Surfaces review questions

In the following questions, when the surface involved is a quadric surface, identify the type of surface by looking at the horizontal and vertical traces, and sketch it.

Question 1.

Parametrize the following surfaces

- (a) $x^2 + 2y^2 + 3z^2 = 1$ for $y \le 0$,
- (b) $4x^2 4y^2 z^2 = 4$ for $0 \le x \le 2$,
- (c) the torus obtained by rotating the circle in the xz-plane given by $(x-a)^2 + z^2 = R^2$, for R < a, about the z-axis.

Hint: think about what your two parameters should represent geometrically.

Question 2.

Let S be the part of $z = x^2 + y^2$ that lies under the plane z = 4. Evaluate $\iint_S z \, dS$.

Question 3.

Let S be the same surface as in Question 2, and let $\mathbf{F} = \langle x, xz, xy \rangle$.

- (a) Calculate $\operatorname{curl}(\mathbf{F})$ and $\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$, where we take the orientation on S given by upward pointing normal vectors.
- (b) Verify Stokes' Theorem holds.

Question 4.

Let S be the portion of the surface $z^2 = 3x^2 + 3y^2$ between the planes z = 1 and z = 3. Evaluate $\iint_S x^2 z^2 dS$.

Question 5.

Let S be the same surface as in Question 4, oriented with upward pointing normals. Use Stokes' Theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \text{curl}(\mathbf{A})$, where $\mathbf{A} = \langle 0, xy, xyz \rangle$.

Steps in evaluating surface integrals:

Step 1: Parametrize S by G(un) for (un) &D.

Step 2: Find The normal N(un).

[Step3: For Is F.ds, check if the orientations agree.]

Step 4: Mg f(x,y,2) dS = MD f(E(u,2)) || N (u,2) || dA

$$\iint_{S} \bar{E} \cdot dS = \iiint_{D} \bar{E} \left(E(u, v) \right) \cdot \underline{N} \left(u, v \right) dA$$

If they do not agree, Then multiply your answer by -1

Q1(a) x2 + 2y2 + 3z2 = 1 for y &0.

This is an ellipsoid: look at any true in a plane x=k, y=k or z=k, for subable values of k, and we see the true is an ellipse.

eg. $3c = k : k^2 + 2y^2 + 3z^2 = 1$ $c = 2y^2 + 3z^2 = 1 - k^2$

This is an ellipse provided $k^2 \leq 1$.

We will use the parameters Θ and \emptyset from Sphassal coordinates to map out the ellipsoid:

P = point on ellipsoid Q = projection of P to xy-plane

We will essentially stetch / comprens the coordinate exes to turn the unit sphere into the ellipsoid:

The x-axis should be unchanged.

The y-axis should be shekhed by a factor of $\frac{1}{4}$.

The z-axis should be stretched by a factor of $\frac{1}{9}$.

Then take

$$x = \sin \phi \cos \theta$$

$$y = \frac{1}{4} \sin \phi \sin \theta$$

$$z = \frac{1}{9} \cos \phi$$

x2+ 242+3=2=1). (We can quickly verify there substy

Our domain should be:

$$\phi \in [0,\pi]$$
, $\Theta \in [\pi,2\pi]$
 φ
(since $y \in 0$).

(b)
$$4x^2 - 4y^2 - z^2 = 4$$
, $0 \le x \le 2$.

$$4x^{2} - 4y^{2} = 4 + k^{2} - hyperbola$$

$$4x^{2} - 2^{2} = 4 + 4k^{2} - hyperbola$$

$$4y^{2} + 2^{2} - 4k^{2} - 4$$

The constraint 0 < x < 2 tells us we Should consider only one sheet, so that the surface can be viewed as a graph with x = f(y/2), over a suitable domain. We now determine f(y,z). Start with The given equation for the hyperboloid and rearrange to make ∞ The subject:

$$4\pi^{2} - 4y^{2} - z^{2} = 4 \Rightarrow x^{2} = y^{2} + \frac{1}{4}z^{2} + 1$$

$$= x^{2} + \frac{1}{4}z^{2} + 1$$

We take The positive square root since we know $x \in [0,2]$.

