.2.16. The conjugacy length function for A o BS(1, q) is exponential.
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Proof. The exponential lower bound is a consequence of Theorem 2.2.14. The con-

jugacy length function for BS(1, q) was shown to be linear in [Sal11], as well as in

Theorem 2.3.5 below. In order to deduce from the result for wreath products (Theo-

rem 2.2.10) that we have an exponential upper bound on conjugacy length, we need

to show that the distortion of cyclic subgroups generated by elements of BS(1, q) of

length at most n is bounded by a function which is exponential in n.

Let g = a−rbtas be an element of BS(1, q) given in normal form and contained in

the ball of radius n about the identity. We will consider the distortion of the subgroup

〈g〉. First suppose that r = s. Then by writing gq
k

= a−r+kbar−k we get an upper

bound on δ
BS(1,q)
〈g〉 (m) of q

m−1
2

+r. But r ≤ n since g has length at most n. Hence

δ
BS(1,q)
〈g〉 (m) ≤ q

m−1
2

+n

among all elements g with normal form a−rbtar with length at most n.

Now suppose s 6= r. Consider the action of BS(1, q) on its Bass–Serre tree T , which

will be a (q+1)–regular tree. Fix a basepoint x of T , let ω be the boundary point of T

determined by the ray consisting of vertices akx for k ∈ N and let h be the associated

Busemann function, as defined in Section 2.1.1. The element g = a−rbtas will act

on T by moving a point in the p–th horocycle of h to a point in the (p + r − s)–th

horocycle. Hence
∣∣gk∣∣ ≥ |k(r − s)|. This implies that

δ
BS(1,q)
〈g〉 (m) ≤ m

n

for any g of the form a−rbtas with r 6= s and of length at most n.

Using the area of triangles. We will show that the conjugacy length function of

wreath products A oB, where A is finitely generated and B contains a copy of Z2, are

non-linear, and in particular are at least quadratic. Combined with Theorem 2.2.10

we learn, for example, that CLFAoZr(n) � nα for some α ∈ [2, 3]. The methods used

here differ to those used above in that we do not use subgroup distortion. Instead

we rely on the area of triangles in Z2 being quadratic with respect to the perimeter

length.

Suppose x and y generate a copy of Z2 in B. For each n ∈ N let fn, gn : B → A

be functions which take values of either eA or a, where a is an element of a generating

set for A, and have supports given by

Supp(fn) = {x−n, . . . , x−1, eB, x, . . . , x
n},
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Supp(gn) = {x−ny−n, . . . , x−1y−1, eB, xy, . . . x
nyn}.

Consider the two elements un = (fn, y) and vn = (gn, y). These are conjugate via the

element (hn, eB), where hn is defined by

hn(xiyj) = a if 0 < i ≤ n and 0 ≤ j < i;

hn(xiyj) = a−1 if − n ≤ i < 0 and i ≤ j < i;

hn(z) = eA otherwise.

It is clear that the sizes of un and vn grows linearly with n. In particular, using

Lemma 1.4.1, one can verify that

4n+ 2 ≤ |un| ≤ 2n(2 |x|+ 1) + |y|+ 1,

4n+ 2 ≤ |vn| ≤ 2n(2 |xy|+ 1) + |y|+ 1.

Suppose that (h, z) is any conjugator for un and vn. First we claim that z must be a

power of y. This follows from a similar argument as in the proof of Theorem 2.2.14.

By Lemma 2.2.7, given z we can construct the function h. The support of h will be

finite only if for any t ∈ B

Supp(fn) ∩ 〈y〉t 6= ∅ if and only if zSupp(gn) ∩ 〈y〉t 6= ∅. (2.10)

First observe that z ∈ 〈x, y〉 = Z2 since otherwise we would have Supp(fn)∩〈y〉z = ∅
while on the other hand z ∈ zSupp(gn) ∩ 〈y〉z. By the nature of Z2 we can see that

if z acts on it by translation in any direction except those parallel to y then (2.10)

cannot hold, implying h will have infinite support. Thus any conjugator for un and

vn must be of the form (h, yk) for some integer k.

A simple geometric argument now gives us a quadratic lower bound on the size

of (h, yk) relative to n. The support of h will be contained in the cosets 〈y〉xi for

−n ≤ i ≤ n. Within each coset it will include precisely one of xi or xryi+k, as well as

all elements in between. Specifically, xiyj ∈ Supp(h) if and only if either 0 ≤ j < i+k

or i + k ≤ j < 0. A triangle of elements is therefore contained in the support of h.

Regardless of what value of k is chosen this triangle can be chosen to have at least n

elements along the base and side, giving a minimum of 1
2
n(n+1) elements in Supp(h).

Thus any conjugator must have size bounded below by n(n+ 1).



2.2. Wreath Products and Free Solvable Groups 49

ykSupp(gn)

Supp(fn)
n

n

Figure 2.9: The shaded region indicates Supp(h), while the dark shaded region is a
triangle contained in Supp(h) which contains 1

2
n(n+ 1) elements.

Theorem 2.2.17. Let A and B be finitely generated groups and suppose that B

contains a copy of Z2 generated by elements x and y. The conjugacy length function

of A oB satisfies

CLFAoB
(
4n(|x|+ |xy|+ 1) + 2 |y|+ 2

)
≥ n2 + n.

When B = Zr for some r ≥ 2 we get the following upper and lower bounds:

(n+ 14)(n− 2)

256
≤ CLFAoZr(n) ≤ 7n(n+ 1)(14n+ 1).

Proof. The lower bounds follow from the argument preceding the Proposition. The

upper bound for the second expression is an immediate consequence of Theorem

2.2.10, using the facts that CLFZr is identically zero and the distortion function for

cyclic subgroups in Zr is the identity function.

The use of area in this way to provide a lower bound on the conjugacy length

function raises the question of whether, in general, one can use the Dehn function of

a group B to provide a lower bound for CLFAoB.

Question: Let AreaB : N → N be the Dehn function of a finitely presented group

B. Is it true that CLFAoB(n) � AreaB(n) for any finitely generated group A?

2.2.3 Subgroup distortion

We saw in Theorem 2.2.10 that in order to understand the conjugacy length function

of a wreath product A o B we need to understand the distortion function for infinite

cyclic subgroups in B.
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Recall subgroup distortion is studied up to an equivalence relation of functions.

For functions f, g : N → [0,∞) we write f � g if there exists an integer C > 0 such

that f(n) ≤ Cg(Cn) for all n ∈ N. The two functions are equivalent if both f � g

and g � f . In this case we write f � g.

We will see that all cyclic subgroups of free solvable groups Sr,d are undistorted.

This is not always the case in finitely generated solvable groups. For example, in

the solvable Baumslag-Solitar groups BS(1, q) = 〈a, b | aba−1 = bq〉 the subgroup

generated by b is at least exponentially distorted since bq
n

= anba−n. Because this

type of construction doesn’t work in Z o Z or free metabelian groups it leads to a

question of whether all subgroups of these groups are undistorted (see [DO11, §2.1]).

Davis and Olshanskii answered this question in the negative, giving, for any positive

integer t, 2–generated subgroups of these groups with distortion function bounded

below by a polynomial of degree t.

The following Lemma is given in [DO11, Lemma 2.3].

Lemma 2.2.18. Let A,B be finitely generated abelian groups. Then every finitely

generated abelian subgroup of A oB is undistorted.

Davis and Olshanskii prove this by showing that such subgroups are retracts of a

finite index subgroup of A oB. A similar process can be applied to finitely generated

abelian subgroups of free solvable groups to show that they are undistorted [Ols].

Below we give an alternative proof for cyclic subgroups which provides an effective

estimate for the constant1 and which uses only results given in this paper.

Proposition 2.2.19. Every cyclic subgroup of a free solvable group is undistorted.

In particular, suppose d ≥ 1 and let x be a non-trivial element of Sr,d. Then

δ
Sr,d
〈x〉 (n) ≤ 2n.

Proof. Let w be a non-trivial element of the free group F . There exists an integer c

such that w ∈ F (c) \ F (c+1), where we include the case F (0) = F . First we suppose

that d = c+ 1.

If c = 0 then we have x ∈ F/F ′ = Zr and we apply linear distortion in Zr. If

c > 0 then we take a Magnus embedding ϕ : Sr,d ↪→ Zr o Sr,c and observe that since

w ∈ F (c)\F (d) the image of x in ϕ is (f, 1) for some non-trivial function f : Sr,c → Zr.
1We thank Olshanskii for improving the constant from 2d to 2.
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If fk denotes the function such that fk(b) = kf(b) for b ∈ Sr,c, then for any k ∈ Z,

since the Magnus embedding is 2-bi-Lipschitz (Theorem 2.2.5),

dSr,d(1, x
k) ≥ 1

2
dM(1, (f, 1)k) =

1

2
dM(1, (fk, 1)).

We can apply Lemma 1.4.1 to get

1

2
dM(1, (fk, 1)) =

1

2

K(Supp(f), 1) +
∑
b∈Sr,c

|kf(b)|


and since the image of f lies in Zr and f is non-trivial∑

b∈Sr,c

|kf(b)| = |k|
∑
b∈Sr,c

|f(b)| ≥ |k| .

Hence

dSr,d(1, x
k) ≥ 1

2
dM(1, (fk, 1)) ≥ 1

2
|k| .

This implies δ
Sr,d
〈x〉 (n) ≤ 2n.

Now suppose that d > c+ 1. Then we define a homomorphism

ψ : Sr,d → Sr,c+1

by sending the free generators of Sr,d to the corresponding free generator of Sr,c+1.

Then, as before, set x = wF (d) and define y to be the image of x under ψ. By the

construction of ψ we have that y = wF (c+1). Note that y is non-trivial and ψ does

not increase the word length. Hence, using the result above for Sr,c+1, we observe

that

dSr,d(1, x
k) ≥ dSr,c+1(1, yk) ≥ 1

2
|k| .

This suffices to show that the distortion function is always bounded above by 2n.

2.2.4 Conjugacy in free solvable groups

The fact that the conjugacy problem is solvable in free solvable groups was shown

by Kargapolov and Remeslennikov [KR66]. The following Theorem was given by

Remeslennikov and Sokolov [RS70]. They use it, alongside Matthews’ result for

wreath products, to show the decidability of the conjugacy problem in Sr,d.

Theorem 2.2.20 (Remeslennikov–Sokolov [RS70]). Suppose F/N is torsion-free and

let u, v ∈ F/N ′. Then ϕ(u) is conjugate to ϕ(v) in M(F/N) if and only if u is

conjugate to v in F/N ′.
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The proof of Theorem 2.2.21 more-or-less follows Remeslennikov and Sokolov’s

proof of the preceding theorem. With it one can better understand the nature of

conjugators and how they relate to the Magnus embedding. In particular it tells us

that once we have found a conjugator in the wreath product Zr o Sr,d−1 for the image

of two elements in Sr,d, we need only modify the function component of the element

to make it lie in the image of the Magnus embedding.

Theorem 2.2.21. Let u, v be two elements in F/N ′ such that ϕ(u) is conjugate to

ϕ(v) in M(F/N). Let g ∈M(F/N) be identified with (f, γ) ∈ Zr oF/N . Suppose that

ϕ(u)g = gϕ(v). Then there exists w ∈ F/N ′ such that ϕ(w) = (fw, γ) is a conjugator.

Proof. Let g ∈M(F/N) be such that ϕ(u)g = gϕ(v). Suppose

g =

(
γ a
0 1

)
= (f, γ)

for γ ∈ F/N and a ∈ R. Recall that ᾱ : F/N ′ → F/N is the canonical homomorphism

and by Lemma 2.2.2 we may consider the derivations ∂?

∂xi
to be maps from Z(F/N ′)

rather than Z(F ). By direct calculation we obtain the two equations

ᾱ(u)γ = γᾱ(v) (2.11)
r∑
i=1

∂?u

∂xi
ti + ᾱ(u)a = γ

r∑
i=1

∂?v

∂xi
ti + a (2.12)

We now split the proof into two cases, depending on whether or not ᾱ(u) is the

identity element.

Case 1: ᾱ(u) is trivial.

In this case equation (2.12) reduces to

r∑
i=1

∂?u

∂xi
ti = γ

r∑
i=1

∂?v

∂xi
ti

and it follows that ϕ(γ0) = (h, γ) will be a conjugator for ϕ(u) and ϕ(v), where γ0 is

any lift of γ in F/N ′.

Case 2: ᾱ(u) is non-trivial.

Note that in this case we actually show a stronger result, that any conjugator for

ϕ(u) and ϕ(v) must lie in the subgroup ϕ(F/N ′). This is clearly not necessarily true

in the first case.
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First conjugate ϕ(u) by ϕ(γ0), where γ0 is a lift of γ in F/N ′. This gives us two

elements which are conjugate by a unipotent matrix in M(F/N), in particular there

exist b1, . . . , br in Z(F/N) such that the conjugator is of the form

ϕ(γ0)−1g = γ′ =

(
1 b1t1 + . . .+ brtr
0 1

)
.

Hence the aim now is to show that there is some element y in N such that γ′ = ϕ(y),

in particular ∂?y
∂xi

= bi for each i. Therefore, without loss of generality, we assume that

ϕ(u) and ϕ(v) are conjugate by such a unipotent matrix.

Assume that ϕ(u)γ′ = γ′ϕ(v). Then equation (2.11) tells us that ᾱ(u) = ᾱ(v).

Hence uv−1 = z ∈ N . Observe that ∂?z
∂xi

= ∂?u
∂xi
− ∂?v

∂xi
, hence from equation (2.12) we

get

(1− ᾱ(u))bi =
∂?z

∂xi
for each i = 1, . . . , r.

Let c be an element of Z(F/N ′) such that ∂?c
∂xi

= bi for each i. We therefore have

the following:

(1− ᾱ(u))
r∑
i=1

∂?c

∂xi
(α(xi)− 1) =

r∑
i=1

∂?z

∂xi
(α(xi)− 1).

We can choose c so that ε(c) = 0, and then apply the fundamental formula of Fox

calculus, Lemma 2.2.1, to both sides of this equation to get

(1− ᾱ(u))c = z − 1

since z ∈ N implies ε(z) = 1. In Z(F/N) the right-hand side is 0. Furthermore,

since F/N is torsion-free, (1− ᾱ(u)) is not a zero divisor, so c lies in the kernel of the

homomorphism ᾱ? : Z(F/N ′) → Z(F/N). Hence there is an expression of c in the

following way (see Lemma 2.2.3):

c =
m∑
j=1

rj(hj − 1)

where m is a positive integer and for each j = 1, . . . ,m we have rj ∈ F/N ′ and

hj ∈ N/N ′. Differentiating this expression therefore gives

bi =
∂?c

∂xi
=

m∑
j=1

(
∂?rj
∂xi

ε(hj − 1) + ᾱ(rj)
∂?(hj − 1)

∂xi

)

=
m∑
j=1

ᾱ(rj)
∂?hj
∂xi
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We set

y =
m∏
j=1

rjhjr
−1
j ∈ N .

Since hj ∈ N/N ′ for each j, we have the following equations:

∂?(h1h2)

∂xi
=
∂?h1

∂xi
+
∂?h2

∂xi
,

∂?(rjhjr
−1
j )

∂xi
= rj

∂?hj
∂xi

.

Using these, the condition ∂?y
∂xi

= bi can be verified. Hence, g = ϕ(γ0)ϕ(y), so taking

w = γ0y gives us a conjugator ϕ(γ0y) = (fw, γ) of the required form.

Theorem 2.2.21 tells us that when considering two conjugate elements in F/N ′ we

may use the wreath product result, Theorem 2.2.12, and the fact that the Magnus

embedding does not distort word lengths, Theorem 2.2.5, to obtain a control on the

length of conjugators in F/N ′ in terms of the conjugacy length function of F/N .

Recall that in A o B the conjugacy length function of B plays a role only when we

consider elements conjugate to something of the form (1, b). Hence, with the use of

the following Lemma, we can obtain an upper bound on the conjugacy length function

of F/N ′ which is independent of the conjugacy length function of F/N and depends

only on the distortion of cyclic subgroups in F/N .

Lemma 2.2.22. Let (f, b) be a non-trivial element in the image ϕ(F/N ′), where b

is of infinite order in F/N . Then (f, b) is not conjugate to any element of the form

(1, c) in Zr o F/N .

Proof. First note that we may assume b 6= e, since otherwise for (f, e) to be conjugate

to (1, c), c would have to be e and f = 1. Suppose, for contradiction, that (1, c) =

(h, z)−1(f, b)(h, z). Then

0 = −h(zg) + f(zg) + h(b−1zg) (2.13)

for every g ∈ F/N . We will show that for this to be true, the support of h must be

infinite. Write f and h in component form, that is

f(g) =
(
f1(g), . . . , fr(g)

)
and h(g) =

(
h1(g), . . . , hr(g)

)
for g ∈ F/N and where fi, hi : F/N → Z. Recall that the generators of F are

X = {x1, . . . , xr}. We will abuse notation, letting this set denote a generating set for

F/N as well. Consider the function defined by

Σf (g) =
r∑
i=1

fi(g)−
r∑
i=1

fi(gx
−1
i )
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for g ∈ F/N and similarly Σh for h in place of f . Since (f, b) is in the image of the

Magnus embedding it gives a path ρ in the Cayley graph of F/N , as discussed in

Section 2.2.1.b. We also showed in the proof of Theorem 2.2.5 that fi(g) counts the

net number of times ρ passes along the edge (g, gxi), counting +1 when it travels

from g to gxi and −1 each time it goes from gxi to g. Therefore Σf (g) counts the net

number of times this path leaves the vertex labelled g and in particular we deduce

that

Σf (e) = 1, Σf (b) = −1 and Σf (g) = 0 for g 6= e, b.

From equation (2.13) we get Σf (g) = Σh(g)−Σh(b
−1g) for every g ∈ F/N . Note that

if the support of h is to be finite, the support of Σh must also be finite.

Consider any coset 〈b〉t in F/N . Suppose first that t is not a power of b. Then

Σf is identically zero on 〈b〉t. Since 0 = Σf (b
kt) = Σh(b

kt) − Σh(b
k−1t) implies that

Σh is constant on 〈b〉t, if h is to have finite support then this must always be zero

since b is of infinite order. Looking now at 〈b〉, we similarly get Σh(b
k) = Σh(b

k−1) for

all k 6= 0, 1. Again, the finiteness of the support of h implies that Σh(b
k) = 0 for all

k 6= 0. However, 1 = Σf (e) = Σh(e)− Σh(b
−1), so Σh(e) = 1. To summarise:

Σh(g) 6= 0 if and only if g = e.

We can use this to construct an infinite path in Cay(F/N,X), which contains

infinitely many points in Supp(h) and thus obtain a contradiction. Start by setting

g0 to be e. Since Σh(e) = 1 there is some xi1 ∈ X such that either hi1(e) 6= 0 or

hi1(x−1
i1

) 6= 0. If the former is true then let g1 = xi1 ; in the latter case take g1 = x−1
i1

.

Since Σh(g1) = 0 there must be some adjacent vertex g2 such that either g2 = g1xi2

and hi2(g1) 6= 0 or g2 = g1x
−1
i2

and hi2(g2) 6= 0. We can extend this construction

endlessly, building an infinite sequence (gm) for m ∈ Z ∪ {0} . Furthermore, for each

edge in the induced path in Cay(F/N,X), at least one of its end points will be in

the support of h. Since hi(gm) is finite for every i and every m, this path must have

infinitely many edges. Hence Supp(h) must be infinite.

We now use Theorem 2.2.21, Lemma 2.2.22 and work from Section 2.2.2 to give

an estimate of the conjugacy length function of a group F/N ′ with respect to the

subgroup distortion of its cyclic subgroups. Recall that ᾱ : F/N ′ → F/N denotes the

canonical homomorphism and δ
F/N
〈ᾱ(u)〉 is the distortion function for the subgroup of

F/N generated by ᾱ(u).
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Theorem 2.2.23. Let N be a normal subgroup of F such that F/N is torsion-free.

Let u, v be elements in F/N ′. Then u, v are conjugate in F/N ′ if and only if there

exists a conjugator γ ∈ F/N ′ such that

dF/N ′(1, γ) ≤ (16n2 + 8n)(2δ
F/N
〈ᾱ(u)〉(4n) + 1).

In particular,

CLFF/N ′(n) ≤ (16n2 + 8n)(2∆F/N
cyc (4n) + 1)

where ∆
F/N
cyc (m) = sup

{
δ
F/N
〈x〉 (m) | x ∈ F/N

}
.

Proof. We begin by choosing a conjugator (h, γ) ∈ Zr o F/N for which γ is short, as

in Lemma 2.2.8. Then Theorem 2.2.21 tells us that there exists some lift γ0 of γ in

F/N ′ such that ϕ(γ0) = (h0, γ) is a conjugator. First suppose that u /∈ N . Then

α(u) has infinite order in F/N and we may apply Lemma 2.2.9 to give us

dM(1, ϕ(γ0)) ≤ (n′ + 1)P ′(2δ
F/N
〈ᾱ(u)〉(P

′) + 1)

where n′ = dM(1, ϕ(u))+dM(1, ϕ(v)) and P ′ = 2n′ if ϕ(u) is not conjugate to (1, ᾱ(u))

or P ′ = n′ + CLFF/N(n′) otherwise. Lemma 2.2.22 tells us that we can discount the

latter situation and set P ′ = 2n′. By Theorem 2.2.5 we see that dF/N ′(1, γ) ≤
2dM(1, γ0) and n′ ≤ 2n. Then, provided u /∈ N , the result follows.

If, on the other hand, u ∈ N , then we must apply the torsion version, Lemma

2.2.11. The upper bound we get on dM(1, ϕ(γ0)) this time will be P ′(2n′ + 1), where

p′ = 2n′ and n′ ≤ 2n as in the previous case. This leads to

dF/N ′(1, γ0) ≤ 16n2 + 4n.

Clearly this upper bound suffices to give the stated result.

In the special case where N ′ = F (d) the quotient F/N ′ is the free solvable group

Sr,d of rank r and derived length d. Plugging Proposition 2.2.19 into Theorem 2.2.23

gives us an upper bound for the length of short conjugators between two elements in

free solvable groups.

Theorem 2.2.24. Let r, d > 1. Then the conjugacy length function of Sr,d is bounded

above by a cubic polynomial.
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Proof. In light of Proposition 2.2.19, applying Theorem 2.2.23 gives us a conjugator

γ ∈ Sr,d such that

dSr,d(1, γ) ≤ (16n2 + 8n)(16n+ 1).

We may ask whether this upper bound is sharp. Indeed, Theorem 2.2.17 tells us

it is possible to find elements in Zr o Zr which observe a quadratic conjugacy length

relationship. However it seems that this will not necessarily carry through to the

free metabelian groups Sr,2 as the elements un and vn considered in Theorem 2.2.17

cannot be recognised in the image of the Magnus embedding for Sr,2. Restricting

to elements in this image seems to place too many restrictions on the nature of the

support of the corresponding functions of the conjugate elements. It therefore seems

plausible that the conjugacy length function for Sr,2 should be subquadratic.

2.2.5 Compression exponents

We can use the fact that the Magnus embedding is a quasi-isometric embedding to

obtain a lower bound for the Lp compression exponent of free solvable groups. The

Lp compression exponent is a way of measuring how a group embeds into Lp. A

non-zero Lp compression exponent implies the existence of a uniform embedding of G

into Lp, a notion which was introduced by Gromov [Gro93]. Gromov claimed that if a

group admits a uniform embedding into a Hilbert space then the Novikov conjecture

holds in this group. The claim was later proved by Yu [Yu00], where he also showed

that amenable groups admit such embeddings. Kasparov and Yu [KY06] extended

this result to groups which admit a uniform embedding into any uniformly convex

Banach space.

Let G be a finitely generated group with word metric denoted by dG and let Y be

a metric space with metric dY . A map f : G → Y is called a uniform embedding if

there are two functions ρ± : R≥0 → R≥0 such that ρ−(r)→∞ as r →∞ and

ρ−(dG(g1, g2)) ≤ dY (f(g1), f(g2)) ≤ ρ+(dG(g1, g2))

for g1, g2 ∈ G.

One can define the Lp compression exponent for a finitely generated group G,

denoted by α?p(G), to be the supremum over all α ≥ 0 such that there exists a
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Lipschitz map f : G→ Lp satisfying

CdG(g1, g2)α ≤ ‖f(g1)− f(g2)‖

for any positive constant C. For p = 2, the Hilbert compression exponent, which is

denoted by α?(G), was introduced by Guentner and Kaminker [GK04].

Of particular interest to us is what happens to compression under taking a wreath

product. The first estimate for compression exponents in wreath products was given

by Arzhantseva, Guba and Sapir [AGS06] where they show that the Hilbert compres-

sion exponent of Z oH, where H has super-polynomial growth, is bounded above by

1/2. More recently Naor and Peres have given a lower bound for the compression of

A oB when B is of polynomial growth [NP11, Theorem 3.1].

Theorem 2.2.25 (Naor–Peres [NP11]). Let A,B be finitely generated groups such

that B has polynomial growth. Then, for p ∈ [1, 2],

α?p(A oB) ≥ min

{
1

p
, α?p(A)

}
.

Li showed in particular that a positive compression exponent is preserved by taking

wreath products [Li10].

Theorem 2.2.26 (Li [Li10]). Let A,B be finitely generated groups. For p ≥ 1 we

have

α?p(A oB) ≥ max

{
1

p
,
1

2

}
min

{
α?1(A),

α?1(B)

1 + α?1(B)

}
.

We can deduce from the result of Naor and Peres that the L1 compression exponent

for Zr oZr is equal to 1. Hence the L1 compression exponent for free metabelian groups,

using Theorem 2.2.5, is also equal to 1. Then, with the result of Li, induction on the

derived length gives us that α?1(Sr,d) ≥ 1
d−1

. Finally, another application of Li’s result

gives us the following:

Corollary 2.2.27. Let r, d ∈ N. Then

α?1(Sr,d) ≥
1

d− 1

and for p > 1

α?p(Sr,d) ≥
1

d− 1
max

{
1

p
,
1

2

}
.
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It would be interesting to determine an upper bound on α?p(Sr,d), in particular

to check if it is ever strictly less than 1
2

since no example of a solvable group with

non-zero Hilbert compression exponent strictly less than 1
2

is known. Austin [Aus11]

has constructed solvable groups with Lp compression exponent equal to zero. His

examples are modified versions of double wreath products of abelian groups. There-

fore to find such an example it seems natural to look in the class of iterated wreath

products of solvable groups and special families of their subgroups, such as the free

solvable groups.

2.3 Group Extensions

In 1977 Collins and Miller showed that the solubility of the conjugacy problem does

not pass to finite index subgroups or to finite extensions [CM77]. Recent work of

Bogopolski, Martino and Ventura investigate certain group extensions and what cir-

cumstances are necessary for the solubility of the conjugacy problem to carry through

to the extension [BMV10]. The extensions they study require a strong assumption

to be placed on the structure of centralisers in the quotient group, limiting the appli-

cation of their work. However, their result applies in cases where the quotient is, for

example, cyclic (or indeed finite), enabling them to study such groups as abelian-by-

cyclic groups or free-by-cyclic groups.

In this section we look at conjugacy length in extensions similar to those considered

in [BMV10], but instead of their assumption on centralisers in the quotient we put a

geometric condition on them. We use this to then study conjugacy length in certain

abelian-by-cyclic groups, polycyclic abelian-by-abelian groups and in finite extensions.

2.3.1 Twisted and restricted conjugacy length functions

In the following, suppose that Γ is a group which admits a left-invariant metric dΓ.

For γ ∈ Γ, denote by |γ|Γ the distance dΓ(1, γ). We will usually omit the subscript in

|.|Γ when we discuss lengths in Γ, favouring the subscript notation when dealing with

subgroups of Γ.

