Surfaces review questions

In the following questions, when the surface involved is a quadric surface, identify the type of surface by looking at the horizontal and vertical traces, and sketch it.

Question 1.

Parametrize the following surfaces
(a) $x^{2}+2 y^{2}+3 z^{2}=1$ for $y \leq 0$,
(b) $4 x^{2}-4 y^{2}-z^{2}=4$ for $0 \leq x \leq 2$,
(c) the torus obtained by rotating the circle in the $x z$-plane given by $(x-a)^{2}+z^{2}=R^{2}$, for $R<a$, about the z-axis.

Hint: think about what your two parameters should represent geometrically.

Question 2.

Let S be the part of $z=x^{2}+y^{2}$ that lies under the plane $z=4$. Evaluate $\iint_{S} z d S$.

Question 3.

Let S be the same surface as in Question 2, and let $\mathbf{F}=\langle x, x z, x y\rangle$.
(a) Calculate $\operatorname{curl}(\mathbf{F})$ and $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}$, where we take the orientation on S given by upward pointing normal vectors.
(b) Verify Stokes' Theorem holds.

Question 4.

Let S be the portion of the surface $z^{2}=3 x^{2}+3 y^{2}$ between the planes $z=1$ and $z=3$. Evaluate $\iint_{S} x^{2} z^{2} d S$.

Question 5.

Let S be the same surface as in Question 4, oriented with upward pointing normals. Use Stokes' Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\operatorname{curl}(\mathbf{A})$, where $\mathbf{A}=\langle 0, x y, x y z\rangle$.

Steps inevalucting surface integrals:
Step 1: Parametrize S by $G(u, r)$ for $(u, r) \in D$.
Step 2 : Find the normal $N(u, v)$.
[Step 3: for \iint_{s} F.ds, check if the orientations agree.] Step 4: $\iint_{S} f(x, y, z) d S=\iint_{D} f(G(u, 0))\|\underline{N}(u, 0)\| d A$

$$
\iint_{S} \underline{E} \cdot d \underline{S}=\uparrow \iint_{D} \underline{F}(G(u, v)) \cdot \underline{N}(u, v) d A
$$

Q1 (a) $\quad x^{2}+2 y^{2}+3 z^{2}=1$ for $\quad y \leq 0$.
This is an ellipsoids look at any truce in a plane $x=k, y=k$ or $z=k$, for suitable valuenct k, anal we see the truce is an ellipse.
eg. $x=k: \quad x^{2}+2 y^{2}+3 z^{2}=1$

$$
\Leftrightarrow \quad 2 y^{2}+3 z^{2}=1-k^{2}
$$

This is an ellinse provided $k^{2} \leq 1$.
We will use the parameters θ and ϕ from spherical coordinates to map out the ellipsoid:

$P=$ point on ellipsoid
$Q=$ projection of P to $x y$-pane

We will essentially stetch / compress the coordinate axes to turn the unit sphere into the ellipsoid:

The x-axis should be unchanged.
The y-axis should be stretched by a factor of $\frac{1}{4}$.
The z-axis should be stretetad by a factor of $\frac{1}{9}$.

Then take

$$
\begin{aligned}
& x=\sin \phi \cos \theta \\
& y=\frac{1}{4} \sin \phi \sin \theta \\
& z=\frac{1}{9} \cos \phi
\end{aligned}
$$

(We can quickly verity there salsify $x^{2}+2 y^{2}+3 z^{2}=1$).
Our domain should be:

$$
\phi \in[0, \pi], \quad \theta \in[\pi, 2 \pi]
$$

${ }^{p}$ (since $y \leq 0$).
(b) $4 x^{2}-4 y^{2}-z^{2}=4,0 \leq x \leq 2$.

This is a (two-sherted) hyperboloid:
Trace:

$$
\begin{array}{lll}
z=k & \rightarrow & 4 x^{2}-4 y^{2}=4+k^{2} \quad-\text { hyperbola } \\
y=k & \longrightarrow & 4 x^{2}-z^{2}=4+4 k^{2} \quad \text {-hyperbola } \\
x=k & \rightarrow & 4 y^{2}+z^{2}=4 k^{2}-4
\end{array}
$$

\rightarrow ellipse, pounded $k^{2} \geqslant 1$.
The constraint $0 \leqslant x \leqslant 2$ tells us we should consider only one sheet, so that the surface can be viewed as a graph with $x=f(y, z)$, ores a suitable domain.

