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Preface

We all know that in mathematics there are proofs that are more difficult than others,
constructions that are more complicated than others, and objects that are harder to
describe than others. The objective of computable mathematics is to study this com-
plexity, to measure it, and to understand where it comes from. Among the many aspects
of mathematical practice, in this book we concentrate on the complexity of structures.
By structures, we mean objects like rings, fields, or linear orderings, which consist of a
domain on which we have relations, functions, and constants.

Computable structure theory studies the interplay between complexity and struc-
ture. By complexity, we mean descriptional or computational complexity, in the sense
of how difficult it is to describe or compute a certain object. By structure, we refer to
algebraic or structural properties of mathematical structures. The setting is that of infi-
nite countable structures and thus, within the whole hierarchy of complexity levels, the
appropriate tools to measure complexity are those used in computability theory: Turing
degrees, the arithmetic hierarchy, the hyperarithmetic hierarchy, etc. These structures
are like the ones studied in model theory, and we will use a few basic tools from there
too. The intention is not, however, to effectivize model theory. The motivations come
from questions of the following sort: Are there syntactical properties that explain why
certain objects (like structures, relations, isomorphisms, etc.) are easier or harder to
compute or to describe?

The objective of this book is to describe some of the main ideas and techniques
used in the field. Most of these ideas are old, but for many of them, the style of the
presentation is not. Over the last few years, the author has developed new frameworks
for dealing with these old ideas — as for instance for forcing, r.i.c.e. relations, jumps,
Scott ranks, back-and-forth types, etc. One of the objectives of the book is to present
these frameworks in a concise and self-contained form.

Of great influence to the modern state of the field, and also to the author’s view of
the subject, is the monograph by Ash and Knight [AK00] published in 2000. There
is, of course, some intersection between that book and this one. But even on that
intersection, the approach is different.

The intended readers are graduate students and researchers working on mathemati-
cal logic. Basic background in computability theory and logic, as is covered in standard
undergraduate courses in logic and computability, is assumed. The objective of this
book is to describe some of the main ideas and techniques of the field so that graduate
students and researchers can use it for their own research.

vii



viii PREFACE

The monograph will consist of three parts: introductory topics, transfinite topics,
and classes of structures.

Part I, Introductory topics, is about the part of the theory that can be developed
below a single Turing jump. The first chapters introduce what the author sees as the
basic tools to develop the theory: ω-presentations, relations, and ∃-atomic structures,
as treated by the author in [Mon09, Mon12, Mon13c, Mona]. Many of the topics
covered in Part I (like Scott sentences, 1-generics, the method of true stages, categoricity,
etc.) will then be generalized through the transfinite in part II.

Part II, Transfinite topics, is closer to what is covered in Ash and Knight’s book
[AK00]. The main chapters in Part II are those on forcing and the α-priority method.
The exposition of forcing is only aesthetically new (it will be similar to that developed
for [HTMM]). The presentation of Ash’s α-priority method will be more than just
aesthetically different. It will use the method of α-true stages developed in [Mone].

Part III, Classes of structures, is about the computability theoretic properties of
classes of structures, rather than of single structures. The first chapter deals to connec-
tions with descriptive set theory, and it will contain some of the more recent work from
[Mon13a, Monb, MM]. The chapter on comparability of classes treats old topics like
Borel reducibility, but also newer topics like effective reducibility of classes of computable
structures [FF09, FFH+12, Monc] and the connections between functors and inter-
pretability [HTMMM, HTMM]. Σ-small classes, covered in the last chapter, have
been a recurrent topic in the author’s work, as they touch on many aspects of the theory
and help to explain previously observed behaviors [HM12, HM, Mon10, Mon13b].



Notation and Conventions

The intention of this section is to refresh the basic concepts of computability theory
and structures and set up the basic notation we use throughout the book. If the reader
has not seen computable functions before, this section may be too fast of an introduc-
tion, in which case we recommend starting with other textbooks like Cutland [Cut80],
Cooper [Coo04], Enderton [End11], or Soare [Soa87].

The computable functions

A function f : N→ N is computable if there is a computer program that, on input n,
outputs f(n). This might appear to be too informal a definition, but the Turing–Church
thesis tells us that it does not matter which method of computation you choose, you
always get the same class of functions from N to N, as long as the method allows for
enough basic functionality. The reader may choose to keep in mind whichever definition
of computability feels intuitively more comfortable, be it Turing machines, µ-recursive
functions, lambda calculus, register machines, Pascal, Basic, C++, Java, Haskel, or
Python.1 We will not use any particular definition of computability, and instead, every
time we need to define a computable function, we will just describe the algorithm in
English and let the reader convince himself or herself it can be written in the programing
language he or she has in mind.

The choice to use N as the domain and image for the computable functions is not
as restrictive as it may sound. All finite objects can be encoded using a single natural
number. Even if formally we think of computable functions as having domain N for
simplicity, we think of them as using any kind of finite object as inputs or outputs.
This should not be surprising. It is what computers do when they encode everything
you see on the screen using finite binary strings, or equivalently, natural numbers written
in binary. For instance, we can encode pairs of natural numbers by a single number
using the Cantor paring function (x, y) 7→ ((x+y)(x+y+1)+y)/2, which is a bijection
from N2 to N whose inverse is easily computable too. One can then encode triples by
using pairs of pairs, and then encode n-tuples, and then tuples of arbitrary size, and
then tuples of tuples, etc. The same way, we can consider standard effective bijections
between N and various other sets like Z, Q, Vω, Lω,ω, etc. Given any such finite object
a, we use Quine’s notation paq to denote the number coding a. Which method of coding
we use is inmaterial for us so long as the method is sufficiently effective. We will just
assume these methods exist and hope the reader can figure out how to define them.

1For the reader with a computer science background, let us remark that we do not impose any time
or space bound on our computations — computations just need to halt and return an answer after a
finite amount of time using a finite amount of memory.

ix
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Let

Φ0,Φ1,Φ2,Φ3, ...

be an enumeration of the computer programs for functions from N to N, say ordered
alphabetically. Given n, we write Φe(n) for the output of the eth program on input
n. Each Φe computes a partial function N ⇀ N. Let us remark this function may
not be total because, on some inputs, Φe(n) may run forever and never halt with an
answer. We call these the partial computable functions. The computable functions are
the total functions among the partial computable ones. We write Φe(n) ↓ to mean
that this computation converges, that is, that it halts after a finite number of steps;
and we write Φe(n) ↑ to mean that it diverges, i.e., does not halt and never returns
an answer. Computers or even Turing machines run on a step-by-step basis. We use
Φe,s(n) to denote the output of Φe(n) after s steps of computation, which can be either
not converging yet (Φe,s(n) ↑) or converging to a number (Φe,s(n) ↓= m). Notice that,
given e, s, n, we can decide whether Φe,s(n) converges or not, computably, as all we have
to do is run Φe(n) for s steps. If f and g are partial functions, we write f(n) = g(m)
to mean that either both f(n) and g(m) are undefined, or both are defined and have
the same value. We write f = g if f(n) = g(n) for all n. If f(n) = Φe(n) for all n,
we say that e is an index for f . The Padding Lemma states that every program has
infinitely many indices — just add dummy instructions at the end of a program, getting
essentially the same program, but with a different index.

In his famous 1936 paper, Turing showed there is a partial computable function
U : N2 → N that encodes all other computable functions in the sense that, for every
e, n,

U(e, n) = Φe(n).

This function U is called a universal partial computable function, and it does essentially
what computers do nowadays: You give them a(n index for a) program and an input,
and they run it for you. We will not use U explicitly throughout the book, but we
will constantly use the fact that we can computably list all programs and start running
them one at the time, implicitly using U .

We identify subsets of N with their characteristic functions in 2N, and we will move
from one viewpoint to the other without even mentioning it. For instance, a set A ⊆ N
is said to be computable if its characteristic function is.

An enumeration for set A is nothing more than an onto function g : N → A. A set
A is computably enumerable (c.e.) if it has an enumeration that is computable. The
empty set is computably enumerable too. Equivalently, a set is computably enumerable
if it is the domain of a partial computable function. (If A = range(g), then A is the
domain of the partial function that, on input m, outputs the first n with g(n) = m if it
exists.) We denote

We = {n ∈ N : Φe(n) ↓} and We,s = {n ∈ N : Φe,s(n) ↓}.

As a convention, we assume that We,s is finite, that is, only finitely many numbers can
converge in less than s steps This makes sense because large numbers take more than s
steps to be even read from the input tape. We sometimes use Lachlan’s notation: We[s]
instead of We,s. In general, if a is an object built during a construction and whose value
might change along the stages, we use a[s] to denote its value at stage s.
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Recall that a set is computable if and only if it and its complement are computably
enumerable.

Sets and strings

The natural numbers are N = {0, 1, 2, ....}. For n ∈ N, we sometimes use n to denote
the set {0, ..., n − 1}. For instance, 2N is the set of functions from N to {0, 1}, which
we will sometimes refer to as infinite binary sequences or infinite binary strings. For
any set X, we use X<N to denote the set of finite tuples of elements from X, which we
call strings when X = 2 or X = N. For σ ∈ X<N and τ ∈ X≤N, we use σaτ to denote
the concatenation of these sequences. We use σ ⊆ τ to denote that σ is a an initial
segment of τ , that is, that |σ| ≤ |τ | and σ(n) = τ(n) for all n < |σ|. Given f ∈ X≤N
and n ∈ N, we use f �n to denote the initial segment of f of length n. We use f ��n for
the initial segment of length n + 1. For a set A ⊆ N, the complement of A is denoted
by Ā.

Given f, g ∈ XN, we use f⊕g for the function (f⊕g)(2n) = f(n) and (f⊕g)(2n+1) =
g(n). We can extend this to ω sums and define

⊕
n fn to be the function defined by

(
⊕

n fn)(m, k) = fm(k). Conversely, we define f [n] to be the nth column of f , that
is, f [n](m) = f(n,m). All these definitions work for sets if we think in terms of their
characteristic functions.

Reducibilities

There are various ways in which one can compare the complexity of sets of natural
numbers. Depending on the context or application, some may be more appropriate than
others.

Many-one reducibility. Given sets A,B ⊆ N, we say that A is many-one reducible
(or m-reducible) to B, and write A ≤m B, if there is a computable function f : N→ N
such that n ∈ A ⇐⇒ f(n) ∈ B for all n ∈ N. One should think of this reducibility as
saying that all the information in A is directly encoded in B. Notice that the classes of
computable sets and of c.e. sets are both closed downwards under ≤m. A set B is said
to be c.e. complete if it is c.e. and, for every other c.e. set A, A ≤m B.

Two sets are m-equivalent if they are m-reducible to each other — denoted A ≡m B.
This is an equivalence relation, and the equivalence classes are called m-degrees

There are, of course, various other ways to formalize the idea of one set encoding the
information from another set. Many-one reducibility is somewhat restrictive in various
ways: (1) to figure out if n ∈ A, one is allowed to only ask one question of the form
“m ∈ B?”; (2) the answer to “n ∈ A?” has to be the same as the answer to “f(n) ∈ B?”
Turing reducibility is much more flexible.

Turing reducibility. Given a function f : N → N, we say that a partial function
g : N⇀ N is partial f -computable if it can be computed by a program that is allowed to
use the function f as a primitive function during its computation; that is, the program
can ask questions about the value of f(n) for different n’s and use the answers to
make decisions while the program is running. The function f is called the oracle of
this computation. For g and f total, we write g ≤T f when that is the case and say
that g is Turing reducible to f . The class of partial f -computable functions can be
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enumerated the same way as the class of the partial computable functions. Programs
that are allowed to query an oracle are called Turing operators. We list them as Φ0,
Φ1,... and we write Φf

e (n) for the output of the eth Turing operator on input n when
it uses f as oracle. Notice that Φe represents a fixed program that can be used with
different oracles. We can view the programs Φe we defined before as Φ∅e, where ∅ is the
constant function equal zero, the characteristic function of the empty set.

For a fixed input n, if Φf
e (n) converges, it does so after a finite number of steps s.