Twisted conjugacy length

We first recall the twisted conjugacy problem in a group Γ. For an automorphism

ϕ of Γ we say two elements u, v ∈ Γ are ϕ–twisted conjugate if there exists γ ∈ Γ
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such that u = γvϕ(γ)−1. In such cases we denote this relationship by u ∼ϕ v. The

twisted conjugacy problem asks whether there is an algorithm which, on input an

automorphism ϕ and two elements u and v, determines whether u ∼ϕ v.

Suppose we are given two elements u and v that are ϕ–twisted conjugate. We can

ask what can be said about the length of the shortest γ such that u = γvϕ(γ)−1. In

particular, we can look for a function f : R+ → R+ such that whenever |u|+ |v| ≤ x,

for x ∈ R+, then u ∼ϕ v if and only if there exists γ such that |γ| ≤ f(x) which

satisfies u = γvϕ(γ)−1. We call the minimal such function the ϕ–twisted conjugacy

length function and denote it by T CLΓ(n;ϕ). Observe that CLFΓ(n) = T CLΓ(n; Id).

We can extend this notation to subsets A ⊆ Aut(Γ), by defining T CLΓ(n;A) =

sup{T CLΓ(n, ϕ) : ϕ ∈ A}. The twisted conjugacy length function of Γ is T CLΓ(n) =

T CLΓ(n; Aut(Γ)).

Restricted conjugacy length

Given a subgroup B of a group Γ, the restricted conjugacy problem of Γ to B asks if

there is an algorithm which determines when two elements a, b ∈ B are conjugate in

Γ (see [BMV10]).

We can associate to the restricted conjugacy length problem a corresponding func-

tion, RCLΓ
B : R+ → R+, called the restricted conjugacy length function of B from

Γ. It is defined to be the minimal function satisfying the property that whenever

|a| + |b| ≤ x, for a, b ∈ B and x ∈ R+, then a is conjugate to b in Γ if and only if

there exists a conjugator γ ∈ Γ for which |γ| ≤ RCLΓ
B(x).

Note that in the definition of the restricted conjugacy length function we always

consider the length of the involved players as elements of Γ, rather than using a metric

dB on B. This naturally leads us to a lower bound for the conjugacy length function

of Γ:

RCLΓ
B ≤ CLFΓ.

In fact we need not even assume thatB is a subgroup to define the restricted conjugacy

problem of B from Γ and hence RCLΓ
B. In order for the lower bound above to be

useful though, we would need B to be unbounded in dΓ.

2.3.1.a Example: twisted conjugacy length in free abelian groups

Let Γ = Zr for some positive integer r. Let u, v ∈ Zr and ϕ ∈ SLr(Z) be diagonalisable

with all eigenvalues real and positive. We wish to find some control on the size of the
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shortest element γ ∈ Zr satisfying

u+ ϕ(γ) = γ + v. (2.14)

Suppose ϕ has an eigenvalue equal to 1 with corresponding eigenspace E1. Let V be

the sum of the remaining eigenspaces, so Rn = E1 ⊕ V . With respect to this decom-

position, write

γ = γ1 + γ2, u = u1 + u2, v = v1 + v2

where γ1, u1, v1 ∈ E1 and γ2, u2, v2 ∈ V . Equation (2.14) tells us that u1 = v1 and

u2 + ϕ′(γ2) = γ2 + v2, where ϕ′ is a matrix which corresponds to the action of ϕ on

V and hence has no eigenvalues equal to 1. We may therefore take γ1 = 0 and hence

assume that ϕ has no eigenvalues equal to 1.

Rewrite equation (2.14) as (Id − ϕ)γ = u − v. Since 1 is not an eigenvalue of ϕ,

we notice that γ = (Id− ϕ)−1(u− v). Hence

‖γ‖ ≤ (1 + ‖ϕ‖)(‖u‖+ ‖v‖).

Therefore, if λ is the largest absolute value of an eigenvalue of ϕ, then

T CLZr(n;ϕ) ≤ (1 + λ)n.

2.3.1.b Example: restricted conjugacy length inside solvable Baumslag–
Solitar groups

Consider BS(1,m) = 〈a, b | aba−1 = bm〉, a solvable Baumslag–Solitar group. This is

the semidirect product Z[ 1
m

]om Z where the action of Z on Z[ 1
m

] is by multiplication

by m. The subgroup Z[ 1
m

] corresponds to the subgroup generated by elements a−rbar,

for non-negative integers r. We will consider here just the subgroup generated by b.

One can see that this is exponentially distorted since bm
n

= anba−n for any n ∈ N.

In fact, Lemma 2.3.3 in the next Section gives us a more accurate picture:

1

2
logm |r| ≤ |br| ≤ (m+ 2) logm |r|+

m

2
+ 1. (2.15)

Suppose br is conjugate to bs in BS(1,m), where r and s may be taken to be

non-zero, and assume that |br| ≤ |bs|. Every element in BS(1,m) can be written

uniquely in the normal form a−jblak, for some j, k, l ∈ Z with j, k ≥ 0 and, if j, k are

both non-zero, then l is not divisible by m. Write a conjugator for br and bs in this

way. Then bra−jblak = a−jblakbs, which leads to a−jbrm
j+lak = a−jbl+sm

k
ak. Note
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that both sides of this equation are in normal form, since rmj + l and l + smk are

divisible by m if and only if l is as well. So a−jblak is a conjugator if and only if j, k

and l satisfy:

rmj = smk.

Then we may take l = 0 and we also have k − j = logm |r| − logm |s|. Since s is a

non-zero integer, logm |s| ≥ 0. We noted above that logm |r| ≤ 2 |br|, so∣∣ak−j∣∣ ≤ |k − j| ≤ 2 |br| ≤ |br|+ |bs| .

This leads to the restricted conjugacy length function

n− 2

2
≤ RCL

BS(1,m)
〈b〉 (n) ≤ n

where the lower bound follows from looking at the conjugate elements bm
r

and b and

noting that the shortest conjugator for them is ar.

2.3.2 Conjugacy length in group extensions

A solution to the conjugacy problem in certain group extensions is given by Bogopol-

ski, Martino and Ventura [BMV10]. Given a short exact sequence

1 −→ F
α−→ G

β−→ H −→ 1 (2.16)

they show that, under certain conditions, the solubility of the conjugacy problem in

G is equivalent to the subgroup AG = {ϕg | ϕg(x) = g−1α(x)g, x ∈ F, g ∈ G} of

Aut(F ) having solvable orbit problem (that is to say, there is an algorithm which

decides whether for any element u ∈ F there is some ϕ ∈ AG such that u = ϕ(u)).

The conditions that must apply to the short exact sequence are the following:

(a) H has solvable conjugacy problem;

(b) F has solvable twisted conjugacy problem;

(c) for every non-trivial h ∈ H, the subgroup 〈h〉 has finite index in the centraliser

ZH(h), and one can algorithmically produce a set of coset representatives.

Condition (c) is rather restrictive. In particular it implies that centralisers in H need

to be virtually cyclic. The types of groups which this includes are typically extensions

where H is a finitely generated hyperbolic group.
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To study conjugacy length in a group extension, it seems natural therefore that

we should require an understanding of the conjugacy length in H and the twisted

conjugacy length in F . We should also expect the restricted conjugacy length function

of G to F to make an appearance and there should be some condition based upon

the centralisers of elements in H.

We will identify F with its image under α. Suppose that G is finitely generated

with |.| denoting the word length in G with respect to some finite generating set.

It will not always be the case that F is finitely generated. Suppose that dF is any

left-invariant metric on F . For example, we may take dF to be equal to the word

metric on G, or, if F is finitely generated, we may take it to be the word metric on F

with respect to some finite generating set for it. We will denote by |x|F the distance

dF (eF , x). Let δGF : N → N be the subgroup distortion function for F in G, defined

by

δGF (n) = max{|f |F : f ∈ F, |f | ≤ n}.

Let |gH|H = min{|gh| : h ∈ H} be the quotient metric on H. In the following, the

twisted conjugacy length function for F is taken with respect to the metric dF chosen

above.

Theorem 2.3.1. Let G be given by the short exact sequence (2.16). Suppose that it

satisfies the following condition:

(c′) there exists a function ρ : G→ [0,∞) such that for each u ∈ G the fundamental

domain of β(ZG(u)) in ZH(β(u)) has diameter bounded above by ρ(u).

Then u, v ∈ G are conjugate in G if and only if there exists a conjugator g ∈ G such

that either:

1. |g| ≤ RCLGF (n); or

2. g = ha where |β(h)|H ≤ CLFH(n) +ρ(u) and |a|F ≤ T CLF
(
2δGF (n+ρ(u));ϕu

)
.

where n = |u|+ |v|. This leads to an upper bound on the conjugacy length function of

CLFG(n) ≤ max
{

RCLGF (n),CLFH(n) + ρn + T CLF
(

2δGF (n+ ρn);A
(n)
G

)}
where ρn = max{ρ(u) | u ∈ G, |u| ≤ n} and A

(n)
G = {ϕu ∈ AG | u ∈ G, |u| ≤ n}.
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Proof. We split the proof into various cases, according to the relationship between

β(u) and β(v), beginning with the easiest case. Throughout we will make the as-

sumption that |u| ≤ |v|.

Case 1: β(u) = β(v) = eH .

In this case u and v lie in the image of α. We therefore find a conjugator x ∈ G such

that v = x−1ux and |x| ≤ RCLGF (|u|+ |v|).

Case 2: β(u) = β(v) 6= eH .

We need to reduce this case to the twisted conjugacy problem in F . Let H be a set

of left-coset representatives of F in G satisfying |h| = |β(h)|H for each h ∈ H. Let g

be any conjugator for u and v. We can write this as a product hf for some h ∈ H
and f ∈ F . Consider the set

Hg = {h ∈ H | ∃f ∈ F such that hf ∈ ZG(u)g}.

Note that the image under β of Hg will be precisely the image of ZG(u)g: to say h

is in Hg is equivalent to saying there exists some f ∈ F such that hf ∈ ZG(u)g and

since β(h) = β(hf) for all f ∈ F we see that β(Hg) = β(ZG(u)g).

Choose h ∈ Hg with β(h) of minimal size. Since β(u) = β(v) we deduce that

β(ZG(u)g) ⊆ ZH(β(u)). Hence we may apply condition (c′) and assume |h| ≤ 1
2
ρ(u).

Since β(h) ∈ ZH(β(u)), it follows that h−1uh = ufh for some fh ∈ F . Also

β(u) = β(v) implies u−1v = f ∈ F . Let a ∈ F satisfy the twisted conjugacy relation

f = ϕu(a)−1fha. (2.17)

We will first show that ha is a conjugator for u and v and then show we have a control

on its size. By unscrambling equation (2.17) we obtain the following:

u−1v = f = u−1a−1ufha

= u−1a−1h−1uha.

Hence v = (ha)−1u(ha) as required.

The size of a is controlled by the twisted conjugacy length function of F :

|a|F ≤ T CLF (|f |F + |fh|F ;ϕu).
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Applying the distortion function gives us |f |F ≤ δGF (n). Meanwhile fh = [u, h], so

|fh|F ≤ δGF (2 |u|+ 2 |h|) ≤ δGF (n+ρ(u)), since we have |u| ≤ |v|. In summary, we have

found a conjugator ha satisfying

|ha| ≤ ρ(u) + T CLF
(
2δGF (n+ ρ(u));ϕu

)
.

Case 3: β(u) 6= β(v).

Let u, v be conjugate elements in G. Then in particular β(u) is conjugate to β(v) in

H. Apply the conjugacy length function of H and we get that there exists h0 ∈ H
such that β(u) = h−1

0 β(v)h0 and

|h0|H ≤ CLFH
(
|β(u)|H + |β(v)|H

)
.

Let g0 be a minimal length element in the pre-image β−1(h0). Set v0 = g−1
0 vg0. Then

β(v0) = β(u) and v0 is conjugate to u via an element g0 satisfying

|g0| = |h0|H ≤ CLFH(n).

Now we apply Case 2, above, to find a bounded conjugator ha for u and v0. Then all

we need to do is to pre-multiply it by g0 to obtain a conjugator for u and v. In other

words, we have a conjugator g0ha for u and v such that

|g0ha| ≤ CLFH(n) + ρ(u) + T CLF
(
2δGF (2n+ 2ρ(u));ϕu

)
.

This is enough to complete the proof.

By taking a group extension with cyclic quotient we can reduce this to a simpler

expression.

Corollary 2.3.2. Suppose in the extension given in (2.16) the quotient H is Z. Then

CLFG(n) ≤ max
{

RCLGF (n), n+ T CLF
(

2δGF (2n);A
(n)
G

)}
where A

(n)
G = {ϕu ∈ AG | u ∈ G, |u| ≤ n}.

Proof. Let u, v be conjugate in G such that |u|+ |v| ≤ n. Since H = Z, the conjugacy

length function of H is the zero function. Furthermore we can put ρ(u) = |u| ≤ n.
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A central extension is another situation where the expression is significantly sim-

plified. Unlike with the cyclic extensions, we retain the need to understand the

function ρ. In particular, if F is contained in the centre of G then Theorem 2.3.1

reduces to

CLFG(n) ≤ CLFH(n) + ρn.

However we can see from this an example of the limitations of this result. If we take

the Heisenberg group,

H3(Z) = 〈x, y, z | [x, z] = [y, z] = e, [x, y] = z〉

then this fits into a central extension of the form of (2.16) with F = 〈z〉. However, it

is not hard to see that the centraliser of x consists precisely of elements of the form

xrzs, for any pair of integers r, s. Projecting this centraliser onto H3(Z)/〈z〉 ∼= Z2

gives a copy of Z, implying that ρn cannot be finite and Theorem 2.3.1 does not apply.

2.3.2.a Solvable Baumslag–Solitar groups

In Section 2.3.3 we will look at abelian-by-cyclic groups. Solvable Baumslag–Solitar

groups are examples of such groups and we look at their conjugacy length function

here. In [Sal11] we showed that these groups have linear conjugacy length function.

In this thesis we have modified the proof: the method we apply here is designed to use

Theorem 2.3.1, and in particular Corollary 2.3.2. This represents a simplified version

of the arguments used for a wider class of abelian-by-cyclic groups, which appear in

Section 2.3.3.

Let BS(1,m) be the solvable Baumslag–Solitar group with presentation

〈a, b | aba−1 = bm〉.

In Example 2.3.1.b we obtained an upper bound for the restricted conjugacy length

function of 〈b〉 in BS(1,m). This will be used below to obtain a linear upper bound

for the restricted conjugacy length function of the normal closure 〈〈b〉〉 in BS(1,m).

In the example we needed equation (2.15), which gives a control on the word length

of |br| for any r ∈ Z. We will now prove this statement.

Lemma 2.3.3. Let r ∈ Z. Then

1

2
logm |r| ≤ |br| ≤ (m+ 2) logm(r) +

m

2
+ 1.
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Figure 2.10: A section of the Cayley graph of BS(1, 2).

Proof. We will prove this for r > 0. When r is negative we look at |b−r| instead. Let

k ∈ N satisfy mk−1 ≤ r < mk. First observe that
∣∣∣bmk∣∣∣ ≤ 2k + 1 ≤ 2 logm(r) + 3. To

get an upper bound on |br| we need to relate |br| to
∣∣∣bmk∣∣∣. To do this, consider the

path in the Cayley graph from 1 to br which begins by travelling to ak−1b. To get to

bm
k−1

we would then travel backwards along k−1 edges labelled by a. Instead, to get

to br we should line ourselves up in each coset of 〈b〉 first, moving along at most m

edges labelled by b before moving backwards along an edge labelled by a, see Figure

2.11. This gives an upper bound on |br| of 2(k − 1) + (k − 1)m. Since
∣∣∣bmk∣∣∣ ≥ 2k we

get

|br| ≤
(m

2
+ 1
) ∣∣∣bmk∣∣∣− (m+ 2) ≤ (m+ 2) logm(r) +

m

2
+ 1.

For the lower bound, write br as a geodesic word

br = aα0bβ1aα1 . . . bβsaαs .

By shuffling the terms in a to the left or to the right according to whether αi is

positive or negative we can rewrite this. Let

A−i =
s∑
j=i

min{αj, 0} and A+
i =

i−1∑
j=0

max{αj, 0}.

Then

br = a−AbBaA
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where A = −A−0 = A+
s+1 and B can be expressed as

B = β1m
A+

1 −A
−
1 + . . .+ βsm

A+
s −A−s .

Since |br| =
∑s

i=0 |αi|+
∑s

i=1 |βi|, we get an upper bound on |B| as |br|m|br|. Finally,

note that B = mAr and A ≥ 0, so |r| ≤ |B|. This gives enough information to obtain

the lower bound in the Lemma.

1

a

a

a

a

b

b b

b b b b b b

b96

a4b

Figure 2.11: The path read out by the word a4ba−1ba−1b−1a−1b−1a−1 is shown in bold.
Notice how from a4b to b96 we drop down one level and then move along less than 3
edges before dropping down again.

Recall that G is the semidirect product Z[ 1
m

] om Z. So in the notation above

we have H infinite cyclic, generated by a, and F = Z[ 1
m

], in which b is identified

with 1. We can then see that aba−1 = bm (using multiplicative notation) and Z[ 1
m

] is

generated by the elements a−rbar for non-negative integers r. Since 〈a−αbaα〉 contains

〈a−βbaβ〉 whenever β ≤ α, for any u ∈ Z[ 1
m

] there exists a minimal integer p such

that u = a−pbrap for some r ∈ Z.

The following Lemma provides a couple more useful tools for determining word

lengths in BS(1,m).

Lemma 2.3.4. Suppose u ∈ Z[ 1
m

] < BS(1,m) and we can write it as a−pbrap, with p

the minimal such integer. Then

(i) |u| ≥ |p|; and

(ii) |u| ≥ 1
3
|br|.

Proof. The Cayley graph of BS(1,m) is a well-understood object, see for example

[ECH+92, §7.4]. It is the horocyclic product of an (m + 1)–regular tree T and a
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2–complex C that is homeomorphic to R2. The cells of C are all identical, they look

like bricks with a being read in the same direction along two opposite edges, and for

the other pair of edges one reads b along one edge and bm along the other. Figure

2.10 shows a small section of the Cayley graph of BS(1, 2).

Suppose that p ≥ 0. We can consider the projection of the path which the word

a−pbrap determines in the Cayley graph onto the tree T . Because we have chosen p

to be minimal, m cannot divide r. Hence at some vertex in the coset 〈b〉ap the path

will have to move into a different copy of C, meaning the projection onto T will take

a different branch. One can see that any path from 1 to u in the Cayley graph will

project onto a path in T of length at least 2p. Since this projection cannot increase

path length, we see that |u| ≥ 2p.

Now suppose that p < 0. Then u = a−pbrap = brm
−p

and by Lemma 2.3.3,

|u| ≥ 1
2

logm |r| + |p|. Since we may assume that r 6= 0, we get that |u| ≥ |p| and we

have that part (i) holds.

Finally, (ii) follows by writing br = apua−p, applying the triangle inequality and

part (i).

We now apply Theorem 2.3.1 to the solvable Baumslag–Solitar groups, obtaining

a linear conjugacy length function.

Theorem 2.3.5. Let G = BS(1,m). Then there exists a constant κm > 0 depending

on m such that

CLFG(n) ≤ κmn.

Remark: The keen reader will observe that the upper bound obtained here for the

conjugacy length function of BS(1,m) is very much dependent upon m. In [Sal11],

where the author originally proved this result, the length of a conjugator was given

in terms of the displacement of a basepoint in a space X which is quasi-isometric

to BS(1,m). The upper bound on this displacement was independent of m, but the

precise quasi-isometric relationship between X and BS(1,m) does indeed vary with

m.

Proof of Theorem 2.3.5. In Example 2.3.1.b we considered the restricted conjugacy

length function for 〈b〉 and showed it is linear. Now we need to consider this for the

larger subgroup Z[ 1
m

] instead.
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Suppose u, v ∈ Z[ 1
m

] are conjugate in BS(1,m). Let p and q be the minimal

integers such that u = a−pbrap and v = a−qbsaq for some r, s ∈ Z. Suppose x is a

conjugator for u and v. This is equivalent to apxa−q being a conjugator for br and

bs. Thus we may take x = ak+q−p so ak is a conjugator for br and bs. By Example

2.3.1.b, k can be chosen so that∣∣ak∣∣ ≤ RCLG〈b〉(|br|+ |bs|) ≤ |br|+ |bs| .

Using Lemma 2.3.4, the size of x is therefore bounded above by 4n. So in particular:

RCLGZ[ 1
m

]
(n) ≤ 4n.

Now we need to understand the twisted conjugacy length function for F = Z[ 1
m

],

considering the automorphisms which correspond to multiplying by a power of m.

The subgroup Z[ 1
m

] is not finitely generated, so in the following we will take on it the

metric induced from the word metric on G. Then δGF (n) = n.

Let ϕ denote multiplication by m, or equivalently conjugation by a, specifically

ϕ(x) = axa−1. For u, v, x ∈ Z[ 1
m

], let p, q, y be minimal non-negative integers such

that u = a−pbrap, v = a−qbsaq and x = a−ybtay. Then uϕi(x) = xv is equivalent to:

a−pbrap−y+ibtay−i = a−ybtay−qbsaq.

After writing these in the normal form we observe the following:

p = y, r + tmi = t+ smp−q if p− y + i ≥ 0 , y − q ≥ 0 (2.18)

p = q, r + tmp−y+i = tmy−p + s if p− y + i ≥ 0 , y − q ≤ 0 (2.19)

y − i = y, rmy−p + t = t+ smy−q if p− y + i ≤ 0 , y − q ≥ 0 (2.20)

y − i = q, rmq−p + t = tm−i + s if p− y + i ≤ 0 , y − q ≤ 0 (2.21)

Case (2.20) implies that i = 0. In this case the automorphism becomes trivial and

we are left calculating the conjugacy length function of an abelian group, which is

zero. Hence we may assume that i 6= 0. Also, (2.18) and (2.21) are equivalent, but

with the roles of r and s interchanged. Hence it is enough to consider just (2.18) and

(2.19).

From (2.18), since p = y we have y ≤ n = |u| + |v| by Lemma 2.3.4. In this

case i ≥ 1. This implies that mi − 1 ≥ m − 1 ≥ 1, hence |t| ≤ |s|mp−q + |r|. We
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may assume that r and s are both non-zero, otherwise u and v are both the identity.

Hence2

logm |t| ≤ logm |s|+ p− q + logm |r|+ logm 2 ≤ 2n+ logm 2.

Now suppose (2.19) holds instead. Firstly notice that y is bounded above by n

since y ≤ q. Next, if y = p then equation (2.19) reduces to t(mi − 1) = s− r. Since

i > 0 and m > 1 we get

logm |t| ≤ logm |s|+ logm |r|+ logm 2 ≤ n+ logm 2.

If instead y > p, then m−p+y+i −m−y+p ≥ mi+1 −m−1 ≥ mi, so

|t| ≤ |s|+ |r|
mi

.

In particular, this also gives

logm |t| ≤ −i+ logm |s|+ logm |r|+ logm 2 ≤ n+ logm 2 + |i| .

Hence, by Lemma 2.3.3, in either case we get

|x| ≤ 2y+(m+2) logm |t|+
m

2
+1 ≤ (2m+6)n+(m+2) |i|+m

(
logm 2 +

1

2

)
+logm 2+1

and we have an upper bound for the twisted conjugacy length function:

T CLZ[ 1
m

](n;ϕi) ≤ (2m+ 6)n+ (m+ 2) |i|+m

(
logm 2 +

1

2

)
+ logm 2 + 1

for any integer i. By applying Corollary 2.3.2, since we need only consider when

|i| ≤ n, we get that

CLFG(n) ≤ (5m+ 15)n+m

(
logm 2 +

1

2

)
+ logm 2 + 1.

2.3.3 Abelian-by-cyclic groups

An abelian-by-cyclic group Γ has a short exact sequence

1 −→ A −→ Γ −→ Z −→ 1

2Suppose x ≥ y ≥ 2. Then x
y (y−1) ≥ 1, hence xy ≥ x+y. Thus log(2x+2y) ≤ log(2x)+log(2y)

for x, y ≥ 1, and so log(x+ y) ≤ log x+ log y + log 2.
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where A is an abelian group. Following the work of Bieri and Strebel [BS78], the

finitely presented, torsion-free, abelian-by-cyclic groups are given by presentations of

the form

ΓM = 〈t, a1, . . . , ad | [ai, aj] = 1, tait
−1 = ϕM(ai); i, j = 1, . . . , d〉

where M = (mij) is a d × d matrix with integer entries and non-zero determinant

and ϕM(ai) = am1i
1 . . . amdid for each i = 1, . . . , d. The aim of this section is to give

an exponential upper bound for the conjugacy length function of a certain family of

abelian-by-cyclic groups:

Theorem 2.3.6. Suppose M is a diagonalisable matrix, all of whose eigenvalues have

absolute value greater than 1. Then there exists a constant C depending on M such

that

CLFΓM (n) ≤ Cλ28n

where λ is the largest absolute value of an eigenvalue of M .

Note that we have considered an example of such a group already in Theorem

2.3.5: the solvable Baumslag–Solitar groups. In Section 2.3.4 we look at the abelian-

by-abelian groups of the form Zd o Zk, where the action on Zk corresponds to mul-

tiplication by matrices in an R–split torus inside SLd(Z). This of course includes the

abelian-by-cyclic groups ΓM where M is a diagonal matrix in SLd(Z) whose eigenval-

ues are all real.

2.3.3.a Preliminaries

In order to find a control on the conjugacy length function we need to be able to

estimate the word length of elements in ΓM . The method we follow here is in analogy

with what we did in Theorem 2.3.5 for BS(1,m).

Denote by Ap the subgroup generated by {t−pa1t
p, . . . , t−padt

p} for each integer p.

Note that by the relation tait
−1 = ϕM(ai), for each integer p we have Ap ≤ Ap+1. Let

|.|A0
denote the word metric on A0 with respect to the generating set {a1, . . . , ad}.

Lemma 2.3.7. Let u ∈ A. Suppose that p is the minimal non-negative integer such

that u ∈ Ap and suppose u = t−puat
p. Then

2p ≤ |u| ≤ 2p+ |ua|A0
.
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Proof. The upper bound is obvious. For the lower bound consider the word of minimal

length representing u:

u = tr0α1t
r1α2 . . . t

rs−1αst
rs

where αi ∈ A0 for each i. The word length of u in ΓM is then equal to

|u| =
s∑
i=0

|ri|+
s∑
i=1

|αi|A0
.

Note that since u is in A the sum of the exponents of t in the above expression for

u is zero. Shuffle the t’s to the left or right according to whether ri is positive (move

tri to the right) or negative (move it left). This then gives us

u = tR
−
αtR

+

, where R− =
s∑
i=0

min{ri, 0}, R+ =
s∑
i=0

max{ri, 0}.

Because this process does not change the exponent sum of the t’s in our word for

u we notice that R+ + R− = 0. Furthermore, 2R+ = R+ − R− =
∑
|ri|. But this

expression for u implies that u ∈ AR+ . So by our choice of p we have:

p ≤ R+ =
1

2

r∑
i=0

|ri| ≤
1

2
|u| .

This proves the Lemma.

By rewriting elements of A0 in additive notation, one can see how repeated appli-

cation of the automorphism ϕM corresponds to taking a power of M . That is, for all

k ∈ Z,

ϕkM = ϕMk . (2.22)

We now investigate the distortion of the subgroup A0 in ΓM . Crucial to this is

growth of the supremum norm of the matrices Mk, denoted by ‖Mk‖. If M has an

eigenvalue whose absolute value is greater than 1 then ‖Mk‖ will grow exponentially

with respect to k (we assume k > 0), while if all eigenvalues have absolute value equal

to 1 the growth will be polynomial. See [BG96, Theorem 2.1] for a more accurate

statement.

