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Abstract

Let L be a supersolvable lattice with non-zero Möbius function. We show that the
order complex of any rank-selected subposet of L admits a convex-ear decomposition.
This proves many new inequalities for the h-vectors of such complexes, and shows that
their g-vectors are M-vectors.

1 Introduction

One of the most fundamental combinatorial invariants associated to a (d − 1)-dimensional
finite simplicial complex ∆ is its f-vector, 〈f0, f1, f2, . . . , fd〉, where fi is the number of
(i − 1)-dimensional faces of ∆. By convention, f0 = 1 whenever ∆ 6= ∅. Closely re-
lated to the f-vector of ∆ is its h-vector, 〈h0, h1, h2, . . . , hd〉, defined by the transformation∑d

0 fi(x − 1)d−i =
∑d

0 hix
d−i. Somewhat surprisingly, properties of a complex’s f-vector

are sometimes better expressed in the language of the h-vector. For instance, when ∆ is
the boundary complex of a simplicial d-polytope, hi = hd−i for all i (these are the Dehn-
Sommerville relations). The g-theorem, proven by Stanley ([10]), and Billera and Lee ([1]),
says that an integral sequence 〈h0, h1, h2, . . . , hd〉 is the h-vector of some simplicial polytope
boundary if and only if the Dehn-Sommerville relations are satisfied and the associated
g-vector, 〈h0, h1 − h0, h2 − h1, . . . hb d

2
c − hb d

2
c−1〉 is an M-vector. An M-vector (called an

O-sequence in some places) is the degree sequence of some order ideal of monomials.

Convex-ear decompositions, first introduced by Chari in [4], are an invaluable tool in
proving several key inequalities of a complex’s h-vector: when ∆ admits a convex-ear de-
composition, its h-vector satisfies hi ≤ hd−i and hi ≤ hi+1 for all i with 0 ≤ i ≤ bd

2c. Swartz
has also proven an analogue of the g-theorem, meaning that the g-vector of a complex which
admits a convex-ear decomposition is an M-vector ([14]).

The purpose of this paper is to prove:
∗schweig@math.cornell.edu
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Theorem 1.1 Let L be a rank r supersolvable lattice with non-zero Möbius function. Then
for any S ⊆ [r − 1] the order complex of the rank-selected poset LS admits a convex-ear
decomposition.

Here and for the remainder of this paper, we say that a poset P has a “non-zero Möbius
function” if µ(x, y) 6= 0 whenever x, y ∈ P and x < y. Given the work of Chari and Swartz,
the following is immediate:

Corollary 1.2 Let L be as above, and let S ⊆ [r − 1]. Then the h-vector of the order
complex of LS satisfies hi ≤ hr−i and hi ≤ hi+1 whenever 0 ≤ i ≤ b r

2c, and the associated
g-vector is an M-vector.

We start by finding a convex-ear decomposition for the order complex of a supersolvable
lattice with non-zero Möbius function. This is by far the simplest convex-ear decompo-
sition constructed in this paper, but the techniques used will help give the flavor of the
decompositions to follow. Next we give a convex-ear decomposition for the order complex
of a rank-selected subposet of a Boolean lattice. This decomposition is a good deal more
complicated than the first, so it helps to have a feel for our techniques from the previous
section. Our main theorem then follows from the first two decompositions. Although our
first two decompositions are really special cases of our main theorem, we have split our
exposition into these three sections in hopes of better readability.

2 Preliminaries

Throughout this section, let ∆ be a (d− 1)-dimensional finite simplicial complex.

For 0 ≤ i ≤ d, let fi be the number of (i − 1)-dimensional faces of ∆ (by convention
we set f0 = 1). We should note that some authors use fi to mean the number of i-
dimensional simplices, but we deviate from that here. The f-vector of ∆ is the sequence
〈f0, f1, f2, . . . , fd〉, and the h-vector of ∆ is the sequence 〈h0, h1, h2, . . . , hd〉 defined by:

d∑
i=0

fi(x− 1)d−i =
d∑

i=0

hix
d−i.

Definition 2.1 We say that ∆ has a convex-ear decomposition if there exist pure (d− 1)-
dimensional subcomplexes Σ1, . . . Σn such that:

(i)
⋃n

1 Σi = ∆.

(ii) Σ1 is the boundary complex of a simplicial d-polytope, and for i > 1 there exists a
simplicial d-polytope ∆i so that Σi is a pure, full-dimensional subcomplex of ∂∆i.
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(iii) For i > 1, Σi is a simplicial ball.

(iv) For i > 1, (
⋃i−1

1 Σj) ∩ Σi = ∂Σi.

We refer to each Σi as an ear of the decomposition. Convex-ear decompositions were
first introduced by Chari in [4], where they were used to prove the following:

Theorem 2.2 ([4]) Let ∆ be a (d−1)-dimensional simplicial complex that admits a convex-
ear decomposition. Then for i < d/2 the h-vector of ∆ satisfies:

1) hi ≤ hd−i, and

2) hi ≤ hi+1.

Swartz has also proven the following analogue of the g-theorem for complexes admitting
such decompositions:

Theorem 2.3 ([14]) Let ∆ be as in the statement of the previous theorem. Then the g-
vector of ∆, 〈h0, h1 − h0, h2 − h1, . . . , hbd/2c − hbd/2c−1〉, is an M -vector.

