Question 1.

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{3}. Which of the following expressions are meaningful? For each meaningful expression, state whether it corresponds to a vector or a scalar.
i. $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
v. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
ii. $\mathbf{u} \times \mathbf{v} \times \mathbf{w}$
vi. $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$
iii. $(\mathbf{u} \times \mathbf{v}) \mathbf{w}$
vii. $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$
vii. $((\mathbf{u} \times \mathbf{v}) \times \mathbf{w}) \times \mathbf{u}$
viii. $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$

Question 2.

Let \mathbf{u} and \mathbf{v} be non-zero vectors in \mathbb{R}^{3}.
(a) Show that the vector $\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}$ is perpendicular to \mathbf{u}.
(b) Show that $\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}$.

Question 3.

(a) Let Σ_{1} be the plane containing the points $P=(1,3,2), Q=(3,9,6), R=(0,3,1)$. Give an equation for the plane in the form $a x+b y+c z=k$ where a, b, c, k are constants to be found.
(b) Let Σ_{2} be the plane given by $3 x-2 y+z=0$. Find the equation of the line of intersection of Σ_{1} and Σ_{2}.

Question 4.

Express the ball of radius 1 centered at $(0,0,1)$, given by $x^{2}+y^{2}+(z-1)^{2} \leq 1$, using spherical coordinates.

Question 5.

For each of the following, either determine the value of the limit or show it does not exist:
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{3}+x^{3}}{x y^{2}}$

Question 6.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y)=2 x^{2}-6 x+y^{2}+2 y+7$.
(a) Compute the gradient vector ∇f of f.
(b) Consider the point $P=(4,-1)$
i. What is the directional derivative of f at P in direction $\langle 1,1\rangle$?
ii. Give a unit vector in the direction that f is decreasing at the fastest rate at P.

Question 7.

Find an equation for the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}=5$ at $P=(2,1,1)$.

Question 8.

Consider the curve $\mathbf{r}(t)=\left\langle 2 t^{3}, \frac{3}{2} t^{2},-t^{3}\right\rangle$ for $t \geq 0$. Show that the arc length function of $\mathbf{r}(t)$ from $\mathbf{0}$ for $t \geq 0$, is given by $s(t)=\frac{1}{5}\left(5 t^{2}+1\right)^{3 / 2}-\frac{1}{5}$.