Lemma 2.3.8. If M has an eigenvalue of absolute value different from 1, then A0 is

exponentially distorted in ΓM . Otherwise the distortion is polynomial. Furthermore,

for u ∈ A0,

|u|A0
≤
(
dmax{‖M |u|‖, ‖M−|u|‖}+ 1

)
|u| .
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Proof. In equation (2.22) we saw how tkvat
−k is determined by Mk. In particular,

for i = 1, . . . , d, the length of tkait
−k as an element of A0 is equal to the sum of the

absolute values of the entries of the i–th column of Mk. Hence, for an appropriate

choice of i we have
∣∣tkait−k∣∣A0

≥ ‖Mk‖. But
∣∣tkait−k∣∣ ≤ 2k + 1, so we in fact have

that the distortion function of A0 in ΓM is bounded below by the growth of ‖Mk‖
with respect to k.

The upper bound can be deduced, in certain cases, from the proof of Theorem 5.1

in [BP94]. In general though, write u ∈ A0 as a shortest word

u = tr1u(1)tr2 . . . u(s)trs+1

where u(i) is a word on {a1, . . . , ad}. If we set Ri = r1 + . . .+ ri then we can rewrite

this as

u =
(
tR1u(1)t−R1

)(
tR2u(2)t−R2

)
. . .
(
tRsu(s)t−Rs

)
tRs+1 .

Since u ∈ A0, the exponent sum of the stable letter t will be zero. That is, Rs+i = 0.

By equation (2.22), an upper bound on the length of each tRiu(i)t−Ri in A0 is given

by d‖MRi‖ |u(i)|A0
. If we put R = |r1| + . . . + |rs+1|, then |Ri| ≤ R ≤ |u| for each i

and

|u|A0
≤

s∑
i=1

d‖MRi‖ |u(i)|A0

≤ dmax{‖M |u|‖, ‖M−|u|‖}
s∑
i=1

|u(i)|A0
+R

≤
(
dmax{‖M |u|‖, ‖M−|u|‖}+ 1

)
|u| .

Hence the distortion of A0 in ΓM is exponential if ‖Mk‖ grows exponentially with k,

or polynomial if the growth of ‖Mk‖ is polynomial with respect k.

We can obtain the case of the Baumslag–Solitar groups BS(1,m) by setting M =

(m). Recall that when we considered elements in A0 (which in the notation of section

2.3.2.a was the subgroup 〈b〉), we had a lower bound on their word length given by

the logarithm of their length in A0. We need a similar result here, but to do so we

must restrict which matrices M we are to work with.

Lemma 2.3.9. Suppose M is diagonalisable with all eigenvalues having absolute value

strictly greater than 1. Let λ1 be the largest absolute value of an eigenvalue of M
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and λ2 the minimal. If u ∈ Ap, with p the minimal such non-negative integer, and

u = t−puat
p, then

|ua|A0
≤ λ

3
2
|u|

1 |u| .

In particular, for u ∈ A0, there exists a positive constant µM depending on the eigen-

values of M such that

logλ2
|u|A0

≤ µM |u| .

Proof. Let u be represented by a geodesic word

u = tr1u(1)tr2 . . . u(s)trs+1

where each u(i) ∈ A0. It follows that |u| = |u(1)|A0
+ . . .+ |u(s)|A0

+ |r1|+ . . .+ |rs+1|.
We can rearrange this word as

u =
(
tR1u(1)t−R1

)(
tR2u(2)t−R2

)
. . .
(
tRsu(s)t−Rs

)
tRs+1

where Ri = r1 + . . .+ ri and Rs+1 = 0 since the exponent sum of the t’s must be zero

as u is in A. By Lemma 2.3.7, |p| ≤ 1
2
|u|. Hence, using (2.22),

|ua|A0
=
∣∣tput−p∣∣

A0
≤

s∑
i=1

∣∣∣ϕRi+pM (u(i))
∣∣∣
A0

≤
s∑
i=1

λ
|Ri|+|p|
1 |u(i)|A0

≤ λ
3
2
|u|

1 |u|

implying the first assertion. The second assertion follows by setting µM = 5
2 logλ1

(λ2)
.

2.3.3.b Restricted conjugacy length function of A in ΓM

We will first find a control on the restricted conjugacy length function of A in ΓM

when M is diagonalisable and acts on each eigenspace by expansion.

Proposition 2.3.10. Suppose M is diagonalisable with all eigenvalues having abso-

lute value greater than 1. Then the restricted conjugacy length function of A in ΓM

satisfies

RCLΓM
A (n) ≤ µMn

where µM is as in Lemma 2.3.9.
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Proof. Suppose u and v are distinct elements in A which are conjugate in ΓM . Let

p, q be minimal non-negative integers such that u ∈ Ap and v ∈ Aq. Since A is

abelian, u, v must be conjugate by tk for some integer k. By reversing the roles of u, v

if necessary, we may assume that k is non-negative and that u = tkvt−k = ϕkM(v).

Since ϕM(Aq) ⊆ Aq−1, we see that u ∈ Aq−k. But by minimality of our choice of p

we have either

1. p ≤ q − k, so k ≤ q − p; or

2. q − k < 0 = p.

Case (1) can be dealt with using Lemma 2.3.7. Thus from the first situation we get∣∣tk∣∣ ≤ 1
2
|v| and so we have a linear control on the conjugator length between u and

v.

Case (2) can only occur if p = 0 and k > q. Suppose v can be written as t−qvat
q

and va = av1
1 . . . avdd . Then

u = tk−qvat
q−k = ϕk−qM (va).

If u = au1
1 . . . audd , then equation (2.22) tells us that

(u1, . . . , ud)
T = Mk−q · (v1, . . . , vd)

T.

This gives us that |u|A0
≥ λk−q2 |va|A0

≥ λk−q2 , where λ2 is equal to the minimal

absolute value of an eigenvalue of M . Then, by Lemma 2.3.9, we get

k ≤ µM |u|+ q.

Note that the value of µM calculated in the proof of Lemma 2.3.9 is bounded below by
5
2
, so applying Lemma 2.3.7 gives us the conclusion that k ≤ µMn, where n = |u|+|v|.

2.3.3.c Twisted conjugacy in A

Maintaining the assumption that M is diagonalisable and has eigenvalues with abso-

lute value greater than 1 we obtain the following result regarding twisted conjugacy

in the subgroup A.
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Proposition 2.3.11. Suppose M is diagonalisable with all eigenvalues having abso-

lute value greater than 1. Then for all i ∈ Z the twisted conjugacy length function of

A satisfies

T CLA(n;ϕiM) ≤
(
λ|i| + 1

)(
λ

5
2
n + λ

3
2
n
)
n+ n

where λ is the largest absolute value of an eigenvalue of M .

Proof. Let u ∈ Ap, v ∈ Aq and x ∈ Ay with p, q, y minimal such non-negative

integers. Suppose they satisfy the twisted conjugacy relationship uϕiM(x) = xv. This

is equivalent to

t−puat
pti−yxat

y−i = t−yxat
yt−qvat

q

where u = t−puat
p, v = t−qvat

q and x = t−yxat
y. We use the relations tat−1 = ϕM(a),

for a ∈ A0, to shuffle the occurrences of t in the middle to one end of the word on

each side. As with the Baumslag–Solitar Case, the direction it moves depends on

whether it has positive or negative exponent. We have four cases:

p = y, uaϕ
i
M(xa) = xaϕ

p−q
M (va) if p+ i ≥ y ≥ q (2.23)

p = q, uaϕ
p+i−y
M (xa) = ϕ−y+p

M (xa)va if p+ i ≥ y ≤ q (2.24)

y − i = y, ϕy−pM (ua)xa = xaϕ
y−q
M (va) if p+ i ≤ y ≥ q (2.25)

y − i = q, ϕq−pM (ua)xa = ϕ−iM (xa)va if p+ i ≤ y ≤ q (2.26)

Case (2.25) implies i = 0, leaving us to calculate the conjugacy length function of an

abelian group, which is zero. Hence we may assume that i 6= 0 and eliminate case

(2.25).

Let ua = au1 . . . audd , va = av1 . . . avdd and xa = ax1 . . . axdd . With a slight abuse of

notation let u = (u1, . . . , ud)
T, v = (v1, . . . , vd)

T and x = (x1, . . . , xd)
T. Then the

equation in (2.23) gives i ≥ 0 and:

u +M ix = x +Mp−qv

and hence, since 1 is not an eigenvalue of M i,

x = (M i − 1)−1(Mp−qv − u).

This therefore gives us the upper bound

|xa|A0
≤
(
λi + 1

)(
λp−q |va|A0

+ |ua|A0

)
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where λ = λ1 is the largest absolute value of an eigenvalue of M . By Lemmas 2.3.7

and 2.3.9, and since y = p and 0 ≤ p− q ≤ n, we are lead to an upper bound on |x|
as follows:

|x| ≤ |xa|A0
+ 2y

≤
(
λi + 1

)(
λnλ

3
2
|v| |v|+ λ

3
2
|u| |u|

)
+ n

≤
(
λi + 1

)(
λ

5
2
n + λ

3
2
n
)
n+ n.

Meanwhile, case (2.24) reduces to the following vector equation:

x = (M i − 1)−1My−p(v − u).

Since y−p ≤ 0, My−p will only act by contractions. Thus ‖My−p(v − u)‖ ≤ ‖v − u‖.
Hence

|xa|A0
≤
(
λ|i| + 1

)(
|va|A0

+ |ua|A0

)
which implies an upper bound on |x| as follows:

|x| ≤
(
λ|i| + 1

)(
λ

3
2
|v| |v|+ λ

3
2
|u| |u|

)
+ 2y ≤

(
λ|i| + 1

)
λ

3
2
nn+ n.

Finally, case (2.26) is very similar to case (2.23). We obtain the equation

x = (M−i − 1)−1(M q−pu− v).

Note that 0 6= i = y − q ≤ 0, and 0 ≤ q − p ≤ n. As we did for case (2.23) we obtain

the upper bound

|x| ≤
(
λ|i| + 1

)(
λ

5
2
n + λ

3
2
n
)
n+ n.

This completes the proof, giving us an upper bound for the twisted conjugacy length

function.

2.3.3.d Conjugacy length in ΓM

We now obtain the upper bound for the conjugacy length function of ΓM when M is

a diagonalisable matrix with all eigenvalues greater than 1.

Proof of Theorem 2.3.6. This is a straight-forward application of Corollary 2.3.2. The

distortion function δΓM
A is the identity map since we calculated the twisted conjugacy

length function in A with respect to the word metric on ΓM . The set of automorphisms

A
(n)
G that we are to consider consists of those automorphisms ϕx, where x ∈ ΓM with
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|x| ≤ n and ϕx(a) = xax−1 for a ∈ A. This clearly includes all the automorphisms

ϕiM for |i| ≤ n. What’s more, if x = tka for some a ∈ A and k ∈ Z, then ϕx = ϕtk .

Hence

A
(n)
G = {ϕiM | |i| ≤ n}.

Theorem 2.3.6 now follows from Propositions 2.3.10 and 2.3.11, choosing the constant

C appropriately.

2.3.4 Semidirect products Zn o Zk

We will now turn our attention to a class of polycyclic abelian-by-abelian groups

Zd o Zk, where d > k. In [Sal11] we showed that these groups, under certain restric-

tions on the semidirect product, have a linear upper bound on the conjugacy length

function if k = 1, or an exponential upper bound otherwise. We give the proof again

here, modifying it to fit with the framework of Theorem 2.3.1.

We will express an element of Γ = ZdoZk as a pair (x, y), with x ∈ Zd and y ∈ Zk.
The action of Zk on Zd is via matrices in an R–split torus in SLd(Z). That is, the

semidirect product is defined by ϕ : Zk → SLd(Z) such that the image ϕ(Zk) consists

of matrices which are simultaneously diagonalisable over R, all of whose eigenvalues

are positive. Thus we can choose a basis of Rd which consists of common eigenvectors

for the matrices in the image ϕ(Zk).
Throughout we will let ‖.‖ denote the `1 norm on either Zd or Zk. We begin by

giving a method to relate the size of a component of u ∈ Zd, with respect to one of

the eigenvectors, to the size of ‖u‖.

Lemma 2.3.12. Let u = (u1, . . . , ud) ∈ Rd, with the coordinates given with respect

to a basis of eigenvectors of the matrices in ϕ(Zk). Then there exists a constant αϕ

such that for each i such that ui 6= 0

|log(|ui|)| ≤ αϕ log‖u‖.

Proof. We will prove the Lemma for i = 1. Let E1, . . . , Ed be the one-dimensional

spaces spanned by each eigenvector for the matrices in ϕ(Zk). Then |u1| corresponds

to the distance from u to the hyperplane E2 ⊕ . . .⊕ Ed in a direction parallel to E1.

In order to obtain a lower bound on log |u1| we need to find a lower bound on the

distance from u to E2⊕ . . .⊕Ed. This lower bound follows from the subspace theorem

of Schmidt [Sch72]. Since E2, . . . , Em are eigenspaces for ϕ(y) ∈ SLd(Z), there exists
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algebraic numbers α1, . . . , αd such that E2⊕ . . .⊕Ed = {x ∈ Rd | x ·(α1, . . . , αd) = 0}.
Then, for u ∈ Zd, we have

d(u,E2 ⊕ . . .⊕ Ed) =
|u · (α1, . . . , αd)|
‖(α1, . . . , αd)‖

.

Thus, by the subspace theorem, for every ε > 0 there exists a positive constant C such

that for every u ∈ Zd we have the following bound on the distance to the hyperplane:

d(u,E2 ⊕ . . .⊕ Ed) ≥
C

‖u‖d−1+ε
.

In particular this gives us a lower bound on |u1| and hence

log |u1| ≤ (d− 1 + ε) log‖u‖ − logC.

By a trigonometric argument we can obtain an upper bound on log |u1| which

will depend on the angles between the eigenspaces. Hence, combining this with the

lower bound, there exists a positive constant αϕ, determined by d, ε and ϕ, such that

|log(|u1|)| ≤ αϕ log‖u‖.

It is important to understand the distortion of the Zd component in Γ. The

following two lemmas give us a handle on this. The second, Lemma 2.3.14, gives an

exponential upper bound for the distortion function while the first, Lemma 2.3.13,

shows that for any element of the form (x, 0) in Γ we can take a significant shortcut

to get to x from 0 by using the action of one of the matrices in ϕ(Zk).

Lemma 2.3.13. Suppose that ϕ(Zk) contains a matrix whose eigenvalues are all

distinct from 1. Then there exists a constant Aϕ > 0 such that for every x ∈ Zd

|(x, 0)|Γ ≤ Aϕ log‖x‖.

Proof. We will use that fact that Γ = Zdoϕ Zk is a uniform lattice in G = Rdoϕ Rk,

finding an upper bound for |(x, 0)|G and thus obtaining an upper bound on |(x, 0)|Γ.

Here, by |(x, 0)|G we mean the distance dG(1, (x, 0)) where dG is a left-invariant

Riemannian metric on G.

First, let y be a minimal length vector in Zk with the property that ϕ(y) has no

eigenvalues equal to 1. Write x in coordinates (x1, . . . , xd) with respect to a basis of

eigenvectors for ϕ(y), which have been chosen so that xi ≥ 0 for each i. Let ei denote

the vector with 0’s everywhere except in the i–th coordinate where we put a 1 and
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let λi be the eigenvalue of ϕ(y) corresponding to the eigenvector ei. For i = 1, . . . , d

let αi ∈ R be such that λαii = xi. Then

(x, 0) = (0, α1y)(e1, α2y − α1y)(e2, α3y − α2y) . . . (ed,−αdy).

Calculating the length of each term in the product gives us an upper bound on |(x, 0)|G
as

|(x, 0)|G ≤ |α1| ‖y‖+ 1 + |α2 − α1| ‖y‖+ 1 + |α3 − α2| ‖y‖+ . . .+ 1 + |αd| ‖y‖

≤ d+ 2‖y‖
d∑
i=1

|αi| .

But αi = log(xi)
log(λi)

, so by applying Lemma 2.3.12 we get |αi| ≤ αϕ
log‖x‖
|log(λi)| . Hence

|(x, 0)|G ≤ d+ 2‖y‖αϕ log‖x‖
d∑
i=1

1

|log(λi)|
.

Combining this with the fact that Γ is a uniform lattice in G gives us the existence

of the constant Aϕ given in the Lemma.

Lemma 2.3.14. Suppose the image ϕ(Zk) is generated by matrices ϕ1, . . . , ϕk and

that λ is the largest eigenvalue of any of the matrices ϕ1, ϕ
−1
1 , . . . , ϕk, ϕ

−1
k . Let x ∈ Zd.

Then

‖x‖ ≤ |(x, 0)|Γ
(
λ|(x,0)|Γ + 1

)
.

In particular this implies that the distortion function is bounded above by an expo-

nential:

δΓ
Zd(n) ≤ n(λn + 1).

Proof. The generators of Γ are taken to be the set of elements of the form either

(ei, 0) or (0, ej) where ei ∈ Zd, ej ∈ Zk are elements of the standard bases. We can

write (x, 0) as a geodesic word on these generators, grouping together the generators

of the form (ei, 0) and the generators of the form (0, ej):

(x, 0) = (α1, 0)(0, β1)(α2, 0) . . . (αr, 0)(0, βr)

= (α1, β1)(α2, β2) . . . (αr, βr)

where αi and βi are non-zero for all 1 ≤ i ≤ r, except possibly for α1 and βr. First

note that |(x, 0)|Γ =
∑r

i=1(‖αi‖ + ‖βi‖). We also obtain the following expression for

x:

x = α1 + ϕ(β1)(α2) + ϕ(β1 + β2)(α3) + . . .+ ϕ(β1 + . . .+ βr−1)(αr).
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Since ‖β1 + . . .+ βi‖ ≤ |(x, 0)|Γ for each i, we get an upper bound on the norm of x:

‖x‖ ≤ ‖α1‖+ λ|(x,0)|Γ (‖x2‖+ . . .+ ‖xr‖) ≤ |(x, 0)|Γ + λ|(x,0)|Γ |(x, 0)|Γ .

Thus the lemma is proved.

We now give an upper bound on the conjugacy length function of Zd o Zk. We

will see that when k = 1 we can produce a linear upper bound, but when k > 1 we

have to settle for exponential. The main obstacle that prevents us from finding a

better than exponential upper bound is the nature of the projection of centralisers of

elements into the Zk coordinate. In the language of Theorem 2.3.1, this is measured

by the function ρ.

Theorem 2.3.15. Let Γ = Zd oϕ Zk, where the image of ϕ : Zk ↪→ SLd(Z) is

contained in an R–split torus T . Then there exist constants A > 1 and B > 0 such

that

(1) if k = 1 then CLFΓ(n) ≤ Bn;

(2) if k > 1 then CLFΓ(n) ≤ An.

Proof. We will apply Theorem 2.3.1. Since Γ is abelian-by-abelian we need to find

bounds only for the values of RCLΓ
Zd(n), T CLZd(n;ϕ) and ρ(u, v), for (u, v) ∈ Γ,

where ρ is the function as defined in Theorem 2.3.1.

Step 1: Estimating RCLΓ
Zd(n).

Consider (u, 0), (w, 0) ∈ Zd. Then (u, 0)(x, y) = (x, y)(w, 0) if and only if u =

ϕ(y)(w). Note that we can immediately set x to be zero.

Suppose ϕ(Zk) is generated by matrices ϕ1, . . . , ϕk, so that if y = (y1, . . . , yk) then

ϕ(y) = ϕy1

1 . . . ϕykk .

Fix a basis of eigenvectors of the matrices in T . With respect to this basis, let u, v

be represented with coordinates (u1, . . . , ud), (w1, . . . , wd) respectively. Suppose the

eigenvalues of ϕi are λj,i for j = 1, . . . , d and i = 1, . . . , k. Then from u = ϕ(y)(w)

we get the following system:

uj =

(
k∏
i=1

λyij,i

)
wj.



2.3. Group Extensions 83

By taking logarithms we see that this system is equivalent to the matrix equation

Ly = a, where L is the d × k matrix with (r, s)–entry equal to log |λr,s| and a is

the vector with jth entry equal to log |uj| − log |wj|. Since the matrices ϕ1, . . . , ϕk

generate a copy of Zk, the columns of L are linearly independent. Hence we may take

a non-singular k × k minor L′ and we get a matrix equation L′y = a′. By Cramer’s

Rule, for each i = 1, . . . , k we have

yi =
det(L(i))

det(L′)

where L(i) is obtained from L′ by replacing the ith column with a′. Hence |yi| is

bounded by a linear expression in the terms |log(|uj|)|+ |log(|wj|)|, for j = 1, . . . , k,

and the coefficients are determined by the choice of ϕ. Therefore, by Lemma 2.3.12,

we obtain an upper bound for each |yi| as linear sum of log(|u|) and log(|w|).
To reach an upper bound for the restricted conjugacy length function, we observe

that we are able to find y ∈ Zk such that (u, 0)(0, y) = (0, y)(w, 0) and ‖y‖ ≤
B1(log‖u‖ + log‖w‖) for some constant B1 > 0, determined by ϕ and independent

of u,w. Furthermore, because the first coordinate in Γ is exponentially distorted, in

particular by using Lemma 2.3.14, we indeed have a linear upper bound on conjugator

length:

|(0, y)|Γ ≤ ‖y‖ ≤ B2n

for some B2 > 0 independent of u,w, and where n = |(u, 0)|Γ + |(w, 0)|Γ.

Step 2: Estimating T CLZd(n;ϕ(v)).

This is precisely the situation dealt with in Example 2.3.1.a, where we take ϕ(v) in

place of ϕ. It gives us

T CLZd(n;ϕ(v)) ≤ (1 + λv)n

where λv is the largest eigenvalue of ϕ(v). Suppose λ is the largest eigenvalue of any

of the generating matrices ϕ1, . . . , ϕk or their inverses. Then λv ≤ λ‖v‖.

Step 3: Estimating ρ(u, v).

If k = 1 then we are in the case of a cyclic extension, so we need only recall that

ρ(u, v) = n will suffice here. Now suppose k > 1. Note that (a, b) is in the centraliser

ZΓ(u, v) if and only if

a = (Id− ϕ(v))−1(Id− ϕ(b))u ∈ Zd.
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We will show that given any b ∈ Zk, there exists a constant m which is bounded by

an exponential in ‖v‖ and such that (Id−ϕ(v))−1(Id−ϕ(mb))u ∈ Zd. This will give

an exponential upper bound on ρ(u, v).

Let L := (Id − ϕ(v))Zd. Denote by c the absolute value of the determinant of

Id−ϕ(v). Then c is the index of L in Zd. Since ϕ(b) commutes with ϕ(v), and hence

Id − ϕ(v), it follows that ϕ(b)L = L. Let ū be the image of u in Zd/L. Then there

exists some m ≤ c such that ϕ(mb)ū = ū. In particular (Id− ϕ(mb))u ∈ L.

In the above, if we let b be one of the canonical generators of Zd, then we see that

we can control each coordinate and obtain an upper bound on ρ(u, v) as dλd‖v‖, since

|det(Id− ϕ(v))| ≤ (1 + λv)
d, and λv ≤ λ‖v‖, with λv and λ as in step 2. Hence, in

particular, ρ(u, v) ≤ d(1 + λ|(u,v)|Γ)d.

Step 4: Estimating CLFΓ(n).

By Theorem 2.3.1, we use the above bounds on RCLΓ
Zd(n), T CLZd(n;ϕ(v)) and ρ(u, v)

to obtain an upper bound on the conjugacy length function of Γ as

CLFΓ(n) ≤ max
{
B2n, ρn + 2(1 + λn)δΓ

Zd(n+ ρn)
}

where ρn = n if k = 1 or ρn = d(1 + λn)d if k > 1. We can improve this however

by using Lemma 2.3.13. In Theorem 2.3.1, the term involving the twisted conjugacy

length function actually gives the upper bound of the size of an element when cal-

culated with respect to the word metric on the subgroup. In this case the subgroup

is Zd and we know from Lemma 2.3.13 that every element is at least exponentially

distorted. Hence we can undo the effect of the distortion.

To see this, let g = ha be the conjugator that we obtained from Theorem 2.3.1,

with a ∈ Zd. Then |h| ≤ ρn and, firstly when k = 1, we get

|a|Zd ≤ T CLZd(2δ
Γ
Zd(n+ ρn);A

(n)
Γ ) ≤ 4n(1 + λn)(1 + λ2n) ≤ C1λ

n

for some constant C1 > 0 depending on λ. Applying Lemma 2.3.13 then gives us

|a|Γ ≤ Aϕ log |a|Zd ≤ Aϕ log(λ)n + log(C1). This then leads to the upper bound of

the conjugacy length function as

CLFΓ(n) ≤ max{B2n, n+ Aϕ log(λ)n+ log(C1)}.

Hence, when k = 1 there exists some positive constant B such that CLFΓ(n) ≤ Bn.
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Now assume k > 1. Then a similar process yields a positive constant C2 such that

|a|Zd ≤ C2λ
λn and hence, by applying Lemma 2.3.13 to undo one of the exponential

functions, we obtain the exponential upper bound

CLFΓ(n) ≤ An

for some A > 1 when k > 1.

We will now discuss some applications of Theorem 2.3.15 to other situations, firstly

to the fundamental group of prime 3–manifolds and secondly to Hilbert modular

groups.

Let M be a prime 3–manifold with fundamental group G. Recent work of Behr-

stock and Druţu [BD11, §7.2] has shown that, when M is non-geometric, there exists

a positive constant K such that two elements u, v of G are conjugate only if there is

a conjugator whose length is bounded above by K(|u|+ |v|)2. Theorem 2.3.15 in the

case when d = 2 and k = 1 deals with the solmanifold case, while a result of Ji, Ogle

and Ramsey [JOR10, §2.1] gives a quadratic upper bound for nilmanifolds. These,

together with the result of Behrstock and Druţu, give the following:

Theorem 2.3.16. Let M be a prime 3–manifold with fundamental group G. For

each word metric on G there exists a positive constant K such that two elements u, v

are conjugate in G if and only if there exists g ∈ G such that ug = gv and

|g| ≤ K(|u|+ |v|)2.

The exponential bound in Theorem 2.3.15 arises because of the way the projection

of ZΓ(u, v) onto the Zk–component lies inside Zk. In particular, one may ask if the

exponential upper bound is sharp:

Question: Can one find a pair of conjugate elements in Γ whose shortest conjugator

is exponential in the sum of the lengths of the two given elements?

We now apply Theorem 2.3.15 to the conjugacy of elements in parabolic subgroups

of Hilbert modular groups. Such subgroups are isomorphic to a semidirect product

ZnoϕZn−1, where ϕ depends on the choice of Hilbert modular group and the boundary

point determining the parabolic subgroup (see for example either [vdG88] or [Hir73]).

Because there is a finite number of cusps (see for example [Shi63] or [vdG88]), for

each Hilbert modular group there are only finitely many ϕ to choose from. Hence,
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by Theorem 2.3.15, any two elements in a parabolic subgroup are conjugate if and

only if there exists a conjugator whose size is bounded exponentially in the sum of

the sizes of the two given elements. More specifically:

Corollary 2.3.17. Let Γ = SL2(OK) be the Hilbert modular group corresponding to a

finite, totally real field extension K over Q of degree n. There exists a positive constant

A, depending only on Γ, such that a pair of elements u, v in the same parabolic

subgroup of Γ are conjugate in Γ if and only if there exists a conjugator γ ∈ Γ such

that

dΓ(1, γ) ≤ AdΓ(1,u)+dΓ(1,v).

Furthermore, if u, v are actually unipotent elements in Γ, then this upper bound is

linear.

Proof. Since u, v are in the same parabolic subgroup of Γ then Theorem 2.3.15 gives

the first conclusion. The second conclusion, for unipotent elements, follows from

the linear upper bound on the restricted conjugacy length function in the proof of

Theorem 2.3.15.

In Section 3.3 we look at conjugacy inside the unipotent subgroups of general

semisimple real Lie groups. We are able to show that certain pairs of elements enjoy

a linear conjugacy relationship, partially extending the result for unipotent elements

of Corollary 2.3.17.