As an example, let ∆ be the 2-dimensional simplicial complex with the vertex set
{1, 2, 3, 4, 5, 6} and facets 123, 124, 126, 134, 135, 145, 156, 234, 236, 345 and 356, where we
write ‘ijk’ as shorthand for {i, j, k}. Let Σ1 be the subcomplex with facets 123, 124, 134, and
234, let Σ2 be the subcomplex with facets 135, 145, and 345, and let Σ3 be the subcomplex
with facets 126, 156, 236, and 356. The sequence Σ1,Σ2,Σ3 is a convex-ear decomposition
of ∆. In the figures below, we show Σ2 being attached to Σ1, and then Σ3 being attached
to Σ1 ∪ Σ2.

Figure 1: Attaching Σ2 to Σ1.
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Figure 2: Attaching Σ3 to Σ1 ∪ Σ2.

We leave it to the reader to verify that the above is a convex-ear decomposition. Note
that Σ1,Σ3,Σ2 is not a convex-ear decomposition, as Σ3 ∩ Σ1 6= ∂Σ3.

Convex-ear decompositions can be viewed as a coarser counterpart to the following
well-known concept of a shelling :

Definition 2.4 A pure (d− 1)-dimensional finite simplicial complex ∆ is shellable if there
is an ordering of its facets: F1, F2, . . . , Ft such that (∪j−1

i=1Fi) ∩ Fj is a nonempty union of
facets of ∂Fj whenever 1 < j ≤ t. Such a facet ordering is called a shelling.

We will employ shellings several time in this paper, but we will use this alternate defi-
nition, shown in [3]:

Proposition 2.5 Let ∆ be as in the previous definition. Then a facet ordering F1, F2, . . . , Ft

is a shelling of ∆ if and only if for all i, j with 1 ≤ i < j ≤ t there exists a k ≤ j such that
Fi ∩ Fj ⊆ Fk ∩ Fj and |Fk ∩ Fj | = d− 1.

We now give some necessary definitions from poset theory.

Let P be a rank r graded poset with a least element 0̂ and a greatest element 1̂, and
let λ be a function that assigns an integer to each edge of the Hasse diagram of P . That
is, λ : {〈x, y〉 ∈ P 2 : y covers x} → Z. We call λ a labeling, and for some saturated chain
c := xi < xi+1 < xi+2 < . . . < xi+j in P (where each xk has rank k) define the λ-label of c
to be the word

λ(xi, xi+1)λ(xi+1, xi+2)λ(xi+2, xi+3) . . . λ(xi+j−1, xi+j)
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Definition 2.6 We say λ is an EL-labeling of P if in each interval x < y of P there is a
unique saturated chain, starting with x and ending with y, with a strictly increasing λ-label
and the label of this chain is lexicographically first among the labels of all saturated chains
in this interval.

Now let P be as above. The order complex of P is the simplicial complex whose faces
are chains in P \{0̂, 1̂}. The main reason for introducing EL-labelings is the following result,
shown in [3]:

Theorem 2.7 Let P be as above, and suppose P admits an EL-labeling λ. Then lexico-
graphic order of the maximal chains of P (with respect to their λ-labels) gives a shelling of
the order complex of P .

Definition 2.8 Let P be a graded poset with an EL-labeling λ, and let c be a non-maximal
chain in P . Let the completion of c, written com(c), be the maximal chain that results from
filling in each gap in c with the unique chain in that interval with an increasing label.

Notice that com(c) depends on the labeling λ. The following helpful lemma follows
easily from the definition of an EL-labeling:

Lemma 2.9 Let P be as above, let P ′ be a full-rank subposet of P such that λ restricted to
P ′ is an EL-labeling, and let c be a chain in P ′. Then com(c) is a (maximal) chain in P ′.

Finally, if c is a chain containing an element of rank j, we write c−j to denote the chain
that results from removing that element.

We will refer several times to the Möbius function µ of a finite poset. For background
on this topic, we refer the reader to [13]. The main property we use of the Möbius function
is the following:

Proposition 2.10 ([13, Theorem 3.13.2]) Let P be a poset admitting an EL-labeling λ,
and let x, y ∈ P with x < y. Then |µ(x, y)| is equal to the number of saturated chains in
the interval [x, y] whose λ-labels are weakly decreasing.

3 The Supersolvable Case

We start by finding a convex-ear decomposition for order complexes of supersolvable lattices
with non-zero Möbius function. This construction is motivated by Welker’s result ([16]) that
the order complex of a lattice of the above type is 2-Cohen-Macaulay. For a definition of
this term, as well as the relevant background, see [12].

Let P be a poset. An order completion of P is a total ordering of its elements:
x1 < x2 < . . . < xr such that if xi < xj in P then i < j. An order ideal of P is a
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subset I ⊆ P such that if y ∈ I and x < y, then x ∈ I. Let I(P ) be the poset of order
ideals of P ordered by inclusion.

The following definition is not the standard one, but is equivalent by the fundamental
theorem of finite distributive lattices (see, for instance, [13, Theorem 3.4.1]):

Definition 3.1 A finite lattice L is distributive if there exists a poset P such that L is
isomorphic to I(P ).

All distributive lattices admit EL-labelings. To see this, let I and J be two order ideals
of some r-element poset P , and note that J covers I in I(P ) if and only if J = I ∪ {x}
for some x ∈ P \ I that covers some y ∈ I. Thus there is a 1-1 correspondence between
maximal chains in I(P ) and order completions of P (and so I(P ) is pure of rank r). Now let
x1 < x2 < . . . < xr be an order completion of P , and define the labeling λ by λ(I, J) = n,
where J = I ∪ {xn}. It is an easy exercise to show that λ is in fact an EL-labeling.

The EL-labeling constructed above is of a special type; each maximal chain in I(P ) is
labeled with a permutation of [r]. This leads to the following definition:

Definition 3.2 Let P be a graded poset of rank r, and let λ be an EL-labeling of P . We
say that λ is an Sr-EL-labeling if every maximal chain of P is labeled by an element of Sr

(when viewed as a word on the alphabet [r]).