Thus we may parametrize The orfuce like a graph:

$$C(y,z) = (\sqrt{y^2 + \frac{1}{4}z^2 + 1}, y, z)$$

The domain will be the projection of The surface to the yz-plane. This will be given by points (1,2) such that

$$y^{2} + \frac{1}{4}z^{2} + 1 = z^{2} \in [0, 4]$$

$$= > y^{2} + \frac{1}{4}z^{2} \in [-1, 3]$$

$$= > y^{2} + \frac{1}{4}z^{2} \in 3$$

(C) The torus. (This question ishard!)

We need two paremeters, and we use the geometry of the torus to describe them.

The torus is obtained by rotating a circle in the xz-dane about the z-axis.

- · A parameter & will map out this circle,
- · A parameter O will describe the rotation.

The circle we rotate is:

het & be the usual ongular parameter to describe The circle. So:

$$\chi = a + R\cos \alpha$$
This is valid in
$$\xi = R\sin \alpha$$
The $\chi z - \text{plane}$
(ie $\theta = 0$)

Rotating this circle gives the torus. Fixing I we get a circle that should be described by a.

Let r be the distance to the 2-axis (as for cylindrical coords).

Fixing a value of a determines a point on the circle in the xz-plane. When rotated we get a circle with center on the z-axis (the red circle).

This circle how radius

T = a + Rcos x

and lies in The plane

2 = Rsinx

so it can be paremetrized by

 $x = (a + R\cos\alpha)\cos\theta$ $y = (a + R\cos\alpha)\sin\theta$

This gives The parametrization:

(=(a,0) = ((a+kcora)cord, (a+kcora)sind, Rsina)

with domain $\alpha \in [0,2\pi]$ $\theta \in [0,2\pi]$. Q2. Is I be portion of z=zz+yz under the plane z=4.

First we identify the type of surface:

Fraces:
$$x=k$$
 \rightarrow $z=k^2+y^2$ \rightarrow possible $y=k$ \rightarrow $z=x^2+k^2$ \rightarrow possible $z=k$ \rightarrow $k=x^2+y^2$ \rightarrow circles

Thus 5 is a piece of a parabolord.

Step 1: Parametrize S.

We could parametrize it as a graph:

but since The domain
is a disk we will use a windrical noordinates

(otherwise we will sump to polar coordinates when integrating).

So our parametrization comes from rewsting $z = x^2 + y^2$ os $z = r^2$. Then: $f(r, \theta) = (r \cos \theta, r \sin \theta, r^2),$

hr 0 < r < 2, 0 < 0 < 2TT.

Step 2: Determine The normal N (r, 0). $\frac{\partial \mathcal{L}}{\partial r} = (\cos\theta, \sin\theta, 2r)$ $\frac{\partial C}{\partial \theta} = \left(-r\sin\theta, r\cos\theta, 0\right)$ => $N(r,\theta) = \langle \cos\theta, \sin\theta, 2r \rangle \times \langle -r\sin\theta, r\cos\theta, 0 \rangle$ $= \left\langle -2r^2 \cos\theta, -2r^2 \sin\theta, r \right\rangle$ Step 4: ||N(r,0)|| = [4r4 + r2 Remember, this trick only works when the domain is rectangular (ie the limits are contents) $= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{3} (4r^{2} + 1)^{2} dr = 4r^{2} + 1$ r2 = \frac{1}{4}(u-1) = $2\pi \int_{32}^{1} (n-1) u^{1/2} du$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{3} \left(4r^{2} + 1\right)^{1/2} dr$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{3} \left(4r^{2} + 1\right)^{1/2} dr$$

$$= 2\pi \int_{1}^{14} \frac{1}{32} (u-1) u^{1/2} du$$

$$= 2\pi \left[\frac{1}{32} \left(\frac{2}{5} u^{5/2} - \frac{2}{3} u^{3/2}\right)\right]_{1}^{14}$$

$$= \frac{\pi}{8} \left(17^{3/2} \left(\frac{1}{5} 17 - \frac{1}{3}\right) - \left(\frac{1}{5} - \frac{1}{3}\right)\right)$$

$$= \frac{\pi}{8} \left(17^{3/2} \left(\frac{146}{15}\right) + \frac{2}{15}\right)$$

(a)
$$E = \{x, xz, xy\} =$$
 curl $(E) = \{0, -y, z\}$.