We now determine $f(y, z)$. Start with the given equation for the hyperboloid and rearrange to make x the subject:

$$
\begin{aligned}
4 x^{2}-4 y^{2}-z^{2}=4 & \Rightarrow x^{2}=y^{2}+\frac{1}{4} z^{2}+1 \\
& \Rightarrow x=\sqrt{y^{2}+\frac{1}{4} z^{2}+1}
\end{aligned}
$$

we take the positive square root since we know $x \in[0,2]$.

Thus we may parametrize the surface like a graph:

$$
Q(y, z)=\left(\sqrt{y^{2}+\frac{1}{4} z^{2}+1}, y, z\right)
$$

The domain will be the projection of the surface bo the $y z$-plane. This will be given by points (y, z) such that

$$
\begin{aligned}
& y^{2}+\frac{1}{4} z^{2}+1=x^{2} \in[0,4] \\
\Rightarrow & y^{2}+\frac{1}{4} z^{2} \in[-1,3] \\
\Rightarrow & y^{2}+\frac{1}{4} z^{2} \leq 3
\end{aligned}
$$

The domain is this elliptic region.
(c) The torus. (Thisquention ishord!)

We need two parameters, and we use the geometry of the tones to describe them.

The torus is obtained by rotating a circle in the $x z$-plane about the z-axis.

- A parameter α will map out this circle,
- A parameter θ will describe the rotation.

The circle we rotate is:

Let α be the usual angular parameter to describe the circle. So:

$$
\begin{aligned}
& x=a+R \cos \alpha \\
& z=R \sin \alpha
\end{aligned} f^{-0} \begin{array}{r}
\text { This is valid in } \\
\text { the -pare } \\
\text { (ie } \theta=0 \text {) }
\end{array}
$$

Rotating this circle gives the torus. Fixing θ we get a circle that should be descrized by α.

Let r be the distance to the z-axis (as for cylindrical cords).
Then

$$
\left\{\begin{array}{l}
r=a+R \cos \alpha \\
z=R \sin \alpha
\end{array}\right.
$$

Fixing a value $\delta \alpha$ determines a point on the circle in the $x z$-pare. When rotated we get a circle with center on the z-axis (The red circle).

This circle has radius

$$
r=a+R \cos \alpha
$$

and lies in the plane

$$
z=R \sin \alpha
$$

So it can be parametrized by

$$
\begin{aligned}
& x=(a+R \cos \alpha) \cos \theta \\
& y=(a+R \cos \alpha) \sin \theta
\end{aligned}
$$

This gives the parametrization:

$$
G(\alpha, \theta)=((a+R \cos \alpha) \cos \theta,(a+R \cos \alpha) \sin \theta, R \sin \alpha)
$$

with domain $\alpha \in[0,2 \pi]$

$$
\theta \in[0,2 \pi] .
$$

Q2. $\iint_{S} z d S, \quad S$ is the portion of $z=x^{2}+y^{2}$ under the pane $z=4$.

First we identify the type of surface:
traces: $x=k \rightarrow z=k^{2}+y^{2} \rightarrow$ parabola

$$
\begin{aligned}
& y=k \rightarrow z=x^{2}+k^{2} \rightarrow \text { parabola } \\
& z=k \rightarrow k=x^{2}+y^{2} \rightarrow \text { circles }
\end{aligned}
$$

Thus S is a piece of a paraboloid.

Step 1 : Parametrize S.
We could parametrize it as a graph:

$$
G(x, y)=\left(x, y, x^{2}+y^{2}\right)
$$

but since the domain is a disk we will use cylindrical coordinates Cotherwrse we will swap to polar coordinates when integrating).

So our parametrization comes from reurstiny $z=x^{2}+y^{2}$ as $z=r^{2}$. Then:

$$
O(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)
$$

for $0 \leq r \leq 2, \quad 0 \leq \theta \leq 2 \pi$.