The fairly straightforward proof of the following, by induction on the rank of P , is left
to the reader:

Lemma 3.3 Let L be a distributive lattice of rank r, and let P be the poset for which
L is the lattice of order ideals. Then every Sr-EL-labeling λ of L is obtained from P in
the fashion described above. That is, for every Sr-EL-labeling λ, there exists a bijection
ν : P → [r] such that λ(I, J) = n if and only if J = I ∪ ν−1(n), where I and J are order
ideals of P .

Supersolvable lattices were originally introduced by Stanley in [9] as a generalization of
distributive lattices. They are so named because subgroup lattices of supersolvable groups
are supersolvable lattices.

Definition 3.4 Let L be a lattice. We say that L is supersolvable if there exists a maximal
chain cM of L, called the M-chain (not to be confused with an M-vector), such that the
sublattice of L generated by cM and any other (not necessarily maximal) chain of L is a
distributive lattice.

The next result gives an alternate characterization of supersolvability:

Theorem 3.5 (McNamara, [7]) Let P be a poset of rank r. Then P is a supersolvable
lattice if and only if it admits an Sr-EL-labeling.
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We will also need the following theorem of Stanley, implicitly shown in [9], for proving
our theorem:

Theorem 3.6 Let L be a rank r supersolvable lattice with Sr-EL-labeling λ and M-chain
cM , let d be a chain in L, and let L′ be the (distributive) sublattice of L generated by cM

and d. Then λ restricted to L′ is an Sr-EL-labeling.

Also in [9], Stanley proves that, under an Sr-EL-labeling of a supersolvable lattice L,
the unique maximal chain with increasing label is an M-chain.

The main result in this section is the following:

Theorem 3.7 Let L be a rank r supersolvable lattice such that µ(x, y) 6= 0 whenever x, y ∈
L and x < y. Then the order complex of L admits a convex-ear decomposition.

For the remainder of the section, fix an Sr-EL-labeling of L. Call this labeling λ.

We now construct the ears of the decomposition. Let d1,d2, . . . ,dt be all maximal
chains of L with decreasing labels (the order of the list is arbitrary, but fixed from here on).
This list is non-empty, since µ(0̂, 1̂) 6= 0. For each i, let Li be the sublattice of L generated
by di and cM , and let Σi be the simplicial complex whose facets are given by maximal
chains in Li \ {0̂, 1̂} that are not chains in Lj for any j < i. We let the Σi’s do double-duty,
simultaneously representing the complex mentioned above and the set of (not necessarily
maximal) chains in L that correspond to faces of that complex. Given the order below, it
is sometimes helpful to think of maximal chains (i.e., facets) of Σi as ‘new,’ and maximal
chains of Li \ {0̂, 1̂} that are not in Σi as ‘old.’

We claim that Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of ∆(L). We will show each
part of the decomposition separately.

Proof of property (ii): By definition, each Li is a distributive lattice. Fix i, and let
P be the poset such that I(P ) ' Li. By Theorem 3.6 and Lemma 3.3, the chain cM in Li

gives us an order completion of P : x1 < x2 < . . . < xr. Similarly, the chain di gives another
order completion of P : xr < xr−1 < . . . < x1. So for any xj , xk ∈ P , one of the above order
completions gives xj < xk, while the other gives xk < xj . Thus no two elements in P are
comparable, and any subset of elements is an order ideal of P . So Li is isomorphic to Br,
the Boolean lattice on r elements. Since the order complex of Br is the first barycentric
subdivision of the boundary of the r-simplex, and since Σ1 = L1 and Σi ( Li for i > 1
(because cM is in every Li), this completes our proof of property (ii) of the decomposition. �

Proof of property (i): Let c := 0̂ = x0 < x1 < . . . < xr = 1̂ be a maximal chain of
L. We must show that c is a chain in Li for some i, and we do this by induction on the
number of ascents of the chain-label of c. If the chain-label has no ascents, then c = di for
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some i, and is therefore in Li. Otherwise, c has at least one ascent, say at position j. Since
L has non-zero Möbius function, the interval (xj−1, xj+1) has at least one element other
than xj . Let c′ be the chain that results from replacing xj in c with one of these other
elements. Since c′ has one fewer ascent than c, it belongs to some Li by induction. Since λ
is an EL-labeling on Li (Theorem 3.6), com((c′)−j) = c is a chain in Li by Lemma 2.9. �

Proof of property (iii): To prove that Σi is a ball for all i > 2, we show that reverse
lexicographic order of the maximal chains in Σi is a shelling. Invoking a result of Danaraj
and Klee ([5]), which states that a shellable full-dimensional proper subcomplex of a sphere
must be a ball, completes the proof. Let c := 0̂ = x0 < x1 < . . . < xr = 1̂ and d be two
chains in Σi, with d lexicographically later (and therefore earlier in the shelling) than c.
By the argument given on pages 25-26 of [2], there must be some j such that d and c do
not coincide at the jth rank, and such that λ(xj−1, xj) < λ(xj , xj+1). Now let c′ be the
unique maximal chain of Li that coincides with c everywhere but the jth position. Then,
by definition of an EL-labeling, c′ is lexicographically later than c (and thus earlier in the
shelling), |c \ c′| = 1, and c∩d ⊆ c′. It remains to be shown that c′ is in Σi. If c′ were not
a chain in Σi, it would be a chain in Lk for some k < i, meaning (c′)−j is a chain in Lk.
But then, again by Lemma 2.9, we would have that com((c′)−j) = c is a chain in Lk. This
would mean that c is not a chain in Σi, which is a contradiction. �

We have yet to prove property (iv). Since we will use a very similar technique to prove
this property in the coming sections, we outline the method here and refer back to this
exposition later.