As a convention, let us assume that in just s steps, it is only possible to read at most
the first s entries from the oracle. Thus, if σ is a finite substring of f of length greater
than s, we could calculate Φσ

e (n) without ever noticing that the oracle is not an infinite
string.

Convention: For σ ∈ N<N, Φσ
e (n) is shorthand for Φσ

e,|σ|(n), which runs

for at most |σ| stages.

Notice that given e, σ, n, it is computable to decide if Φσ
e (n) ↓ .

As the class of partial computable functions, the class of partial X-computable
functions contains the basic functions; is closed under composition, recursion, and min-
imization; and can be listed in such a way that we have a universal partial X-computable
function. In practice, with very few exceptions, those are the only properties we use
of computable functions. This is why almost everything we can prove about com-
putable functions, we can prove about X-computable functions too. This translation
is called relativization. All notions whose definition are based on the notion of partial
computable function can be relativized by using the notion of partial X-computable
function instead. For instance, the notion of c.e. set can be relativized to that of X-c.e.
set: These are the sets which are the images of X-computable functions (or empty),
or equivalently, the domains of partial X-computable functions. We use WX

e to denote
the domain of ΦX

e .
When two functions are Turing reducible to each other, we say that they are Turing

equivalent, which we denote by ≡T . This is an equivalence relation, and the equivalence
classes are called Turing degrees.

Computable operators can be encoded by computable subsets of N<N×N×N. Given
Φ ⊆ N<N × N× N, f ∈ NN, n, m, we say that

Φf (n) = m ⇐⇒ (∃σ ⊂ f) (σ, n,m) ∈ Φ.

We then have that g is computable in f if and only if there is a computable subset
Φ ⊆ N<N × N× N such that Φf (n) = g(n) for all n ∈ N. One can show that every c.e.
operator Φ ⊆ N<N × N× N is equivalent to a computable one.

Enumeration reducibility. Recall that an enumeration of a set A is just an onto
function f : N → A. Given A,B ⊆ N, we say that A is enumeration reducible (or e-
reducible) to B, and write A ≤e B , if every enumeration of B computes an enumeration
of A. Selman [Sel71] showed that we can make this reduction uniformly: A ≤e B if and
only if there is a Turing operator Φ such that, for every enumeration f of B, Φf is an
enumeration of B. Another way of defining enumeration reducibility is via enumeration
operators: An enumeration operator is a c.e. set of pairs Θ that acts as follows: For
B ⊆ N,

ΘB = {n : (∃D ⊆fin B) (pDq, n) ∈ Θ}.



VOCABULARIES AND LANGUAGES xiii

Selman also showed that A ≤e B if and only if there is an enumeration operator Θ such
that A = ΘB.

The Turing degrees embed into the enumeration degrees via the map ι(A) = A⊕ Ā.
It is not hard to show that A ≤T B ⇐⇒ ι(A) ≤e ι(B).

Positive-tt reducibility. We say thatA positively-tt reduces toB, and writeA ≤ptt
B, if there is a computable function f : N→ (N<N)<N such that, for every n ∈ N, n ∈ A
if and only if there is an i < |f(n)| such that every entry of f(n)(i) is in B. That is,

n ∈ A ⇐⇒
∨

i<|f(n)|

∧
j<|f(n)(i)|

f(n)(i)(j) ∈ B.

Notice that ≤ptt implies both Turing reducibility and enumeration reducibility, and is
implied by many-one reducibility. In particular, the classes of computable sets and of
c.e. sets are both closed downwards under ≤ptt.

The Turing jump. Let K be the domain of the universal partial computable
functions. That is,

K = {(e, n) : Φe(n) ↓} =
⊕
e

We.

K is called the halting problem. It is not hard to see that K is c.e. complete. Using a
standard diagonalization argument, one can show that K is not computable. (If it were
computable, so would be the set A = {e : (e, e) 6∈ K}. But then A = We for some e, and
we would have that e ∈ A ⇐⇒ (e, e) 6∈ K ⇐⇒ e 6∈ We ⇐⇒ e 6∈ A.) It is common
to define K as {e : Φe(e) ↓} instead; it is not hard to see that the two definitions give
m-equivalent sets. We will use whichever is more convenient in each situation.

We can relativize this definition and, given a set X, define the Turing jump of X as

X ′ = {e ∈ N : ΦX
e (e) ↓}.

Relativizing the properties of K, we get that X ′ is X-c.e.-complete, that X ≤T X ′, and
that X ′ 6≤T X. The Turing degree of X ′ is strictly above that of X — this is why it is
called a jump. The jump defines an operation on the Turing degrees. Furthermore, for
X, Y ⊆ ω, X ≡T Y ⇐⇒ f(X) ≡m f(Y ).

Vocabularies and languages

Let us quickly review the basics about vocabularies and structures. Our vocabularies
will always be countable. Furthermore, except for a few occasions, they will always be
computable.

A vocabulary τ consists of three sets of symbols {Ri : i ∈ IR}, {fi : i ∈ IF}, and
{ci : i ∈ IC}; and two functions aR : IR → N and aF : IF → N. Each of IR, IF , and IC
is an initial segment of N. The symbols Ri, fi, and ci represent relations, functions, and
constants, respectively. For i ∈ IR, aR(i) is the arity of Ri, and for i ∈ IF , aF (i) is the
arity of fi.

A vocabulary τ is computable if the arity functions aR and aF are computable. This
only matters when τ is infinite; finite vocabularies are trivially computable.

Given such a vocabulary τ , a τ -structure is a tuple

M = (M ; {RMi : i ∈ IR}, {fMi : i ∈ IF}, {cMi : i ∈ IC}),
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where M is just a set, called the domain of M, and the rest are interpretations of the
symbols in τ . That is, RMi ⊂MaR(i), fMi : MaF (i) →M , and cMi ∈M . A structure is a
τ -structure for some τ .

Given a vocabulary τ , we define various languages over it. First, recursively, a τ -term
is either a variable x, a constant symbol ci, or a function symbol applied to other terms,
that is, fi(t1, ..., taF (i)), where each ti is a τ -term we have already built. The atomic τ -
formulas are the ones of the form Ri(t1, ..., taR(i)) or t1 = t2, where each ti is a τ -term. A
τ -literal is either a τ -atomic formula or a negation of a τ -atomic formula. A τ -quantifier-
free formula is build out of literals using conjunctions, disjunctions, and implications. If
we also close under existential quantification, we get the τ -existential formulas. Every
τ -existential formula is equivalent to one of the form ∃x1 · · · ∃xk ϕ, where ϕ is quantifier-
free. A τ -universal formula is one equivalent to one of the form ∀x1 · · · ∀xk ϕ, where ϕ
is quantifier-free. A τ -elementary formula is built out of quantifier-free formulas using
existential and universal quantifiers.

The arithmetic hierachy

Consider the structure (N; 0, 1,+,×,≤). In this vocabulary, the bounded formulas
are build out of the quantifier-free formulas using bounded quantifiers of the form ∀x < y
and ∃x < y. A Σ0

1 formula is one of the form ∃x ϕ, where ϕ is bounded; and a Π0
1 formula

is one of the form ∀x ϕ, where ϕ is bounded. Coding tuples by single natural numbers,
one can show that formulas of the form ∃x0∃x1 · · · ...∃xk ϕ are equivalent to Σ0

1 formulas.
It requires some work, but one can show that a set A ⊆ N is c.e. if and only if it can
be defined by a Σ0

1 formula. Thus, a set is computable if it is ∆0
1, that is, if it can be

defined by both a Σ0
1 and Π0

1 formulas.
By recursion, we define the Σ0

n+1 formulas as those of the form ∃x ϕ, where ϕ is Π0
n;

and the Π0
n+1 formulas as those of the form ∀x ϕ, where ϕ is Σ0

n. A set is ∆0
n if it can

be defined by both a Σ0
n formula and a Π0

n formula. Again, in the definition of Σ0
n+1

formulas, using one existential quantifier or many makes no difference. What matters
is the number of alternations of quantifiers.
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CHAPTER I

Structures

Algorithms, Turing machines, and modern computer programs all work with finitary
objects, objects that usually can be encoded by finite binary strings or just by natural
numbers. For this reason, computability theory concentrates on the study the of com-
plexity of sets of natural numbers. When we want to study a countable mathematical
structure, the first approach is to set the domain of the structure to be a subset of the
natural numbers and then borrow the tools we already have from computability theory.
There is one issue that comes up here: There might be many bijections between the do-
main of a structure and the natural numbers, inducing many different presentations of
the structure with different computability-theoretic properties. The interplay between
properties of presentations (computational properties) and properties of isomorphism
types (structural properties) is one of the main themes of computable structure theory.

We start this chapter by introducing various ways of presenting structures in ways we
can analyze their computational complexity. These different types of presentations are
essentially equivalent, and the distinctions are purely technical and not deep. However,
we need to introduce them as basic background as they will allow us to be precise later.
At the end of the chapter we prove Knight’s theorem that non-trivial structures have
presentations that code any given set.

I.1. Presentations

All the structures we consider are countable. So, unless otherwise stated, “struc-
ture” means “countable structure.” Furthermore, we usually assume the domain of our
structures to be a subset of N. This will allow us to use everything we know about
computable functions on N to study structures.

Definition I.1.1. An ω-presentation is nothing more than a structure whose domain
is N. Given a structure A, when we refer to an ω-presentation of A or to a copy of
A, we mean an ω-presentation M which is isomorphic to A. An ω-presentation M is
computable if all its relations, functions, and constants are uniformly computable; that
is, if the set τM, defined as

(1) τM =
⊕
i∈IR

RMi ⊕
⊕
i∈IF

FMi ⊕
⊕
i∈IC

{cMi },

is computable. Note that via standard coding, we can think of τM as a subset of N.

I.1.1. Atomic diagrams. Another standard way of defining the computability of
a presentation is via its atomic diagram. Let {ϕat

i : i ∈ N} be an effective enumeration
of all atomic τ -formulas on the variables {x0, x1, ...}. (An atomic τ -formula is one of
the form R(t1, ..., ta), where R is either “=” or Rj for j ∈ IR, and each ti is a term built
out of the function, constant, and variable symbols.)

3
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Definition I.1.2. The atomic diagram of an ω-presentationM is the infinite binary
string D(M) ∈ 2N defined by

D(M)(i) =

{
1 if M |= ϕat

i [xj 7→ j : j ∈ N]

0 otherwise.

It is not hard to see that D(M) and τM are Turing equivalent. We will often treat
the ω-presentationM, the real τM, and the real D(M) as the same thing. For instance,
we define the Turing degree of the ω-presentation M to be the Turing degree of D(M).
When we say thatM is computable from a set X, that a set X is computable from M,
that M is ∆0

2, that M is arithmetic, that M is low, etc., we mean D(M) instead of
M.

Let us also point out that the quantifier-free diagram, defined like the atomic diagram
but with quantifier-free formulas, is also Turing equivalent to D(M). We let the reader
verify this fact.

I.1.2. An example. Unless it is trivial, a structure will have many different ω-
presentations — continuum many actually (see Theorem I.2.1) — and these different
ω-presentations will have different computability theoretic properties. For starters, some
of them may be computable while others may not. But even among the computable
copies of a single structure one may find different computability behaviors.

Consider the linear ordering A = (N;≤), where ≤ is the standard ordering on the
natural numbers. We can build another ω-presentation M = (N;≤M) of A as follows.
(Recall that {ki : i ∈ N} is a computable one-to-one enumeration of 0′). First, order the
even natural numbers in the natural way: 2n ≤M 2m if n ≤ m. Second, place the odd
number 2s+ 1 right in between 2ks and 2ks + 2, that is, let 2ks ≤M 2s+ 1 ≤M 2ks + 2.
Using transitivity we can then define ≤M on all of pairs of numbers. Thus 2n <M 2s+1
if and only if n < ks, and 2s+ 1 <M 2t+ 1 if and only if ks < kt.

We then have that A andM are two computable ω-presentations of the same struc-
ture. However, computationally, they behave quite differently. For instance, the suc-
cessor function is computable in A but not in M: In A, SuccA(n) = n + 1 is clearly
computable. On the other hand, in M, SuccM(2n) = 2n + 2 if and only if there is no
odd number placed ≤M -in-between 2n and 2n + 2, which occurs if and only if n 6∈ 0′.
Therefore, SuccM computes 0′.