Step 2: Determine the normal $N(r, \theta)$.

$$
\begin{aligned}
\frac{\partial E}{\partial r} & =(\cos \theta, \sin \theta, 2 r) \\
\frac{\partial G}{\partial \theta} & =(-r \sin \theta, r \cos \theta, 0) \\
\Rightarrow \underline{N}(r, \theta) & =\langle\cos \theta, \sin \theta, 2 r\rangle \times\langle-r \sin \theta, r \cos \theta, 0\rangle \\
& =\left\langle-2 r^{2} \cos \theta,-2 r^{2} \sin \theta, r\right\rangle
\end{aligned}
$$

Step 4: $\|N(r, \theta)\|=\sqrt{4 r^{4}+r^{2}}$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} d \theta \int_{0}^{2} r^{3}\left(4 r^{2}+1\right)^{1 / 2} d r \\
& \text { - } \frac{u=4 r^{2}+1}{d r}=8 r \\
& =2 \pi \int_{1}^{17} \frac{1}{32}(u-1) u^{1 / 2} d u \\
& =2 \pi\left[\frac{1}{32}\left(\frac{2}{5} u^{4 n}-\frac{2}{3} u^{3 / 2}\right)\right]_{\text {. }}^{17} \\
& =\frac{\pi}{8}\left(1^{3 n}\left(\frac{1}{5} 17-\frac{1}{3}\right)-\left(\frac{1}{5}-\frac{1}{3}\right)\right) \\
& =\frac{\pi}{8}\left(17^{3 / 2}\left(\frac{46}{15}\right)+\frac{2}{15}\right)
\end{aligned}
$$

Qu.
(a) $E=\langle x, x z, x y\rangle \Rightarrow \operatorname{curl}(E)=\langle 0,-y, z\rangle$.

Step 1 (from Q2) $f(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$, ho $0 \leq r \leq 2, \quad 0 \leq \theta \leq 2 \pi$.

Step (fame Q2) $\underline{N}(r, \theta)=\left\langle-2 r^{2} \cos \theta,-2 r^{2} \sin \theta, r\right\rangle$
Step 3: (In the original question sheet no orientation was given - sorry'.)
Look at the Z-component of N. H is r, and we have $r \geqslant 0$ her all paris in the domain D of G. So we have an upward pointing normals.

Step 4 :

$$
\begin{aligned}
\frac{\text { Step } 4}{\iint_{S} \operatorname{cur}(E) \cdot d \underline{S}} & =\int_{0}^{2 \pi} \int_{0}^{2}\left\langle 0,-r \sin \theta, r^{2}\right\rangle \cdot\left\langle-2 r^{2} \cos \theta,-2 r^{2} \sin \theta, r\right\rangle d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r^{3} \sin ^{2} \theta+r^{3} d r d \theta \\
& =\int_{0}^{2 \pi} 4 \sin ^{2} \theta+4 d \theta \\
& =\int_{0}^{2 \pi} 4(1-\cos 2 \theta)+4 d \theta \\
& =\left[4 \theta-\frac{2}{3} \sin 2 \theta+4 \theta\right]_{0}^{2 \pi}=16 \pi
\end{aligned}
$$

(b) We reed to verify Stokes' Theorem:

$$
\int_{\partial S} E \cdot d r=\iint_{S} \operatorname{curl}(E) \cdot d \underline{S}=16 \pi
$$

We orient ∂s as pictured:
Step 1: ∂ is the circle

$$
4=x^{2}+y^{2} \text { in the plane } z=4 \text {. }
$$

We can parametrize it:

$$
r(t)=\langle 2 \cos t, 2 \sin t, 4\rangle
$$

for $\in \in[0,2 \pi]$.

Step $2: \quad \underline{r}^{\prime}(t)=\langle-2 \sin t, 2 \cos t, 0\rangle$
Step 3: At $t=0, \underline{r}(t)=\langle 2,0,4\rangle, f^{\prime}(t)=\langle 0,2,0\rangle$, and ∂S travels in the positive y-direction. So our orientakons do agree.