2.3.5 Behaviour under finite extensions

Collins and Miller [CM77] provided examples of finitely presented groups in which the

solution of the conjugacy problem is not stable when looking at index 2 subgroups.

Firstly they construct a specific HNN extension in which the conjugacy problem is

solvable among words in which the stable letter appears an even number of times,

but unsolvable if it appears an odd number of times. Taking the appropriate index

2 subgroup then gives a group with solvable conjugacy problem. Secondly they con-

struct a group L, which is a free product with amalgamation, and show that this does

not have solvable conjugacy problem. They explain how a split extension of L using

a well-chosen order 2 automorphism of L removes the source of unsolubility for the

conjugacy problem, providing an example of a group with solvable conjugacy problem

but containing an index 2 subgroup in which it is unsolvable.
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It follows from [BMV10, Theorem 3.1] that if one can solve the twisted conju-

gacy problem in F , then the solubility of the conjugacy problem will pass to finite

extensions. When we consider conjugacy length we obtain the following Corollary to

Theorem 2.3.1:

Corollary 2.3.18. Consider the short exact sequence

1 −→ F
α−→ G

β−→ H −→ 1

in which H is a finite group and F is finitely generated. Then

CLFG(n) � T CLF (n;AH)

where AH ⊂ Aut(F ) consists of those automorphisms determined by conjugation by

elements in G.

Proof. Let k be such that every element in H has size bounded above by k in the

quotient metric. It is clear then that CLFH(n) ≤ k and ρ(u) ≤ k for all n ∈ N and

u ∈ G.

Let g1, . . . , gr be a collection of coset representatives for F in G. Let u, v ∈ F and

suppose they are conjugate via xgi for some i and some x ∈ F . So uxgi = xgiv, which

is equivalent to x−1ux = givg
−1
i . The minimal x satisfying this relationship will have

size

|x| ≤ CLFF (|u|+
∣∣givg−1

i

∣∣) ≤ CLFF (n+ 2k).

In particular this gives a conjugator xgi between u, v satisfying

|xgi| ≤ k + CLFF (n+ 2k).

This deals with the restricted conjugacy length function of F from G. Then by

applying Theorem 2.3.1 we get

CLFG(n) ≤ k + max{k + CLFF (n+ 2k), k + T CLF (8n;AH).

Since CLFF (n) = T CLF (n; Id), the proof is complete.

When we take a finite extension of an abelian group, for example, Corollary 2.3.18

and Example 2.3.1.a imply the following:

Corollary 2.3.19. The conjugacy length function of a virtually abelian group G is

at most linear.

Question: To what extent can T CLF be a lower bound for CLFG when G is an

extension of F? What about when it is a finite extension?
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Higher Rank Lattices

Let Γ be a lattice in a higher-rank semisimple real Lie group G. Elements of Γ can

be classified into various types (see Section 3.1.3) which are preserved by conjugation

and choice of representation. We will focus our attention on two particular types of

elements in Γ.

The first type that we consider are real hyperbolic elements. Geometrically, hy-

perbolic elements can be characterised as isometries of the symmetric space X which

translate points along some geodesic. They may have rotational components, for ex-

ample one may consider an isometry of R3 which acts on the x–axis by translation

but acts on the y, z–plane by rotating around the origin. If the rotational component

is trivial then we say the isometry is real hyperbolic.

We take a very geometric approach to study the conjugacy of real hyperbolic

elements. Their centralisers are well understood — they stabilise a maximal flat in

X, or a family of maximal flats containing a common geodesic. We study these flats,

showing how the distance between them influences the length of a conjugator between

two real hyperbolic elements in Γ.

The other type of elements we consider are unipotent elements. These are elements

g ∈ G for which Ad(g) is a unipotent linear transformation — with respect to some

basis of g, the matrix representing Ad(g) is upper-triangular with 1’s on the diagonal.

We gave here the algebraic definition of a unipotent element because this mirrors

the approach taken in Section 3.3. We take advantage of the underlying root system

of a semisimple real Lie group and show how it can be used to study the conjugacy

of unipotent elements in G.

In both cases, for a pair of conjugate elements u, v ∈ Γ, whether they are real

89
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hyperbolic elements or unipotent elements1 which lie in the same maximal unipotent

subgroup, we find a conjugator g which lies in the ambient group G having linearly

bounded size:

dG(1, g) ≤ K(dG(1, u) + dG(1, v))

where K is a constant which may depend on certain choices made: in the real hyper-

bolic case K will depend on the slope of geodesics translated by u, v (this is a notion

defined in Section 3.1.4.b); in the unipotent case it will depend on how Γ intersects

the maximal unipotent subgroup containing u, v.

This chapter contains three sections. The first section introduces the background

material, with particular emphasis on the relationship between Lie groups and their

associated symmetric spaces. Section 3.2 deals with the real hyperbolic case while in

Section 3.3 we focus on the conjugacy of unipotent elements.

3.1 Symmetric Spaces

Before we look at the conjugacy of elements in a lattice we will give some background

on the subject. An important tool when studying the conjugacy of real hyperbolic

elements is the geometry of flats in the symmetric space on which the lattice acts.

We will describe the relationship between symmetric spaces and Lie groups (Section

3.1.1) and describe some of the structure of symmetric spaces which we use later on

(Section 3.1.4). In Section 3.1.2 we look at lattices and see how, thanks to the famous

result of Lubotzky, Mozes and Raghunathan [LMR00], we are able to study lattices

via their action on the symmetric space. We classify the elements of a semisimple

Lie group in Section 3.1.3, comparing the terminologies coming from the theory of

algebraic groups and the theory of isometries of CAT(0) spaces. When studying real

hyperbolic elements we use an asymptotic cone of the symmetric space. In Section

3.1.5 we define these and state a result of Kleiner and Leeb [KL97] which describes

their structure as Euclidean buildings.

3.1.1 Symmetric spaces and Lie groups

Associated to each semisimple real Lie group G is a symmetric space X on which

the group acts. We will be considering non-uniform irreducible lattices Γ of G so the

1For the unipotent case we have added conditions: firstly the Lie algebra of G needs to be split;
secondly the elements must lie in a unique maximal unipotent subgroup.
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action of Γ on X will not be cocompact. We can however still use properties of X

to study conjugacy in Γ and in particular we use the fact that it has non-positive

curvature.

Let X be a complete connected Riemannian manifold with a metric dX : X×X →
[0,∞). At each point p in X we can define a geodesic involution sp as follows: let

c : R → X be a unit speed geodesic such that c(0) = p. Then for t ∈ R we define

sp(c(t)) := c(−t). If such a geodesic involution can be defined at every point in X and

if moreover it is a global isometry of X then we say X is a (globally) symmetric space.

When X has non-positive sectional curvature and no Euclidean de Rham factors we

say it is of noncompact type.

To explain why symmetric spaces will be useful we need to see their relationship

with semisimple real Lie groups (see for example [Ebe96, Sections 2.1 and 2.2]). First

let X be a symmetric space of noncompact type. Then the identity component of

its group of isometries G = Isom◦(X) is a connected semisimple real Lie group with

trivial centre and no compact factors. Take K to be the isotropy subgroup at a point

p in X, that is K := Gp = {k ∈ G | kp = p}. Then K is a maximal compact subgroup

of G and we can identify X with the quotient G/K. Conversely let G be a connected

semisimple real Lie group with trivial centre and no compact factors. Then we can

associate to G a unique symmetric space of noncompact type [Hel63, Ch. VI, Thm.

1.1]. Indeed, let K be a maximal compact subgroup of G. We can then put on G/K

a Riemannian structure, induced from the Killing form of the Lie algebra of G, which

makes it a symmetric space of noncompact type.

Throughout, we will assume X is a symmetric space of noncompact type with

associated connected semisimple real Lie group G. For an arbitrary point q ∈ X, we

let Gq = {g ∈ G | gq = q}, and we will often also let K denote the isotropy subgroup

Gp of G for the action on X at a fixed basepoint p.

3.1.2 Lattices

A lattice in a semisimple real Lie group G is a discrete subgroup Γ such that Γ\G
has finite volume with respect to the Haar measure on G. If the quotient Γ\G is

compact, then we say Γ is a cocompact or uniform lattice in G. Otherwise we say it

is non-uniform.

A lattice is said to be irreducible if it cannot be virtually decomposed as a product

of lattices Γ1 × Γ2 in a product of Lie groups G1 ×G2 such that Γi is a lattice in Gi
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for each i = 1, 2. Equivalently, when G is given as a product of Lie groups G1 ×G2,

then the projections of Γ into each factor are dense if and only if Γ is irreducible.

Lattices are finitely presented groups so we can define on them a word metric

dΓ : Γ×Γ→ R with respect to some finite generating set for Γ. We can also consider

the size of an element of Γ using the Riemannian metric on G, dG : G×G→ R. By

the following Theorem, provided the real rank of G is at least 2 (we will define this

in Section 3.1.4), it does not matter which we use:

Theorem 3.1.1 (Lubotzky–Mozes–Raghunathan [LMR00]). The word metric dΓ on

an irreducible lattice Γ in a semisimple group G of real rank at least 2 is Lipschitz

equivalent to the Riemannian metric dG on G restricted to Γ× Γ.

From here on in we will deal with irreducible lattices. Hence, in light of the result

of Lubotzky, Mozes and Raghunathan, determining the size of γ ∈ Γ can be done by

considering the displacement dX(p, γp) by γ of a fixed basepoint p in the associated

symmetric space X. In particular we have the following consequence of Theorem

3.1.1:

Corollary 3.1.2. For each p ∈ X there exists a constant Cp > 0 such that

dΓ(1, γ) ≤ CpdX(p, γp)

for every γ ∈ Γ.

3.1.3 Classifications of elements: two terminologies

Let X be a symmetric space of noncompact type. There are two ways to view an

isometry of X. One could either see it in its literal sense, as an isometry of a CAT(0)

space, or one could use the fact that G = Isom◦(X) is a semisimple linear algebraic

group and use terminology from here. We shall see that in the most part confusion

need not arise, however we will need to take care when using the term “hyperbolic”

in particular.

We will first give a classification of the elements when considered as isometries

(see also [BGS85, Section 6] or [BH99, Ch. II.6]). Given g ∈ Isom◦(X) we can

consider the distance it moves each point in X by defining the displacement function

dg(q) := dX(q, gq) for q ∈ X. In particular we consider the infimum of dg over X and

define the set

MIN(g) := {x ∈ X | dg(x) = inf
q∈X

dg(q)}.
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We use this set to classify the isometries of X:

• if MIN(g) 6= ∅ and g has a fixed point in X then we say g is elliptic;

• if MIN(g) 6= ∅ and g does not have a fixed point then we say g is hyperbolic (or

CAT(0)–hyperbolic or axial);

• if MIN(g) = ∅ then we say g is parabolic.

We say that an isometry is semisimple if it is either elliptic or hyperbolic in the above

sense. A parabolic element where the infimum is zero is said to be strictly parabolic.

The above classification can be applied to isometries of any CAT(0) space.

We will now classify the elements of G when considered as members of a semisim-

ple algebraic group (see Onishchik and Vinberg [OV90, Ch.3 §2]). Let V be a finite

dimensional real vector space. First recall the following classification of linear trans-

formations T : V → V . We say T is:

• nilpotent if there exists a positive integer k such that T k = 0;

• unipotent if T − I is nilpotent, where I is the identity transformation;

• semisimple if T is diagonalisable over C.

We can extend the classification of semisimple transformations by putting conditions

on their eigenvalues. We say a semisimple transformation T is:

• real semisimple if all the eigenvalues of T are real;

• hyperbolic if all the eigenvalues of T are positive;

• elliptic if all the eigenvalues of T have modulus one.

An element g of a semisimple groupG is said to be unipotent (respectively semisimple)

if there exists a finite-dimensional vector space V and a faithful linear representation

ρ : G → GL(V ) of G such that ρ(g) is unipotent (respectively semisimple). In fact

an equivalent definition of these types of elements would be to say that the image of

g in every faithful linear representation is unipotent (respectively semisimple).

Since Isom◦(X) is a semisimple real Lie group with trivial centre the adjoint

representation satisfies the above criteria: it is certainly a linear representation and

its kernel is the centre of G, hence it is faithful. Therefore we can say that an isometry

g is unipotent (or semisimple) if and only if Ad(g) is unipotent (or semisimple).
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With the representation fixed we can define the real semisimple, hyperbolic and

elliptic elements of G to be those g ∈ G for which Ad(g) is real semisimple, hyperbolic

or elliptic respectively.

We can see now that several terms are used in both contexts. We should ask

whether the two terminologies coincide.

By fixing a basis of the Lie algebra g we can identify Ad(G) with a closed, con-

nected subgroup of GLn(C), where n is the dimension of g. We can consider a

decomposition of GLn(C) into the product of subgroups KAN , where K consists of

orthogonal matrices, A consists of diagonal matrices with all entries positive and N

consists of all upper-triangular matrices with 1’s on the diagonal. This is an example

of the Iwasawa decomposition, which we will see again in Section 3.1.4.

Proposition 3.1.3. Let g be an element of G = Isom◦(X). Then:

1. Ad(g) is elliptic if and only if Ad(g) is conjugate in Ad(G) to an element of K;

2. Ad(g) is hyperbolic if and only if Ad(g) is conjugate in Ad(G) to an element of

A;

3. Ad(g) is unipotent if and only if Ad(g) is conjugate in Ad(G) to an element of

N

This proposition leads to the following relationships between the two terminolo-

gies.

Theorem 3.1.4. Let G = Isom◦(X), where X is a symmetric space of noncompact

type. Let g be any element in G. Then:

1. g is elliptic as an isometry of a CAT(0) space if and only if g is elliptic in the

sense of semisimple groups;

2. g is hyperbolic as an isometry of a CAT(0) space if and only if g is non-elliptic

semisimple in the sense of semisimple groups;

3. g is semisimple as an isometry of a CAT(0) space if and only if g is semisimple

in the sense of semisimple groups;

4. if g is unipotent then g is strictly parabolic.

Proof. A proof can be found in [Ebe96, 2.19.18].
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We can therefore use the words “semisimple” and “elliptic” without a problem.

However we should take particular care when using the word “hyperbolic” to describe

elements of G. Part (2) of Theorem 3.1.4 tells us that if Ad(g) is hyperbolic then

g is hyperbolic as an isometry of a CAT(0) space. However the converse is not true

in general. Therefore when describing an element of G as hyperbolic it makes sense

to say CAT(0)–hyperbolic when in particular we mean hyperbolic in the sense of

isometries of CAT(0) space, or real hyperbolic if and only if Ad(g) is diagonalisable

over R with positive eigenvalues.

We finish this section with a characterisation of CAT(0)–hyperbolic elements:

Proposition 3.1.5 (Corollary 2.19.19 of [Ebe96]). Let g be CAT(0)–hyperbolic in G.

Then there exists h, k ∈ G such that g = kh = hk, where h is real hyperbolic and k is

elliptic.

3.1.4 Structure of symmetric spaces

3.1.4.a Flats, the root-space decomposition and regular geodesics

A geodesic in the symmetric space X is an isometric copy of a closed interval in R.

When the interval is actually R itself then we say the geodesic is bi-infinite. If the

interval is bounded then we say we have a geodesic segment. In the remaining cases,

when the interval is of the form (−∞, a] or [a,∞), we have a geodesic ray in X.

Flats:

Geodesics are example of 1–dimensional flats. Let r be a positive integer. Then an

r–flat in X is a complete, totally geodesic submanifold F ⊂ X which is isometric to

Rr. The maximal such r is called the rank of X and flats of this dimension are called

maximal flats. The real rank of the Lie group G = Isom◦(X), denoted rankR(G), is

equal to the rank of X.

Proposition 3.1.6. The group G acts transitively on the set of flats in X. Further-

more, if F1, F2 are two maximal flats in X, and p1 ∈ F1, p2 ∈ F2, then there exists

g ∈ G such that:

• gp1 = p2; and

• gF1 = F2.

Proof. This follows from [Hel01, Ch. V Thm 6.4].
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Cartan decomposition:

The Lie algebra g of G = Isom◦(X) admits a Cartan decomposition at each point

p ∈ X, which we will define now. Let sp be the geodesic involution defined in Section

3.1.1 and let σp : G→ G be the isometry defined by

σp(g) = sp ◦ g ◦ sp

for g ∈ G. The derivative θp = dsp of this map is known as the Cartan involu-

tion. It squares to the identity, so has eigenvalues ±1. The Lie algebra of G can be

decomposed into a product of the eigenspaces

g = k⊕ p

where k = {H ∈ g | θp(H) = H} and p = {H ∈ g | θp(H) = −H}. The decomposition

g = k⊕ p is known as the Cartan decomposition of g at p. The subalgebra k is the

Lie algebra of the maximal compact subgroup K = Gp, while p can be identified with

TpX, the tangent space at p of X.

A geodesic c : R → X such that c(0) = p determines a vector in TpX and hence

an element H ∈ p. Consider the maximal abelian subspace a of p which contains H.

The submanifold exp(a)p is a maximal flat in X. This follows from the following two

facts:

• [Hel01, Ch. IV Thm 7.2] for s ⊂ p, the submanifold exp(s)p in X is totally

geodesic in X if and only if s is a Lie triple system;

• [Hel01, Ch. IV Thm 4.2] for Y1, Y2, Y3 ∈ p, the curvature tensor at p is given

by Rp(Y1, Y2)Y3 = −[[Y1, Y2], Y3].

Lemma 3.1.7. Every maximal flat F containing p is of the form F = exp(a)p for

some maximal abelian subspace a of p.

Proof. This follows from [Hel01, Ch. V Prop 6.1].

Root-space decomposition:

Fix a Cartan decomposition g = k⊕ p. Let a be a maximal abelian subspace of p.

Then, since the operators ad(H), for h ∈ a, are simultaneously diagonalisable we can

consider, for linear functionals λ : a→ R, the eigenspaces

gλ = {Y ∈ g | ad(H)Y = λ(H)Y for all H ∈ a}.
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Those λ for which gλ is non-empty are called roots of g with respect to a and the

spaces gλ the corresponding root-spaces. Let Λ be the set of all non-zero roots of g

with respect to a. We have the follow root-space decomposition of g:

g = g0 +
∑
λ∈Λ

gλ.

The roots Λ form a root system in the dual space a∗. A subset Π of Λ is called a base

if it is a basis for a∗ and if any root λ can be written as

λ =
∑
α∈Π

cαα

in such a way that either each cα is non-negative or each cα is non-positive. The

elements of Π are called simple roots and those elements for which cα ≥ 0 for each

α ∈ Π are called positive roots with respect to Π. We denote the set of positive roots

by Λ+. The root system plays an important role in the Section 3.3.

Weyl chambers; regular and singular geodesics:

Consider a flat F in X. By Lemma 3.1.7 there exists a maximal abelian subspace

a of p such that F = exp(a)p. Let Λ be the corresponding set of roots, Π a set of

simple roots and Λ+ the corresponding positive roots. The set of elements H ∈ a for

which λ(H) > 0 for each λ ∈ Π forms an open Weyl chamber in a, denoted a+. The

corresponding set CΠ = exp(a+)p is called an open Weyl chamber in X. The choice

of Π determines the Weyl chamber a+.

For each root λ ∈ Λ the kernel is a hyperplane in a. These are called the singular

hyperplanes of a. The walls of CΠ are contained in the singular hyperplanes and are

defined, for a subset Θ ⊂ Π, as

CΘ = {exp(H) ∈ CΠ | λ(H) = 0 for H ∈ Π \Θ}

where CΠ is the closure of CΠ in F . The flat F is partitioned into Weyl chambers

and walls. In fact, after removing all the singular hyperplanes from F , the connected

components of what remains are all the Weyl chambers corresponding to the different

choices for Π.

Let c : R → X be a geodesic in F with c(0) = p. Then there exists H ∈ a such

that c(t) = exp(tH) for every t ∈ R. If H is contained in a singular hyperplane of

a then we say the geodesic c is singular. Otherwise H is contained in some Weyl

chamber CΠ and we call c a regular geodesic in X. Since every geodesic in X is
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contained in some maximal flat this definition extends to all geodesics. The following

is an equivalent definition of regular and singular geodesics:

Proposition 3.1.8. A geodesic is regular if and only if it is contained in a unique

maximal flat.

Proof. See [Ebe96, §2.11].

Suppose F = exp(a)p, where a is the maximal abelian subspace from Lemma 3.1.7

and let A = exp(a) and K = Gp. The subgroup

NK(A) = {k ∈ K | kA = Ak}

consists of all elements in G fixing p and stabilising F . Meanwhile, its subgroup

ZK(A) = {k ∈ K | ka = ak ∀a ∈ A}

contains all elements in G which fix every point in F . The quotient NK(A)/ZK(A)

of these groups is called the Weyl group of F at p. It is a finite group and acts

transitively on the set of Weyl chambers in F .

3.1.4.b Properties of the boundary

Ideal boundary and slopes of geodesics:

Given two geodesic rays ρ1, ρ2 in X, we say they are asymptotic if they are at finite

Hausdorff distance from one-another. This defines an equivalence relation on geodesic

rays in X, the equivalence classes of which form the ideal boundary ∂∞X of X. The

action of an isometry g ∈ G on X can be extended to an action on ∂∞X since ρ1 and

ρ2 are asymptotic if and only if gρ1 and gρ2 are asymptotic. Hence we may consider

the quotient of the action of G on ∂∞X. We denote this quotient by ∆mod. The

∆mod–direction, or slope, of a ray ρ is the image of ρ under the quotient maps.

Consider a bi-infinite geodesic c : R→ X. This determines two boundary points,

one for each end of the geodesic. Although, by the definition of a symmetric space,

there is an isometry ϕ = sc(0) of X, the geodesic involution at c(0), such that ϕc(t) =

c(−t) for all t ≥ 0, this isometry will not be in the connected component of the group

of isometries of X, and thus not in G. Thus the two ends of c determine two ideal

points corresponding to c(∞) and c(−∞), and these will usually give rise to distinct
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slopes. We call the slope of the bi-infinite geodesic c : R→ X the projection of σ(∞)

onto ∆mod.

If the geodesic c is regular, then we say the corresponding ∆mod–directions are

regular, while if c is singular its slopes are said to be singular too. Equivalently, the

regular ∆mod–slopes are the ones contained in the interior of ∆mod, while the singular

slopes are those in the boundary of ∆mod.

Tits boundary:

We begin by defining an angular metric on ∂∞X. For any ideal point ξ ∈ ∂∞X, at

each p ∈ X there is a unique ray ρξ in the equivalence class ξ which emanates from

p. Given ξ, η ∈ ∂∞X, we can define the angle at p between ξ and η, denoted ]p(ξ, η),

to be the angle between the initial vectors Hξ, Hη ∈ TpX which determine the rays

ρξ and ρη. That is to say, ρξ(t) = exp(tHξ) and ρη(t) = exp(Hη) for all t > 0. The

angular metric on ∂∞X is then defined to be

](ξ, η) = sup
p∈X

]p(ξ, η).

The length metric associated to the angular metric is called the Tits metric on ∂∞X

and will be denoted by dT .

We will use the metric on ∆mod induced from the Tits metric when comparing the

slopes of geodesics in X.

Spherical building structure:

Take a flat F in X and consider the boundary ∂∞F of F at infinity. This can be

viewed as a subspace of ∂∞X: each point in ∂∞F is an equivalence class of asymptotic

rays in F , which will be contained in an equivalence class in ∂∞X. By identifying

the elements of ∂∞F with the equivalence class they are contained in from ∂∞X, we

can see ∂∞F as a subspace of ∂∞X. Under the Tits metric, ∂∞F is isometric to a

euclidean sphere of dimension equal to the rank of X. These spheres will form the

apartments of the spherical building.

Each flat is divided into Weyl chambers and walls. Each Weyl chamber or wall C
determines a subspace ∂∞C of ∂∞F . We can partition ∂∞F into chambers and walls

by taking the boundaries of the Weyl chambers and their walls in F .

For more details on why this gives a spherical building structure see either [BH99,

Ch. II Thm 10.71] or [BGS85, Appendix 5].
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3.1.4.c Families of parallel geodesics

We defined in Section 3.1.4.b the slope of a geodesic. Given a geodesic c : R → X,

its slope ξ belongs to the set ∆mod, which is the closure of a model chamber in the

boundary of X. If the slope of c is contained in the interior of ∆mod then it is

regular and therefore contained in a unique maximal flat F . In fact, by the Flat

Strip Theorem [BH99, Pg. 182], any geodesic parallel to c will also be contained in

F . Hence F is equal to the subspace of X containing all geodesics parallel to c.

If c is a singular geodesic in X then it will be contained in a whole family of

maximal flats. Again, using the Flat Strip Theorem, any geodesic parallel to c must

be contained in one of these flats.

More formally, let P (c) denote the subspace of X consisting of all geodesics that

are parallel to c. So when c is regular, P (c) is equal to the unique maximal flat F

described above. While if c is singular P (c) will be the union of (infinitely many)

maximal flats. The structure of these sets is discussed in more detail in [Ebe96, §2.20].

Lemma 3.1.9. G acts transitively on the set of subspaces of the form P (σ), where σ

varies over geodesics with the same slope.

Proof. Let σ, τ : R → X be non-parallel geodesics of the same slope and let F1, F2

be any pair of maximal flats containing σ, τ respectively. By Proposition 3.1.6 there

exists g ∈ G such that gF1 = F2 and gσ(0) = τ(0). We now have two geodesics, gσ

and τ , which are contained in the same maximal flat and have the same slope. If

the positive rays, that is gσ[0,∞) and τ [0,∞), are in the same Weyl chamber, then

having the same slope implies the geodesics must coincide, hence gσ = τ . If they

are not in the same Weyl chamber then we apply an element of the Weyl group of

F2, which acts transitively on the Weyl chambers, so that they end up in the same

Weyl chamber. An element of the Weyl group is a coset of the point-wise stabiliser

of F2. So by choosing a representative of this coset we have k ∈ K = Gτ(0) such that

kgσ = τ . Finally, if σ′ is any geodesic parallel to σ, then kgσ′ will be parallel to

kgσ = τ . Hence kgP (σ) ⊆ P (τ) and equality follows by symmetry.
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3.1.4.d Iwasawa and Jordan decompositions

Recall that in Section 3.1.4.a we described the root-space decomposition of g with

respect to a maximal abelian subspace a of p:

g = g0 +
∑
λ∈Λ

gλ

where gλ = {Y ∈ g | ad(H)Y = λ(H)Y ∀H ∈ a}. The set of roots Λ form a root

system and the choice of a base Π for Λ gives us a set of positive roots Λ+. Let

n =
∑
λ∈Λ+

gλ.

The Iwasawa decomposition of the Lie algebra is g = k + a + n and the corresponding

Iwasawa decomposition of G is

G = KAN

where A = exp(a) and N = exp(n). The decomposition of each element in G in this

form is unique. The Iwasawa decomposition of G itself, on the other hand, is not

unique and we can see geometrically how it is determined. The choice of positive

roots Λ+ corresponds to choosing a Weyl chamber in a, or equivalently a chamber

in ∂∞(Ap). Hence the Iwasawa decomposition of G is determined by a choice of

basepoint p ∈ X and a choice of a maximal chamber C in ∂∞X. Once the chamber

is chosen, A is determined by the unique maximal flat in X which contains p and is

asymptotic to C.
Given an isometry g of X, by using any Iwasawa decomposition of G, we can

always write it as g = kan, where k is elliptic, a is real hyperbolic and n is unipo-

tent. What’s more, we can always choose p and C so that the components in the

corresponding Iwasawa decomposition, k, a and n, will commute. In this case, the

decomposition g = kan is called the (complete) Jordan decomposition of g.

