Question 1.

Let $f: D \to \mathbb{R}$ be a scalar-value function defined on a domain D in \mathbb{R}^3 ; **F** be a vector field defined on \mathbb{R}^3 ; S be a smooth surface in \mathbb{R}^3 .

For each of the following expressions, state whether they represent scalars, vectors or nonsense.

- (a) $\nabla \times \mathbf{F}$
- (b) div \mathbf{F} curl \mathbf{F}
- (c) $\operatorname{div}(\operatorname{curl} \mathbf{F})$
- (d) $\operatorname{curl}(\nabla f)$
- (e) $\nabla(\operatorname{div}(\nabla f))$

Question 2.

For each of the following statements, determine if they are true or false, and give a justification.

- (a) If (a, b) is a critical point of a function f(x, y), then the directional derivatives $D_{\mathbf{u}}f(a, b)$ of f at (a, b) are all zero.
- (b) Since the direction of maximum slope of f(x, y) at a point (c, d) is given by $\nabla f(c, d)$, it follows that $\nabla f(c, d)$ is positive.
- (c) Let C be a smooth, oriented curve lying in the x, y-plane (so its z-coordinate is zero), and let $\mathbf{F}(x, y, z) = \langle ze^x, xy \sin(z), x + y \cos(z) \rangle$. Then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.

Question 3.

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x, y) = x^2y - xy^2 + xy$.

- (a) Verify that $\left(-\frac{1}{3}, \frac{1}{3}\right)$ is a critical point of f, and find the full list.
- (b) Use the second derivative test to identify whether f has a local maximum, local minimum or saddle point at $\left(-\frac{1}{3}, \frac{1}{3}\right)$.

Question 4.

Let f(x, y, z) = 5x - 8y - 5z. Using Lagrange multipliers, find the maximum and minimum values of f(x, y, z) subject to the constraint $x^2 + 4y^2 + z^2 = 33$, and write down the locations where they are obtained.

Question 5.

Use polar coordinates to evaluate $\iint_R e^{-x^2-y^2} dA$ where $R = \{(x,y) \mid 1 \le x^2 + y^2 \le 4, 0 \le y \le x\}$.

Question 6.

Evaluate $\int_C x - y + 2z \, ds$, where C is given by $\mathbf{r}(t) = \langle 1, 3\cos(t), 3\sin(t) \rangle$ for $t \in [0, 2\pi]$.

Question 7.

A force field is given by $\mathbf{F}(x, y, z) = \langle 2xy, x^2 + z\cos(y), \sin(y) + 2z \rangle$. Show that \mathbf{F} is conservative and use this to find the work done by the force in moving an object along a curve from (0, 0, 1) to $(-2, \pi/2, 4)$.