Step 4 :

$$
\begin{aligned}
\int_{\partial S}^{E} E \cdot d r & =\int_{0}^{2 \pi}\langle 2 \cos t, 8 \cos t, 4 \cos t \sin t\rangle \cdot\langle-2 \sin t, 2 \cos t, 0\rangle d t \\
& =\int_{0}^{2 \pi}-4 \sin t \cos t+16 \cos ^{2} t d t \\
& =\left[-2 \sin ^{2} t+8\left(\frac{1}{2} \sin 2 t+t\right)\right]_{0}^{2 \pi} \quad \begin{array}{l}
2 \cos ^{2} t-1=\cos 2 t \\
\Rightarrow 2 \cos ^{2} t=\cos k+1
\end{array} \\
& =16 \pi
\end{aligned}
$$

Qu: $\quad \iint_{S} x^{2} z^{2} d S$.

$$
S: z^{2}=3 x^{2}+3 y^{2}, \quad 1 \leqslant z \leq 3
$$

Classify the grade suffice:
Traces: $\quad x=k: \quad z^{2}=3 k^{2}+3 y^{2} \rightarrow$ hyperbola, except $x=0$ chen we get the lines

$$
z= \pm \sqrt{3} y
$$

$z=k: \quad 3 x^{2}+3 y^{2}=k^{2} \rightarrow$ circles.
S is a portion of a circular rove.

Our parametrization is therefore:
Step 1: Parametrize S.
Since we are dealing with a core, we can use spherical coordinates with ϕ fired. [There are altematires, es asa graph / cylindrical] To find the appropriate value of ϕ, courses the trace in $y=0$. 17 is a pars of liners of slope $\pm \sqrt{3}$:
So $\tan \phi=\frac{1}{\sqrt{3}}$

$$
\Rightarrow \phi=\pi / 6 .
$$

$$
Q(\rho, \theta)=\left(\frac{\rho}{2} \cos \theta, \frac{\rho}{2} \sin \theta, \frac{\sqrt{3}}{2} \rho\right)
$$

The domain will have $\theta \in[0,2 \pi]$. For the values of ρ we consider the triangles:

$$
\begin{aligned}
& \rho_{\min }=\frac{\sqrt{3}}{2} \\
& \rho_{\max }=\frac{3 \sqrt{3}}{2}
\end{aligned} \quad \Rightarrow \rho_{\epsilon}\left[\frac{\sqrt{3}}{2}, \frac{3 \sqrt{3}}{2}\right] .
$$

Step 2

$$
\begin{aligned}
\therefore & \frac{\partial G}{\partial \rho}=\left(\frac{1}{2} \cos \theta, \frac{1}{2} \sin \theta, \frac{\sqrt{3}}{2}\right) \\
& \frac{\partial \epsilon}{\partial \theta}=\left(-\frac{\rho}{2} \sin \theta, \frac{\rho}{2} \cos \theta, 0\right) \\
\Rightarrow & \underline{N}(\rho, \theta)=\left\langle-\frac{\sqrt{3}}{4} \rho \cos \theta,-\frac{\sqrt{3}}{4} \rho \sin \theta, \frac{\rho}{4}\right\rangle
\end{aligned}
$$

Step 4: $\|\underline{N}(\rho, \theta)\|=\sqrt{\frac{3}{16} \rho^{2}+\frac{\rho^{2}}{16}}=\frac{e}{4}$

$$
\begin{aligned}
\iint_{S} x^{2} z^{2} d S & =\int_{0}^{2 \pi} \int_{\frac{\sqrt{3}}{2}}^{\frac{3 \sqrt{3}}{2}}\left(\frac{\rho^{2}}{4} \cos ^{2} \theta\right)\left(\frac{3}{4} \rho^{2}\right)\left(\frac{\rho}{4}\right) d \rho d \theta \\
& =\int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{\frac{\sqrt{3}}{2}}^{\frac{3 \sqrt{3}}{2}} \frac{\rho^{5}}{2^{6}} d \rho \\
& =\left[\frac{1}{4} \sin 2 \theta+\frac{\theta}{2}\right]_{0}^{2 \pi}\left[\frac{\rho^{6}}{(3)\left(2^{7}\right)}\right]_{\frac{\sqrt{3}}{2}}^{\frac{3 \sqrt{3}}{2}} \\
& =\frac{\pi}{(3)\left(2^{7}\right)}\left(\frac{3^{6} \cdot 3^{3}}{2^{6}}-\frac{3^{3}}{2^{6}}\right)=\frac{3^{2} \pi}{2^{13}}\left(3^{6}-1\right)
\end{aligned}
$$