The reason A and M can behave differently despite being isomorphic is that they
are not computably isomorphic: There is no computable isomorphism between them
because, if there were, we could use SuccA and the isomorphism to compute SuccM,
contradicting that SuccM computes 0′.

I.1.3. Relaxing the domain. In many cases, it will be useful to consider struc-
tures whose domain is a subset of N. We call those (⊆ ω)-presentations. If M , the
domain ofM, is a proper subset of N, we can still define D(M) by letting D(M)(i) = 0
if ϕat

i mentions a variable xj with j 6∈M . In this case, we have

D(M) ≡T M ⊕ τM.
To see that D(M) computes M , notice that, for j ∈ N, j ∈M ↔ D(M)(pxj = xjq) =
1, where pϕq is the index of the atomic formula ϕ in the enumeration {ϕat

i : i ∈ N}.
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The following observation will simplify many of our constructions later on.

Observation I.1.3. We can always associate to an infinite (⊆ ω)-presentation M,
an isomorphic ω-presentation A: If M = {m0 < m1 < m2 < · · · } ⊆ N, we can use
the bijection i 7→ mi : N → M to get a copy A of M, now with domain N. Since
this bijection is computable in M , it is not hard to see that D(A) ≤T D(M), and
furthermore that D(A)⊕M ≡T D(M).

One of the advantages of (⊆ ω)-presentations is that they allow us to present finite
structures.

I.1.4. Relational vocabularies. A vocabulary is relational if it has no function
or constant symbols, and has only relational symbols. Every vocabulary τ can be made
into a relational one, τ̃ , by replacing each n-ary function symbol by an (n + 1)-ary
relation symbol coding the graph of the function, and each constant symbol by a 1-ary
relation symbol coding it as a singleton. Depending on the situation, this change in
vocabulary might be more or less relevant. For instance, the class of quantifier-free
definable sets changes, but the class of ∃-definable sets does not (see Exercise I.1.4).
For most computational properties, this change is nonessential; for instance, if M is
an ω-presentation, and M̃ is the associated ω-presentation ofM as a τ̃ -structure, then
D(M) ≡T D(M̃) (as it follows from Exercise I.1.4). Because of this, and for the sake
of simplicity, we will often restrict ourselves to relational languages.

Exercise I.1.4. Show that the ∃-diagram of M as a τ structure is 1-equivalent to
its ∃-diagram as a τ̃ diagram. More concretely, let {ϕ∃i : i ∈ N} and {ϕ̃∃i : i ∈ N}
be the standard effective enumerations of the existential τ -formulas and the existential
τ̃ -formulas on the variables x0, x1, ... . Show that

{i ∈ N :M |= ϕ∃i [xj 7→ j : j ∈ N]} ≡1 {i ∈ N :M |= ϕ̃∃i [xj 7→ j : j ∈ N]}.

I.1.5. Finite Structures and Approximations. We can represent finite struc-
tures using (⊆ ω)-presentations. However, when working with infinitely many finite
structures at once, we often want to be able to compute things about them uniformly,
for instance the sizes of the structures — something we could not do from (⊆ ω)-
presentations. For that reason, we sometimes consider (v ω)-presentations, which are
(⊆ ω)-presentations whose domains are initial segments of N. Given a finite (v ω)-
presentation, we can easily find the first k that is not in the domain of the structure.

When τ is a finite vocabulary, finite τ -structures can be coded by a finite amount
of information. Suppose M is a finite τ -structure with domain {0, ..., k − 1}, and τ is
a finite relational vocabulary. Then there are only finitely many atomic τ -formulas on
the variables x0, ..., xk−1, let us say `k of them. Assume the enumeration {ϕat

i : i ∈ N}
of the atomic τ -formulas is such that those `k formulas come first, and the formulas
mentioning other variables come later. Then D(M) is determined by the finite binary
string of length `k that codes the values of those formulas. We will often assume D(M)
is that string.

When dealing with infinite structures, very often we will want to approximate them
using finite substructures. We need to take care of two technical details. First, if τ is an
infinite vocabulary, we need to approximate it using finite sub-vocabularies. We assume
that all computable vocabularies τ come with an associated effective approximation
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τ0 ⊆ τ1 ⊆ · · · ⊆ τ , where each τs is finite and τ =
⋃
s τs. In general and unless

otherwise stated, we let τs consist of the first s relation, constant and function symbols
in τ , but in some particular cases, we might prefer other approximations. For instance,
if τ is already finite, we usually prefer to let τs = τ for all s. Second, to be able
to approximate a τ -structure M using τs-substructures, we need the τs-reduct of M
to be locally finite, i.e., every finite subset generates a finite substructure. To avoid
unnecessary complications, we will just assume τ is relational and, in particular, locally
finite. Even if τ is not originally relational, we can make it relational as in Section I.1.4.

Definition I.1.5. Given an ω-presentationM, we letMs be the finite τs-substructure
ofM with domain {0, ..., s−1}. We call the sequence {Ms : s ∈ N} a finite approxima-
tion of M. We identify this sequence with the sequence of codes {D(Ms) : s ∈ N} ⊆
2<N, which allows us to consider its computational complexity.

In general, when we refer to a τ|·|-structure, we mean a τs-structure where s is the
size of the structure itself. For instance, the structuresMs above are all τ|·|-structures.

Observation I.1.6. For each s, D(Ms) = D(M) � `s, and henceD(M) =
⋃
sD(Ms).

Thus, having an ω-presentation is equivalent to having a finite approximation of
a structure M. This is why, when we are working with an ω-presentation, we often
visualize the structure as being given to us little by little.

As a useful technical device, we define the atomic diagram of a finite tuple as the set
of atomic formulas true about the tuple restricted to the smaller vocabulary. Again, we
assume that τ is relational and that the enumeration of the τ -atomic formulas used in
the definition of D(M) has the following property: For each s, the τs-atomic formulas
on the variables {x0, ..., xs−1} are listed before the rest; that is, they are ϕat

0 , ..., ϕ
at

`s−1

for some `s ∈ N.

Definition I.1.7. Let M be a τ -structure and let ā = 〈a0, ..., as−1〉 ∈ M s. We
define the atomic diagram of ā in M, denoted DM(ā), as the string in 2`s such that

DM(ā)(i) =

{
1 if M |= ϕat

i [xj 7→ aj, j < s],

0 otherwise.

So, ifM were an ω-presentation and a0, ...as, ... were the elements 0, ..., s, ... ∈M =
N, then DM((a0, ..., as−1)) = D(Ms) as in Definition I.1.5.

Observation I.1.8. For every s ∈ N and every σ ∈ 2`s , there is a quantifier-free
τ -formula ϕat

σ (x0, ..., xs−1) such that, for every structure A and tuple ā ∈ As,

σ = DA(ā) ⇐⇒ A |= ϕ
at

σ (ā),

Furthermore, for every σ ∈ 2<N with `s ≥ |σ|, there is a quantifier-free formula
ϕat

σ (x0, ..., xs−1) such that σ ⊆ DA(ā) ⇐⇒ A |= ϕat

σ (ā) for every A and ā ∈ As,
namely

ϕatσ (x̄) ≡

 ∧
i<|σ|,σ(i)=1

ϕati (x̄)

 ∧
 ∧
i<|σ|,σ(i)=0

¬ϕati (x̄)

 .
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I.1.6. Congruence structures. It will often be useful to consider structures where
equality is interpreted by an equivalence relation. A congruence τ -structure is a struc-
ture M = (M ; =M, {RMi : i ∈ IR}, {fMi : i ∈ IF}, {cMi : i ∈ IC}), where =M is an
equivalence relation on M , and the interpretations of all the τ -symbols are invariant
under =M (that is, if ā =M b̄, then ā ∈ RMi ⇐⇒ b̄ ∈ RMi and fMj (ā) =M fj(b̄) for all
i ∈ IR and j ∈ IF ). If M = N, we say that M is a congruence ω-presentation. We can
then define D(M) exactly as in Definition I.1.2, using =M to interpret equality.

Given a congruence τ -structure, one can always take the quotient M/ =M and get
a τ -structure where equality is the standard N-equality. To highlight the difference, we
will sometimes use the term injective ω-presentations when equality is N-equality.

Lemma I.1.9. Given a congruence ω-presentation M with infinitely many equiva-
lence classes, the quotient M/ =M has an injective ω-presentation A computable from
D(M). Furthermore, the natural projection M→A is also computable from D(M).

Proof. All we need to do is pick a representative for each =M-equivalence class in
a D(M)-computable way. Just take the N-least element of each class: Let

A = {a ∈M : (∀b ∈M, b <N a) b 6=M a}

be the domain of A. Define the functions and relations in the obvious way to get a
(⊆ ω)-presentation of M. To get an ω-presentation, use Observation I.1.3. �

Therefore, from a computational viewpoint, there is no real difference in considering
congruence structures or injective structures.

I.1.7. Enumerations. Assume τ is a relational vocabulary. An enumeration of a
structureM is just an onto map g : N→M . To each such enumeration we can associate
a congruence ω-presentation g−1(M) by taking the pull-back of M through g:

g−1(M) = (N;∼, {Rg−1(M)
i : i ∈ IR}),

where a ∼ b ⇐⇒ g(a) = g(b) and R
g−1(M)
i = g−1(RMi ) ⊆ Na(i). The assumption

that τ is relational was used here so that the pull-backs of functions and constants are
not multi-valued. Let us remark that if g is injective, then ∼ becomes =N, and hence
g−1(M) is an injective ω-presentation. In this case, the assumption that τ is relational
is not important, as we can always pull-back functions and constants through bijections.

It is not hard to see that

D(g−1(M)) ≤T g ⊕D(M).

Furthermore, D(g−1(M)) ≤T g⊕ τM, where τM is as in Definition I.1.1. As a corollary
we get the following lemma.

Lemma I.1.10. Let A be a computable structure on a relational language and M be
an infinite c.e. subsets of A. Then, the substructure M of A with domain M has a
computable ω-presentation.

Proof. Just let g be a computable injective enumeration ofM and consider g−1(M).
�
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As a corollary of the lemma, we get that, if a structure is defined as a substructure
of a computable ω-presentation generated by a a c.e. subset, then the new structure has
a computable copy.

Throughout the book, there will be many constructions where we need to build
a copy of a given structure with certain properties. In most cases, we will do it by
building an enumeration of the structure and then taking the pull-back. The following
observation will allow us to approximate the atomic diagram of the pull-back.

Observation I.1.11. Let g be an enumeration ofM. Notice that for every tuple ā,
Dg−1(M)(ā) = DM(g(ā)). For each k, use g � k to denote the tuple 〈g(0), ..., g(k − 1)〉 ∈
Mk. Then Dg−1(M)(〈0, ..., k− 1〉) = DM(g � k) and the diagram of the pull-back can be
calculated in terms of the diagrams of tuples in M as follows:

D(g−1(M)) =
⋃
k∈N

DM(g � k).

I.2. Presentations that code sets

In this section, we show that the Turing degrees of ω-presentations of a non-trivial
structure can be arbitrarily high. Furthermore, we prove a well-known theorem of
Julia Knight’s that states that the set of Turing degrees of the ω-presentations of a
structure is upwards closed. This set of Turing degrees is called the degree spectrum of
the structure, and we will study it in detail in Chapter V. Knight’s theorem is only true
if the structure is non-trivial: A structure A is trivial if there is a finite tuple such that
every permutation of the domain fixing that tuple is an automorphism. Notice that
these structures are essentially finite in the sense that anything relevant about them is
coded in that finite tuple.

Theorem I.2.1 (Knight [Kni98]). Suppose that X can compute an ω-presentation
of a τ -structure M which is non-trival. Then there is an ω-presentation A of M of
Turing degree X.

Before proving the theorem, let us remark that if, instead of an ω-presentation, we
wanted a (⊆ ω)-presentation or a congruence ω-presentation, it would be very easy
to code X into either the domain or the equality relation of A: Recall that D(A) =
A ⊕ (=A) ⊕ τA. Requiring A to be an injective ω-presentation forces us to code X in
the structural part of A, namely τA.