Step1 (from Q2)
$$\mathcal{L}(\Gamma, \theta) = (\Gamma \cos \theta, \Gamma \sin \theta, \Gamma^2)$$
,
for $0 \le \Gamma \le 2$, $0 \le \theta \le 2\pi$.

Step2 (from Q2)
$$N(r,\theta) = \left\langle -2r^2\cos\theta, -2r^2\sin\theta, r \right\rangle$$

Look at the Z-component of N. His r, and we have 120 Rr all paints in The domain DAG. So we have an upward pointing normals.

Step 4:

Step 4:

$$\iint_{S} \operatorname{curl}(\mathbb{F}) \cdot dS = \int_{0}^{2\pi} \int_{0}^{2} \langle 0, -r\sin\theta, r^{2} \rangle \cdot \langle -2r^{2}\cos\theta, -2r^{2}\sin\theta, r \rangle drd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2} r^{3}\sin^{2}\theta + r^{3} drd\theta$$

$$= \int_{0}^{2\pi} 4 \sin^{2}\theta + 4 d\theta$$

$$= \int_{0}^{2\pi} 4 (1-\cos^{2}\theta) + 4 d\theta$$

$$= \left[4\theta - \frac{r}{3}\sin^{2}\theta + 4\theta\right]_{0}^{2\pi} = \left[6\pi\right]$$

We orient 25 as pictured:

Step 1: SS is The circle
$$4 = x^2 + y^2 \quad \text{in the plane } z = 4$$

We can parmetrize it:

$$\Gamma(t) = \langle 2\cos t, 2\sin t, 4 \rangle$$
Re $t \in \{0, 2\pi\}$.

Step3: At t=0,
$$\underline{r}(t) = \langle 2,0,4\rangle$$
, $\underline{r}(t) = \langle 0,2,0\rangle$, and ∂S havels in the positive y-direction.
So our orientations do agree.

$$\int_{\partial S} F \cdot d\zeta = \int_{\partial S} \left(2\cos t, 8\cos t, 4\cos t \sin t \right) \cdot \left(-2\sin t, 7\cos t, 0 \right) dt$$

$$= \int_{\partial S} \left(-4\sin t \cos t + 16\cos^2 t \right) dt$$

$$= \left(-2\sin^2 t + 8\left(\frac{1}{2}\sin^2 t + t \right) \right)^{\frac{1}{2}}$$

$$= \left(-2\sin^2 t + 8\left(\frac{1}{2}\sin^2 t + t \right) \right)^{\frac{1}{2}}$$

$$= 16 \text{ T}$$

 $\iint_{S} x^{2} z^{2} dS.$

162 63.

Clarify The quadric surface:

$$x=k: 2^2 = 3k^2 + 3y^2$$

- hyperbaa, except x=0 when we

get me lives z= ± 13 4

circular rome. a porkon d

Stepl: Parametrize S.

Since we are dealing with a rove, we can use spherical coordinates with \$ fixed. [There are alternatives, ey as a graph / cylindrical] To find the appropriate value of \$, consider the face in y=0. It is a parst lines of slope ± 53°.