Q5. $\quad \underline{E}=\operatorname{curl}(\underline{A}), \quad \underline{A}=\langle 0, x y, x y z\rangle$
We want to find $\iint_{S} E \cdot d S$.
Stokes' Theorem tells us:

$$
\iint_{S} \underline{F} \cdot d \underline{S}=\iint_{S} \operatorname{curl}(\underline{A}) \cdot d \underline{S}=\int_{\partial S} \underline{A} \cdot d \underline{r}
$$

Note ∂S has two components.
With upward pointing normals on S, the orientation onds is as shown.

Step 1

- At $z=3$, The berndary is a circumference of radius $\sqrt{3}$
- At $z=1$ it has radius $\frac{1}{\sqrt{3}}$.

$$
\begin{aligned}
& \underline{r}_{1}(t)=\left\langle\frac{1}{\sqrt{3}} \cos t, \frac{1}{\sqrt{3}} \sin , 1\right\rangle \\
& \underline{r}_{2}(t)=\langle\sqrt{3} \cos t, \sqrt{3} \sin t, 3\rangle^{*} \quad \text { both for } t \in[0,2 \pi] .
\end{aligned}
$$

Sup 2.

$$
\begin{aligned}
& \underline{r}_{1}^{\prime}(t)=\left\langle-\frac{1}{\sqrt{3}} \sin t, \frac{1}{\sqrt{3}} \cos t, 0\right\rangle \\
& r_{-2}^{\prime}(t)=\langle-\sqrt{3} \sin t, \sqrt{3} \cos t, 0\rangle
\end{aligned}
$$

SEp 3: r. trends anticlockwise \rightarrow orientations agree.
I_{2} travels anticlockurse \rightarrow orientations disagree.
(1) The eagle-eyed among you may have foreseen the orientation issue, and may chore to change \underline{t}_{2} to $\langle\sqrt{3} \sin t, \sqrt{3}$ cost, 3\rangle

Since the orientations an r_{2} disagreed.

Step 4:

$$
\begin{aligned}
\int_{\partial S} A \cdot d S= & \int_{0}^{2 \pi} A\left(r_{1}(t)\right) \cdot \underline{r}_{1}^{\prime}(t) d t \Theta \int_{0}^{2 \pi} A\left(r_{2}(t)\right) \cdot r_{2}^{\prime}(t) d t \\
= & \int_{0}^{2 \pi}\left\langle 0, \frac{1}{3} \cos t \sin t \cdot \frac{1}{3} \cos t \sin t\right\rangle \cdot\left\langle-\frac{1}{\sqrt{3}} \sin t \cdot \frac{1}{\sqrt{3}} \cos t, 0\right\rangle d t \\
& \left.-\int_{0}^{\pi \pi}\langle 0,3 \cos t \sin t, 9 \cos t \sin t\rangle \cdot 2-\sqrt{3} \sin t \sqrt{3} \cos t, 0\right\rangle d t \\
= & \int_{0}^{2 \pi} \frac{1}{3 \sqrt{3}} \cos ^{2} t \sin t d t-\int_{0}^{2 \pi} 3 \sqrt{3} \cos ^{2} t \sin t d t \\
= & \left(\frac{1}{3 \sqrt{3}}-3 \sqrt{3}\right) \int_{0}^{2 \pi} \cos ^{2} t \sin t d t \\
= & \left(\frac{1}{3 \sqrt{3}}-3 \sqrt{3}\right)\left[\frac{-1}{3} \cos ^{3} t\right]_{0}^{2 \pi} \\
= & 0 .
\end{aligned}
$$

(Can you see how to use the symmetry of A and ∂s to avoid doing all chris calculation?)