Proof. We will build an X-computable injective enumeration g ofM and let A =
g−1(M). That is already enough to give us D(A) ≤T X; the actual work comes from
ensuring that D(A) ≥T X. We build g as a limit

⋃
s p̄s, where the p̄s form a nested

sequence of tuples p̄0 ⊆ p̄1 ⊆ · · · in M<N, getting
⋃
s p̄s ∈MN. Recall from Observation

I.1.11 that we can approximate the atomic diagram of A by the atomic diagrams of the
tuples p̄s:

D(A) =
⋃
s∈N

DM(p̄s).

Let p̄0 = ∅. Suppose now we have already defined already p̄s. At stage s+1, we build
p̄s+1 ⊇ p̄s with the objective of coding X(s) ∈ {0, 1} into D(A). The idea for coding
X(s) is as follows: We would like to find a, b ∈ M \ p̄s such that DM(p̄sa) 6= DM(p̄sb).
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Suppose we find them and DM(p̄sa) <lex DM(p̄sb), where ≤lex is the lexicographical
ordering on strings in 2<N. Then, depending on whether X(s) = 0 or 1, we can define
p̄s+1 to be either p̄sab or p̄sba. To decode X(s), all we have to do is compare the binary
strings Dg−1(M)(0, ..., k − 1, k) and Dg−1(M)(0, ..., k − 1, k + 1), where k = |p̄s|.

The problem with this idea is that there may not be such a and b, and DM(p̄sa)
might be the same for all a ∈ M . Since M is non-trivial, we know there is some
bijection of M preserving p̄s which is not an isomorphism, and hence there exist tuples
ā and b̄ ∈ (M \ p̄s)<N of the same length with DM(p̄sā) 6= DM(p̄sb̄). Furthermore, there
are disjoint such ā and b̄ (if we take a tuple disjoint from ā and b̄, its diagram must be
different from that of either ā or b̄ and we can replace it for b̄ or ā accordingly). So we
search for such a pair of tuples ā, b̄, say of length h. We also require the pair ā, b̄ to
be minimal, in the sense that DM(p̄sa0, ..., ai−1) = DM(p̄sb0, ..., bi−1) for i− 1 ≤ h− 1.
Suppose DM(p̄sā) <lex DM(p̄sb̄) (otherwise replace ā for b̄ in what follows). If X(s) = 0,
let p̃s+1 = p̄sa0b0a1b1, ..., ah−1bh−1. If X(s) = 1, let p̃s+1 = p̄sb0a0b1a1, ..., bh−1ah−1.
Finally, to make sure g is onto, we let p̄s+1 = p̃s+1c, where c is the N-least element of
M \ p̃s+1.

To recover X from D(A), we need to also simultaneously recover the sequence of
lengths {ks : s ∈ N}, where ks = |p̄s|. Given ks, we can compute ks+1 uniformly in
D(A) as follows: ks+1 is the least k > ks such that

DA(0, ...., ks − 1, ks, ks + 2, ks + 4, ..., k − 3) 6=
DA(0, ...., ks − 1, ks + 1, ks + 3, ks + 5, ..., k − 2).

Once we know which of these two binary strings is lexicographically smaller, we can tell
if X(s) is 0 or 1: It is 0 if the former one is ≤lex-smaller than the latter one. �

Notice that for trivial structures, all presentations are isomorphic via computable bi-
jections, and hence all presentations have the same Turing degree. When the vocabulary
is finite, all trivial structures are computable.





CHAPTER II

Relations

A relation is just a set of tuples from a structure. The study of the complexity
and definability of such a basic concept is one of the main components of computable
structure theory. Many of the notions of computability on subsets of N can be extended
to relations on a structure, but the space of relations is usually much richer than the
space of subsets of N, and understanding that space allows us to infer properties about
the underlying structure. In this chapter we will introduce the analogs of the notions of
c.e.ness, Turing reducibility, join and jump for the space of relations. These tools will
then be used throughout the book.

From now on, unless otherwise stated, when we are given a structure, we are given
an ω-presentation of a structure. Throughout this chapter, A always denotes an ω-
presentation of a τ -structure.

II.1. Relatively intrinsic notions

We start by defining a notion of c.e.-ness for relations on a given structure. This
will open the door for generalizing other notions of computability theory from subsets
of N to relations on a structure.

II.1.1. R.i.c.e. relations. The idea we are trying to capture is what is behind the
following examples:

Example II.1.1. Over a Q-vector space V , the relation LD ⊆ V <N of linear depen-
dence is always c.e. in V (more concretely, LD is the set of tuples (v0, ..., vk) ∈ V <N of
vectors which are linearly dependent). To enumerate LD in a D(V)-computable way,
go through all the possible non-trivial Q-linear combinations of (v0, ..., vk), and if you
find one that is equal to 0, enumerate (v0, ..., vk) into LD.

Example II.1.2. Over a ring R, the relation that holds of (r0, ..., rk) ∈ R<N if the
polynomial r0 + r1x + ... + rkx

k has a root is c.e. in R: As in the previous example,
search for a root of the polynomial going through all the possible values of x ∈ R, and if
you ever find one that makes the polynomial 0, enumerate (r0, ..., rk) into the relation.

Definition II.1.3. Let A be a structure. A relation R ⊆ A<N is relatively intrinsi-
cally computably enumerable (r.i.c.e.) if, on every copy (B, RB) of (A, R), we have that
RB (viewed as a subset of N<N) is c.e. in D(B).

The relations from Examples II.1.1 and II.1.2 are both r.i.c.e. A relation like linear
independence, whose complement is r.i.c.e., is said to be co-r.i.c.e.

Notice that the notion of being r.i.c.e. is independent of the presentation of A, and
depends only on its isomorphism type.

11
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Let us remark that we can view (A, R) as a structure, as defined in page xiii, by
thinking of R as an infinite sequence of relations 〈Rn : n ∈ N〉, where Rn = R ∩An has
arity n. The original definitions of r.i.c.e. (see [AK00, Page 165] [Mon12, Definition
3.1]) are only on n-ary relations for fixed n, but that is too restrictive for us. The reason
we choose to define r.i.c.e. on subsets of A<N is that it is the simplest setting that is
fully general. This is the same reason we choose to develop computability theory on sets
of natural numbers instead on the set of hereditarily finite sets: The natural numbers
are simpler, and yet every finite object can be coded with a single natural number. We
will get back to this point in Section II.4.

Example II.1.4. Let A be a linear ordering (A;≤). We say that x and y ∈ A are
adjacent, and write Adj(x, y), if x < y and there is no element in between them. Notice
that the complement of this relation, ¬Adj(a, b) ⊆ A2, is c.e. in D(A): At stage s, we
are monitoring the first s elements of the ω-presentation of A, and if we see an element
appear in between a and b, we enumerate the pair (a, b) into ¬Adj(a, b). This is also the
case for any other ω-presentation of A, which makes ¬Adj r.i.c.e. There is something
intrinsic about ¬Adj that makes it c.e. in whatever ω-presentation we consider. In the
case of ¬Adj, the reason is actually quite explicit: It has an ∃-definition, namely

¬Adj(x, y) ⇐⇒ x 6< y ∨ ∃z (x < z < y).

Example II.1.5. Consider a linear ordering with the adjacency relation as part of
the structure A = (A;<,Adj). On it, consider the set R of pairs of elements from
A for which the number of elements in between them is a number that belongs to 0′.
We note that R ⊆ A2 is r.i.c.e.: Given a, b ∈ A, wait to find elements a1, ..., an with
Adj(a, a1) ∧Adj(a1, a2) ∧ ... ∧Adj(an−1, an) ∧Adj(an, b), and if we ever find them, wait
to see if n enters 0′, and if that ever happens, enumerate (a, b) into R. The relation R
cannot be defined by an ∃-formula in the vocabulary {≤,Adj}. But it can be defined
by a computable infnite disjunction of them.

Example II.1.6. On the structure Q = (Q; 0, 1,+,×), a relation R ⊆ Q<N is r.i.c.e.
if and only if it is c.e. This is because if A is a copy of Q, then there is a D(A)
computable isomorphism between A and Q, and hence if R is c.e., RA is c.e. in D(A).

Observation II.1.7. For the definition of r.i.c.e., it does not matter whether we
use ω-presentations or congruence (⊆ ω)-presentations. That is, a relation R ⊆ A<N

is r.i.c.e. as in Definition II.1.3 if and only if, for every congruence (⊆ ω)-presentation
(B, RB) of (A, R), we have that RB is c.e. in D(B).

II.1.2. R.i. computability. The same idea from the definition of r.i.c.e. can be
used to define other standard concepts from computability theory on the subsets of
A<N.

Definition II.1.8. A relation R ⊆ A<N is relatively intrinsically computable(r.i.
computable) if RB is computable in D(B) whenever (B, RB) is a copy of (A, R).

Observe that R is r.i. computable if and only if it is r.i.c.e. and co-r.i.c.e. The reader
can imagine how to continue in this line of definitions for other notions of complexity,
like relatively intrinsically ∆0

2, relatively intrinsically arithmetic, etc. These notions
relativize in an obvious way to produce a notion of relative computability:
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Definition II.1.9. Given R ⊆ A<N and Q ⊆ A<N, we say that R is r.i.c.e. in Q if
R is r.i.c.e. in the structure (A, Q). R is r.i. computable in Q, and we write R ≤ArT Q,
if R is r.i. computable in the structure (A, Q).

The ‘rT’ stands for “relatively Turing.” Unless we need to highlight the underlying
structure, we will write ≤rT instead of ≤ArT .

Example II.1.10. Let A = (A;≤) be a linear ordering, and consider the relation
given by the pairs of elements which have at least two elements in between:

T = {(a, b) ∈ A2 : a < b ∧ ∃c, d(a < c < d < b)}.
Then T ≤rT Adj: Suppose we are given (a, b) ∈ A2 with a < b and we want to decide
if (a, b) ∈ T using Adj. If Adj(a, b), we know (a, b) 6∈ T . Otherwise, search for c in
between a and b, which we know we will find. Then we have that (a, b) ∈ T if an only
if either ¬Adj(a, c) or ¬Adj(c, b).

On the linear ordering of the natural numbers ω = (N;≤), we also have Adj ≤rT T :
To decide if a and b are adjacent wait either for an element to appear in between them
or for an element c > b with ¬T (a, c). We have ¬Adj(a, b) in the former case and
Adj(a, b) in the latter.

On the other hand, there are linear orderings where Adj 6≤rT T . As an example,
consider the linear ordering

A = 2Q + 3 + 2Q + 3 + .... .

To show that Adj 6≤rT T , it is enough to build a computable copy B of A, where TB is
computable, but AdjB is not. To do this, let us start by considering a computable ω-
presentation C of the linear ordering 2Q, and picking a computable increasing sequence
of adjacent pairs cn,0, cn,1 for n ∈ N. To build the ω-presentation B of A, we will add an
element in between cn,0 and cn,1 if and only if n ∈ 0′; we can then decode 0′ from AdjB

by checking if cn,0 and cn,1 are adjacent in B. More formally, to define B, put a copy
of C on the even numbers in the domain of B, and use the odd numbers to add those
“in-between” elements. Let 2s + 1 be ≤B-between cks,0 and cks,1, where {ks : s ∈ N}
is a computable enumeration of 0′. Notice that ≤B is computable. The relation TB is
also computable, as it holds between any two elements of C which are not in the same
2-block, and holds between 2s+ 1 and any other element, except for cks,0 and cks,1.

II.1.3. A syntactic characterization. R.i.c.e. relations can be characterized in a
purely syntactic way using computably infinitary formulas and without referring to the
different copies of the structure. We will define computably infinitary formulas in Part
2. For now, only define the class of computably infinitary Σ1 formulas or Σc

1 formulas.

Definition II.1.11. An infinitary Σ1 formula (denoted Σin
1 ) is a countable infinite

(or finite) disjunction of ∃-formulas over a finite set of free variables. A computable
infinitary Σ1 formula (denoted Σc

1) is an infinite or finite disjunction of a computable
list of ∃-formulas over a finite set of free variables.