3.1.4.e Parabolic subgroups

Let ξ ∈ ∂∞X. The subgroup of G which fixes ξ,

Gξ = {g ∈ G | gξ = ξ}

is called the parabolic subgroup of G at ξ. Parabolic subgroups are discussed in more

detail in [Ebe96, §2.17] — we will just recall here some basic properties they possess.
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The structure of the family of parabolic subgroups reflects the Tits geometry of

the boundary of X. In particular, given ξ and η in ∂∞X, these are contained in the

same chamber or wall in ∂∞X if and only if Gξ = Gη. Furthermore, suppose that ξ

is contained in a wall or chamber Cξ and η in Cη. Then Gξ ⊆ Gη if and only if Cη is

contained in the closure of Cξ.
The parabolic subgroups act transitively on X and so G can be expressed as

G = KGξ for any maximal compact subgroup K. The Levi decomposition of a

parabolic subgroup is Gξ = ZξNξ, where Nξ is the unipotent radical of Gξ and Zξ is

a closed reductive subgroup.

We can describe the subgroup Zξ more accurately: let g = k⊕ p be the Cartan

decomposition at p and let H ∈ p be such that the geodesic ray ρ(t) = exp(tH)p is

asymptotic to ξ. Let Aξ = exp(Zg(H)∩p) and Kξ = K∩Zξ. Then Zξ = KξAξ, leading

to a decomposition of G as G = KAξNξ, which Eberlein describes as a “generalised

Iwasawa decomposition” since in the case when ξ is a regular ideal point this agrees

with the Iwasawa decomposition of G as defined above.

3.1.5 The asymptotic cone of a symmetric space

We briefly discuss here asymptotic cones and a result of Kleiner and Leeb about the

asymptotic cones of a symmetric space. Before we define an asymptotic cone we

should discuss ultralimits and ultrafilters.

A non-principal ultrafilter ω on N is a finitely additive probability measure on N
which takes values of either 0 or 1 and all finite sets have zero measure. Given a

sequence (an)n∈N of real numbers the ultralimit of this sequence is a = limω(an) ∈ R
which has the property that ω{n ∈ N | |an − a| < ε} = 1 for every ε > 0.

Let X be a metric space with metric d and let p = (pn)n∈N be a sequence of

points in X. Let (dn)n∈N be a sequence in (0,∞) which diverges to infinity. Given

a non-principal ultrafilter ω on N we can define the asymptotic cone Coneω(X, p, dn)

to be the quotient space of sequences (xn)n∈N such that limω
d(pn,xn)

dn
< ∞ under the

equivalence relation saying that two sequences (xn) and (yn) are equivalent if and only

if limω
d(xn,yn)

dn
= 0. We can define a metric dω on the cone by setting dω((xn), (yn)) =

limω
d(xn,yn)

dn
. A point x ∈ Coneω(X, p, dn) is said to be the ultralimit of a sequence of

points (xn) in X if (xn) is a member of the equivalence class determining x.

As explained in Section 3.1.4.b, the ideal boundary of a symmetric space can be

given a spherical building structure. If we take an asymptotic cone of a symmetric
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space X then, as Kleiner and Leeb put it in [KL97], intuitively speaking we are

“pulling the spherical building structure from infinity to the space of directions.”

Spherical buildings have a useful property, which can be described as rigidity of angles.

This means that given two points in a spherical building, their location inside their

respective chambers determines a finite set of possible (angular) distances between

them. When this property is pulled to the tangent space, by taking the asymptotic

cone of our symmetric space, it transfers to a similar statement regarding the angle

between intersecting geodesics.

We now recall the key aspects of the definition of a Euclidean building given by

Kleiner and Leeb. We refer the reader to [KL97] for a more complete discussion. Note

that in her PhD thesis [Par00] Parreau showed that Kleiner and Leeb’s axioms are

equivalent to the definition of a building given by Tits.

A Euclidean Coxeter complex is a pair (E,W ) where E is finite-dimensional Eu-

clidean space and W is a group of isometries of E generated by reflections such that,

if ρ : Isom(E) → Isom(∂∞E) is the canonical map associating to every Euclidean

isometry its rotational part, then ρ(W ) is finite. Define the anisotropy polyhedron

∆E = (∂∞E)/ρ(W ). A metric space Y is a Euclidean building modelled on (E,W )

if we are given a collection A of isometric embeddings ι : E → Y , whose images are

called apartments, and the following axioms are satisfied:

EB1. We can define a map θ from the set of all directed geodesics in Y to ∆E, the

image of the map being the ∆E–direction of the geodesic. The map θ satisfies the

property that the difference between the ∆E–direction of two geodesic segments

starting at any point x ∈ Y is less than or equal to the comparison angle between

the two segments.

EB2. For δ1, δ2 ∈ ∆E, define D(δ1, δ2) to be the set of (angular) distances in ∂∞E

between points ξ1, ξ2 ∈ ∂∞E such that ρ(W )(ξi) = δi for i = 1, 2. The set

D(δ1, δ2) will always be finite. For any three points x, y, z,∈ Y , the angle

]x(y, z) between the geodesics [x, y] and [x, z] belongs to D(θ[x, y], θ[x, z]).

EB3. Every geodesic, whether a segment, a ray or bi-infinite, is contained in an apart-

ment.

EB4. For ι1, ι2 ∈ A the composition ι−1
1 ◦ ι2 is the restriction of an isometry in W .
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Given a maximal flat E in a symmetric space X we can determine a group of

isometries M on E for which the pair (E,M) becomes a Euclidean Coxeter complex.

By taking M to be the quotient of the set-wise stabiliser StabG(E) by the point-wise

stabiliser FixG(E) we obtain a group which acts on E by isometries and maps Weyl

chambers to Weyl chambers and walls to walls. This means that ρ(M) ⊂ Isom(∂∞E)

is a finite group acting on the Euclidean sphere ∂∞E. The anisotropy polyhedron ∆E

will essentially be the closure of the boundary of a Weyl chamber, so will be isometric

to ∆mod as define in Section 3.1.4.b. We therefore drop the ∆E notation in favour of

∆mod.

The key axiom which we will take advantage of is EB2 — described in [KL97] as

“angle rigidity.” We explained above the intuition behind why the asymptotic cone

of a symmetric space should satisfies axiom EB2. The remaining axioms are very

similar to properties held by a symmetric space. The apartments in the asymptotic

cone are the ultralimits of flats in X, so here we just need that the transitivity of the

action of G on the set of all maximal flats in X gives a subset of G which can be

interpreted as an atlas. We have already described in Section 3.1.4.b how to assign

a ∆mod–direction to geodesics in X. It is also not hard to see that every geodesic is

contained in a maximal flat and since singular and regular geodesics are preserved by

isometries the atlas maps are compatible with the Weyl group.

The following is the aforementioned result of Kleiner and Leeb:

Theorem 3.1.10 (Kleiner-Leeb, 1997). Let X be a symmetric space of noncompact

type. For any sequence of positive numbers (dn) diverging to infinity and for any

sequence of points p = (pn) in X the asymptotic cone Coneω(X, p, dn) is a Euclidean

building modelled on the Euclidean Coxeter complex (E,M), where E is rank(X)–

dimensional Euclidean space and M is the quotient of the set-wise stabiliser StabG(E)

by the point-wise stabiliser FixG(E).

3.2 Real Hyperbolic Elements

3.2.1 Centralisers of real hyperbolic elements

Recall that for an isometry g of the symmetric space X the set of elements of minimal

displacement by g is denoted by

MIN(g) =

{
x ∈ X | dX(x, gx) = inf

y∈X
dX(y, gy)

}
.
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We will see how when g is a hyperbolic element of G these sets provide us with a

geometric interpretation of their centralisers.

The first part of the following is essentially a selection of results from Gromov’s

lecture notes [BGS85], many of which can also be found in [BH99], and as such most

of it can be applied to more general situations where X is not necessarily a sym-

metric space but is a simply connected, complete, non-positively curved Riemannian

manifold.

We say that g translates a geodesic c : R→ X if there exists non-zero t ∈ R such

that gc(s) = c(s + t) for all s ∈ R. Suppose q ∈ MIN(g) and let c be the bi-infinite

geodesic passing through q and gq. We will show that c is translated by g. The

geodesic segment [q, gq] is mapped under g to a geodesic segment [gq, g2q]. Hence if

we take any point x ∈ [q, gq] and consider the geodesic triangle with vertices x, gx,

gp, see Figure 3.1, then we observe:

dX(x, gx) ≤ dX(x, gq) + dX(gq, gx)

= dX(q, gq)

But q was chosen so that dX(q, gq) was minimal, hence dX(x, gx) = dX(q, gq) and

x ∈ MIN(g). Since geodesics in X are unique gq lies on the geodesic segment [x, gx]

and hence gx and g2q lie on the geodesic c. We can then extend this result across the

whole of c and we learn that the geodesic c is translated by g.

The above gives us the following:

Lemma 3.2.1. Let g be a CAT(0)–hyperbolic isometry of X. If q ∈ MIN(g) then the

geodesic c passing through q and gq is translated by g.

q

gq

g2q

x

gx

Figure 3.1: Given q ∈ MIN(g) and the geodesic c through q and gq we can show
gnq ∈ c for every integer n and every point inside the geodesic segment [gnq, gn+1q]
lies in MIN(g).

We say that two unit speed geodesics c1 : R → X and c2 : R → X are parallel if

they are at finite Hausdorff distance from each other.
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Lemma 3.2.2. Let g be a CAT(0)–hyperbolic isometry of X and let c be a geodesic in

MIN(g) translated by g. The set MIN(g) consists precisely of all geodesics translated

by g, which are all parallel to c.

Proof. Let c′ be a geodesic translated by g and let π be the orthogonal projection of

X onto c. Let x be a point on c′ and suppose dX(x, gx) = D+ε ≥ D = inf{dX(q, gq) |
q ∈ X}. For every positive integer n, the distance from x to gnx is equal to nD+nε.

However, by travelling via the geodesic c we notice that nD + nε ≤ 2dX(x, c) + nD.

In particular ε ≤ 2
n
dX(x, c) for every n and hence must be zero. Thus c′ ⊆ MIN(g).

Next we show that c′ is parallel to c. Using the invariance of c′ under g, any point

c(t) is within a bounded distance of at most D/2 of a point on c of the form gnc(0)

for some integer n. Then we observe

dX(gnc(0), c′) = dX(c(0), g−nc′) = dX(c(0), c′) ≤ dX(c(0), c′(0)).

Hence dX(c(t), c′) ≤ D/2 + dX(c(0), c′(0)) and so c is contained in a neighbourhood

of c′ of radius D/2 + dX(c(0), c′(0)). We obtain a similar result for c′ and hence have

that c and c′ are at a finite Hausdorff distance from each other, and hence are parallel

geodesics.

Eberlein [Ebe96, Prop 2.19.18] gives the following characterisation of real hyper-

bolic elements: g is real hyperbolic if and only if g = exp(H) where H ∈ p for some

Cartan decomposition g = k⊕ p. We use this in the proof of the following:

Lemma 3.2.3. Let g be a real hyperbolic element of G and let c be any geodesic

translated by g. Then

MIN(g) = P (c)

where P (c) is the subspace of X containing all geodesics parallel to c.

Proof. Suppose g = exp(H), for H ∈ p, where g = k⊕ p is the Cartan decomposition

at a point q ∈ X. Let c be the geodesic c(t) = exp(tH)q, for t ∈ R. Lemma 3.2.2 gives

us MIN(g) ⊆ P (c). Let c′ be any geodesic parallel to c. Then c and c′ are contained

in a flat in X. In particular, there exists a maximal abelian subspace a of p containing

H such that c, c′ ⊂ exp(a)q. Let Y ∈ a be such that exp(Y )c(t) = c′(t) for every

t ∈ R. The geodesic c′ is also translated by g since exp(Y ) exp(tH) = exp(tH) exp(Y )

implies c′(t) = exp(tH) exp(Y )q and therefore gc′(t) = c′(t+1) for every t ∈ R. Hence

c′ is contained in MIN(g) and the Lemma follows.
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Let g be a CAT(0)–hyperbolic isometry of X and suppose σ : R→ X is a geodesic

translated by g, oriented so that gσ(0) = σ(t) for some t > 0. We define the slope of g

to the be ∆mod–direction of σ corresponding to the positive direction, σ(∞). Of course

parallel geodesics are asymptotic and so we get the same ∆mod-direction regardless

of which geodesic we consider. We say an isometry g is regular semisimple if it is

CAT(0)–hyperbolic and its slope is regular in ∆mod. When g is CAT(0)–hyperbolic

but its slope is singular we say g is a singular semisimple isometry.

Lemma 3.2.4. Let a be a regular hyperbolic element in G, contained in a maximal

torus A. Then:

(1) there exists a unique maximal flat Fa in X which is stabilised by a;

(2) for any p ∈ Fa, let K be the stabiliser of p, then Stab(Fa) = ZG(a)NK(A),

where ZG(a) is the centraliser of a in G and NK(A) is the normaliser of A in

K.

Proof. Suppose a is regular hyperbolic, translating a geodesic c. We can decompose

a as a = hk = kh where h is real hyperbolic and k is elliptic. The real hyperbolic

component will translate c, hence MIN(h) is equal to the maximal flat Fa. Consider

the action of k = h−1a on Fa. It will fix c pointwise and hence must act trivially on

Fa since any non-trivial elliptic isometry on Fa will permute the Weyl chambers and

therefore cannot fix a regular geodesic. But this tells us that the action of a on Fa is

precisely the same as that of h, thus MIN(a) = Fa.

Suppose that another flat F ′ is stabilised by a. Since a is not elliptic , it must act

on F ′ hyperbolically, by translating some geodesic in F ′. This geodesic must therefore

be contained in MIN(a) = F . So F and F ′ intersect in a regular geodesic, hence must

be equal. This proves (1).

Let p,K be as in (2) and note that Fa = Ap. Let z ∈ ZG(a) and w ∈ NK(A). Then

zwFa = zFa and azFa = zaFa = zFa, so by (1) zFa = Fa. Hence ZG(a)NK(A) ⊆
Stab(Fa). Now let g ∈ Stab(Fa). Then there exists b ∈ A such that gp = bp.

Thus b−1g = k ∈ K and stabilises Fa. Since kAk−1p = Fa we see that kAk−1 is a

maximal torus stabilising the flat Fa. Such a torus is unique, so k ∈ NK(A). Hence

g = bk ∈ ZG(a)NK(A) and (2) holds.

We can see that the orbit of the centraliser of a regular hyperbolic element will be

a maximal flat. When we take a singular real hyperbolic element instead, then the

orbit of its centraliser will contain many maximal flats.



108 Chapter 3. Higher Rank Lattices

Lemma 3.2.5. Let a be a singular real hyperbolic element in G. Then:

(1) the subspace MIN(a) is precisely the set of all geodesics translated by a, which

is the Riemannian product of a Euclidean space and a symmetric space of non-

compact type; and

(2) for any p ∈ MIN(a), let K be the stabiliser of p, then

ZG(a) ⊆ Stab(MIN(a)) ⊆ ZG(a)K

where ZG(a) is the centraliser of a in G.

Proof. The first part of assertion (1) follows from Lemma 3.2.3, while for a proof of

the second part we refer the reader to [Ebe96, 2.11.4].

For (2), take b ∈ ZG(a) and let c′ be any geodesic translated by a. Then bc′ =

bac′ = abc′ implies that bc′ is translated by a, hence is contained in MIN(a). Now let

g stabilise MIN(a). Let c1, c2 be the geodesics translated by a such that c1(0) = p and

c2(0) = gp respectively. Since c1 and c2 are parallel they are contained in a common

flat F = Ap, where A is a maximal abelian Lie subgroup of G which contains a.

There exists b ∈ A such that bc2 = c1 and bgp = p. Hence bg ∈ K and in particular

g ∈ ZG(a)K.

3.2.2 Bounding the size of a conjugator from G

The aim of this section is to obtain a control on the length of a conjugator between

two real hyperbolic elements a, b in G. The control will be linear, but the constant in

the upper bound will depend on the slope of a and b, and hence their conjugacy class.

Our method of demonstrating this is to first show that a conjugator corresponds to an

isometry that maps MIN(a) to MIN(b). Then, by obtaining a control on the distance

from an arbitrary basepoint p to MIN(a) in terms of dX(p, ap), we can obtain a control

on the length of a conjugator from G.

3.2.2.a Relating conjugators to maps between flats

Here we show why we can obtain a short conjugator by understanding the distance to

MIN(a) and MIN(b). In the following let πa be the orthogonal projection of X onto

MIN(a) and for x ∈ X let Gq = {k ∈ G | gq = q}.

Proposition 3.2.6. Let a, b be conjugate semisimple elements in G. Then:
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(1) for g ∈ G, if gag−1 = b then gMIN(a) = MIN(b);

(2) for h ∈ G, if hMIN(a) = MIN(b) then there exists x ∈ Gπa(p) such that

(hx)a(hx)−1 = b.

Proof. For (1), let c be any geodesic stabilised by a. Since g = bga−1 we see that

the geodesic gc is translated by b and so is contained in MIN(b). Hence gMIN(a) ⊆
MIN(b). Similarly we get g−1MIN(b) ⊆ MIN(a) and (1) is proved.

Next suppose that g, h ∈ G are such that gag−1 = b and hMIN(a) = MIN(b). By

the first part we observe g−1hMIN(a) = MIN(a), so g−1h ∈ Stab(MIN(a)) ⊆ ZG(a)K,

with the latter relationship coming from Lemma 3.2.5, where we take K = Gπa(p).

Then there exists x ∈ K such that g−1hx ∈ ZG(a). This implies (g−1hx)a(g−1hx)−1 =

a and so (hx)a(hx)−1 = gag−1 = b, proving (2).

If a and b are regular semisimple elements in G then they each stabilise a unique

maximal flat in X. Suppose a, b stabilise maximal flats Fa and Fb respectively. By

taking our basepoint p to be in Fa we can build a quadrilateral which has two vertices

in Fa and two vertices in Fb, as in Figure 3.2. In light of 3.2.6, the aim is to find an

element g ∈ G of a controlled size which maps the flat Fa to Fb. We will then obtain

a conjugator of controlled size.

p

ap

gp

bgp = gap

Fa

Fb

Figure 3.2: A quadrilateral in X demonstrating the conjugacy of a and b in G.

Proposition 3.2.7. Let p be our basepoint in X. Suppose for all semisimple a in G

we can find a constant `(a) such that:

dX(p,MIN(a)) ≤ `(a)dX(p, ap).

Then for a, b conjugate hyperbolic elements in G there exists a conjugator g ∈ G such

that:

dX(p, gp) ≤ `(a)dX(p, ap) + `(b)(p, bp).
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Proof. Choose points pa ∈ MIN(a) and pb ∈ MIN(b) such that dX(p, pa) ≤ `(a)dX(p, ap)

and dX(p, pb) ≤ `(b)dX(p, bp). Let g1 ∈ G be such that g1MIN(a) = MIN(b) and

g1pa = pb. By Lemma 3.2.6 there exists x in Gpb such that (xg1)a(xg1)−1 = b. Let

g = xg1.

p

pa

pb = gpa

gp

MIN(a)

MIN(b)

Figure 3.3: Obtaining an upper bound on dX(p, gp).

To finish the proof we need to check that we have the required upper bound on

dX(p, gp). By the triangle inequality:

dX(p, gp) ≤ dX(p, pb) + dX(pb, gp)

= dX(p, pb) + dX(gpa, gp)

= dX(p, pb) + dX(p, pa))

≤ `(a)dX(p, ap) + `(b)dX(p, bp).

3.2.2.b Bounding the distance to a flat

In Proposition 3.2.7 we saw how finding some constant `(a) such that dX(p,MIN(a)) ≤
`(a)dX(p, ap) helps us to control the size of a conjugator in G between a and another

element b. The aim of this section is to find such constants for the case when a is

real hyperbolic. In fact, we will determine a value for `(a) which depends only on the

slope of a. Note that we have the following:

Lemma 3.2.8. If a is conjugate to b then a and b have the same slope.
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Proof. Let a have slope ξ ∈ ∆mod. This means that the geodesic segment [p, ap],

where p is a point in MIN(a), has ∆mod-direction ξ. Suppose b = gag−1 for some

g ∈ G. Then g maps the bi-infinite geodesic through p and ap to a bi-infinite geodesic

through gp and gap = bgp. This geodesic is translated by b, so the slope of b is the

∆mod-direction of the geodesic segment [gp, bgp] = g [p, ap]. Since the ∆mod–direction

is defined to be G–invariant we have that the slope of b is ξ.

In order to determine the value of `(a) we will use an asymptotic cone of X, which,

by a result of Kleiner and Leeb [KL97], is a Euclidean building. It is helpful therefore

to first determine the corresponding value in a Euclidean building. This will then be

useful to find the value for symmetric spaces. Recall Lemma 3.2.3 which asserted, for

a real hyperbolic element a, that MIN(a) = P (σ), where σ is any geodesic translated

by a and P (σ) is the subspace of X consisting of all geodesics parallel to σ. We

are therefore interested in the distance to similarly defined subspaces of a Euclidean

building. Also recall that, for a Euclidean building Y , the quotient of ∂∞Y by the

group of isometries of Y is denoted by ∆mod, and θ : ∂∞Y → ∆mod is the natural

map.

Lemma 3.2.9 (see [HKM10, Lemma 5.1]). Let Y be a Euclidean building, δ ∈ ∂∞Y ,

c be a geodesic in Y with one end asymptotic to δ and E be the subset of Y consisting

of all geodesics parallel to c. Then for any point p ∈ Y the geodesic ray emanating

from p which is asymptotic to δ enters the set E in finite distance.

Remark: The proof of this Lemma given in [HKM10, Lemma 5.1] only covers alge-

braic Euclidean buildings. It is worth noting that by [KT04] the asymptotic cone of

a symmetric space is an algebraic Euclidean building, so their proof applies to the

buildings which we are concerned with.

Proposition 3.2.10. Let a be an isometry of a Euclidean building Y such that a

translates all geodesics parallel to a geodesic c and let E be the subset of Y contain-

ing all these geodesics. Suppose the ray c[0,∞) satisfies ac[0,∞) ⊂ c[0,∞) and is

asymptotic to δ ∈ ∂∞E, where θ(δ) = ξ ∈ ∆mod. Then there exists a constant `ξ such

that for any basepoint p in Y the following holds:

d(p, E) ≤ `ξd(p, ap).
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p ap

e ae
E

δ

Figure 3.4: The angle ]ae(e, ap) is rigid, that is the angle is contained in a finite set
which is determined by ξ. This leads to a bound on the distance from p to E.

Proof. Consider the ray emanating from p which represents δ. By Lemma 3.2.9 this

ray enters E. Let e be the first point along this ray such that e ∈ E. By design ae

also lies on this ray. Now translate the ray by a. What we get is a geodesic triangle

in Y , as seen in Figure 3.4, with vertices p, ae, ap. By the rigidity of angles in Y,

]ae(p, ap) belongs to the finite set D(ξ). Let φ be minimal in this set. Then since

Y is a CAT(0) space we have that d(p, ap) ≥ d(ap, ae) sinφ. Hence we put `ξ = 1
sinφ

and the proposition holds.

Lemma 3.2.11. Let the Tits building structure on ∂∞X have anisotropy polyhedron

∆mod. Fix a basepoint p in X. Then for each element ξ ∈ ∆mod there exists positive

constants `ξ and dξ such that for each a ∈ G which is real hyperbolic of slope ξ and

such that dX(p, ap) > dξ the following holds:

dX(p,MIN(a)) ≤ 2`ξdX(p, ap).

Proof [regular slopes]. The proof which follows applies to the case when ξ is regu-

lar. The proof for singular slopes is analogous, with slight modifications which are

described at the end of this proof.

First note that the constant `ξ will be the same constant that we obtained in

Proposition 3.2.10.

We proceed by contradiction, supposing the statement is false. We then obtain a

sequence of regular semisimple elements an in G, each of slope ξ, such that dX(p, anp)

diverges to infinity and which satisfies:

dX(p, Fn) > 2`ξdX(p, anp) (3.1)
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where Fn is the unique maximal flat stabilised by an. Write dn := dX(p, anp) and

Dn := dX(p, Fn). Let πn : X → Fn be the orthogonal projection onto Fn and let tn

be the translation length of an, that is tn := dX(πn(p), anπn(p)). We split the proof

into three parts depending on the limits of the ratios tn/Dn and dn/Dn.

Case 1: limω(tn/Dn) 6= 0 6= limω(dn/Dn).

In the first part of the proof we build a Euclidean building and use Proposition 3.2.10

to obtain a contradiction under the assumption that tn/Dn does not converge to zero.

Since dn diverges to infinity, it follows from (3.1) that Dn does too. Hence we pick

a non-principal ultrafilter ω and consider the asymptotic cone Y = Coneω(X, p,Dn).

By choice of scalars it follows that the ultralimit E of the sequence of flats Fn is

contained in Y and lies a distance 1 away from the point p (when we view p as an

element of the cone Y ).

Define the map g : Y → Y by sending (xn) ∈ Y to (anxn). To check it is

well-defined on Y we need only observe that it moves p a bounded distance:

dω(p, gp) = limω

(
dX(p, anp)

Dn

)
= limω

(
dn
Dn

)
≤ limω

(
1

2`ξ

)
=

1

2`ξ
.

Furthermore, since an acts on X by isometries for each n it follows that g acts on

Y by isometries.

By assumption tn/Dn does not converge to zero, hence dω(π(p), gπ(p)) > 0. It

implies, since tn ≤ dn, that dX(p, gp) > 0. Under these conditions we may apply

Proposition 3.2.10, since g acts on E by translating along geodesics towards a bound-

ary point ξ. This gives us the following contradiction:

1 = dω(p, E) ≤ `ξdω(p, gp) ≤ `ξ
2`ξ

=
1

2
.

Case 2: limω(tn/Dn) = 0 = limω(dn/Dn).

We must therefore assume the ω-limit of tn/Dn is zero. We assume this for the second

part of the proof and we also assume that the ω-limit of dn/Dn is zero. We will build
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a sequence of quadrilaterals and take their Hausdorff limit. The limiting quadrilateral

will be flat and intersecting a flat F only in one edge, along a regular geodesic. This

will give the contradiction.

Fix a flat F in X and a point q ∈ F . For each n consider an isometry gn ∈ G
which sends πn(p) to q and Fn to F . The first thing to note is that each geodesic

segment [πn(p), anπn(p)] is mapped to a geodesic segment T := [q, gnang
−1
n q] in F of

∆mod-direction ξ. Consider the projection τ : [gnp, gnanp]→ T . For a fixed constant

h and for large enough n we may pick a subsegment S of T of length h such that the

pre-image τ−1(S) in [gnp, gnanp] has length at most dnh/tn.

Label points b
(1)
n , b

(2)
n on the geodesic [gnp, angnp] which are mapped under τ to

each end of the segment S, see Figure 3.5. Let L
(i)
n := dX(b

(i)
n , T ) and without loss of

generality assume L
(1)
n ≤ L

(2)
n . Observe:

Dn = dX(gnp, T ) ≤ dX(gnp, b
(1)
n ) + dX(b(1)

n , T )

and replacing gnp by gnanp if necessary we get:

L(1)
n ≥ Dn −

dn
2

.

gnp gnanp

q gnang
−1
n q

F = gnFn

S

Dn L
(1)
n L

(2)
n

b
(1)
n b

(2)
n

hh

ψn(h)

Figure 3.5: The quadrilateral Qn with side S.
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Using our hypothesis we therefore get L
(1)
n >

(
2`ξ − 1

2

)
dn. So, referring back to the

value of `ξ obtained in Proposition 3.2.10, since 2`ξ − 1
2
> 0 for any choice of ξ, we

get that L
(1)
n diverges to infinity.

Now define quadrilaterals Qn as follows. We take one edge to be the segment S

and the two adjacent edges are those subsegments of [b
(i)
n , τ(b

(i)
n )] of length h which

include the points τ(b
(i)
n ), for i = 1, 2. The quadrilateral Qn has three sides of length

h. Let ψn(h) be the length of the fourth side. Define a map ψ̂n : [0, L
(1)
n ] → R

measuring the distance across the flat rhombus (see Figure 3.6).