Proof of property (iv): Fix i > 1, and note that a chain c in Σi is in ∂Σi if and only
if there exist two maximal chains containing it, cold and cnew, such that cold is a maximal
chain of Li but not Σi, and cnew is a maximal chain in Σi.

From the above description of chains in the boundary of Σi, ∂Σi ⊆ (
⋃i−1

1 Σj) ∩ Σi. To
see the reverse inclusion, let c be a chain in (

⋃i−1
1 Σj) ∩ Σi. Then c is, by definition, a

subchain of some facet of Σi. This chain is the required cnew. To complete the proof, we
must find a suitable cold. However, since c is a chain in

⋃i−1
1 Σj , it must be a chain in some

Lj for j < i. Then Lemma 2.9 guarantees that com(c) is in Lj , so set cold = com(c). �

4 The Rank-Selected Boolean Case

Definition 4.1 Let P be a graded poset of rank r, and let S ⊆ [r − 1]. The rank-selected
subposet PS is defined to be the poset with elements {x ∈ P : rank(x) ∈ S ∪ {0̂, 1̂}} and
order inherited from P .

Recall that Br denotes the rank r Boolean Lattice. This section is devoted to proving
the following theorem:
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Theorem 4.2 For any S ⊆ [r − 1], the order complex of the rank-selected subposet (Br)S

admits a convex-ear decomposition.

Throughout this section, we fix an Sr-EL-labeling λ of Br defined as follows: view the
elements of Br as subsets of [r], and note that y covers x if and only if y = x ∪ {n} for
some n ∈ [r] \ x. To define the labeling λ, set λ(x, y) = n. It is easy to see that λ is an
Sr-EL-labeling.

For any subset S ⊆ [r − 1] and any maximal chain c of Br, let cS denote the subchain
of c consisting of all elements in c whose ranks are in S ∪ {0, r}. In particular, we write cj

as shorthand for c{j}, the element of c of rank j with 0̂ and 1̂ adjoined. Note that cS is a
maximal chain in (Br)S .

Now fix a subset S ⊆ [r − 1] for the remainder of this section, and write S as a disjoint
union of intervals, where a1 < a2 < . . . < as:

S = [a1, b1] ∪ [a2, b2] ∪ . . . ∪ [as, bs]

and no ai − 1 or bi + 1 is a member of S and bi < ai+1 for all i. Where appropriate, we also
set b0 = 0 and as+1 = r.

Because maximal chains in Br, under their λ-labels, are in bijection with permutations
of [r], we do much of our work in the context of Sr, where we write permutations in word
form: σ = σ(1)σ(2) . . . σ(r). When 1 ≤ m < n ≤ r, we write σ(m,n) to mean the set
{σ(m), σ(m + 1), . . . , σ(n)}.

Let c be a maximal chain in Br with λ(c) = σ ∈ Sr. We wish to characterize the labels
of all chains that coincide with c at ranks in S. This will turn out to be the coincidence set
C(σ) described below. Similarly, the set Sp(σ) defined below is the set of labels of chains
that coincide with c at ranks not in S.

First, for a permutation σ ∈ Sr, define the coincidence set of σ, written C(σ) as the set
of all τ ∈ Sr such that τ(m) = σ(m) for all m ∈ S \ {a1, a2, . . . , as} and σ(bi + 1, ai+1) =
τ(bi + 1, ai+1) for all i. To visualize the set C(σ), define the bracketed word σC to be the
word of σ with a left bracket inserted before each σ(bi +1) and a right bracket inserted after
each σ(ai) (as usual, we let b0 = 0 and as+1 = r). Then C(σ) is the set of permutations
that can be obtained by permuting the elements between the brackets of σC .

For example, suppose r = 7, S = {2, 3, 4, 6}, and σ = 5 3 7 4 1 6 2. Then S = [2, 4]∪[6, 6],
and the bracketed word defined above is:

σC = [ 5 3 ] 7 4 [ 1 6 ] [ 2 ]
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Thus the set C(σ) consists of four permutations: 3 5 7 4 1 6 2, 3 5 7 4 6 1 2, 5 3 7 4 1 6 2 = σ,
and 5 3 7 4 6 1 2.

Now define the span of σ, written Sp(σ), to be the set of all permutations τ ∈ Sr such
that τ(m) = σ(m) whenever bi + 1 < m < ai for some i, and τ(ai, bi + 1) = σ(ai, bi + 1) for
all i. Here, we do not follow our convention that b0 = 0 and as+1 = r. As before, define a
bracketed word σSp as follows: insert a left bracket before each σ(ai) and a right bracket
after each σ(bi +1). Then Sp(σ) consists of all permutations obtained from σ by permuting
the elements between the brackets of σSp.

Continuing with our example,

σSp = 5 [ 3 7 4 1 ] [ 6 2 ]

Thus a permutation in Sp(σ) is given by permuting the set {1, 3, 4, 7} within the first bracket
and the set {2, 6} within the second. (When no confusion can result, we say ‘bracket’ to
mean the word specified by a pair of brackets.)

Note that our above definitions depend on our choice of the set S ⊆ [r−1]. However, as
we have fixed one choice of S for the entire section, we suppress ‘S’ from our notation. Given
the bracket interpretations of the sets C(σ) and Sp(σ), the following lemma is obvious:

Lemma 4.3 Fix two permutations σ, τ ∈ Sr. Then σ ∈ C(τ) if and only if C(σ) = C(τ),
and σ ∈ Sp(τ) if and only if Sp(σ) = Sp(τ).