Thus, a Σc
1 formula is one of the form

ψ(x̄) ≡
∨∨
i∈I

∃ȳiϕi(x̄, ȳi),
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where each ϕi is quantifier-free, I is an initial segment of N, and the list of Gödel
indices 〈pϕiq : i ∈ N〉 is c.e. The definition of “A |= ψ(ā)” is straightforward. Using
the effective enumeration {We : e ∈ N} of the c.e. sets, we can easily enumerate all
Σc

1 formulas as follows: If {ϕ∃n,j(x1, ..., xj) : n ∈ N} is an effective enumeration of the
existential τ -formulas with j free variables, we define

ϕ
Σc

1
e,j(x̄) ≡

∨∨
〈n,j〉∈We

ϕ∃n,j(x̄)

for each e ∈ N. We then get that {ϕΣc
1
e,j : e ∈ N} is an effective enumeration of the Σc

1

τ -formulas with j free variables. Note that if ψ(x̄) is Σc
1, then {ā ∈ A|x̄| : A |= ψ(ā)}

is c.e. in D(A), uniformly in ψ and A. In other words, there is a c.e. operator W such
that (pψq, ā) ∈ WD(A) if and only if A |= ψ(ā) for all τ -structures A and Σc

1-τ -formulas
ψ.

Example II.1.12. In a group G = (G; e, ∗), the set of torsion elements can be
described by the Σc

1 formula:

torsion(x) ≡
∨∨
i∈N

x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
i times

= e

 .

On a graph G = (V ;E), the relation of being path-connected can be described by the
Σc

1 formula:

connected(x, y) ≡
∨∨
i∈N

∃z1, ..., zi (xEz1 ∧ z1Ez2 ∧ · · · ∧ ziEy) .

We would like to consider Σc
1-definability, not only for n-ary relations, but also for

subsets of A<N.

Definition II.1.13. A relation R ⊂ A<N is Σc
1-definable in A with parameters if

there is a tuple p̄ ∈ A<N and a computable sequence of Σc
1 formulas ψi(x1, ..., x|p̄|, y1, ..., yi),

for i ∈ N, such that
R = {b̄ ∈ A<N : A |= ψ|b̄|(p̄, b̄)}.

(When we say “computable sequence of Σc
1 formulas,” we of course mean of indices

of Σc
1 formulas.)

From the observation before Example II.1.12, it is not hard to see that if R ⊂ A<N

is Σc
1 definable in A with parameters, it is r.i.c.e. The next theorem shows that this

is a characterization. The theorem was proved for n-ary relations by Ash, Knight,
Manasse, and Slaman [AKMS89], and by Chisholm [Chi90] independently. The proof
for subsets of A<N is no different.

Theorem II.1.14 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm [Chi90]).
Let A be a structure, and R ⊆ A<N a relation on it. The following are equivalent:

(1) R is r.i.c.e.
(2) R is Σc

1 definable in A with parameters.

Proof. As we mentioned above, (2) easily implies (1). We prove the other direction.
We will build a copy B of A by taking the pull-back of an enumeration g : N→ A that
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we construct step by step, and we will apply (1) to that copy. To define B, we define g
as the union of a nested sequence of tuples {p̄s : s ∈ N} ⊆ A<N, where p̄s is defined at
stage s. Then we define B to be the pull-back g−1(A) as in Subsection I.1.7. Thus, we
will have

p̄0 ⊆ p̄1 ⊆ p̄2 ⊆ · · ·
s→∞−−−→ g and D(B) =

⋃
s

DA(p̄s).

Throughout the construction, we try as much as possible to make RB not c.e. in D(B).
But, because of (1), this attempt will fail somewhere, and we will have that

g−1(R) = RB = WD(B)
e

for some e ∈ N. We will then turn this failure into a Σc
1 definition of R.

Here is the construction of B. Let p̄0 be the empty sequence. At odd stages, we take
one step towards making g onto. At stage s+ 1 = 2e+ 1, if the eth element of A is not
already in p̄s, we add it to the range of p̄s+1 (i.e., we let p̄s+1 = p̄s

ae), and otherwise let
p̄s+1 = p̄s.

At the even stages, we work towards making RB not c.e. in D(B): At stage s +

1 = 2e, we try to force W
D(B)
e 6⊆ g−1(R) by trying to get 〈j1, ..., j`〉 ∈ W

D(B)
e while

〈g(j1), ..., g(j`)〉 6∈ R for some tuple j1, ..., j` ∈ N. We do this as follows: We search for
an extension q̄ of p̄s in the set

Qe = {q̄ ∈ A<N : ∃`, j1, ..., j` < |q̄|
(
〈j1, ..., j`〉 ∈ WDA(q̄)

e and 〈qj1 , ..., qj`〉 6∈ R
)
}.

If we find one, we let p̄s+1 = q̄. If not, we do nothing and let p̄s+1 = p̄s. This ends the
construction of g and B.

B<ω = N<ω g // A<ω

W
D(B)
e

⊆

R

⊆

〈j1, ..., j`〉
q̄ //

∈

〈qj1 , ..., qj`〉

6∈

Notice that if at a stage s + 1 = 2e, we succeed in defining p̄s+1 = q̄ ∈ Qe, then we

succeed in making W
D(B)
e 6= g−1(R): This is because we would have q̄ ⊆ g and hence

that

〈j1, ..., j`〉 ∈ WDA(q̄)
e ⊆ WD(B)

e while 〈g(j1), ..., g(j`)〉 = 〈qj1 , ..., qj`〉 6∈ R.

(Observe that since D(B) =
⋃
sDA(p̄s), we have that W

D(B)
e =

⋃
sW

DA(p̄s)
e .) However,

we cannot succeed at all such stages because RB = W
D(B)
e for some e ∈ N. Thus, for

that particular e, at stage s+ 1 = 2e, there was no extension of p̄s in Qe.

Claim II.1.14.1. If RB = W
D(B)
e and there are no extensions of p̄ in Qe, then R is

Σc
1-definable in A with parameters p̄.

Proof of the claim. Notice that if we find some q̄ ⊇ p̄ and a sub-tuple ā =

〈qj1 , ..., qj`〉 such that 〈j1, ..., j`〉 ∈ WDA(q̄)
e , then we must have ā ∈ R, as otherwise we

would get q̄ ∈ Qe. This is the key idea we use to enumerate elements into R.
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More formally, we will show that R is equal to the set

S = {〈qj1 , ..., qj`〉 ∈ A<ω : where q̄ ∈ A<N and `, j1, ..., j` < |q̄|
satisfying q̄ ⊇ p̄ and 〈j1, ..., j`〉 ∈ WDA(q̄)

e }.

If ā ∈ R, let j1, ..., j|ā| be indices such that ā = 〈g(j1), ..., g(j|ā|)〉, and we get that ā ∈ S
using for q̄ a long enough segment of g. For the other direction, if ā = 〈qj1 , ..., qj`〉 ∈ S,
then we must have ā ∈ R, as otherwise we would have q̄ ∈ Qe, contradicting the
assumption of the claim.

Now that we know that R = S, let us show that S is Σc
1 definable with parameters

p̄. For every α ∈ A<ω,

ā ∈ S ⇐⇒ ∃q̄ ⊇ p̄
∨

j1,...,j|ā|<|q̄|

(
〈qj1 , ..., qj|ā|〉 = ā & 〈j1, ..., j|ā|〉 ∈ WDA(q̄)

e

)
.

But “〈j1, ..., j|ā|〉 ∈ WDA(q̄)
e ” is not a formula in the language. So, we need to re-write it

as:

ā ∈ S ⇐⇒
∨∨
σ∈2<N,

∨
(j1,...,j|ā|)∈Wσ

e

∃q̄ ⊇ p̄
(
〈qj1 , ..., qj|ā|〉 = ā & “σ ⊆ DA(q̄)”

)
.

Recall that, for each σ ∈ 2<N, there is a quantifier-free formula with the meaning
“σ ⊆ DA(x̄)” (Observation I.1.8). �

Thus, R is Σc
1-definable in A with parameters p̄s.

(For the detail-oriented reader, let us observe that the fact that the congruence
ω-presentation B is non-injective is not important here by Observation II.1.7.) �

Very often, we will deal with relations that are Σc
1-definable without parameters.

These relations are not just r.i.c.e., but uniformly r.i.c.e.:

Definition II.1.15. A relation R ⊆ A<N is uniformly r.i.c.e. (u.r.i.c.e.) if there is a
c.e. operator W such that RB = WD(B) for all (B, RB) ∼= (A, R).

The difference between r.i.c.e. and u.r.i.c.e. relations is just that the former needs pa-
rameters in its Σc

1-definition — parameters that one may no be able to find computably
and hence require “non-uniform” information.

Corollary II.1.16. Let A be a structure and R ⊆ A<N a relation on it. The
following are equivalent:

(1) R is u.r.i.c.e.
(2) R is Σc

1 definable in A without parameters.

Proof. It is easy to see that (2) implies (1). For the other direction, let We be
the c.e. operator witnessing that R is u.r.i.c.e.. Let Qe be as in the proof of Theorem
II.1.14. No tuple q̄ ∈ A<N can be in Qe because, otherwise, any extension of q̄ to an

enumeration g of A would satisfy W
D(g−1(A))
e 6⊆ g−1(R), contradicting our choice of We.

The corollary then follows from Claim II.1.14.1. �
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II.1.4. Coding sets of natural numbers. Another feature that is useful when
working with subsets of A<N is that we can code subsets of N in a straightforward way:

Definition II.1.17. Given a set X ⊆ N, we define ~X ⊆ A<N by letting b̄ ∈ ~X if
and only if |b̄| ∈ X.

When ~X is r.i.c.e. in A, we say that X is coded by A [Mon10, Definition 1,8]. It

follows from the definitions that ~X is r.i.c.e. in A if and only if X is c.e. in every ω-
presentation of A. A characterization of the sets X coded by a given structure was first
given by Knight [Kni86, Theorem 1.4’], and we get it as a corollary of Theorem II.1.14.
Let us first see a couple of examples.

Example II.1.18. Given X ⊆ N, let G be the group
⊕

i∈X Zpi , where pi is the ith
prime number. We then have that X is coded by G, as i ∈ X if and only if there is an
element of G with order pi.

A more general family of examples are the ∃-types of tuples from the structure.

Definition II.1.19. Given ā ∈ A<N, we define the ∃-type of ā in A as

∃-tpA(ā) = {i ∈ N : A |= ϕ∃i,|ā|(ā)}
where 〈ϕ∃i,j : i ∈ N〉 is an effective enumeration of the ∃-τ -formulas with j-free variables.

Clearly, for any tuple ā ∈ A<N, we can enumerate ∃-tpA(ā) from any ω-presentation
of A once we recognize where the tuple ā is in the ω-presentation (non-uniformly).
Knight’s theorem essentially says that ∃-types are essentially all that a structure can
code. To state Knight’s results, we need to introduce the notion of enumeration re-
ducibility.

Definition II.1.20. An enumeration of Y is an onto function f : N → Y . A set
X ⊆ N is e-reducible to Y ⊆ N if every enumeration of Y computes an enumeration of
X. See the background section for more on e-reducibility.

If a set X ⊆ is e-reducible to the ∃-type of some tuple ā inA, then any ω-presentation
of A can enumerate ∃-tpA(ā) and hence also X. It follows that X is coded by A. Knight
showed that these are all the sets A codes:

Corollary II.1.21 (Knight [Kni86, Theorem 1.4’], see also [AK00, Theorem
10.17]). Let X ⊆ N. The following are equivalent:

(B1) X is coded by A (i.e., X is c.e. in every copy of A).
(B2) X is e-reducible to ∃-tpA(p̄) for some p̄ ∈ A<N.

Proof. We have already mentioned how (B2) implies (B1). We prove the other
direction.