Using the CAT(0) property of X we see that

h ≤ ψn(h) ≤ ψ̂n(h)

=

(
L

(1)
n − h
L

(1)
n

)
h+

h2dn

L
(1)
n tn

= h− h2

L
(1)
n

+ h2

(
dn
Dntn

)(
Dn

L
(1)
n

)
Above we showed that L

(1)
n ≥ Dn − dn

2
. We can use this to show that Dn/L

(1)
n is

bounded above by
(

1− 1
4`ξ

)−1

. This is therefore enough, since we have the assump-

tion that dn/Dn converges to zero, to conclude that ψn(h) converges to h as n tends

to infinity. After translating the quadrilaterals Qn along the geodesics to q we can

find the Hausdorff limit Q of a convergent subsequence of the quadrilaterals Qn. The

quadrilateral Q will have four sides with length h, two right-angles and hence must

be a flat square. But Q intersects F only through the regular geodesic segment T .

This gives a contradiction.

L
(1)
n L

(1)
n

t t

ψ̂n(t)

h

h
tn
dn

Figure 3.6: Defining ψ̂n(t).
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Case 3: limω(tn/Dn) = 0 6= limω(dn/Dn).

We conclude by combining both of the above arguments into one in order to obtain

a contradiction when tn/Dn converges to zero but dn/Dn does not. We start by

looking at the situation inside the Euclidean building Y that we built in case 1. It is

constructed so that dω(p, E) = 1, but in what follows we will show that in this case

we would have the contradiction dω(p, E) < 1.

In Y , take the two geodesic rays asymptotic to ξ which begin at p and at gp

respectively. Note that the second ray is the image of the first under g. Also recall

that both rays will enter the apartment E. Since g fixes E pointwise we see that

the two rays must come together at some point y. In particular either y is the point

where the rays enter E or it is not in E. We will show that dω(y, E) ≤ (4`ξ)
−1.

p

gp

y

e ξ
E

Figure 3.7: Two geodesic rays asymptotic to ξ, entering the apartment E at a point
e and merging at the point y.

Suppose that dω(y, E) > (4`ξ)
−1 and let (yn) be a sequence of points in X which

represent y in Y . Then there exists ε such that (4`ξ)
−1 < ε < dω(y, E) and ω{n ∈

N | dX(yn, Fn) ≥ εDn} = 1. We now proceed as in case 2, for each n applying the

isometry gn and constructing quadrilaterals Qn with one edge in the fixed flat F . As

before we pick a segment S of length h from [q, gnang
−1
n q] whose pre-image under

the projection onto [q, gnang
−1
n q] intersects [gnyn, gnanyn] in a segment of length at

least h
tn
dX(yn.anyn). Let L

(i)
n be the distances between the corresponding end-points

of these subsegments and suppose L
(1)
n ≤ L

(2)
n . Then in order to proceed as before we

need that the function:

ψ̂n(t) =

(
L

(1)
n − t
L

(1)
n

)
h+

t

L
(1)
n

h

tn
dX(yn, anyn)
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converges to h when we put t = h. We need to check two things: firstly that L
(1)
n

diverges to infinity and secondly that dX(yn,anyn)

L
(1)
n

converges to zero. For the former we

note that for all but finitely many n ∈ N we have the following:

L(1)
n ≥ dX(yn, Fn)− 1

2
dX(yn, anyn)

>

(
2`ξε−

1

2

)
dX(yn, anyn)

If dX(yn, anyn) is bounded we use the first line to show L
(1)
n is unbounded. Otherwise

we use the second line, recalling that ε > 1
4`ξ

. To prove that dX(yn,anyn)

L
(1)
n

converges to

zero we first check that Dn

L
(1)
n

is bounded. This is so because for all but finitely many

n we have the following:

L(1)
n ≥ dX(yn, Fn)− 1

2
dX(yn, anyn)

> εDn −
1

2
dn

L
(1)
n

Dn

> ε− dn
2Dn

Dn

L
(1)
n

<

(
ε− 1

4`ξ

)−1

Hence we see that dX(yn,anyn)

L
(1)
n

= dX(yn,anyn)
Dn

Dn

L
(1)
n

converges to zero by our choice of yn.

Then as before, after translating the quadrilaterals Qn so they each have a vertex

at q, we take the Hausdorff limit of a convergent subsequence of these quadrilaterals

and obtain a flat quadrilateral which intersects F only through a regular geodesic

segment. Here we have our contradiction and conclude that dω(y, E) ≤ (4`ξ)
−1.

To finish the argument we look at the triangle in Y with vertices p, gp, y. In a

similar manner to the proof of Proposition 3.2.10 we use the fact that Y is a CAT(0)

space to get dω(p, gp) ≥ dω(p, y)`−1
ξ , recalling that `−1

ξ is the sine of the minimal angle

in the finite set D(ξ) of possible angles between geodesics of ∆mod-direction ξ.

Therefore we have the following:

dω(p, E) ≤ dω(p, y) + dω(y, E)

≤ `ξdω(p, gp) +
1

4`ξ

≤ `ξ
1

2`ξ
+

1

4`ξ

=
1

2
+

1

4`ξ
< 1
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However, we also have dω(p, E) = limω

(
Dn
Dn

)
= 1, thus giving the contradiction and

proving the Lemma.

Proof [singular slopes]. In order to modify the above proof to work for singular di-

rections we need to make the following adjustments. First we replace the flats Fn

by MIN(an). Case 1 continues as above with no change. For cases 2 and 3, the

contradiction we obtain will be similar. Instead of using a fixed flat F , we use a fixed

subspace P (c) which consists of a family of geodesics parallel to some geodesic c of

slope ξ, for example we may take M = MIN(a1) and c any geodesic translated by

a1. By Lemma 3.1.9 we know there exists gn ∈ G which sends MIN(an) to M . From

the proof of Lemma 3.1.9 it is also clear that gn can be chosen so it sends a geodesic

translated by an to a geodesic translated by a1. Furthermore, if we fix a point q in

M , as we did in the above proof, then we can choose gn so it sends πn(p) to q. Once

we have this, we can find a flat quadrilateral Q in the same way as above, but it will

intersect M only in one side, which is a geodesic segment of slope ξ. The opposite

edge of Q will be a segment of a geodesic parallel to c, hence should be contained in

M , but it is not.

In light of Lemma 3.2.11 we can put `(a) = `(b) = 2`ξ, where ξ is the slope of a

and b, into Proposition 3.2.7 to get the following:

Theorem 3.2.12. Let `ξ and dξ be the constants from Lemma 3.2.11. Suppose a

and b are conjugate real hyperbolic elements in G with slope ξ ∈ ∆mod and such that

dX(p, ap), dX(p, bp) ≥ dξ. Then there exists a conjugator g ∈ G such that:

dX(p, gp) ≤ 2`ξ
(
dX(p, ap) + dX(p, bp)

)
.

The constant 2`ξ that we have obtained will depend on the slope of a and b, and

hence on the conjugacy class. However it is important to note that it is independent

of the basepoint p that was chosen.

When we restrict our attention to a lattice Γ in G, Theorem 3.2.12 will apply to

all but finitely many real hyperbolic elements of Γ. This leads to the following result:

Corollary 3.2.13. Let Γ be a lattice in G. Then for each ξ ∈ ∆mod, there exists a

constant Lξ such that two elements a, b ∈ Γ are conjugate in G if and only if there

exists a conjugator g ∈ G such that

dX(p, gp) ≤ Lξ
(
dX(p, ap) + dX(p, bp)

)
.
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We now offer a couple of corollaries to Theorem 3.2.12 which shed a little more light

on the nature of short conjugators between real hyperbolic elements in a semisimple

real Lie group. For a semisimple element a of G, the translation length of a is

τ(a) = inf{dX(x, ax) | x ∈ X}.

We can reformulate Theorem 3.2.12 so that it applies to all real hyperbolic elements

in G, provided their translation length isn’t too small.

Corollary 3.2.14. Let 0 < ε ≤ dξ and suppose that a and b are real hyperbolic

elements of G of slope ξ and with translation lengths τ(a), τ(b) ≥ ε. Then a and b

are conjugate in G if and only if there exists a conjugator g ∈ G such that

dX(p, gp) ≤ 2`ξ

(
dξ
ε

+ 1

)(
dX(p, ap) + dX(q, aq)

)
.

Proof. Since a is real hyperbolic, τ(a) > 0 and τ(ak) = kτ(a) for all k ∈ N. Let k

to be the maximal positive integer such that kε < dξ. In particular, maximality of k

implies that dX(p, ak+1p), dX(p, bk+1p) ≥ dξ and we are able to apply Lemma 3.2.11,

concluding that

dX(p,MIN(a)) ≤ 2`ξ(k + 1)dX(p, ap), dX(p,MIN(b)) ≤ 2`ξ(k + 1)dX(p, bp).

We can then apply Lemma 3.2.7, taking `(a) = `(b) = 2`ξ(
dξ
ε

+ 1). This gives the

upper bound on the length of a conjugator g as required.

We complete this section with the following consequence of the above work. It

says that if we restrict ourselves to looking at the majority of regular hyperbolic

elements — that is, those with not too small translation length and of a slope which

is not too close to being singular — then we can obtain a linear bound on the length

of short conjugators.

Corollary 3.2.15. For every ε1, ε2 > 0 there exists κ = κ(ε1, ε2) with the following

property: assume that a and b are conjugate hyperbolic elements with translation

lengths τ(a), τ(b) ≥ ε1 and slope ξ ∈ ∆mod such that the spherical distance from ξ to

∂∆mod is at least ε2. Then there exists a conjugator g ∈ G such that:

dX(p, gp) ≤ κ
(
dX(p, ap) + dX(p, bp)

)
.

It is worth noting that while we have a precise expression for the constant `ξ in

terms of the slope ξ, we have no grasp on the value taken by dξ.
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3.2.3 Dependence on slope

The aim here is to show that any constant satisfying the linear relationship in Theorem

3.2.12 must depend on the common slope of a and b. To do this, we first show there

is not a uniform constant ` > 0 such that for all regular hyperbolic elements a ∈ G
the following holds:

dX(p,MIN(a)) ≤ `dX(p, ap) (3.2)

where p is an arbitrary basepoint in X. This will imply that the constants `(a)

required for Proposition 3.2.7 will have to depend somehow on a.

To do this, we will construct a sequence of regular hyperbolic elements which con-

tradict the existence of such an `. The sequence will converge to a singular hyperbolic

element, agreeing with the intuition that the constant `ξ of Lemma 3.2.11 diverges to

infinity as the slope ξ converges to a singular direction.

We first note that if (3.2) is true for a point p ∈ X then it is true for every point

q ∈ X. Indeed let g ∈ G be any isometry such that gp = q. Then firstly:

dX(q,MIN(a)) = dX(gp,MIN(a))

= dX(p, g−1MIN(a))

= dX(p,MIN(g−1ag))

and secondly:

dX(q, aq) = dX(gp, agp)

= dX(p, g−1agp).

But since we assume (3.2) to be true for all hyperbolic elements it follows that it is

true for g−1ag and thus:

dX(q,MIN(a)) ≤ `dX(q, aq).

Fix a pair of distinct flats F, F ′ whose intersection is non-trivial and of dimension

at least one. Let p0 be a point in their intersection and let g = k⊕ p be the corre-

sponding Cartan decomposition. Let a, a′ be the maximal abelian subspaces of p such

that:

F = exp(a)p0

F ′ = exp(a′)p0
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Furthermore suppose H ∈ a ∩ a′ has length 1 and Y ∈ a′ \ a is orthogonal to H and

is also of length 1.

Let (Hn) be a sequence of regular unit vectors in a \ a′ which converge to H.

Define a0 := exp(H) ∈ G and an := exp(Hn) ∈ G for n ∈ N (see Figure 3.8).

p0

q a0q

H

Hn

F

F ′

Figure 3.8: The two flats F and F ′.

We suppose (3.2) holds for some ` > 0. Let ϕ be the angle between Y and the

flat F and set q = exp( 2`
sinϕ

Y )p0. Then

dX(q, F ) ≥ sinϕdX(q, p0) = 2`.

But for each n ∈ N, by construction, F = MIN(an). Thus dX(q,MIN(an)) ≥ 2` for

each n. Meanwhile the sequence of points anq converges to the point a0q as n tends

to infinity. Hence dX(q, anq) converges to 1. This gives the following contradiction:

2` ≤ dX(q,MIN(an))

≤ `dX(q, anq)

→ `

Hence there cannot exist such a constant ` which satisfies (3.2) for every hyperbolic

element in G.

The following Lemma explains how to use the above to demonstrate the non-

existence of a uniform constant for the linear control on conjugacy length among all

regular hyperbolic elements in G.
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Lemma 3.2.16. Suppose for p ∈ X there exists `′ > 0 such that for every pair of

conjugate regular hyperbolic elements a, b in G there exists a conjugator g ∈ G such

that

dX(p, gp) ≤ `′(dX(p, ap) + dX(p, bp)).

Then (3.2) holds for ` = 2`′.

Proof. Let a be regular hyperbolic in G such that MIN(a) = Fa does not contain

p. Let πa be the orthogonal projection of X onto Fa and let m be the midpoint of

the geodesic segment [p, πa(p)]. Consider the geodesic symmetry sm of X about m,

that is the map sm : X → X such that for any geodesic c : R → X with c(0) = m,

sm(c(t)) = c(−t) for all t ∈ R. Since X is a symmetric space sm is an isometry. Let

F denote the flat sm(Fa). Then p ∈ F and [p, πa(p)] meets both flats at right-angles,

so this geodesic segment realises the distance between the flats.

Take g ∈ G such that gF = Fa and gp = πa(p). Then by the hypothesis of

the Lemma, dX(p, πa(p)) ≤ `′(dX(p, ap) + dX(p, g−1agp)). But dX(p, g−1agp) is the

translation length of a, so is less than dX(p, ap). Hence dX(p, Fa) ≤ 2`′dX(p, ap).

Since (3.2) cannot hold, we have the following:

Corollary 3.2.17. For p ∈ X there does not exists `′ > 0 such that for every pair of

conjugate regular hyperbolic elements a, b in G there exists a conjugator g ∈ G such

that

dX(p, gp) ≤ `′(dX(p, ap) + dX(p, bp)).

3.2.4 Finding a conjugator in Γ

In Corollary 3.2.13 we found a short conjugator between two real hyperbolic elements

in Γ. However this conjugator lies in the ambient Lie group G. In order to improve

our understanding of conjugacy length in Γ we need to work out how to move our

conjugator from G so that it becomes a conjugator in Γ. The main obstacle here is

in understanding how the lattice will intersect flats in the symmetric space.

Given a conjugator g ∈ G for a, b ∈ Γ, the set of all conjugators is the coset

ZG(a)g of the centraliser of a. We are therefore interested in the contents of the

set ZG(a)g ∩ Γ, or equivalently gZG(b) ∩ Γ. If we begin with the assumption that

a conjugator for a, b from the lattice exists, then at least we know these sets are

non-empty.
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When a and b are real hyperbolic we have a good understanding of the geometry

of their centralisers (see Lemmas 3.2.4 and 3.2.5). For example, when b is regular we

can find a point q ∈ X such that the orbit ZG(b)q is a maximal flat. Then gZG(b)q

is also a maximal flat and is in fact the unique maximal flat stabilised by a. Hence it

is equal to ZG(a)gq. Clearly (ZG(a)g ∩ Γ)q is contained in this flat, and the question

is how far is gq from this subset? Once we know this distance, we can shift our

conjugator g, whose length we have an estimate for courtesy of Section 3.2.2, to a

conjugator in Γ and keep track of the size of the new lattice conjugator.

Suppose γ ∈ gZG(b)∩ Γ. Then gZG(b)∩ Γ = γ(ZG(b)∩ Γ). It is therefore enough

to look at how the set (ZG(b) ∩ Γ)q sits inside ZG(b)q. In the singular case ZG(b)q

will be made up of a family of maximal flats. Each flat will be the orbit of a maximal

torus T contained in ZG(b). If there exists some such torus T which satisfies the

properties that b ∈ T ∩ Γ and T ∩ Γ is isomorphic to Z, then we understand what

the fundamental domain for the action of T ∩ Γ on Tq will look like: it will be an

R–tubular neighbourhood of a hyperplane orthogonal to the geodesics translated by

b, where 2R ≤ dX(q, bq).

This situation cannot arise if the Q–rank of the lattice is too small: it must satisfy

rankQ(Γ) ≥ rankR(G)− 1. If rankQ(Γ) = rankR(G)− 1 then a maximal Q–split torus

S is a hyperplane inside a maximal R–split torus T . Because Γ must intersect S

in a finite set, Γ will intersect T in nothing more than a finite extension of Z. In

particular, if q ∈ X is chosen so that Tq is flat, then (Γ ∩ T )q will look like a copy

of Z inside the flat. Furthermore, the fundamental domain for the action of T ∩Γ on

this flat will be a tubular neighbourhood of Sq.

In general, if rankQ(Γ) = rankR(G)−d, then the flats in X which have a non-trivial

intersection with an orbit of Γ can do so only with copies of Zk for rankR(G) ≥ k ≥ d.

Lemma 3.2.18. Suppose rankQ(Γ) ≥ rankR(G) − 1 and let T be a maximal R–split

torus in G such that T ∩ Γ is a finite extension of Z. Take a real hyperbolic element

b ∈ T ∩ Γ and suppose it is conjugate in Γ to a. If a and b have slope ξ, then there

exists a conjugator γ ∈ Γ for a, b such that

dX(p, γp) ≤ (6Lξ + 1)(dX(p, ap) + dX(p, bp))

where Lξ is as in Corollary 3.2.13.
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γSq

γq

gq

gTq

γ(T ∩ Γ)q

Figure 3.9: When rankR(G) = 2, the quotient of the maximal flat gTq by the action of
Γ∩ gTg−1 is a cylinder whose diameter is bounded above by dX(γq, bγq) = dX(q, aq).

Proof. Suppose first that rankQ(Γ) = rankR(G) − 1 and let S be a maximal Q–split

torus contained in T . To adapt the following to the case when rankQ(Γ) = rankR(G),

we merely take S+ to instead be the face of a Weyl chamber in T (which will be

isometric to a Q–Weyl chamber, so S+ will still isometrically embed into Γ\X).

Let q be any point in X such that Tq is a (maximal) flat. Note that Tq will be

contained in MIN(b). Choose g ∈ G as in Theorem 3.2.12, taking p = q. Then g

maps Tq to a maximal flat contained in MIN(a) and in particular there exists γ ∈ Γ

such that gq lies in an R–tubular neighbourhood of γSq, where 2R = dX(q, aq). In

particular there is a Q–Weyl chamber S+ in S such that gq lies in an R–tubular

neighbourhood of γS+q.

The Q–Weyl chamber maps isometrically into Γ\X (see [Leu04]), so in particular

dX(γq, gq) ≤ dX(Γq, gq) +R. Hence dX(q, γq) ≤ 2dX(q, gq) +R.

To finish, we need to translate it so it works for an arbitrary basepoint p. To do

this we use Lemma 3.2.11 and apply the triangle inequality:

dX(p, γp) ≤ 2dX(p, q) + dX(q, γq)

≤ 4LξdX(p, ap) + 4Lξ(dX(q, aq) + dX(q, bq)) + r

≤ (6Lξ + 1)(dX(p, ap) + dX(p, bp))

Note that in the above we have assumed that dX(p, ap) ≤ dX(p, bp); if this is not the

case, we can just reverse the roles of a and b.
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The preceding Lemma works because we know enough about the shape and size of

a fundamental domain for the action of Γ∩T on the flat Tq. In this case, Γq intersects

Tq in a copy of Z, and we essentially have a tubular neighbourhood of a co-dimension

1 flat, the radius of the neighbourhood bounded above by the translation length of a.

Question: When Γq intersects Tq in a copy of Zk, for some k ≥ 2, what can we say

about the dimensions of the fundamental domain for the action of Γ ∩ T on the k–

dimensional flat inside Tq stabilised by Γ∩T in terms of dX(p, bp) and dX(p,MIN(b)),

where b ∈ T ∩ Γ?

3.3 Unipotent Elements

We move on now to look at the conjugacy of unipotent elements in Γ. The partial

result obtained here gives a linear bound on the length of a conjugator from G between

two lattice elements which satisfy certain conditions and which are both contained in

the same minimal unipotent subgroup N of G. The method used to prove it relies

heavily on the Lie algebra and in particular on the root system corresponding to g.

Consider two conjugate elements u, v in N ∩ Γ. When looking at the case when

N is the subgroup of SLn(R) consisting of the unipotent upper triangular matrices,

the condition we impose on u and v is equivalent to demanding that the super-

diagonal entries in the matrix, that is the (i, i + 1)–entries, are all non-zero. The

short conjugator we obtain is built up by gradually knocking off entries in the matrix

until you are left with a matrix with zeros above the super-diagonal. Doing this for

both u and v gives two matrices that are then related via conjugation by a diagonal

matrix. In Section 3.3.2 we give a few more details about how the process works for

SLn(Z).

In the process used to knock off the extra terms in the matrix, the super-diagonal

entries play an important role and it is crucial that they are non-zero. The underlying

root system for SLn(R) is of type An, and each positive root corresponds to a partic-

ular entry of the matrix. The simple roots correspond to the super-diagonal entries

of the matrix. Hence we use the term “simple case” to describe the situation in which

we insist that the super-diagonal, or simple, entries of u and v are all non-zero.

The process works especially well in SLn(R). Here the root spaces gλ all have

dimension 1. In general this is not the case, however it is necessary for our method
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to work. We are therefore restricted to looking at Lie groups in which the Lie algebra

is split. This is discussed in Section 3.3.1.a.

The ideas laid out below for the simple case could potentially be extended to

a more general situation. First one should find the largest parabolic subgroup of

G which contains u in its unipotent radical. When looking at the root system, this

corresponds to taking bites out of it — i.e. removing the linear spans of certain simple

roots. We would then need to find a new subset of the set of positive roots which

can play the role of the simple roots. Then conjugate by an element of the parabolic

subgroup in order to ensure the corresponding entries are non-zero.

3.3.1 Preliminaries

Fix a point p in the symmetric space X and let g = k⊕ p be the Cartan decomposition

at p. Take a maximal abelian subspace a of p — note that this is equivalent to choosing

a maximal flat F in X containing p. The (restricted) root-space decomposition of the

Lie algebra with respect to a is

g = Zg(a)⊕
∑
λ∈Λ

gλ

where gλ = {Y ∈ g | ad(H)Y = λ(H)Y, ∀H ∈ a}. The set Λ is a root system in the

dual space of a. Let Λ+ be a subset of positive roots of Λ with corresponding subset

Π of simple roots. Then

n =
∑
λ∈Λ+

gλ

is a nilpotent Lie algebra whose corresponding Lie subgroup N is a maximal unipotent

subgroup of G.

Recall that the Iwasawa decomposition of the Lie group is G = KAN , where

A = exp(a) and K = Gp is the Lie subgroup of G with Lie algebra k. The Iwasawa

decomposition is not unique for G. Indeed we can see how it is determined geomet-

rically. The point p determines the maximal compact subgroup K which appears,

while the unipotent subgroup N corresponds to a unique chamber in ∂∞X. In fact,

N is the unipotent radical of the (minimal) parabolic subgroup which is the stabiliser

of this chamber. The factor A is then determined by the maximal flat which contains

p and has this chamber in its boundary.
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Since N is a connected nilpotent Lie group, the exponential map exp : n → N is

a diffeomorphism. In particular, every element u in N has a unique expression

u = exp

(∑
λ∈Λ+

Yλ

)

where Yλ ∈ gλ for each positive root λ. Based on this, we introduce some terminology.

For u as above, the element Yλ will be called the λ–entry of u. If λ is a simple root

in Λ+, that is λ ∈ Π, then we will say that Yλ is a simple entry.

When taking products of elements in N , a useful tool is the Baker–Campbell–

Hausdorff formula. This is a polynomial map P : n× n→ n which satisfies:

exp(Y ) exp(Z) = exp(P (Y, Z)) (3.3)

for Y, Z ∈ n. See [Var74, §2.5] for discussion on this.

Lemma 3.3.1. The first few terms of the Baker–Campbell–Hausdorff formula are:

P (Y, Z) = Y + Z +
1

2
[Y, Z] +

1

12
[[Y, Z], Z]− 1

12
[[Y, Z], Y ]

− 1

48
[Z, [Y, [Y, Z]]]− 1

48
[Y, [Z, [Y, Z]]] + . . .

3.3.1.a Split Lie algebras

The root-space decomposition of a complex semisimple Lie algebra has the useful

property that each root-space is of dimension one. This fails to be the case when you

replace the word “complex” with “real.” In certain cases however, namely when the

Lie algebra is split, this property remains true in the real case.

Let gC denote the complexification of g. A real form g0 of gC which satisfies the

condition that, for every Cartan decomposition g0 = k0 + p0, the space p0 contains a

maximal abelian subalgebra of g0 is known as a split or normal real form. For each

complex semisimple Lie algebra there is precisely one (unique up to isomorphism)

split real form (see [Vin94, §4 Thm 4.4]). For example, the real special linear Lie

algebra sln(R) is the split real form of sln(C).

By choosing a compact real form u of gC we can determine a Cartan decomposition

(see for example [Hel01, Ch.III §7]) of g as

g = g ∩ u + g ∩ (iu)
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and we denote k = g ∩ u and p = g ∩ (iu). Let θ be the associated Cartan involution.

If we fix a maximal abelian subspace ap of p and consider the maximal abelian subal-

gebra a of g containing ap then aC, the complexification of a, is a Cartan subalgebra

of gC (see for example [Hel01, Ch.VI, Lemma 3.2]). This in turn determines a reduced

root system ∆ inside the dual space of aC and a root-space decomposition

gC = aC ⊕
∑
α∈∆

gCα

where gCα := {Y ∈ gC | ad(H)Y = α(H)Y, ∀H ∈ aC}. For each root α, the root space

gCα has complex dimension equal to 1.

Returning to the real world, recall that we have, with respect to a, the (restricted)

root-space decomposition

g = Zg(a)⊕
∑
λ∈Λ

gλ

where Λ is the root system, which is considered as a subset of the dual space of a.

The restricted root-spaces though do not necessarily have dimension one. In fact we

can calculate the dimension of gλ in terms of the two root systems ∆ and Λ. We can

recognise the complexification of gλ as the sum of the root-spaces gCα of gC such that,

when restricted from aC to a, the roots α are equal to λ (see [OV90, Ch.5, §4.2]).

Hence the dimension of gλ is equal to the number of such roots α. This number is

called the multiplicity of the restricted root λ.

The following is Proposition 6.3 in Ch.IX of [Hel01]:

Proposition 3.3.2. Let g be a semisimple Lie algebra which is the split real form of

its complexification. Then the multiplicity of each restricted root is one.

To summarise, we can associate to G a reduced root system Λ such that any

element u ∈ N = exp(n) can be expressed as

u = exp

(∑
λ∈Λ+

Yλ

)

where Yλ ∈ gλ. Furthermore, if we assume that the Lie algebra g is split, then gλ has

dimension 1 for each λ ∈ Λ.
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3.3.1.b The choice of metric on G

The Killing form on g is the symmetric bilinear form B : g× g → R given by

B(V,W ) = Trace(ad(V )ad(W )). Given g = k⊕ p, the Cartan decomposition at

p ∈ X, the Killing form is negative definite on k and positive definite on p. Fur-

thermore p is the orthogonal complement of k with respect to the Killing form. Let

θp be the Cartan involution on g defined at p, that is θp acts on k as the identity and

θp(Y ) = −Y for any Y ∈ p. We can then define an inner product on g as follows

(see [Ebe96, §2.7] or [Hel01, Ch. III Prop 7.4]):

ϕp(Y, Z) = −B(θpY, Z), for all Y, Z ∈ g.

This then determines a left-invariant Riemannian metric dG on G. Denote the norm

on g corresponding to ϕp by ‖.‖.
We will be interested in the effect of the Lie bracket on the size of elements from

the root-spaces of g.