For a permutation σ ∈ Sr, let cσ denote the unique maximal chain in Br with σ as its
λ-label. That is,

cσ := 0̂ = x0 < x1 < . . . < xr−1 < xr = 1̂

and σ(m) = λ(xm−1, xm) for all m. For a subset T ⊆ [r − 1], we write cσ
T as shorthand for

(cσ)T . The following is our reason for introducing the sets C(σ) and Sp(σ):

Proposition 4.4 Let σ, τ ∈ Sr. Then C(σ) = C(τ) if and only if cσ
S = cτ

S, and Sp(σ) =
Sp(τ) if and only if cσ

[r−1]\S = cτ
[r−1]\S.

Proof: Suppose C(σ) = C(τ), and let m ∈ S. Then there are two possible cases: either
σ(j) is in no bracket of σC , or it is the rightmost element in some bracket. In either case,
τ(1,m) = σ(1,m), since rearranging elements in a bracket of σC cannot remove an element
from, or add an element to, the set σ(1,m). Viewing elements of Br as subsets of [r], we
have cσ

m = σ(1,m) = τ(1,m) = cτ
m, and so cσ

S = cτ
S .

For the reverse implication, suppose that cσ
S = cτ

S , and fix some m ∈ S \{a1, a2, . . . , as}.
Then m− 1 ∈ S, meaning cσ

m−1 = cτ
m−1. Since cσ

m = cτ
m,
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σ(m) = λ(cσ
m−1, c

σ
m) = λ(cτ

m−1, c
τ
m) = τ(m)

Now fix some i with 0 ≤ i ≤ s. Then cσ
bi

= cτ
bi

and cσ
ai+1

= cτ
ai+1

. It follows that the
sets σ(bi +1, ai+1) and τ(bi +1, ai+1) are equal, since each is equal to cσ

ai+1
\cσ

bi
where again

elements of Br are viewed as subsets of [r]. Thus τ ∈ C(σ), or equivalently C(σ) = C(τ).

The proof of the lemma’s second statement is completely analogous to the proof of the
first. �

In the figure below, we show (between the chain with increasing label and the chain
with decreasing label) the four maximal chains in B7 whose labels are permutations in
C(σ), where σ and S are as in our running example:

Figure 3: Maximal chains whose labels are in C(σ). Elements whose ranks are in S ∪{0, 7}
are filled in.

Let P be any graded poset of rank r that admits an EL-labeling. Then the order
complex of PS is shellable and homotopy equivalent to t-many spheres (see [3]), where t
is the number of maximal chains of P whose labels have descent set S (recall that the
descent set of a permutation σ ∈ Sr is des(σ) = {m ∈ [r − 1] : σ(m) > σ(m + 1)}). In
the case we treat, where P = Br, t is the number of permutations in Sr with descent set
S. It makes sense, then, that our convex-ear decomposition is constructed from the set
D = {δ ∈ Sr : des(δ) = S}.

For any σ ∈ Sr, define a permutation δσ as follows: first, let πσ be the permutation
obtained by replacing each bracket in σC with the increasing word in those letters. In
keeping with our running example,
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πC
σ = [ 3 5 ] 7 4 [ 1 6 ] [ 2 ]

where we have written πC
σ rather than just πσ in hopes of better readability. Next, obtain

δσ by replacing the contents of each bracket in πSp
σ with the decreasing word in those letters.

Continuing with our example,

πSp
σ = 3 [ 5 7 4 1 ] [ 6 2 ], and so δSp

σ = 3 [ 7 5 4 1 ] [ 6 2 ]

Note that, by construction, πσ is in both C(σ) and Sp(δσ), and so C(σ) ∩ Sp(δσ) 6= ∅.

Proposition 4.5 For any σ ∈ Sr, δσ ∈ D.

Proof: Let n ∈ S. Then δσ(n) and δσ(n + 1) are in the same bracket of δSp
σ . Because

δσ is obtained from πσ by putting the contents of each bracket of πSp
σ in decreasing order,

it must be the case that δσ(n) > δσ(n + 1). Thus S ⊆ des(δσ). Suppose S 6= des(δσ),
and choose some m ∈ des(δσ) \ S. Then m = aj − 1 or m = bj + 1 for some j. Suppose
m = aj − 1. πσ(aj − 1) is in the same bracket of πC

σ as πσ(aj), so πσ(aj − 1) < πσ(aj).
Furthermore, πσ(aj) is the leftmost element of some bracket of πSp

σ , and so by construction
δσ(aj) ≥ πσ(aj). Similarly, πσ(aj − 1) is either not in any bracket of πSp

σ or is the rightmost
element in some bracket, so δσ(aj − 1) ≤ πσ(aj − 1). Stringing these inequalities together,

δσ(m) = δσ(aj − 1) ≤ πσ(aj − 1) < πσ(aj) ≤ δσ(aj) = δσ(m + 1),

which is a contradiction. The proof for the case in which m = bj +1 for some j is symmetric.
Thus des(δσ) = S, so δσ ∈ D. �

Now choose σ, δ, τ ∈ Sr, with τ ∈ C(σ) ∩ Sp(δ). By Proposition 4.4, cτ
S = cσ

S and
cτ
[r−1]\S = cδ

[r−1]\S . Because only one maximal chain in Br can satisfy both these constraints,
it follows that the permutation τ is uniquely determined. Thus for any σ, δ ∈ Sr, |C(σ) ∩
Sp(δ)| ≤ 1.

