Question 1.

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^3 . Which of the following expressions are meaningful? For each meaningful expression, state whether it corresponds to a vector or a scalar.

i. $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ ii. $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ iii. $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ iii. $(\mathbf{u} \times \mathbf{v})\mathbf{w}$ vii. $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ viii. $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$

Question 2.

Let **u** and **v** be non-zero vectors in \mathbb{R}^3 .

(a) Show that the vector $\mathbf{v} - \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||^2} \mathbf{u}$ is perpendicular to \mathbf{u} . (b) Show that $||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2\mathbf{u} \cdot \mathbf{v}$.

Question 3.

- (a) Let Σ_1 be the plane containing the points P = (1,3,2), Q = (3,9,6), R = (0,3,1). Give an equation for the plane in the form ax + by + cz = k where a, b, c, k are constants to be found.
- (b) Let Σ_2 be the plane given by 3x 2y + z = 0. Find the equation of the line of intersection of Σ_1 and Σ_2 .

Question 4.

Express the ball of radius 1 centered at (0,0,1), given by $x^2 + y^2 + (z-1)^2 \le 1$, using spherical coordinates.

Question 5.

For each of the following, either determine the value of the limit or show it does not exist:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$$

(b) $\lim_{(x,y)\to(0,0)} \frac{y^3 + x^3}{xy^2}$

Question 6.

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x, y) = 2x^2 - 6x + y^2 + 2y + 7$.

- (a) Compute the gradient vector ∇f of f.
- (b) Consider the point P = (4, -1)
 - i. What is the directional derivative of f at P in direction (1, 1)?
 - ii. Give a *unit* vector in the direction that f is *decreasing* at the fastest rate at P.

Question 7.

Find an equation for the tangent plane to the surface $x^2 + 2y^2 - z^2 = 5$ at P = (2, 1, 1).

Question 8.

Consider the curve $\mathbf{r}(t) = \left\langle 2t^3, \frac{3}{2}t^2, -t^3 \right\rangle$ for $t \ge 0$. Show that the arc length function of $\mathbf{r}(t)$ from **0** for $t \ge 0$, is given by $s(t) = \frac{1}{5}(5t^2+1)^{3/2} - \frac{1}{5}$.