Proposition 3.3.3. Suppose g is a split real Lie algebra. Let Yλ ∈ gλ and Yµ ∈ gµ,

where λ ∈ Π and µ ∈ Λ+ and λ+µ is a root. Then there exist constants c1 ≥ c0 > 0,

independent of the choice of Yλ, Yµ, λ, µ, such that

c1‖Yλ‖‖Yµ‖ ≥ ‖[Yµ, Yλ]‖ ≥ c0‖Yλ‖‖Yµ‖.

Proof. This follows from the fact that the root-spaces have dimension one and also

from the bilinearity of the Lie bracket and of the inner product ϕp. In particular, if

we let Zλ denote one of the two elements of gλ such that ‖Zλ‖ = 1, and similarly for

Zµ, then for α, β ∈ R such that Yλ = αZλ and Yµ = βZµ:

‖[Yλ, Yµ]‖ = |α| |β| cλ,µ

where cλ,µ = ‖[Zλ, Zµ]‖. By taking

c0 = min{cλ,µ | µ ∈ Λ+, λ ∈ Π such that λ+ µ ∈ Λ+}

c1 = max{cλ,µ | µ ∈ Λ+, λ ∈ Π such that λ+ µ ∈ Λ+}

we obtain the result, since |α| = ‖Yλ‖ and |β| = ‖Yµ‖.
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We will need to determine the size of an element in N . In order to do this we

need a couple of preliminary results about the size of the entries of u. Throughout

the following we will assume u ∈ N is of the form

u = exp

(∑
λ∈Λ+

Yλ

)
(3.4)

where Yλ ∈ gλ for each λ ∈ Λ+.

Lemma 3.3.4. Let u ∈ N be as in (3.4). For each λ ∈ Λ+ we have ‖Yλ‖ ≤ dG(1, u).

Proof. Since the root-spaces gλ for λ ∈ Λ+ are pairwise orthogonal with respect to

the Killing form, and hence also the inner product ϕp, we observe that:

‖Yλ‖ ≤

∥∥∥∥∥∑
λ∈Λ

Yλ

∥∥∥∥∥ = dG(1, u).

Lemma 3.3.5. Let u ∈ N be as in (3.4). Then there exists δ > 0 such that if u ∈ Γ

then for each simple root λi ∈ Π either ‖Yλi‖ ≥ δ or Yλi = 0.

Proof. Since Γ ∩N is a discrete subgroup of N we know it is finitely generated (see,

for example, Corollary 2 of Theorem 2.10 in [Rag72]). Let {γ1, . . . , γr} be a set of

generators for Γ ∩ N and let γ = γε1i1 . . . γ
εs
is
∈ Γ ∩ N where ij ∈ {1, . . . , r} and

εj ∈ Z \ {0}. We can write each generator as

γi = exp

(∑
λ∈Λ+

Y
(i)
λ

)

where Y
(i)
λ ∈ gλ for each i and each λ. Then, by using the Campbell–Baker–Hausdorff

formula,

γ = exp

(∑
λ∈Λ+

s∑
j=1

εjY
(ij)
λ + Ỹ

)
where Ỹ is a sum of terms from non-simple root-spaces. This tells us that each simple

entry Yλi of u belongs to the integer linear span of the set {Y (1)
λi
, . . . , Y

(r)
λi
}, hence there

is an element of minimal length for each simple root which can appear as an entry

of an element in Γ ∩N . By taking the shortest of these lengths we obtain a positive

value for δ.
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3.3.2 Outline of the method

The idea is to conjugate u ∈ N by a sequence elements of the form exp(Zµ), where

Zµ ∈ gµ, or by a commutator of two such elements (from two distinct root-spaces),

each step in the sequence removing a λ–entry of u.

For example, when dealing with unipotent upper triangular matrices in SLn(Z)

each entry in the triangle above the diagonal corresponds to a root. The simple

roots correspond to the super-diagonal entries, that is those which lie adjacent to the

diagonal. Take

u :=


1 x1 y1 z1

0 1 x2 y2

0 0 1 x3

0 0 0 1

 .

Here the xi entries are the simple entries of u, the yi terms correspond to roots of

height 2 and z1 to the unique root of height 3. Suppose all these entries are non-zero.

We will conjugate u by an elementary matrix to make the y1 term vanish:
1 α 0 0
0 1 0 0
0 0 1 0
0 0 0 1

u


1 −α 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


1 x1 y1 + αx2 z1 + αy2

0 1 x2 y2

0 0 1 x3

0 0 0 1

 .

So if we set α = − y1

x2
then the entry where y1 was has now been made to be zero.

Notice that all simple entries and the other entry of height 2 are unchanged by this

conjugation — the only collateral damage is to entries corresponding to roots of

strictly greater height that the entry we removed.

The idea is to repeat this process, next removing the other height 2 entry. This

will again cause collateral damage, but it will similarly only effect the height 3 entry.

This then is the last entry to be removed and is done so by one last conjugation, but

in this case there is no root of greater height than 3, so there will be no collateral

damage.

We have conjugated u to

u′ :=


1 x1 0 0
0 1 x2 0
0 0 1 x3

0 0 0 1


via upper triangular matrices with rational entries. We do the same for another upper

triangular matrix v, reducing to v′ in a similar manner. If u and v are conjugate in
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SLn(Z) then u′ and v′ must be conjugate in SLn(Q). In fact, when the simple entries

in u and v are positive we can find a diagonal matrix over R to do the job:
α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4

u′


α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 α4


−1

=


1 w1 0 0
0 1 w2 0
0 0 1 w3

0 0 0 1


where α4

1 =
w3

1w
2
2w3

x3
1x

2
2x3

, α4
2 =

x1w2
2w3

w1x3
2x3

, α4
3 =

x1x2
2w3

w1w2
2x3

, and α4 =
x1x2

2x
3
3

w1w2
2w

3
3
.

From our point of view, the crucial aspect of this process is that we can keep track

of the size of the conjugator in each step and also control the extent of the collateral

damage occurring to entries of greater height.

3.3.3 Relating the root system to conjugation

If N is a maximal unipotent subgroup with corresponding root system Λ then any

element in N can be written uniquely as

u = exp

(∑
λ∈Λ+

Yλ

)
(3.5)

where Yλ ∈ gλ. We begin by studying the behaviour of the λ–entries under the action

of conjugation by elements in N of the form exp(Zµ), where Zµ ∈ gµ, or a commutator

of two such elements.

Lemma 3.3.6. Let u ∈ N be as in (3.5) and let Zµ ∈ gµ for some µ ∈ Λ+. When

we conjugate u by exp(Zµ) all entries of u are unchanged except (possibly) for the

λ–entries where λ = rµ + λ′ for some r ∈ N (r 6= 0) and λ′ ∈ Λ+ such that Yλ′ 6= 0.

Furthermore, the λ–entry of exp(Zµ)u exp(−Zµ) is∑
rµ+λ′=λ

(adZµ)rYλ′

r!

where the sum takes values of r from N ∪ {0} and λ′ from Λ+.

Proof. Let Z = Zµ. We observe that:

exp(Z)u exp(−Z) = exp

(
ead(Z)

∑
λ′∈Λ+

Yλ′

)

= exp

(
∞∑
r=0

∑
λ′∈Λ+

(adZ)rYλ′

r!

)
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Recall that if rµ+λ′ is not a root then (adZ)rYλ′ = 0. Otherwise (adZ)rYλ′ ∈ grµ+λ′ .

It follows that if λ cannot be written as rµ + λ′ for any r 6= 0 or any λ′ then the

λ–entry of u in unchanged by this conjugation.

The preceding Proposition is important in recognising the link between conjuga-

tion of unipotent elements and the root system of G. In particular we can see that if

the λ–entry of u is affected by conjugating by exp(Zµ) then the height of λ, denoted

htλ, must be greater than htµ. Furthermore, the affected entries whose height is

precisely htµ+ 1 will be in the set {µ}+ Π, where Π is the set of simple roots in Λ+.

This is crucial for motivating Lemma 3.3.9.

To complete the picture which lies behind the scenes of Lemma 3.3.9 we must also

consider conjugating by a commutator of two elements. Building up to this, which is

Lemma 3.3.8, we give the following:

Lemma 3.3.7. Let u ∈ N be as in (3.5) and let Z1 ∈ gµ1, Z2 ∈ gµ2 for some

µ1, µ2 ∈ Λ+. When we conjugate u by exp(Z1) exp(Z2) all entries of u are unchanged

except (possibly) for the λ–entries where λ = rµ1 + tµ2 + λ′ for some λ′ ∈ Λ+ and

non-negative integers r, t where at least one of r, t is non-zero.

Proof. As in the proof of Lemma 3.3.6 we get:

exp(Z2) exp(Z1)u exp(−Z1) exp(−Z2) =
∞∑
t=0

∞∑
r=0

∑
λ′∈Λ+

(adZ2)t(adZ1)r

r!t!
Yλ′

Since (adZ2)t(adZ1)rYλ′ ∈ grµ1+tµ2+λ′ if rµ1 + tµ2 + λ′ is a root, or is zero otherwise,

it follows as in Lemma 3.3.6 that if λ cannot be expressed as rµ1 + tµ2 + λ′ for some

λ′ and non-negative integers r, t where one of r, t is non-zero, then the λ–entry of u

in not affected by this conjugation process.

Rather than conjugating by exp(Z1) exp(Z2) we will conjugate by their commu-

tator [exp(Z1) exp(Z2)]. The extra terms in the product act to clean up any effect

conjugating by exp(Z1) exp(Z2) had on the entries of height less than or equal to

htµ1 + htµ2. Observe that the λ–entry of the conjugate of u by exp(Z1) exp(Z2) is:∑
rµ1+tµ2+λ′=λ

(adZ2)t(adZ1)r

r!t!
Yλ′ .
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Suppose htλ ≤ htµ1 + htµ2. Then in each term in the sum either r = 0 or t = 0. We

can therefore rewrite it as:∑
rµ1+λ′=λ

(adZ1)r

r!
Yλ′ +

∑
tµ2+λ′=λ

(adZ2)t

t!
Yλ′ − Yλ.

The extra −Yλ term is needed because when r = t = 0 we count Yλ twice when it

should only be counted once. Next we conjugate by exp(−Z1) exp(−Z2) and we get

the following for the λ–entry:

∑
Rµ1+λ′=λ

(ad(−Z1))R

R!

( ∑
rµ1+λ′′=λ′

(adZ1)r

r!
Yλ′′ +

∑
tµ2+λ′′=λ′

(adZ2)t

t!
Yλ′′ − Yλ′

)

+
∑

Tµ2+λ′=λ

(ad(−Z2))T

T !

( ∑
rµ1+λ′′=λ′

(adZ1)r

r!
Yλ′′ +

∑
tµ2+λ′′=λ′

(adZ2)t

t!
Yλ′′ − Yλ′

)
− Yλ

Since htλ ≤ htµ1 + htµ2, we cannot write λ = Rµ1 + tµ2 + λ′ when both R, t are

non-zero (and similarly for r and T ). Hence this expression can be reduced to:

∑
Rµ1+λ′=λ

(ad(−Z1))R

R!

( ∑
rµ1+λ′′=λ′

(adZ1)r

r!
Yλ′′

)

+
∑

Tµ2+λ′=λ

(ad(−Z2))T

T !

( ∑
tµ2+λ′′=λ′

(adZ2)t

t!
Yλ′′

)
− Yλ

This can be rewritten as:

∑
Rµ1+λ′=λ

( ∑
rµ1+λ′′=λ′

(−1)R

R!r!
(adZ1)R+rYλ′′

)

+
∑

Tµ2+λ′=λ

( ∑
tµ2+λ′′=λ′

(−1)T

T !t!
(adZ2)T+tt!Yλ′′

)
− Yλ

Notice that whenever R+ r 6= 0 all the terms cancel, since if R+ r = k 6= 0 then the

coefficient of (adZ1)kYλ′′ is: ∑
R+r=k

(−1)R

R!r!
= 0.

A similar statement holds for T + t 6= 0. Hence, whenever htλ ≤ htµ1 + htµ2, the

λ–entry is Yλ. We use this in the following:

Lemma 3.3.8. Let u ∈ N be as in (3.5) and let Z1 ∈ gµ1, Z2 ∈ gµ2 for some

µ1, µ2 ∈ Λ+. When we conjugate u by [exp(Z1), exp(Z2)] all entries of u are unchanged
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except (possibly) for the λ–entries where λ = rµ1 + tµ2 + λ′ for some λ′ ∈ Λ+ and

non-negative integers r, t.

Furthermore, for such λ, the λ–entry of the conjugate is∑
(r+t)µ1+(s+u)µ2+λ′=λ

ad(−Z2)uad(−Z1)tad(Z2)sad(Z1)rY ′λ
r!s!t!u!

where the summation takes non-negative integers r, s, t, u and positive roots λ′.

Proof. By repeating Lemma 3.3.6 we get that the λ–entry of the conjugate of u by

[exp(Z1), exp(Z2)] is given by∑
(r+t)µ1+(s+u)µ2+λ′=λ

ad(−Z2)uad(−Z1)tad(Z2)sad(Z1)rY ′λ
r!s!t!u!

as required.

This, together with the argument preceding the statement of the Proposition,

gives the result.

The important difference between Lemma 3.3.8 and Lemma 3.3.7 is that when we

conjugate by the commutator all entries of height no more than htµ1 + htµ2 are left

unchanged. Furthermore the only (possibly) affected entries of height htµ1 + htµ2 + 1

are precisely those entries corresponding to roots in the set {µ1}+ {µ2}+ Π where Π

is the set of simple roots in Λ+.

3.3.4 An ordering on the root system

By “the simple case” we mean the case when u is given by

u = exp

(∑
λ∈Λ+

Yλ

)

and Yλ 6= 0 for each simple root λ. The aim is to find a sequence of elements like

those considered in Lemmas 3.3.6 and 3.3.8 which reduce u to a form where the only

non-zero λ–entries are those where λ is simple. The following Lemma is necessary to

ensure that such a sequence of elements can be found in the simple case.

Lemma 3.3.9. Let Λ+ be a set of positive roots and Π the corresponding simple roots

associated to a reduced root system Λ. We can assign to Λ+ an ordering, which we

will denote by <, such that for every λ ∈ Λ+ \ Π either:
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(a) there exists some root µ such the set {µ}+ Π contains λ and λ 6= λ′ ∈ {µ}+ Π

implies λ < λ′; or

(b) there exist roots µ1, µ2 ∈ Λ+ such that {µ1} + {µ2} + Π = {λ} and µ1 + µ2 is

not a root.

Remark: Case (a) corresponds to conjugation by something in exp(gµ), see Lemma

3.3.6. Case (b) corresponds to conjugating by a commutator as in Lemma 3.3.8. This

Lemma, combined with Lemmas 3.3.6 and 3.3.8, tells us that we can always conjugate

u ∈ N by an element of N in such a way that we can choose the smallest entry of u

which is affected by the conjugation.

Proof of Lemma 3.3.9. Before we proceed, note that if we find µ1, µ2 satisfying (b)

but µ1 + µ2 is a root, then case (a) also applies.

Suppose that Λ is the sum of irreducible root systems Λ1, . . . ,Λr and that Λ+ =

Λ+
1 ∪ . . . ∪ Λ+

r . Suppose also that on each Λ+
i we have an ordering <i which satisfies

the Lemma. Then we can define an ordering < on Λ+ given by λ < µ if and only if

1. λ ∈ Λ+
i and µ ∈ Λ+

j such that i < j; or

2. if λ, µ ∈ Λ+
i for some i then λ <i µ.

If λ and µ are in different irreducible root systems inside Λ, then λ + µ cannot be a

root. Hence it follows that if <i satisfies the Lemma for each i, then so does <. Thus

it suffices to check the conditions of the Lemma for each irreducible root system.

In the classical root systems An, Bn, Cn, Dn, we make the base assumption that

the simple roots are Π = {λ1, . . . , λn} and are ordered by λ1 > λ2 > . . . > λn. Note

that because we will assume that the Lie algebra is split we do not need to consider

BCn root systems.

Root systems of type An:

This is the root system associated to SLn(Z) so we expect this to be straightforward.

The non-simple positive roots will be sums of consecutive simple roots:

λi + λi+1 + . . .+ λj

for 1 ≤ i < j ≤ n. The ordering we assign is in two steps: primarily we order

by height, then within each height we order the elements lexicographically. So if
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λ = λi + . . .+ λj then we take µ = λi + . . .+ λj−1. It follows that:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λj−1} if i 6= 1
{λ} if i = 1

and hence our chosen ordering satisfies the requirements of the lemma.

Root systems of type Bn:

The non-simple positive roots are of the following forms:

λi + . . .+ λj for 1 ≤ i < j ≤ n
λi + . . .+ λj−1 + 2λj + . . .+ 2λn for 1 ≤ i < j ≤ n

We order the roots as we did for type An: first by height, then order the elements

of each height lexicographically. If we first take λ of the first form listed above, i.e.

λ = λi + . . .+ λj. Then we take µ = λi + . . .+ λj−1 and observe that:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λj−1} if i 6= 1
{λ} if i = 1

satisfies the required conditions. If on the other hand we consider

λ = λi + . . .+ λj−1 + 2λj + . . .+ 2λn

then we take

µ =

{
λi + . . .+ λj + 2λj+1 + . . .+ 2λn if j 6= n
λi + . . .+ λn if j = n

and observe that:

{µ}+ Π =


{λ, λi−1 + . . .+ λj + 2λj+1 + . . .+ 2λn} if i 6= 1, j 6= n
{λ, λi−1 + . . .+ λn} if i 6= 1, j = n
{λ} if i = 1

satisfies the requirements for every choice of i, j.

Root systems of type Cn:

The positive non-simple roots have one of the following forms:

λi + . . .+ λj for 1 ≤ i < j ≤ n
2λi + . . .+ 2λn−1 + λn for 1 ≤ i ≤ n− 1
λi + . . .+ λj−1 + 2λj + . . .+ 2λn−1 + λn for 1 ≤ i < j ≤ n− 1

We order these first by height, then order the elements of the same height by lexico-

graphic ordering. We now give the choice for µ in each case.
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First, for 1 ≤ i < j ≤ n, let λ = λi + . . . + λj. Then we take µ = λi + . . . + λj−1

and we have:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λj−1} if i 6= 1
{λ} if i = 1

Under our chosen ordering these satisfy the requirements of the Lemma.

Second, for 1 ≤ i ≤ n − 1, let λ = 2λi + . . . + 2λn−1 + λn. Then we take

µ = λi + 2λi+1 + . . . + 2λn−1 + λn if i 6= n− 1 or µ = λn−1 + λn if i = n− 1 and we

have:

{µ}+ Π =


{λ, λi−1 + λi + 2λi+1 . . .+ 2λn−1 + λn} if i 6= n− 1 and i 6= 1
{λ, λn−2 + λn−1 + λn} if i = n− 1
{λ} if i = 1

In each case the elements of {µ}+ Π are at least as big as λ in our chosen ordering,

so the Lemma is satisfied in this case.

Finally, for 1 ≤ i < j ≤ n − 1, let λ = λi + . . . + λj−1 + 2λj + . . . + 2λn−1 + λn.

We take µ = λi + . . .+ λj + 2λj+1 + . . .+ 2λn−1 + λn if j 6= n− 1 or µ = λi + . . .+ λn

when j = n− 1. Then:

{µ}+ Π =


{λ, λi−1 + . . .+ λj + 2λj+1 . . .+ 2λn−1 + λn} if j 6= n− 1 and i 6= 1
{λ, λi−1 + . . .+ λn} if j = n− 1 and i 6= 1
{λ} if i = 1

The requirements of the Lemma are satisfied in each case, and hence it follows that

the Lemma holds for root systems of type Cn.

Root systems of type Dn:

The non-simple positive roots in the root system Dn are of one of the following two

types:
λi + . . .+ λj−1 if 1 ≤ i < j ≤ n
λi + . . .+ λn−2 + λj + . . .+ λn if 1 ≤ i < j ≤ n

Apply the same ordering to Dn as we applied to each of the preceding root systems:

first order by height, then order the elements of the same height lexicographically.

In most instances we are able to satisfy the conditions of the Lemma by choosing a

single µ ∈ Λ+. However there are some for which we must use the second allowable

case, namely find two positive roots µ1, µ2 to satisfy the Lemma.

We first suppose λ = λi + . . . + λj−1 where 1 ≤ i < j < n. Then we take

µ = λi + . . . λj−2 and observe:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λj−2} if i 6= 1
{λ} if i = 1
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Hence the conditions of the Lemma are satisfied in each case.

For 1 ≤ i < j ≤ n let λ = λi + . . .+ λn−2 + λj + . . .+ λn. First assume i 6= n− 2

and j 6= n− 1, n. If we take µ = λi + . . .+ λn−2 + λj+1 + . . .+ λn then:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λn−2 + λj+1 + . . .+ λn if i 6= 1
{λ} if i = 1

and the Lemma is satisfied.

Now suppose j = n, then λ = λi + . . .+λn−2 +λn. Take µ = λi + . . .+λn−2 then:

{µ}+ Π =

{
{λ, λi−1 + . . .+ λn−2, λi + . . .+ λn−1} if i 6= 1
{λ, λ1 + . . .+ λn−1} if i = 1

and our choice of µ here satisfies the requirements of the Lemma.

We are left with the cases when λ = λi+. . .+λn−1 and when λ = λn−2 +λn−1 +λn.

In the former case we take µ1 = λi + . . .+ λn−3 and µ2 = λn−1 and observe the only

way to make a root by adding µ1, µ2 and a simple root together is if the simple root

is λn−2, thus giving λ. Hence {µ1} + {µ2} + Π = {λ}. In the latter case we take

µ1 = λn−1 and µ2 = λn. Similarly, since the only simple root which we can add to

µ1 + µ2 and still have a root is λn−2, we have {µ1}+ {µ2}+ Π = {λ}.
This completes the verification of the Lemma in the case when the root system is

of type Dn.

Root systems of type E6, E7, E8, F4, G2:

These are dealt with in the appendix. For root systems E8 and F4 a table is produced

with an example of an ordering satisfying the Lemma. They also give suitable choices

of µ or of µ1 and µ2 for each non-simple positive root. Table A.1 gives the ordering

for E8, and hence for E7 and E6 by using the induced ordering. Table A.2 gives the

ordering for F4. Figures A.1, A.2 and A.3 provide a visual method of checking in each

case that the given root µ satisfies the requirements: given µ ∈ Λ+ one can quickly

see what {µ}+ Π will be by following all edges heading down the page from µ to the

row below.

When dealing with G2, there is only one root of each height strictly greater than

1, hence we can order the roots by height alone.

3.3.5 Reduction of the simple case

From here on in we will assume that g is a split real Lie algebra, meaning that the

root spaces gλ are 1–dimensional. We first give an algorithm to reduce u ∈ N , all of
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whose simple entries are non-zero, to u′ ∈ N , all of whose non-simple entries are zero

and the simple entries of u′ are equal to those of u. Write u in terms of the elements

from the root-spaces of g:

u = exp

(∑
λ∈Λ+

Yλ

)
where Yλ ∈ gλ for each λ ∈ Λ+. Assign to Λ+ the ordering from Lemma 3.3.9. The

algorithm is based on an iteration of the following result:

Lemma 3.3.10. Let λ0 be the smallest non-simple root such that Yλ0 is non-zero.

Then there exists g ∈ N and a positive constant c0 > 0 such that:

(i) the λ0–entry of gug−1 is zero and all entries corresponding to smaller roots are

unchanged; and

(ii) dG(1, g) ≤ ‖Yλ0
‖

c0δ
, where δ = min{‖Yλi‖ | λi ∈ Π}.

Proof. We begin by applying Lemma 3.3.9 to λ0. This gives us either:

(a) µ ∈ Λ+ such that λ0 is minimal in {µ}+ Π; or

(b) µ1, µ2 ∈ Λ+ such that {µ1}+ {µ2}+ Π = {λ0} and µ1 + µ2 is not a root.

First suppose (a) holds. Take g = exp (Zµ) where Zµ ∈ gµ is chosen so that

[Zµ, Yλi ] = −Yλ0

where λi is the simple root such that µ + λi = λ0. By Lemma 3.3.6, the λ0–entry of

gug−1 is, by construction,

Yλ0 + ad(Zµ)Yλi = 0

and the other affected entries are of the form rµ+λ for some λ ∈ Λ+. All of these are

larger than λ0 in the ordering from Lemma 3.3.9, hence the first part of the lemma

is proved when case (a) holds.

Now suppose that instead case (b) holds. Then we take g = [exp(Z1), exp(Z2)]

where Zi ∈ gµi for i = 1, 2. By Lemma 3.3.8, the λ0–entry of gug−1 is∑
(r+t)µ1+(s+u)µ2+λ′=λ0

ad(−Z2)uad(−Z1)tad(Z2)sad(Z1)rY ′λ
r!s!t!u!

where the summation takes non-negative integers r, s, t, u and positive roots λ′. Since

Yλ = 0 for non-simple roots λ < λ0, there is no other way to obtain a non-zero term
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in the sum except by either taking r = s = t = u = 0 and λ′ = λ0 or with λ′ = λi ∈ Π

such that µ1 + µ2 + λi = λ0. In the latter case we know r + t = 1 = s + u. Hence

there are only finitely many combinations to consider and the λ0 entry becomes:

ad(Z2)ad(Z1)Yλi + ad(−Z2)ad(Z1)Yλi +

ad(−Z1)ad(Z2)Yλi + ad(−Z2)ad(−Z1)Yλi + Yλ0

which simplifies to

ad(Z2)ad(Z1)Yλi − ad(Z1)ad(Z2)Yλi + Yλ0 .

Finally, by application of the Jacobi identity, we see this is equal to

[[Z2, Z1], Yλi ] + Yλ0 .

Hence, by choosing Z1 and Z2 so that [[Z2, Z1], Yλi ] = −Yλ0 , the λ0–entry of gug−1 is

zero.

Finally, Lemma 3.3.8 tells us that entries corresponding to roots of height less

than or equal to htµ1 + htµ2 are unchanged. Since also {µ1}+ {µ2}+ Π = {λ0}, all

entries corresponding to roots smaller than λ0 are unaffected. Thus we have proved

(i).

Note that we have the flexibility to choose Zµ, Z1 and Z2 as above because each

root-space has dimension one so we only need to choose the appropriate scalar multiple

of a basis element to get what we want.

Now we look at the size of g. If g = exp(Zµ) arises from a situation like (a) then,

since we chose Zµ to satisfy [Zµ, Yλi ] = −Yλ0 , we can use Proposition 3.3.3 to show:

dG(1, g) = ‖Zµ‖

≤ ‖Yλ0‖
c0‖Yλi‖

≤ ‖Yλ0‖
c0δ

Suppose instead that g = [exp(Z1), exp(Z2)], as is necessary for case (b). Using the

Baker–Campbell–Hausdorff formula (Lemma 3.3.1), g = exp([Z1, Z2]) since µ1 +µ2 is

a not a root. Then, again using Proposition 3.3.3 and our choice of Z1, Z2 such that
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[[Z2, Z1], Yλi ] = −Yλ0 , we see that:

dG(1, g) = dG(1, exp[Z1, Z2])

= ‖[Z1, Z2]‖

≤ ‖Yλ0‖
c0‖Yλi‖

≤ ‖Yλ0‖
c0δ

This completes (ii).

The following algorithm describes how, in the simple case, we can reduce u ∈ N
to u′ ∈ N , where u′ has no non-simple entries.

Algorithm A. Let u ∈ N be given by

u = exp

(∑
λ∈Λ+

Yλ

)
.

We define a sequence of elements u(i) ∈ N where u(0) = u and u(i+ 1) has one fewer

non-zero non-simple entry than u(i) and is obtained by

u(i) := g(i)u(i− 1)g(i)−1, for i ≥ 1

where g(i) is determined by Lemma 3.3.10. This process clearly terminates as Λ+ is

a finite set. Let g(1), . . . , g(r) be the complete set of conjugators obtained. Define

g := g(r) . . . g(1). Then u′ := u(r) = gug−1, which has no non-zero non-simple

entries.