As we mentioned before, X is c.e. in every copy of A if and only if ~X is r.i.c.e. in
A. By Theorem II.1.14, we have a Σc

1 definition of ~X over some parameters p̄. We can
then transform this Σc

1 definition into an enumeration operator Φ that outputs X, given
∃-tpA(p̄) as input: The operator Φ enumerates n into Φ∃-tpA(p̄) if (the index of) one of

the disjuncts that appears in the Σc
1 definition of ~X ∩ An appears in ∃-tpA(p̄). More

formally, the Σc
1-definition of ~X is of the form

b̄ ∈ ~X ∩ An ⇐⇒
∨∨
{ϕ∃i,|p̄|+|b̄|(p̄, b̄) : 〈i, |p̄|+ |b̄|〉 ∈ W}
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for some c.e. set W . Then

n ∈ X ⇐⇒ ∃i ∈ N
(
〈i, |p̄|+ n〉 ∈ W ∧ p∃x̄ϕi,|p̄|+n(p̄, x̄)q ∈ ∃-tpA(p̄)

)
,

and hence X is c.e. in every ω-presentation of A. �

II.1.5. Joins. The use of subsets of A<N not only allows us to consider all n-tuples
simultaneously and to consider sets of natural numbers, but also all finite objects that
can be built over A. We will see more on this in Section II.4. For now, we see how to
code many relations using just one.

Definition II.1.22. Given R,Q ⊆ A<N, we define R ⊕ Q by b̄ ∈ R ⊕ Q if either
|b̄| = 2n and b̄ �n ∈ R, or |b̄| = 2n+ 1 and b̄ �n ∈ Q.

It is not hard to see that ⊕ defines a least-upper-bound operation for r.i. computabil-
ity. That is, R and Q are r.i. computable in R ⊕ Q, and whenever both R and Q are
r.i. computable in a relation S ⊆ A<N, R⊕Q is r.i. computable in S too.

Furthermore, we can take joins of N-sequences of relations.

Definition II.1.23. Given Q ⊆ N× A<N, define R ⊆ A<N as follows: b̄ ∈ R if and
only if |b̄| = 〈n,m〉 for some n,m ∈ N and (n, b̄ �m) ∈ Q.

We then have that Q is r.i.c.e. in the sense that QB ⊆ N×N<N is c.e. in B for every
copy (B, QB) of (A, Q) if and only if R is r.i.c.e. We can keep on pushing this idea
much further. For instance, given Q ⊆ (A<N)2, define R ⊆ A<N as follows: b̄ ∈ R if
|b̄| = 〈n,m〉 for some n,m ∈ N and ((b0, ...., bn−1), (bn, ..., bn+m−1)) ∈ Q, (assuming the
coding of pairs satisfies 〈n,m〉 < n+m). In a similar way, the reader can imagine how
to code subsets of (A<N)<N by subsets of A<N. We will see the most general form of
this in Section II.4.1.

II.2. Complete relations

So far we have notions of c.e.-ness, computability, and join on the subsets of A<N.
The next step is to get an analog for the Turing jump.

II.2.1. R.i.c.e. complete relations.

Definition II.2.1. A relation R ⊆ A<N is complete in A if every r.i.c.e. relation
Q ⊆ A<N is r.i. computable from R. R is r.i.c.e. complete if it is also r.i.c.e. itself.

The relation ~0′, coding 0′ as in Definition II.1.17, is always r.i.c.e. and hence every
complete relation must r.i. compute it. In some cases, ~0′ is complete itself, but in most
cases, it is not. This is not surprising, because ~0′ contains no structural information
about A, so one should not expect that it is going to r.i. compute all other r.i.c.e.
relations.

Example II.2.2. On a Q-vector space, LD ⊕ ~0′ is r.i.c.e. complete, but LD is not
r.i. computable from ~0′ when the space has infinite dimension. Recall that LD is the
linear dependence relation. On a linear ordering, (¬Adj) ⊕ ~0′ is r.i.c.e. complete, but

¬Adj is not r.i. computable from ~0′ unless there are only finitely many adjacencies. We
will prove these facts in Lemmas II.3.1 and II.3.4.
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These examples of complete relations are particularly nice and clean, but we will not
always be able to find such simple complete relations. Simple or not, r.i.c.e. complete
relations always exist. For instance, we can consider the analog of Kleene’s predicate
K by putting together all Σc

1-definable relations.

Definition II.2.3. [Mon12] The Kleene relation relative to A, denoted ~KA ⊆
N× A<N, is defined by

〈i, b̄〉 ∈ ~KA ⇐⇒ A |= ϕ
Σc

1

i,|b̄|(b̄),

where {ϕΣc
1
i,j : i ∈ N} is an effective enumeration of the Σc

1-τ -formulas with j variables as

in Section II.1.3. Of course, we can code ~KA by a subset of A<N as in Definition II.1.23.

Remark II.2.4. It is clear that ~KA is r.i.c.e. To show that it is complete, it fol-
lows from Theorem II.1.14 that, for every r.i.c.e. R ⊆ A<N, there is a tuple ā and a
computable function n 7→ en such that

b̄ ∈ R ⇐⇒ A |= ϕ
Σc

1

en,|ā|+n(ā, b̄) for all n ∈ N and b̄ ∈ An.

One can then show that the right-hand-side can we written as a question of the form
〈e, āb̄〉 ∈ ~KA. For the reader interested in the details, here is the proof. Recall that

ϕ
Σc

1
e,j(x̄) was defined as

∨∨
〈i,j〉∈We

ϕ∃i,j(x̄) where j = |x̄|. Let e be the index for We such
that

〈i, |ā|+ n〉 ∈ We ⇐⇒ 〈i, |ā|+ n〉 ∈ Wen .

Then, we get (∀n ∈ N) ϕ
Σc

1

e,|ā|+n ≡ ϕ
Σc

1

en,|ā|+n, and that

b̄ ∈ R ⇐⇒ 〈e, āb̄〉 ∈ ~KA for all b̄ ∈ A<N.

In particular, it follows that, given an enumeration of all tuples in A, we can get an
enumeration of all r.i.c.e. subsets of A<N.

Exercise II.2.5. Generalize Remark II.2.4 and get that not only is ~KA complete
among r.i.c.e. subsets of A<N, but also among subsets of N × A<N: For every r.i.c.e.
~R ⊆ N× A<N, there is a tuple ā and a computable function f : N→ N such that

〈i, b̄〉 ∈ ~R ⇐⇒ 〈f(i), āb̄〉 ∈ ~KA for all i ∈ N and b̄ ∈ A<N.

In terms of Turing degree, it is easy to see that ~KA ≤T D(A)′ for any ω-presentation
A. The reverse reducibility holds in some ω-presentations (Lemma IV.3.4) and not in
others:

Exercise II.2.6. Show that any non-trivial structure has an ω-presentation A with
D(A) ≡T ~KA.

By relativizing Kleene’s relation, we can define a jump operator on subsets of A<N.

Definition II.2.7. Given Q ∈ A<N, we define the jump of Q in A to be ~K(A,Q),
that is, Kleene’s relation as in Definition II.2.3 relative to the structure (A, Q). We
denote it by Q

′
.
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II.2.2. Diagonalization. We now prove that, on the space of subsets of A<N, the
jump operation actually jumps.

Theorem II.2.8. For every structure A, ~KA is not r.i. computable in A.

Proof. This proof is essentially the same as Kleene’s diagonalization argument for
showing that 0′ is not computable, but adapted to this setting.

Consider the following modification of ~KA:

~KA2 = {〈〈e, ā〉, 〈i, b̄〉〉 ∈ (N× A<ω)2 : Φe(i) ↓ and (〈Φe(i), āb̄〉 6∈ ~KA}.

By the completeness of ~KA as in Exercise II.2.5, we have that for every r.i.c.e. relation
~R ⊆ N×A<ω, there is an e and an ā such that ~R is the 〈e, ā〉-th column of ~KA2 , that is,

〈i, b̄〉 ∈ ~R ⇐⇒ 〈〈e, ā〉, 〈i, b̄〉〉 ∈ ~KA2 .

Consider now the complement of the diagonal of ~KA2 :

~R = {〈e, b̄〉 ∈ N× A<N : Φe(e) ↓ and 〈Φe(e), b̄b̄〉 6∈ ~KA}.

Suppose, toward a contradiction, that ~KA is co-r.i.c.e. We then get that ~R is r.i.c.e.
too. By the completeness of ~KA2 , ~R must be one of the columns of ~KA2 . That is, there
is an ā ∈ An and an index k for a total computable function f = Φk such that

〈i, b̄〉 ∈ ~R ⇐⇒ 〈Φk(i), āb̄〉 ∈ ~KA for all 〈i, b̄〉 ∈ N× A<N.

We then get the following contradiction:

〈k, ā〉 ∈ ~R ⇐⇒ 〈Φk(k), āā〉 ∈ ~KA ⇐⇒ 〈k, ā〉 6∈ ~R. �

Corollary II.2.9. For every Q ∈ A<N, Q <ArT Q
′; that is, Q is r.i. computable in

Q′, but Q′ is not r.i. computable in Q.

Proof. It is easy to see that Q ≤ArT Q′ because the Σc
1 diagram of (A, Q) clearly

computes the atomic diagram of (A, Q) in any copy of A. That Q′ is not r.i. computable
in Q follows from the theorem above applied to the structure (A, Q). �

Historical Remark II.2.10. The proof of Theorem II.2.8 given above is from [Mon12],
although it is clearly similar to the standard proof of the incomputability of the halting prob-
lem. Theorem II.2.8 had been previously proved for a different, yet equivalent, notion of jump
by Vatev in [Vat11]. Vatev’s proof, restated in our terms, goes by showing that if B is a

generic copy of A, then ~KB has degree D(B)′ (which, of course, is not computable in D(B)),

and hence ~KA is not r.i. computable in A. From a personal communication, Stukachev has
another proof which has not been translated into english yet.

II.2.3. Structural versus binary information. As we saw in Definition II.1.17,
we can code reals X ⊆ N with relations ~X ⊂ A<N in a somewhat trivial way using just
the size of the tuples. There is no structural information on the relation ~X: We then say
that the information content in ~X is purely binary. On the contrary, relations like Adj
on a linear ordering are purely structural. Relations like the r.i.c.e. complete relation
on a linear ordering, ¬Adj⊕ ~0′, are a mix of both. Sometimes, one is interested only in
structural behavior, and having to deal with the binary parts of relations may obscure
what one is trying to analyze. In that case, one should consider the structural versions
of the notions from earlier in this chapter by modding out the binary information: A
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relation R ⊆ A<N is structurally r.i.c.e. in A if it is r.i.c.e. in (A, ~X) for some X ⊆ N. R

is structurally r.i. computable in Q within A if R is r.i. computable in (A,Q, ~X) for some
X ⊆ N. We could also refer to these versions as the boldface versions or the on-a-cone
versions. The one we will actually consider in this book is the following:

Definition II.2.11. A relation R is structurally complete if R ⊕ ~X is complete for
some X ⊆ N.

In all of our examples, the set X from the definition will turn out to be 0′. However,
we could come up with other examples where other sets X are needed.

II.3. Examples of r.i.c.e. complete relations

In this section, we consider structures which have nice structurally complete rela-
tions.

Lemma II.3.1. Let A = (A;≤) be a linear ordering. Then

Adj = {(a, b) ∈ A2 : a < b & @c (a < c < b)}.

is structurally complete. Furthermore, ¬Adj⊕ ~0′ is r.i.c.e. complete.

Proof. The proof goes by showing that every Σc
1 formula is equivalent to a finitary

universal formula over the vocabulary {≤,Adj}, and that 0′ can find this equivalent
formula uniformly. We then get that every Σc

1-definable relation is r.i. computable in

Adj ⊕ ~0′. One could prove this in a purely syntactical way in the style of a quantifier
elimination argument, but instead we give a more model-theoretic proof.

Let ϕ(x1, ..., xk) be a Σc
1 formula about linear orderings. Let c̄ = (c1, ...., ck) be new

constant symbols and τ ′ = {≤, c1, ..., ck}. We will use the term c̄-linear ordering to refer
to a linear ordering where the constants from c̄ have been assigned. As a preview of
the rest of the proof, let us mention that one of the key points is that the finite c̄-linear
orderings form a well-quasi-ordering under embeddability. The proof is divided into
three claims:

Claim II.3.1.1. Two Σc
1-τ ′-sentences are equivalent on c̄-linear orderings if and only

if they hold on the same finite c̄-linear orderings.