Lemma 4.6 Let σ ∈ Sr and δ ∈ D, and suppose that C(σ) ∩ Sp(δ) = {τ}. Then δ = δσ if
and only if the contents of each bracket of τC is increasing.

Proof: Suppose each bracket of τC is increasing. τ ∈ C(σ), so it follows that τ = πσ,
as defined in the proof of Proposition 4.5. Since δσ is obtained by permuting elements in
the brackets of πSp

σ = τSp, τ ∈ Sp(δσ). By assumption, τ ∈ Sp(δ), and so by Lemma 4.3
Sp(δσ) = Sp(δ). Because both δ and δσ are members of D, each bracket of δSp and δSp

σ

must be decreasing, so δ = δσ.

Now suppose some bracket of τC is non-increasing. Put another way, the word τ(bj +
1)τ(bj +2) . . . τ(aj+1) is non-increasing for some j. Choose an m with bj +1 ≤ m ≤ aj+1−1

12



and τ(m) > τ(m + 1). If it were the case that bj + 1 < m < aj+1 − 1, then we would nec-
essarily have δ(m) = τ(m) and δ(m + 1) = τ(m + 1), since both entries are outside the
brackets of δSp and τ ∈ Sp(δ). But then m ∈ des(δ) = S, a contradiction. Therefore, either
m = bj+1 or m = aj+1−1. We treat only the first case, the proof of the second being similar.

Note that τ ∈ C(σ) = C(πσ), and so πσ = πτ . Because πτ is obtained by putting the
brackets of τC in increasing order, τ(bj + 1) > τ(bj + 2) and so πτ (bj + 1) < τ(bj + 1). It
follows that Sp(πτ ) 6= Sp(τ). Putting this together,

Sp(δσ) = Sp(πσ) = Sp(πτ ) 6= Sp(τ) = Sp(δ)

and so δ 6= δσ. �

Proposition 4.7 Let σ ∈ Sr. Then δσ is the lexicographically least permutation in the set
{δ ∈ D : C(σ) ∩ Sp(δ) 6= ∅}.

Proof: Fix δ ∈ D \ {δσ} such that C(σ) ∩ Sp(δ) = {τ} for some τ ∈ Sr. By the pre-
vious proposition, some bracket of τC is non-increasing, meaning the word τ(bj + 1)τ(bj +
2) . . . τ(aj+1) is non-increasing for some j. So in forming the permutation πτ , this bracket
is put in increasing order. It follows that δτ = δσ is lexicographically less than δ. �

We now use our work in Sr to construct a convex-ear decomposition for the order
complex of (Br)S . Let δ1, δ2, . . . , δt be all permutations in D, listed in lexicographic order
of their labels. For each i let di = cδi (in other words, di is the unique maximal chain in Br

with δi as its λ-label). Also let Li be the poset generated by all maximal chains in (Br)S

of the form cS , where c is a maximal chain in Br such that c[r−1]\S = (di)[r−1]\S . Finally,
let Σi be the simplicial complex whose facets are given by maximal chains in Li \ {0̂, 1̂}
that are not chains in Lj for any j < i. As in the previous section, we use Σi to refer both
to the simplicial complex above and the poset whose chains correspond to (not necessarily
maximal) chains in (Br)S .

Proposition 4.8 Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of the order complex of
(Br)S.

To every maximal chain e in (Br)S , associate an equivalence class of maximal chains in
Br, namely all maximal chains c such that cS = e. By Proposition 4.4, this equivalence
class can be viewed as the set {cτ : τ ∈ C(σ)} for some σ ∈ Sr. We refer to C(σ) as the
class corresponding to e.

Next let c be a maximal chain in Br such that cS is a maximal chain in Li. c[r−1]\S =
(di)[r−1]\S , and so, by Proposition 4.4, λ(c) ∈ Sp(δi). Let σ = λ(c). The chain cS then
corresponds to the equivalence class C(σ), and we have proven half of the following lemma:
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Lemma 4.9 Let σ ∈ Sr and let e be a maximal chain in (Br)S corresponding to the equiv-
alence class C(σ). Then e is a maximal chain in Li if and only if C(σ) ∩ Sp(δi) 6= ∅.

Proof: We have already proven the ‘only if’ direction above. For the other direction,
suppose C(σ) ∩ Sp(δi) 6= ∅. Choose the unique τ in this intersection. By Proposition 4.4,
cτ

S = e and cτ
[r−1]\S = (di)[r−1]\S , and so e is a maximal chain in Li. �

Now let e and σ be as in the statement of the above lemma, and suppose e is a facet in
Σi. Then δi is the lexicographically first permutation δ in D such that C(σ) ∩ Sp(δ) 6= ∅,
and so, by Proposition 4.7, δi = δσ. Summarizing,

Lemma 4.10 Let e be a maximal chain in (Br)S corresponding to the class C(σ) for some
σ ∈ Sr. Then e represents a facet in Σi if and only if δi = δσ.

We are now ready to prove the properties of our convex-ear decomposition.