So
$$\tan \phi = \frac{1}{15}$$

$$\Rightarrow \phi = \frac{\pi}{6}.$$

Our parametrization is therefore:

$$Q(\rho,\theta) = \left(\frac{\rho}{2}\cos\theta, \frac{\rho}{2}\sin\theta, \frac{\sqrt{3}}{2}\rho\right)$$

The domain will have DE [0,271]. For the values of P we counter The Margles:

$$\begin{array}{ll}
\text{Cmin} &= & \frac{13}{2} \\
\text{Cmax} &= & \frac{313}{2}
\end{array}$$

$$\begin{array}{ll}
\text{Cmax} &= & \frac{313}{2} \\
\text{Cmax} &= & \frac{313}{2}
\end{array}$$

Step 2:
$$\frac{\partial \mathcal{E}}{\partial \rho} = \left(\frac{1}{2}\cos\theta, \frac{1}{2}\sin\theta, \frac{\sqrt{3}}{2}\right)$$

$$\frac{\partial \mathcal{E}}{\partial \theta} = \left(-\frac{\rho}{2}\sin\theta, \frac{\rho}{2}\cos\theta, \frac{\rho}{2}\cos\theta, 0\right)$$

$$\frac{\partial \mathcal{E}}{\partial \theta} = \left(-\frac{\rho}{2}\sin\theta, \frac{\rho}{2}\cos\theta, \frac{\rho}{2}\cos\theta, 0\right)$$

$$\frac{\partial \mathcal{E}}{\partial \theta} = \left(-\frac{\rho}{2}\sin\theta, \frac{\rho}{2}\sin\theta, \frac{\rho}{2}\cos\theta, \frac{\rho}{$$

$$\underline{Q}$$
 \underline{C}
 \underline{C}

Stokes' Theorem tells us:

$$\iint_{S} \bar{F} \cdot d\bar{S} = \iint_{S} (\operatorname{curl}(\bar{A}) \cdot d\bar{S} = \int_{\partial S} \bar{A} \cdot d\bar{z}$$

Note DS has two components. With upward pointing normals on S, the orientation on DS is as shown.

- At z=3, The boundary is a circumference of radius 13

- At
$$z=1$$
; thus radius $\frac{1}{3}$.

both for te [0,277].

Step3: [, terres anticlockwise -> orientations agree.

Tz berrels anticlockwise -> orientations disagree.

(B) The eagle-eyed among you may have foreseen the orientation issue, and may choose to change [2 to (13 sint, 13 cust, 3)

Since The orientations on In disagneed.

Step 4:

Step 4:

$$\int_{2K} \underline{A} \cdot d\underline{S} = \int_{0}^{2\pi} \underline{A} \left(\underline{C}_{n}(e) \right) \cdot \underline{C}_{n}'(e) d\underline{A} \left(\underline{C}_{n}(e) \right) \cdot \underline{C}_{n}'(e) d\underline{A} \left(\underline{C}_{n}(e) \right) \cdot \underline{C}_{n}'(e) d\underline{A}$$

$$= \int_{0}^{2\pi} \left\langle 0, \frac{1}{3} \cos t \sin t, \frac{1}{3} \cos t \sin t \right\rangle \cdot \left\langle -\frac{1}{5} \sin t, \frac{1}{5} \cos t, 0 \right\rangle d\underline{A}$$

$$- \int_{0}^{2\pi} \left\langle 0, \frac{1}{3} \cos t \sin t, \frac{1}{3} \cos t, 0 \right\rangle d\underline{A}$$

$$= \int_{0}^{2\pi} \left\langle 0, \frac{1}{3} \cos t \cos t, \frac{1}{3} \cos t, \frac{1}{3} \cos t, 0 \right\rangle d\underline{A}$$

$$= \int_{0}^{2\pi} \frac{1}{15} \cos^{2} t \sin t d\underline{A} - \int_{0}^{2\pi} \frac{1}{3} \cos^{3} t \sin t d\underline{A}$$

$$= \left(\frac{1}{3} - 3 \cdot \frac{1}{3} \right) \int_{0}^{2\pi} \cos^{3} t \sin t d\underline{A}$$

$$= \left(\frac{1}{3} - 3 \cdot \frac{1}{3} \right) \int_{0}^{2\pi} \cos^{3} t \sin t d\underline{A}$$

$$= \left(\frac{1}{3} - 3 \cdot \frac{1}{3} \right) \int_{0}^{2\pi} \cos^{3} t d\underline{A}$$

$$= 0.$$

(Can you see how to use the symmetry of A and 25 to avoid doing all this reducation?)