The left-to-right direction is obvious; we prove the other direction. Let ϕ and ψ be
two Σc

1 sentences which hold on the same finite c̄-linear orderings. Consider an infinite
c̄-linear ordering L where ϕ holds. Then one of the ∃-disjuncts of ϕ holds in L, and
hence holds on a finite τ ′-substructure of L. By the assumption, ψ holds on that same
finite c̄-linear ordering, and by upward-persistence of Σc

1 formulas, ψ holds in L too.

Claim II.3.1.2. For every Σc
1-τ ′-sentence ϕ, there is a finite set of finite c̄-linear

orderings such that, for any c̄-linear ordering L, L |= ϕ if and only if one of those finite
c̄-linear orderings τ ′-embeds into L. Furthermore, 0′ can find those c̄-linear orderings
uniformly in ϕ.

Given a permutation (π1, ..., πk) of (1, ..., k) and k + 1 numbers n̄ = (n0, ..., nk), let
Lπ,n̄ be the finite c̄-linear ordering with cπ1 ≤ cπ2 ≤ · · · ≤ cπk and n0 elements less
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than c1, ni elements between ci and ci+1, and nk elements greater than ck. Consider the
ordering � on Sk × Nk+1 given by

(π, n̄) � (σ, m̄) ⇐⇒ π = σ & (∀i ≤ k) ni ≤ mi,

where Sk is the set of permutations of (1, ..., k). We then have that

(π, n̄) � (σ, m̄) ⇒ Lπ,n̄ embeds in Lσ,m̄.
By upward-persistence of Σc

1 formulas, it follows that the set D of (π, n̄) ∈ Sk × Nk+1

such that Lπ,n̄ |= ϕ is �-upwards closed. Now, by Dickson’s Lemma, the ordering �
is a well-quasi-ordering. That means that every subset of Sk × Nk+1 has a finite set of
minimal elements, and hence that for every upward-closed subset D ⊆ Sk×Nk+1, there
is a finite set d1, ..., d` ⊆ D such that

f ∈ D ⇐⇒ (∃j ≤ `) di � f for all f ∈ Sk × Nk+1.

The oracle 0′ can find this finite set {d1, ..., d`} because it can check that every Ldj
satisfies ϕ and that every Lf with (∀j ≤ `) di 6≤ f does not satisfy ϕ. This proves our
second claim.

Let ψn(x, y) be the ∃-formula that says that there are at least n many different
elements strictly in between x and y:

ψn(x, y) ≡ ∃z1, ..., zn (x < z1 < z2 < · · · < zn < y).

We write ψn(−∞, y) for the unary ∃-formula that says that there are at least n many
different elements less than y, and analogously with ψn(x,∞). Given a permutation
π ∈ Sk and n̄ = (n0, ..., nk) ∈ Nk+1, we let

ψπ,n̄(x1, ..., xk) ≡ xπ1 ≤ · · · ≤ xπk ∧ (ψn0(−∞, x1) ∧ ψn1(x1, x2) ∧ ... ∧ ψnk(xk,∞)) .

A c̄-linear ordering satisfies ψπ,n̄(c1, ..., ck) if and only if Lπ,n̄ embeds in it. Then we
get from the claim that every Σc

1 formula ϕ(x1, ..., xk) is equivalent to a finite disjunc-
tion of formulas of the form ψπ,n̄(xπ1 , ..., xπk). Furthermore, 0′ can find these formulas
uniformly. The following claim is all is left to prove the lemma.

Claim II.3.1.3. The formulas ψn(x, y) are equivalent to ∀-{≤,Adj}-formulas, and
hence so are the formulas ψπ,n̄(x1, ..., xk).

Just observe that ψn(x, y) is equivalent to a finitary universal formula over the
adjacency predicate:

ψn(x, y) ⇐⇒
∧
j≤n

@z0, ..., zj

(
x = z0 ≤ · · · ≤ zj = y ∧

(
j−1∧
i=0

(Adj(zi, zi+1)

))
.

It follows that the relations defined by ψπ,n̄(x1, ..., xk) are uniformly r.i. computable in

Adj, and that any Σc
1 formula is uniformly r.i. computable in Adj⊕ ~0′. �

An equivalence structure is a structure E = (D;E), where E is a equivalence relation
on the domain D. Define the following relations on E :

(1) for k ∈ N, Fk = {x ∈ D : there are ≥ k elements equivalent to x}, and
(2) the character of E:

G = {〈n, k〉 ∈ N2 : there are ≥ n equivalence classes with ≥ k elements}.
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Exercise II.3.2. (a) Show that the relation ~F =
⊕

k∈N Fk ⊆ N×D is structurally

complete. (b) Show that ~F ⊕ ~G⊕ ~0′ is r.i.c.e. complete. Hint in footnote.1

Exercise II.3.3. Show that the “atom” relation on a Boolean algebra is structurally
complete.

Lemma II.3.4. The relation LD of linear dependence on a Q-vector space is struc-
turally complete. Moreover LD ⊕ ~0′ is r.i.c.e. complete.

Proof. This proof is much simpler than that for Adj. The key point is that any
Q-vector space has a computable copy, and using LD, one can find an isomorphism with
that computable copy because we can use LD to find a basis. If a relation is r.i.c.e., it is
c.e. on the computable copy, and hence computable from 0′ in that copy. The relation
on the original ω-presentation is then computable from LD ⊕ ~0′. �

The same argument above can be used to show that the “algebraic dependence”
relation is structurally complete on algebraically closed fields.

Exercise II.3.5. (Hard) Show that LDn+1 6≤rT LDn in the∞-dimensional Q-vector
space. Recall that LDn is the linear dependence relation on n tuples.

II.4. Superstructures

The notion of r.i.c.e. relation is equivalent to other notions that were known many
decades ago. In this section, we study one of them — the Σ-definable subsets of the
hereditarily finite superstructure. There are some advantages to working in this setting:
One is that r.i.c.e. relations are now defined by finitary formulas instead of computably
infinitary ones. Another one is that there is almost no coding required; while subsets
of (A<N)<N can be coded by subsets of A<N as in Section II.1.5, subsets of (HFA)<N

are already subsets of HFA. Nevertheless, the advantage of A<N is that it is easier to
visualize. At the end of the day, all these advantages, one way or the other, are purely
aesthetic and not really significant.

II.4.1. The hereditarily finite superstructure. Another approach to the study
of r.i.c.e. relations is using Σ-definability on admissible structures. We will not consider
admissible structures in general, but just the hereditarily finite extension of an abstract
structure A. The elements of this extension are the finite sets of finite sets of · · · of
finite set of elements of A.

Definition II.4.1. Let Pfin(X) denote the collection of finite subsets of X. Given
a set A, we define:

(1) HFA(0) = ∅,
(2) HFA(n+ 1) = Pfin(A ∪ HFA(n)), and
(3) HFA =

⋃
n∈N HFA(n).

1For (b) you need to use that the set of finite subsets of N2 ordered by A ≤ B ⇐⇒ ∀(x, y) ∈
A∃(x′, y′) ∈ B (x ≤ x′ & y ≤ y′) is well-quasi-ordered, and hence that every set has a finite subset of
minimal elements.
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Now, given an τ -structure A, we define the τ ∪ {∈, D}-structure HFA whose domain
has two sorts, A and HFA, and where the symbols from τ are interpreted in the A-sort
as in A, ‘∈’ is interpreted in the obvious way, and D is a unary relation coding the
atomic diagram of A defined below. The need for adding D is a slightly technical, so
we will explain it later.

A quantifier of the form ∀x ∈ y... or ∃x ∈ y.... is called a bounded quantifier. A
Σ-formula is finitary τ ∪ {∈, D}-formula that is built out of atomic and negation-of-
atomic formulas using disjunction, conjunction, bounded quantifiers, and existential
unbounded quantifiers. A subset of HFA is ∆-definable if it and its complement are
Σ-definable.

Clearly, on HFA we have the usual pairing function 〈x, y〉 = {{x}, {x, y}}, and we
can encode n-tuples, strings, etc. Notice also that HFA includes the finite ordinals
(denoted by n, where 0 = ∅ and n+ 1 = {n}∪n). We use ω to denote the ∆-definable
set of finite ordinals of HFA. The operations of successor, addition, and multiplication
on ω are also ∆-definable, and hence so is Kleene’s T predicate. It follows that every
c.e. subset of ω is Σ-definable, and every computable function is ∆-definable in HFA
(for more details, see [Bar75, Theorem II.2.3]).

We define D(A) to be the satisfaction relation for atomic formulas, that is

D(A) = {〈i, ā〉 : A |= ϕ
at

i (ā)} ⊆ HFA,
where {ϕat

0 , ϕ
at

1 , ...} is an effective enumeration of all the atomic τ -formulas. Notice that
if the language of A is finite and relational, this is a finite list of formulas, and hence
D(A) is ∆-definable in HFA without using D(A). In that case, there is no need to add
D to the language HFA, but when τ is infinite, if we do not add D, Σ-formulas can
only involve finitely many symbols from τ .

Given any R ⊆ A<N, we can view it directly as a subset of HF(A). Conversely,
there is also a natural way of going from relations in HFA to subsets of A<N. Let
X = {x0, x1, ...}, where the xi’s are variable symbols. Every t ∈ HFX is essentially a
term over a finite set of variables, and we write t(x̄) to show the variables that appear
in t. Observe that HFA = {t(ā) : t(x̄) ∈ HFX , ā ∈ A|x̄|}. Let {ti : i ∈ N} be an effective
enumeration of HFX ∪X. Now, given Q ⊆ HFA, we define

s(Q) = {〈i, ā〉 : ti(ā) ∈ Q} ⊆ N× A<N.

Observation II.4.2. The relation {〈b, n, ā〉 : b ∈ HFA, n ∈ N, ā ∈ A<N & b =
tn(ā)} ⊆ HFA × ω × A<N is ∆-definable in HFA. This is not completely trivial, and
recursion on terms is necessary.

Theorem II.4.3. Given R ∈ A<N, the following are equivalent:

(1) R is r.i.c.e. in A.
(2) R is Σ-definable in HFA with parameters.

Given Q ⊆ A ∪HFA, the following are equivalent:

(1) s(Q) is r.i.c.e. in A.
(2) Q is Σ-definable in HFA with parameters.

Historical Remark II.4.4. This theorem is credited to Vǎıtsenavichyus [Văı89] in
[Stu] and appears in some form in [BT79].
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Proof. We only prove the second part; the proof of the first part is very similar.
Suppose first that s(Q) is r.i.c.e. in A. Using Theorem II.1.14, we get a c.e. set W and
a tuple p̄ ∈ A<N such that

〈i, ā〉 ∈ s(Q) ⇐⇒ A |=
∨∨

e:〈i,e〉∈W

ϕ∃e (p̄, ā) for all i ∈ N and ā ∈ A<N,

where {ϕ∃e : e ∈ N} is an effective enumeration of the ∃-τ -formulas. But then b ∈ Q
if and only if ∃i ∈ N∃ā ∈ A<N∃e(b = ti(ā) & 〈i, e〉 ∈ W & A |= ϕ∃e (p̄, ā)). Using that
deciding whether b = ti(ā) is ∆-definable and that W and the existential diagram of A
are Σ-definable, we get that Q is Σ-definable with parameters p̄.

Suppose now that Q is Σ-definable in HFA with parameters; we want to prove that
s(Q) is r.i.c.e.. Let B be a copy of A. Computably in D(B), build HFB and a copy of
HFB, and then use the Σ-definition of Q to enumerate QHFB . We end up with a D(B)-
computable enumeration of QB, which we can then use to produce a D(B)-computable
enumeration of s(Q). �

Historical Remark II.4.5. In [Mos69], Moschovakis introduces what we now call
the Moschovakis enrichment of a structure A, denoted A∗. For our purposes, there is no
real difference between A∗ and HFA. The difference is that in the iterative definition of the
domain of A∗ we take pairs instead of finite subsets as we did for HFA. Moschovakis [Mos69]
then defines a class of partial multi-valued functions from (A∗)n to A∗ which he calls search
computable functions. This class is defined as the least class closed under certain primitive
operations, much in the style of Kleene’s definition of primitive recursive and partial recursive
functions, where instead of the Kleene’s least-element operator µ, we have a multivalued
search operator ν. A subset of A∗ is search computable if its characteristic function is, and it
is semi-search computable if it has a definition of the form ∃y (f(x, y) = 1), where f is search
computable.