Proof of property (i): We must show that any maximal chain e in (Br)S is a maximal
chain in some Li. By Lemma 4.9, we must find some δ ∈ D such that C(σ) ∩ Sp(δ) 6= ∅,
where C(σ) is the class corresponding to e. But Lemma 4.5 guarantees such a permutation,
namely δσ. �

Proof of property (ii): Fix di, and write di := 0̂ = x0 < x1 < . . . < xr = 1̂.
A maximal chain in Li is determined by a choice of maximal chain in each open interval
(xaj−1, xbj+1). Each of these intervals is isomorphic to Bbj−aj+2\{0̂, 1̂}. As noted before, the
order complex of Bn \ {0̂, 1̂} is b(∂∆n−1), where ‘b’ denotes the first barycentric subdivision
and ∆n−1 denotes the (n − 1)-dimensional simplex. Thus the order complex of Li is the
product:

b(∂∆b1−a1+1) ∗ b(∂∆b2−a2+1) ∗ . . . ∗ b(∂∆bs−as+1)

where ‘∗’ denotes simplicial join (see [6] for background on this operation, and [17] for its
application to polytopes). It follows that the order complex of each Li is the boundary
complex of a simplicial polytope. Since Σ1 is the order complex of L1, it remains to be
shown that Σi is a proper subcomplex of the order complex of Li when i > 1.

Fix δi with i > 1, and define a permutation σ ∈ Sp(δi) by putting each bracket of δSp
i in

increasing order. There are two cases to consider: first, suppose that σ = 1 2 . . . r. In this
case, we leave it to the reader to show that δi = δ1, the lexicographically first permutation in
Sr with descent set S, contradicting our assumptions. Now suppose otherwise. Since each
bracket of σSp is increasing, it must be the case that some bracket of σC is non-increasing.
Then, by Lemma 4.6, δi 6= δσ, since C(σ) ∩ Sp(δi) = {σ}. Finally, by Proposition 4.7, δσ

precedes δi lexicographically, and so δσ = δj for some j < i. �
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Proof of property (iii): Fix i > 1, and let e be a maximal chain representing a facet
in Σi. Pick a σ ∈ Sr such that e corresponds to the equivalence class C(σ). Define πe to
be the permutation πσ. Let e1, e2, . . . , en be the maximal chains of (Br)S corresponding
to facets of Σi. Writing πj as shorthand for πej , let the above order be so that πj is lexi-
cographically greater than πk whenever j < k. In particular, π1 = δi. We claim that this
ordering is a shelling of Σi.

Let j < k. Since Sp(πj) = Sp(δi) = Sp(πk), πSp
j and πSp

k coincide outside of their
brackets. Because πk lexicographically precedes πj , there must be some ascent, πk(m) <
πk(m + 1), such that πk(1,m) 6= πj(1,m) and so that πk(m) and πk(m + 1) are in the same
bracket of πSp

k . We claim that the proof of this assertion is, as in the proof of property (iii)
in the previous section, analogous to the discussion on pages 25-26 of [2]. This is because
πk(1,m) 6= πj(1,m) if and only if cπk

m 6= cπj
m , by Proposition 4.4. Let π′

k be the permutation
obtained from πk by switching πk(m) and πk(m + 1).

Note that π′
k is lexicographically greater than πk. It is clear that C(π′

k)∩Sp(δi) = {π′
k}.

Now fix some p, and consider the following bracket in πC
k :

πk(bp + 1)πk(bp + 2) . . . πk(ap+1)

πk(m) and πk(m + 1) are in the same bracket of πSp
k , so there only three possibilities for

the placement of πk(m) within the above bracket: either m + 1 = bp + 1, m = ap+1, or
{m,m + 1} ∩ [bp + 1, ap+1] = ∅. In the first case, m = bp and the corresponding bracket in
(π′

k)
C is:

π′
k(m + 1)π′

k(bp + 2) . . . π′
k(ap+1) = πk(m)πk(bp + 2) . . . πk(ap+1)

Because this bracket is increasing in πC
k (by Lemmas 4.10 and 4.6) and πk(m) <

πk(m + 1), it must be increasing in (π′
k)

C as well, meaning δi = δπ′
k

(by Lemma 4.6).
The proof for the second case is again symmetric to the case we have proven, and the proof
for the third case is trivial (since the bracket’s contents are unchanged). Thus π′

k = π` for
some ` < k, since π′

k is lexicographically later than πk.

To complete the proof, we have to show that ej ∩ ek ⊆ ej ∩ e′k. Since ek coincides with
e′k everywhere except at rank m, it is enough to show that ej and ek do not intersect at
that rank. But this follows immediately, since cπk

m 6= cπj
m . �

Proof of property (iv): We take our cue from the proof of property (iv) from the
first section, since the Σi are defined analogously. That is, let ei and ej be facets of Σi and
Σj where i < j, and let e = ei ∩ ej . By the discussion in the proof of property (iv) in the
previous section, it suffices to find a facet e′ of some Σk with k < j such that e′ contains e.
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Define the maximal chain e′ by e′ = (com(e))S , and let σ be the λ-label of com(e).
By construction, πσ = σ. Now let τ be the λ-label of some maximal chain c in Br with
cS = ei. It is clear that πτ is independent of the choice of maximal chain c, and that πσ

is lexicographically less than or equal to πτ . It follows that δσ is lexicographically less than
or equal to δτ , which means that e′ is a facet of Σk for some k ≤ i < j. �

5 The Rank-Selected Supersolvable Case

It is implicit in our earlier work that supersolvable lattices are composed of Boolean lattices
that are pieced together in an orderly fashion. Using the previous sections, we can prove
the following:

Theorem 5.1 Let L be a rank r supersolvable lattice such that µ(x, y) 6= 0 whenever x, y ∈
L and x < y, and let S ⊆ [r − 1]. Then the order complex of LS admits a convex-ear
decomposition.