3.3.6 The collateral damage of Algorithm A

Suppose now that u ∈ N ∩ Γ. Before determining the size of a short conjugator in G

we need to determine the effect each step of Algorithm A has on the entries of u. This

is a notion we described in Section 3.3.2 as collateral damage. We showed in Lemmas

3.3.6 and 3.3.8 that while removing the λ0 entry of u it was possible that some of the

entries of greater height could be altered in the process. We will call those entries

affected by one of the steps of Algorithm A, other than the intended target entry, the

collateral damage of this step.
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In general we expect collateral damage. We can, nonetheless, use an iterative

method, bounding the size of each u(i) in the sequence. By applying Lemmas 3.3.10

and 3.3.4 we see that the first conjugator g(1) will satisfy

dG(1, g(1)) ≤ 1

c0δ
dG(1, u) (3.6)

where δ is the constant from Lemma 3.3.5. The collateral damage of conjugating

u by g(1) includes elements of height greater than that of the smallest non-simple

non-zero entry of u. Suppose g(1), . . . , g(t1) correspond to the steps to remove all

entries of height 2. Since conjugating by any of these will not effect any height 2

entry of u, each g(i), for 1 ≤ i ≤ t1, will satisfy inequality (3.6) in place of g(1). Let

ght(2) = g(t1) . . . g(1). Then

dG(1, ght(2)) ≤ R2

c0δ
dG(1, u)

where R2 is equal to the number of roots of height 2. After the first t1 steps of

Algorithm A we obtain an element uht(2) = ght(2)ught(2)−1 whose entries of height 2

are all zero. Furthermore, by the triangle inequality

dG(1, uht(2)) ≤
(

2R2

c0δ
+ 1

)
dG(1, u).

Suppose the λ–entry of uht(2) is Y
(2)
λ . Then by Lemma 3.3.4

‖Y (2)
λ ‖ ≤

(
2R2

c0δ
+ 1

)
dG(1, u).

By Lemma 3.3.10, the size of the next conjugator will be bounded above:

dG(1, g(t1 + 1)) ≤ 1

c0δ

(
2R2

c0δ
+ 1

)
dG(1, u)

noting that we can still use δ as in Lemma 3.3.5 since the simple entries of uht(2) are

exactly those of u. Let ght(3) = g(t2) . . . g(t1 + 1), where g(t1 + 1), . . . , g(t2) are those

conjugators from Algorithm A corresponding to the removal of height 3 entries of u.

Then, as in the height 2 case, we get

dG(1, ght(3)) ≤ R3

c0δ

(
2R2

c0δ
+ 1

)
dG(1, u)

where R3 is the number of roots of height 2. Then uht(3) = ght(3)uht(2)ght(3)−1 has

no entries of height 2 or 3, and it satisfies

dG(1, uht(3)) ≤
(

2R3

c0δ
+ 1

)(
2R2

c0δ
+ 1

)
dG(1, u).
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Continuing in this way, if r is the greatest height of a root in Λ+, then for each

2 ≤ i ≤ r we have

dG(1, ght(i)) ≤
Ri

c0δ

i−1∏
j=2

(
2Rj

c0δ
+ 1

)
dG(1, u).

Let g = ght(r) . . . ght(2). Then g is the element obtained from Algorithm A and

conjugates u to an element u′ whose non-simple entries are all zero, while its simple

entries are the same as for u. Finally, we see that the size of g is bounded linearly by

the size of u:

Proposition 3.3.11. Let g be the conjugator obtained by Algorithm A such that the

non-simple entries of gug−1 are all zero. Then

dG(1, g) ≤ KdG(1, u)

where

K =
r∑
i=2

Ri

c0δ

i−1∏
j=2

(
2Rj

c0δ
+ 1

)
.

3.3.7 The last step towards finding a short conjugator

Let v = exp
(∑

λ∈Λ+ Wλ

)
be an element in N conjugate to u. By applying Algorithm

A we may assume that Yλ = 0 = Wλ for all non-simple roots λ ∈ Λ+. Then, by

choosing H ∈ a appropriately, we can conjugate u to v using exp(H). To be precise:

gug−1 = exp(H) exp

(∑
λ∈Π

Yλ

)
exp(−H)

= exp

(∑
λ∈Π

eλ(H)Yλ

)
.

Hence our choice of H needs to be such that eλ(H)Yλ = Wλ. We might ask, what if

we need negative scalars? The following Proposition answers this question:

Proposition 3.3.12. Let u and v be unipotent elements contained in the same maxi-

mal unipotent subgroup N of G. Suppose that u is conjugate to v in G and furthermore

suppose that the non-simple entries of u and v are all trivial while the simple entries

are all non-zero. Then there exists H0 ∈ a such that

exp(H0)u exp(−H0) = v.
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Proof. Let g ∈ G be such that gug−1 = v. First observe that, since we are dealing with

the simple case, both u and v fix the same unique chamber ∂∞C in the boundary of X

and belong to the same minimal parabolic subgroup Gξ = ZξNξ, where Zξ = ZG(A),

A = exp(a) and Nξ = N . Any conjugator from u to v must map ∂∞C to itself, hence

g ∈ Gξ as well. We may therefore write g as g = a′n where a′ ∈ ZG(A) and n ∈ N .

Since n ∈ N it follows that we may write n as

n = exp

(∑
λ∈Λ+

Zλ

)

where Zλ ∈ gλ. When we conjugate u by n we get the following:

nun−1 = exp

(∑
λ∈Λ+

Zλ

)
exp

(∑
λ∈Π

Yλ

)
exp

(
−
∑
λ∈Λ+

Zλ

)

= exp

(∑
λ∈Π

Yλ + Ỹ

)

where Ỹ is the sum of elements Ỹλ from the non-simple positive root-spaces. Let

a be the maximal abelian subspace of p such that A = exp(a). The exponential

map, when restricted to Zg(a), is surjective onto ZG(A). So there exists H ′ ∈ Zg(a)

such that a′ = exp(H ′). We can decompose Zg(a) into the direct sum (see, for

example, [Ebe96, 2.17.10])

Zg(a) = k ∩ Zg(a)⊕ a.

Hence there exists unique U ∈ k ∩ Zg(a) and H ∈ a such that H ′ = U + H. Since

U and H commute, a′ = exp(U) exp(H) = exp(H) exp(U). Conjugating nun−1 by

exp(H) gives us

exp(H)nun−1 exp(−H) = exp(H) exp

∑
λ∈Π

Yλ +
∑

λ∈Λ+\Π

Ỹλ

 exp(−H)

= exp

∑
λ∈Π

eλ(H)Yλ +
∑

λ∈Λ+\Π

eλ(H)Ỹλ

 .

Conjugating this by exp(U) gives us v as

v = exp

∑
λ∈Π

ead(U)eλ(H)Yλ +
∑

λ∈Λ+\Π

ead(U)eλ(H)Ỹλ

 .
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Notice that, since U ∈ Zg(a), for each λ ∈ Λ+ \ Π the term ead(U)eλ(H)Ỹλ is in the

root-space gλ. But the exponentional map gives a bijection between n and N . Hence∑
λ∈Π

Wλ =
∑
λ∈Π

ead(U)eλ(H)Yλ +
∑

λ∈Λ+\Π

ead(U)eλ(H)Ỹλ.

It follows that Wλ = ead(U)eλ(H)Yλ for each simple root λ and 0 = ead(U)eλ(H)Ỹλ when

λ is non-simple. Thus Ỹ = 0 and in particular

nun−1 = u.

It follows that

v = gug−1 = a′nun−1a′−1 = a′ua′−1.

In order to finish the proof we find an element H0 ∈ a to do the required job.

Let Cλ(U) ∈ R be such that [U, Yλ] = Cλ(U)Yλ. Then ead(U)Yλ = eCλ(U)Yλ and in

particular we see that there exists a positive constant Cλ = eCλ(U)+λ(H) for each simple

root λ such that

Wλ = CλYλ.

Now we notice that in a we have sufficient degrees of freedom to choose H0 ∈ a such

that λ(H0) = Cλ for each λ ∈ Π. Then H0 is the required element to complete the

proof.

Remark: Note that to the existence of the constants Cλ(U) required the dimension

of each simple root-space in g to be equal to 1. So Proposition 3.3.12 requires g to

be split.

Let u, v be unipotent elements contained in the same maximal unipotent subgroup

N of G, both of which have all simple entries non-zero. By Algorithm A we can

construct g1 and g2 in N such that all non-simple entries in u′ = g1ug
−1
1 and v′ =

g2vg
−1
2 are zero. By Proposition 3.3.12 there exists g3 ∈ A such that g3u

′g−1
3 = v′.

Put g = g−1
2 g3g1. Then

gug−1 = v.

With this process we can find a short conjugator for u and v.
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Theorem 3.3.13. Let u, v be conjugate unipotent elements in N ∩ Γ whose simple

entries are all non-zero. There there exists g ∈ G such that gug−1 = v and which

satisfies:

dG(1, g) ≤ L(dG(1, u) + dG(1, v))

where L depends on the root-system Λ associated to G and N ∩ Γ.

Proof. Recall that g = g−1
2 g3g1 with g2 and g1 as in Algorithm A. By Proposition

3.3.11

dG(1, g1) + dG(1, g2) ≤ K(dG(1, u) + dG(1, v))

where K depends on Λ, c0 and δ. All we need to do now is obtain a linear upper

bound for the size of g3. By Proposition 3.3.12 this is member of A, equal to exp(H)

for some H ∈ a, which satisfies the following for each simple root λ:

eλ(H) =
‖Wλ‖
‖Yλ‖

(3.7)

where Yλ is the λ–entry of u and Wλ is the λ–entry of v. The size dG(1, g3) is given

by the norm of H, which is equal to the Killing form

B(H,H) = Trace(ad(H)2) =
∑
λ∈Λ

λ(H)2.

Since every root in Λ can be expressed as an integer linear combination of simple

roots, it follows that there exists a constant SΛ such that when we take the sum over

only the simple roots, rather than all positive roots, we get:∑
λ∈Π

λ(H)2 ≤ ‖H‖ = B(H,H) ≤ SΛ

∑
λ∈Π

λ(H)2. (3.8)

By combining (3.7) and (3.8) we get

dG(1, g3) = ‖H‖

≤ SΛ

∑
λ∈Π

λ(H)2

= SΛ

∑
λ∈Π

(ln‖Wλ‖ − ln‖Yλ‖)2

= SΛ

∑
λ∈Π

(ln‖Wλ‖)2 + (ln‖Yλ‖)2 − ln‖Wλ‖ ln‖Yλ‖

≤ SΛ

∑
λ∈Π

(ln dG(1, v))2 + (ln dG(1, u))2 − 2 ln(δ)2
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This is therefore sufficient to conclude that the size of g, for sufficiently large u, v, is

bounded above by a linear function of dG(1, u) +dG(1, v), the coefficient of which will

depend on K,δ and SΛ. This completes the proof.



Appendix A

Tables and Figures for Lemma
3.3.9

Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

2 1 λ1 + λ2 λ2

2 λ2 + λ4 λ4

3 λ3 + λ4 λ3

4 λ4 + λ5 λ5

5 λ5 + λ6 λ6

6 λ6 + λ7 λ7

7 λ7 + λ8 λ8

3 4 λ1 + λ2 + λ4 λ1 + λ2

1 λ2 + λ3 + λ4 λ3 + λ4

3 λ2 + λ4 + λ5 λ2 λ5

2 λ3 + λ4 + λ5 λ1 + λ2

5 λ4 + λ5 + λ6 λ5 + λ6

6 λ5 + λ6 + λ7 λ6 + λ7

7 λ6 + λ7 + λ8 λ7 + λ8

4 1 λ1 + λ2 + λ3 + λ4 λ1 + λ2 + λ4

3 λ1 + λ2 + λ4 + λ5 λ1 + λ2 λ4

2 λ2 + λ3 + λ4 + λ5 λ2 + λ4 + λ5

5 λ2 + λ4 + λ5 + λ6 λ2 + λ4 λ6

4 λ3 + λ4 + λ5 + λ6 λ4 + λ5 + λ6

6 λ4 + λ5 + λ6 + λ7 λ5 + λ6 + λ7

7 λ5 + λ6 + λ7 + λ8 λ6 + λ7 + λ8

5 3 λ1 + λ2 + λ3 λ1 + λ2 + λ3 + λ4

+λ4 + λ5

1 λ2 + λ3 + 2λ4 λ2 + λ3 + λ4 + λ5

+λ5

149
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Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

4 λ1 + λ2 + λ4 λ1 + λ2 λ5 + λ6

+λ5 + λ6

2 λ2 + λ3 + λ4 λ2 + λ4 + λ5 + λ6

+λ5 + λ6

6 λ2 + λ4 + λ5 λ2 + λ4 λ6 + λ7

+λ6 + λ7

5 λ3 + λ4 + λ5 λ4 + λ5 + λ6 + λ7

+λ6 + λ7

7 λ4 + λ5 + λ6 λ5 + λ6 + λ7 + λ8

+λ7 + λ8

6 3 λ1 + λ2 + λ3 λ1 + λ2 + λ3

+2λ4 + λ5 +λ4 + λ5

5 λ1 + λ2 + λ3 λ1 + λ2 + λ3 λ5 + λ6

+λ4 + λ5 + λ6

2 λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4 + λ5

+λ5 + λ6

4 λ1 + λ2 + λ4 λ1 + λ2 + λ4

+λ5 + λ6 + λ7 +λ5 + λ6

1 λ2 + λ3 + λ4 λ2 + λ4 + λ5

+λ5 + λ6 + λ7 +λ6 + λ7

7 λ2 + λ4 + λ5 λ2 + λ4 + λ5 λ7 + λ8

+λ6 + λ7 + λ8

6 λ3 + λ4 + λ5 λ4 + λ5 + λ6

+λ6 + λ7 + λ8 +λ7 + λ8

7 1 λ1 + 2λ2 + λ3 λ1 + λ2 + λ3

+2λ4 + λ5 +2λ4 + λ5

3 λ1 + λ2 + λ3 λ1 + λ2 + λ3

+2λ4 + λ5 + λ6 +λ4 + λ5 + λ6

2 λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4

+2λ5 + λ6 +λ5 + λ6

4 λ1 + λ2 + λ3 + λ4 λ2 + λ3 + λ4

+λ5 + λ6 + λ7 +λ5 + λ6 + λ7

6 λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4 + λ5 λ7

+λ5 + λ6 + λ7

5 λ1 + λ2 + λ4 + λ5 λ2 + λ4 + λ5

+λ6 + λ7 + λ8 +λ6 + λ7 + λ8

7 λ2 + λ3 + λ4 + λ5 λ3 + λ4 + λ5

+λ6 + λ7 + λ8 +λ6 + λ7 + λ8

8 5 λ1 + 2λ2 + λ3 λ1 + 2λ2 + λ3

+2λ4 + λ5 + λ6 +2λ4 + λ5
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Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

1 λ1 + λ2 + λ3 λ2 + λ3 + 2λ4

+2λ4 + 2λ5 + λ6 +2λ5 + λ6

3 λ1 + λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + λ4

+λ5 + λ6 + λ7 +λ5 + λ6 + λ7

2 λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 +λ5 + λ6 + λ7

6 λ1 + λ2 + λ3 + λ4 λ1 + λ2 + λ4 + λ5

+λ5 + λ6 + λ7 + λ8 +λ6 + λ7 + λ8

4 λ2 + λ3 + 2λ4 + λ5 λ2 + λ3 + λ4 + λ5

+λ6 + λ7 + λ8 +λ6 + λ7 + λ8

9 4 λ1 + 2λ2 + λ3 λ1 + 2λ2 + λ3

+2λ4 + 2λ5 + λ6 +2λ4 + λ5 + λ6

5 λ1 + 2λ2 + λ3 + 2λ4 λ1 + 2λ2 + λ3 λ7

+λ5 + λ6 + λ7 +2λ4 + λ5

3 λ1 + λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 +λ5 + λ6 + λ7

6 λ1 + λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + λ4

+λ5 + λ6 + λ7 + λ8 +λ5 + λ6 + λ7 + λ8

1 λ2 + λ3 + 2λ4 + 2λ5 λ2 + λ3 + 2λ4

+2λ6 + λ7 +2λ5 + λ6 + λ7

2 λ2 + λ3 + 2λ4 + 2λ5 λ2 + λ3 + 2λ4 + λ5

+λ6 + λ7 + λ8 +λ6 + λ7 + λ8

10 1 λ1 + 2λ2 + λ3 λ1 + 2λ2 + λ3

+3λ4 + 2λ5 + λ6 +2λ4 + 2λ5 + λ6

2 λ1 + 2λ2 + λ3 + 2λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 +λ5 + λ6 + λ7

3 λ1 + 2λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+λ5 + λ6 + λ7 + λ8 +λ5 + λ6 + λ7 + λ8

6 λ1 + λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4 λ6

+2λ5 + 2λ6 + λ7 +λ5 + λ6 + λ7

4 λ1 + λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4 + 2λ5

+2λ5 + λ6 + λ7 + λ8 +λ6 + λ7 + λ8

5 λ2 + λ3 + 2λ4 + 2λ5 λ2 + λ3 + 2λ4 + 2λ5

+2λ6 + λ7 + λ8 +2λ6 + λ7

11 1 λ1 + 2λ2 + 2λ3 λ1 + 2λ2 + λ3

+3λ4 + 2λ5 + λ6 +3λ4 + 2λ5 + λ6

2 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 +2λ5 + λ6 + λ7

3 λ1 + 2λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + λ7 +2λ5 + 2λ6 + λ7
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Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

6 λ1 + 2λ2 + λ3 + 2λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 + λ8 +λ5 + λ6 + λ7 + λ8

5 λ1 + λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + λ7 + λ8 +2λ5 + λ6 + λ7 + λ8

4 λ2 + λ3 + 2λ4 + 2λ5 λ2 + λ3 + 2λ4 + 2λ5

+2λ6 + 2λ7 + λ8 +2λ6 + λ7 + λ8

12 1 λ1 + 2λ2 + 2λ3 λ1 + 2λ2 + 2λ3

+3λ4 + 2λ5 + λ6 + λ7 +3λ4 + 2λ5 + λ6

2 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + λ7 +2λ5 + 2λ6 + λ7

3 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + λ6 + λ7 + λ8 +2λ5 + λ6 + λ7 + λ8

4 λ1 + 2λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + λ7 + λ8 +2λ5 + 2λ6 + λ7 + λ8

5 λ1 + λ2 + λ3 + 2λ4 λ2 + λ3 + 2λ4 + 2λ5

+2λ5 + 2λ6 + 2λ7 + λ8 +2λ6 + 2λ7 + λ8

13 2 λ1 + 2λ2 + 2λ3 λ1 + 2λ2 + 2λ3

+3λ4 + 2λ5 + 2λ6 + λ7 +3λ4 + 2λ5 + λ6 + λ7

3 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+2λ5 + λ6 + λ7 + λ8 +2λ5 + λ6 + λ7 + λ8

1 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+3λ5 + 2λ6 + λ7 +2λ5 + 2λ6 + λ7

4 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + λ7 + λ8 +2λ5 + 2λ6 + λ7 + λ8

5 λ1 + 2λ2 + λ3 + 2λ4 λ1 + λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + 2λ7 + λ8 +2λ5 + 2λ6 + 2λ7 + λ8

14 1 λ1 + 2λ2 + 2λ3 λ1 + 2λ2 + 2λ3

+3λ4 + 3λ5 + 2λ6 + λ7 +3λ4 + 2λ5 + 2λ6 + λ7

2 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+2λ5 + 2λ6 + λ7 + λ8 +2λ5 + λ6 + λ7 + λ8

3 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+3λ5 + 2λ6 + λ7 + λ8 +2λ5 + 2λ6 + λ7 + λ8

4 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 2λ4

+2λ5 + 2λ6 + 2λ7 + λ8 +2λ5 + 2λ6 + 2λ7 + λ8

15 1 λ1 + 2λ2 + 2λ3 λ1 + 2λ2 + 2λ3

+4λ4 + 3λ5 + 2λ6 + λ7 +3λ4 + 3λ5 + 2λ6 + λ7

2 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+3λ5 + 2λ6 + λ7 + λ8 +2λ5 + 2λ6 + λ7 + λ8

4 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + 2λ3 + 3λ4 λ7

+2λ5 + 2λ6 + 2λ7 + λ8 +2λ5 + λ6 + λ7 + λ8
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Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

3 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+3λ5 + 2λ6 + 2λ7 + λ8 +2λ5 + 2λ6 + 2λ7 + λ8

16 1 λ1 + 3λ2 + 2λ3 λ1 + 2λ2 + 2λ3

+4λ4 + 3λ5 + 2λ6 + λ7 +4λ4 + 3λ5 + 2λ6 + λ7

2 λ1 + 2λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+3λ5 + 2λ6 + λ7 + λ8 +3λ5 + 2λ6 + λ7 + λ8

4 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+3λ5 + 2λ6 + 2λ7 + λ8 +2λ5 + 2λ6 + 2λ7 + λ8

3 λ1 + 2λ2 + λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+3λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 2λ6 + 2λ7 + λ8

17 1 2λ1 + 3λ2 + 2λ3 λ1 + 3λ2 + 2λ3

+4λ4 + 3λ5 + 2λ6 + λ7 +4λ4 + 3λ5 + 2λ6 + λ7

2 λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 4λ4

+3λ5 + 2λ6 + λ7 + λ8 +3λ5 + 2λ6 + λ7 + λ8

3 λ1 + 2λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+3λ5 + 2λ6 + 2λ7 + λ8 +3λ5 + 2λ6 + 2λ7 + λ8

4 λ1 + 2λ2 + 2λ3 + 3λ4 λ1 + 2λ2 + λ3 + 3λ4

+3λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 3λ6 + 2λ7 + λ8

18 1 2λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 3λ2 + 2λ3 + 4λ4

+3λ5 + 2λ6 + λ7 + λ8 +3λ5 + 2λ6 + λ7 + λ8

2 λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 4λ4

+3λ5 + 2λ6 + 2λ7 + λ8 +3λ5 + 2λ6 + 2λ7 + λ8

3 λ1 + 2λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 3λ4

+3λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 3λ6 + 2λ7 + λ8

19 3 2λ1 + 3λ2 + 2λ3 + 4λ4 2λ1 + 3λ2 + 2λ3 + 4λ4

+3λ5 + 2λ6 + 2λ7 + λ8 +3λ5 + 2λ6 + λ7 + λ8

2 λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 3λ2 + 2λ3 + 4λ4

+3λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 2λ6 + 2λ7 + λ8

1 λ1 + 2λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 4λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 3λ6 + 2λ7 + λ8

20 1 2λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 3λ2 + 2λ3 + 4λ4

+3λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 3λ6 + 2λ7 + λ8

2 λ1 + 3λ2 + 2λ3 + 4λ4 λ1 + 2λ2 + 2λ3 + 4λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

21 2 2λ1 + 3λ2 + 2λ3 + 4λ4 2λ1 + 3λ2 + 2λ3 + 4λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +3λ5 + 3λ6 + 2λ7 + λ8

1 λ1 + 3λ2 + 2λ3 + 5λ4 λ1 + 3λ2 + 2λ3 + 4λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

22 2 2λ1 + 3λ2 + 2λ3 + 5λ4 2λ1 + 3λ2 + 2λ3 + 4λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8
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Table A.1: The simple case for root systems of type E8

Height Order λ µ or µ1 µ2 (if needed)

1 λ1 + 3λ2 + 3λ3 + 5λ4 λ1 + 3λ2 + 2λ3 + 5λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

23 1 2λ1 + 4λ2 + 2λ3 + 5λ4 2λ1 + 3λ2 + 2λ3 + 5λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

2 2λ1 + 3λ2 + 3λ3 + 5λ4 λ1 + 3λ2 + 3λ3 + 5λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

24 1 2λ1 + 4λ2 + 3λ3 + 5λ4 2λ1 + 4λ2 + 2λ3 + 5λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

25 1 2λ1 + 4λ2 + 3λ3 + 6λ4 2λ1 + 4λ2 + 3λ3 + 5λ4

+4λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

26 1 2λ1 + 4λ2 + 3λ3 + 6λ4 2λ1 + 4λ2 + 3λ3 + 6λ4

+5λ5 + 3λ6 + 2λ7 + λ8 +4λ5 + 3λ6 + 2λ7 + λ8

27 1 2λ1 + 4λ2 + 3λ3 + 6λ4 2λ1 + 4λ2 + 3λ3 + 6λ4

+5λ5 + 4λ6 + 2λ7 + λ8 +5λ5 + 3λ6 + 2λ7 + λ8

28 1 2λ1 + 4λ2 + 3λ3 + 6λ4 2λ1 + 4λ2 + 3λ3 + 6λ4

+5λ5 + 4λ6 + 3λ7 + λ8 +5λ5 + 4λ6 + 2λ7 + λ8

29 1 2λ1 + 4λ2 + 3λ3 + 6λ4 2λ1 + 4λ2 + 3λ3 + 6λ4

+5λ5 + 4λ6 + 3λ7 + 2λ8 +5λ5 + 4λ6 + 3λ7 + λ8
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Figure A.1: A graphical depiction of the positive roots in E8. The vertices correspond
to positive roots (the top vertex is 0), while the edges correspond to addition of a
simple root, when reading downwards. Each root has its own colour.
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Table A.2: The simple case for root systems of type F4

Height Order λ µ or µ1 µ2 (if needed)

2 1 λ1 + λ2 λ2

2 λ2 + λ3 λ3

3 λ3 + λ4 λ4

3 2 λ1 + λ2 + λ3 λ1 + λ2

1 λ2 + 2λ3 λ2 + λ3

3 λ2 + λ3 + λ4 λ3 + λ4

4 1 λ1 + λ2 + 2λ3 λ1 + λ2 + λ3

3 λ1 + λ2 + λ3 + λ4 λ1 + λ2 λ4

2 λ2 + 2λ3 + λ4 λ2 + λ3 + λ4

5 1 λ1 + 2λ2 + 2λ3 λ1 + λ2 + 2λ3

3 λ1 + λ2 + 2λ3 + λ4 λ1 + λ2 + λ3 + λ4

2 λ2 + 2λ3 + 2λ4 λ2 + 2λ3 + λ4

6 1 λ1 + 2λ2 + 2λ3 + λ4 λ1 + 2λ2 + 2λ3

2 λ1 + λ2 + 2λ3 + 2λ4 λ2 + 2λ3 + 2λ4

7 1 λ1 + 2λ2 + 3λ3 + λ4 λ1 + 2λ2 + 2λ3 + λ4

2 λ1 + 2λ2 + 2λ3 + 2λ4 λ1 + λ2 + 2λ3 + 2λ4

8 1 λ1 + 2λ2 + 3λ3 + 2λ4 λ1 + 2λ2 + 3λ3 + λ4

9 1 λ1 + 3λ2 + 3λ3 + 2λ4 λ1 + 2λ2 + 3λ3 + 2λ4

10 1 λ1 + 3λ2 + 4λ3 + 2λ4 λ1 + 2λ2 + 3λ3 + 2λ4

11 1 2λ1 + 3λ2 + 4λ3 + 2λ4 λ1 + 3λ2 + 4λ3 + 2λ4
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λ1 λ2 λ3 λ4

λ1 + λ2

λ1 + λ2 + λ3

λ1 + λ2 + 2λ3

λ1 + 2λ2 + 2λ3

Figure A.2: A graphical depiction of the positive roots in F4. The horizontal levels
correspond to heights. The elements of height one are labelled, and one more in each
height up to 5, but the rest are not. When you move down a height, following an
edge corresponds to adding a simple root.

λ1 λ2

λ1 + λ2

2λ1 + λ2

3λ1 + λ2

3λ1 + 2λ2

Figure A.3: A graphical depiction of the positive roots in G2.
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