Fix an Sr-EL-labeling λ of L. Let d1,d2, . . . ,dt be a fixed ordering of the maximal
chains in L with decreasing λ-label. For each i, let Li be the sublattice of L generated
by di and the unique maximal chain in L with increasing λ-label. From our convex-ear
decomposition for supersolvable lattices, we know that each Li is isomorphic to Br. For a
fixed i, let d1

i ,d
2
i , . . . ,d

t
i be a list of the maximal chains in Li whose labels have descent set

S, where the chains are listed in lexicographic order of their labels. For each j, let Lj
i be

the poset generated by all maximal chains in c in Li such that c[r−1]\S = (dj
i )[r−1]\S . In

other words, Lj
i is just the poset Lj as defined in our convex-ear decomposition for (Br)S ,

when Li is viewed as the Boolean lattice Br. Finally, let Σj
i be the simplicial complex whose

facets are given by the maximal proper chains in Lj
i that are not maximal chains in any Lk

i

for some k < j or any Ln
m for some m < i.

Proposition 5.2 Once we eliminate all Σj
i = ∅ the sequence 〈Σj

i 〉, ordered lexicographically
with respect to the tuples 〈i, j〉, is a convex-ear decomposition of the order complex of LS.

Property (i) is immediately verified by our earlier decompositions. Property (ii) is al-
most verified as well; we know from the previous section that the order complex of each Lj

i

is the boundary complex of some simplicial r-polytope, and it follows from the definitions
that Σ1

1 is the order complex of L1
1. However, we still need to know that Σj

i is a proper
subcomplex of the order complex of Lj

i whenever j > 1 or i > 1.

Let j > 1. Then, by our decomposition of the rank-selected Boolean lattice, some max-
imal chain in Lj

i is a maximal chain in Lk
i for some k < j. Now suppose j = 1. Then the

label of d1
i is the lexicographically first permutation in Sr with descent set S. It follows

that cS is a maximal chain in L1
i , where c is the unique chain in L with increasing λ-label.

Thus cS is a maximal chain in L1
1, proving the remainder of property (ii).

16



Proof of property (iii): We claim that, as in the previous section, reverse lexico-
graphic order of the facets of Σj

i is a shelling. In fact, let ej , ek, and e′k be as in the proof
of property (iii) given there. The only way in which this proof could fail to work in this
case is if e′k is a chain in Ln

m for some m < i. Suppose this is the case, let p be the unique
rank level at which ek and e′k do not coincide, let c be the unique maximal chain in L such
that cS = (ek)S and c[r−1]\S = (dj

i )[r−1]\S , and define c′ analogously. Then c′ = com(c−p).
λ restricts to an EL-labeling on Lm, and thus, by Lemma 2.9, c is a maximal chain in Lm,
which means that ek = cS is a maximal chain in Lk

m for some k, which is a contradiction.
�

Proof of property (iv): As above, we refer to the proof of property (iv) in the previ-
ous section and show that the same technique works here. Indeed, let ej

i and en
m be facets

of Σj
i and Σn

m, respectively, where 〈i, j〉 lexicographically precedes 〈m,n〉. Let e = ej
i ∩ en

m.
As discussed earlier, we need only find a maximal chain e′ in Ln

m that is old (i.e., that is
not a facet of Σn

m) such that e′ contains e as a subchain. If i = m, our previous proof
guarantees such a chain. Otherwise i < m, so let c′ be the maximal chain com(e). Then
Lemma 2.9 guarantees that c′ is a maximal chain in Li. �

Suppose that Σj
i 6= ∅. Since reverse lexicographic order is a shelling of Σj

i , (dj
i )S is a

facet of Σj
i . Because |µ((Br)S)| is the number of maximal chains of Br whose labels have

descent set S and (dj
i )S is not a maximal chain in any Σl

k for 〈i, j〉 6= 〈k, l〉, we obtain the
following as a corollary:

Corollary 5.3 For any i and j, let ∆j
i denote the order complex of Lj

i . Then {∆j
i : Σj

i 6= ∅}
is a homology basis for the order complex of (Br)S.

6 Final Remarks

Recall that a simplicial complex ∆ is Cohen-Macaulay if the reduced homology of the link
of any face (including the empty set) vanishes in all but the top dimension. ∆ is 2-Cohen
Macaulay, or 2-CM, if ∆ is Cohen-Macaulay and, for any vertex v of ∆, ∆ − v is Cohen-
Macaulay and of the same dimension as ∆.

Theorem 6.1 ([14]) If ∆ admits a convex-ear decomposition, then ∆ is 2-Cohen-Macaulay.

Theorem 3.7 was originally motivated by Welker’s result ([16]) that the order com-
plex of a supersolvable lattice with non-zero Möbius function is 2-Cohen-Macaulay. Since
rank-selected subposets of 2-Cohen-Macaulay posets are 2-Cohen-Macaulay (see [12] for
background on this), we obtain the following as a corollary of Welker’s result:

Corollary 6.2 Let L be a rank r supersolvable lattice with non-zero Möbius function, and
let S ⊆ [r − 1]. Then the order complex of LS is 2-Cohen-Macaulay.
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The above can also be obtained as a corollary of Theorems 1.1 and 6.1.

It is not hard to construct 2-CM complexes that have no convex-ear decomposition (for
instance, any non-polytopal triangulation of a sphere). However, Björner and Swartz have
conjectured the following partial converse:

Conjecture 6.3 (Björner and Swartz, [14]) Let ∆ be a 2-CM simplicial complex. Then
the g-vector of ∆ is an M-vector.

Acknowledgements: The writing (and re-writing) of this paper would not have been
possible without the tireless guidance and patience of Ed Swartz. It should also be noted
that Vic Reiner initially suggested that supersolvable lattices with non-zero Möbius func-
tions admit convex-ear decompositions, and that many of our decompositions are based
upon (or inspired by) a homology basis given by Michelle Wachs in [15] for rank-selected
subposets of geometric lattices.
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