The definition of search computable allows us to add a list of new primitive functions
to our starting list (so long as they are given in an effective list, with computable arities),
obtaining a sort of relativized version of search computability. If we have a structure A, we
would add to the list of primitive functions the characteristic functions of the relations in A
to obtain a notion of partial, multi-valued, search computable functions in A.

Much in the same way as we did for HFA above, we have a natural way of encoding
relations R ⊆ A<N by subsets of A∗, and vice-versa. Maybe even more directly, one can go
from subsets of A∗ to subsets of HFA and back. Gordon [Gor70] proved that the notions
of search computable in A and semi-search computable in A for subsets of A∗ coincide with
the notions of ∆-definable and Σ-definable for subsets of HFA. Therefore, when we add
parameters, they also coincide with the notions of r.i. computable and r.i.c.e. for relations in
A<N.





CHAPTER III

Existentially-atomic models

The key notion in this chapter is that of existentially atomic structures: these are
atomic structures where all the types are generated by existential formulas. They are
the best-behaved structures around: They are the structures for which it is the easiest to
compute isomorphisms between different ω-presentations. They are among the easiest
to identify, in the sense that they have simple Scott sentences. Their computational
complexity can, in many cases, be simply characterized by a single enumeration degree.
But not only they are simple, they are also general: every structure is ∃-atomic if one
adds enough relations to the language, as for instances if one adds enough jumps, as we
will see in Part 2. This means that the results we present in this chapter apply to all
structures relative to those relations one needs to add.

In this chapter, we will also introduce a variety of tools that will be useful throughout
the book, as for instance the Cantor back-and-forth argument, and the notion of a
structure having enumeration degree.

III.1. Definition

Let A be a τ -structure. The automorphism orbit of a tuple ā ∈ A<N is the set

orbA(ā) = {b̄ ∈ A|ā| : there is an automorphism of A mapping ā to b̄}.

Definition III.1.1. A structure A is ∃-atomic if, for every tuple ā ∈ A<N, there is
an ∃-formula ϕā(x̄) which defines the automorphism orbit of ā; that is,

orbA(ā) = {b̄ ∈ A|ā| : A |= ϕā(b̄)}.

These structures were studied by Simmons in [Sim76, Section 2], and he cites
[Pou72] as their first occurrence in the literature.

The set of all these defining formulas, {ϕā : ā ∈ A<N} makes a Scott family:

Definition III.1.2. A Scott family for a structure A is a set S of formulas such that
each ā ∈ A<N satisfies some formula ϕ(x̄) ∈ S, and if ā and b̄ satisfy the same formula
ϕ(x̄) ∈ S, they are automorphic.

Thus, a structure is ∃-atomic if and only if it has a Soctt family of ∃-formulas. Having
access to a Scott family for a structure A allows us to recognize the different tuples in A
up to automorphism. This is exactly what is necessary to build isomorphisms between
different copies of A. If we want to build a computable isomorphism, we need the Scott
family to be computably enumerable.

Definition III.1.3. We say that a Scott family is c.e. if the set of indices for its
formulas is c.e. A structure A is effectively ∃-atomic if it has a c.e. Scott family of
∃-formulas.

27
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Example III.1.4. A linear ordering is ∃-atomic if and only if it is either finite or
dense without end points:

If a linear ordering has n elements, the ith element can be characterized by the
∃-formula that says that there i− 1 elements below it and n− i− 1 elements above it.
If a linear ordering is dense without endpoints, then two tuples are automorphic if and
only if they are ordered the same way.

Suppose now that we have a linear ordering that is neither dense nor finite. We
claim that there must exist a tuple a, b, c such that: either a < b < c, a and b are
adjacent, and there are infinitely elements to the right of c; or c < b < a, a and b are
adjacent, and there are infinitely many elements to the left of c. To prove the claim,
we consider three cases: If there is only one adjacency pair in the whole linear ordering,
then the linear ordering must have a dense segment; let a and b be the elements of the
adjacency pair and take c from the dense segment. If every element has finitely many
elements to its right or to its left, then the linear ordering has either an initial segment
isomorphic to ω or a final segment isomorphic to ω∗; either let a < b < c be the first
three elements, or let c < b < a be the last three. If neither of the above is the case,
take c so that it has infinitely many elements to both its left and its right, and let a, b
be an adjacency pair disjoint from c. Now that we have proved that a, b, c always exist,
we claim that no existential formula defines the orbit of the pair 〈a, b〉. Notice that any
∃-formula true of (a, b) is true of (a, c): To see this, recall the analysis of ∃-formulas
we did in Lemma II.3.1, and use that the number of elements in each of the intervals
(−∞, a), (a, b), and (b,+∞) is less than or equal to the number of elements in (−∞, a),
(a, c), and (c,+∞) respectively. But (a, b) and (a, c) are not automorphic because a
and b are adjacent, and a and c are not.

Exercise III.1.5. Prove that the ∃-atomic linear orderings with parameters are
exactly the finite sums of linear orderings of the form: N, N∗, Z, n and m · Q, for
n,m ∈ N.

Try characterizing which of these are ∃-atomic without parameters.

III.2. Existentially algebraic structures

We will see that fields of finite transcendence degree, graphs of finite valance with
finitely many connected components, and torsion-free abelian groups of finite rank are
all ∃-atomic over a finite set of parameters. The reason is that they are ∃-algebraic.

Definition III.2.1. An element a ∈ A is ∃-algebraic in A if there is an ∃-formula
ϕ(x) true of a such that {b ∈ A : A |= ϕ(b)} is finite. A structure A is ∃-algebraic if all
its elements are.

Example III.2.2. A field that is algebraic over its prime sub-field is ∃-algebraic
because every element is one of finitely many that is a root of a polynomial over the
prime field. We will develop this example further in Example III.8.10.

A connected graph of finite valance with a selected root vertex is ∃-algebraic because
every element is one of finitely many that are at a given distance from the root.

An abelian torsion-free group with a selected basis is ∃-algebraic because every ele-
ment is the only one for which a certain non-trivial Z-linear combination of it and the
basis evaluates to 0.
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We prove that ∃-algebraic structures are ∃-atomic in two lemmas. The core of the
arguments is an application of König’s lemma that appears in the first one.

Lemma III.2.3. Two structures that are ∃-algebraic and have the same ∃-theories
are isomorphic.

Proof. Let A and B be ∃-algebraic structures with the same ∃-theories. To prove
that A and B are isomorphic, we will define a tree of finite approximations to possible
isomorphisms from A to B, and then use König’s lemma to show this tree has a path.

List the elements of A as {a0, a1, ...}. For each n, let ϕn(x0, ...., xn−1) be an ∃-formula
which is true of tuple 〈a0, ..., an−1〉, has finitely many solutions. (A solution to a formula
is a tuple that makes it true.) By taking conjunctions if necessary, we may assume that
ϕn(x0, ...., xn−1) implies ϕn−1(x0, ..., xn−2). Let

T = {b̄ ∈ B<N : DB(b̄) = DA(a0, ..., a|b̄|−1) & B |= ϕ|b̄|(b̄)}.
We will prove that a path through T gives us an isomorphism from A to B. But before
that, let us prove T has a path.

T is clearly a tree in the sense that it is closed under taking initial segments of
tuples. It is finitely branching because, for each n, ϕn has finitely many solutions. To
show that T is infinite, notice that, for each n,

A |= ∃x0, ..., xn−1(D(x̄) = σ & ϕn(x̄)), where σ = DA(a0, ..., a|b̄|−1),

as witnessed by a0, ..., an−1. Since A and B have the same ∃-theories, B models this
sentence too, and the witness is an n-tuple that belongs to T . König’s lemma states
that every infinite finitely branching tree must have an infinite path. Thus, T must
have an infinite path P ∈ BN. This path determines a map an 7→ P (n) : A→ B. That
map is an embedding because it preserves finite atomic diagrams. But then it must be
an isomorphism: If b ∈ B is a solution of an ∃-formula ϕ with finitely many solutions,
then ϕ must have the same number of solutions in A (because ∃-Th(A) = ∃-Th(B)),
and since ∃-formulas are preserved under embeddings, one of those solutions has to be
mapped to b. �

Lemma III.2.4. Every ∃-algebraic structure is ∃-atomic.

Proof. Let A be ∃-algebraic and take ā ∈ A<N. Let ϕ(x̄) be an ∃-formula true
of ā with the least possible number of solutions, say k solutions. We claim that every
solution to ϕ is automorphic to ā. Suppose, toward a contradiction, that b̄ satisfies ϕ
but is not automorphic to ā. Then there must be an ∃-formula ψ(x̄) that is true of
either ā or b̄, but not of both. This is because if (A, ā) and (A, b̄) satisfied the same
∃-atomic formulas, since they are ∃-algebraic, the previous lemma would imply they are
isomorphic. If ψ(x̄) is true of ā, then ϕ(x̄) ∧ ψ(x̄) would be true of ā and have fewer
solutions than ϕ, contradicting our choice of ϕ. If ψ(x̄) is not true of ā, and it is true
of i out of the k solutions of ϕ, then the formula of x̄ saying

“ϕ(x̄) and there are i solutions to ϕ ∧ ψ all different from x̄”

is an ∃-formula true of ā with k − i solutions — getting the desired contradiction. �

The statements of the lemmas in this section are new, but the ideas behind them
are not. Proofs like that of Lemma III.2.3 using König’s lemma have appeared in many
other places before, for instance [HLZ99]. The ideas for the proof of Lemma III.2.4 are
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similar to those one would use in a proof that algebraic structures are atomic (without
the ∃-), except that here one has to be slightly more careful.

III.3. Cantor’s back-and-forth argument

Before we move on with more on ∃-atomic structures, we take an interlude to intro-
duce a tool we will use throughout the book.

Definition III.3.1. Given structures A and B, we say that a set I ⊆ A<N × B<N

has the back-and-forth property if, for every 〈ā, b̄〉 ∈ I,

• DA(ā) = DB(b̄) (i.e., |ā| = |b̄| and ā and b̄ satisfy the same τ|ā|-atomic formulas);
• for every c ∈ A, there exists d ∈ B such that 〈āc, b̄d〉 ∈ I; and
• for every d ∈ B, there exists c ∈ A such that 〈āc, b̄d〉 ∈ I.

(Let us recall that we are using the notation āc for the concatenation āac.)
The canonical example is the following. If A and B are isomorphic, then the set

{(ā, b̄) ∈ A<N ×B<N : (A, ā) ∼= (B, b̄)},
has the back-and-forth property. We let the reader verify this fact.

Observation III.3.2. If follows immediately form the example above, that if A and
B are isomorphic and S is a Scott family for A, then the set

IA,B = {(ā, b̄) ∈ A<N ×B<N : (for some ϕ ∈ S) A |= ϕ(ā) & B |= ϕ(b̄)}
has the back-and-forth property.

Lemma III.3.3. If I ⊆ A<N × B<N has the back-and-forth property, then for every
〈ā, b̄〉 ∈ I, there is an isomorphism g : A → B with g(ā) = (b̄). Moreover, such an
isomorphism can be computed from an enumeration of I.

Proof. The map g : A → B is defined by stages. Let ā0 = ā and b̄0 = b̄. At each
stage s+ 1, we define tuples ās+1 ∈ A<N and b̄s+1 ∈ B<N with ās ⊆ ās+1, b̄s ⊆ b̄s+1, and
〈ās+1, b̄s+1〉 ∈ I. The back-and-forth property will allow us to build such sequences in a
way that, for every c ∈ A, there is some s such that c is one of the entries of ās, and, for
every d ∈ B, there is some s such that d is one of the entries of b̄s: All we have to do
is take turns choosing elements from A and B in such a way that we eventually choose
them all. At the end of stages, we define g : A→ B so that g(ās) = b̄s. Since ās and b̄s
satisfy the same τ|ās|-atomic formulas, we get that g preserves all the relations, functions,
and constants and hence that it is an isomorphism. (Notice that DA(ās) = DB(b̄s) also
implies that, if two entries in ās are equal, so are the corresponding ones in b̄s, and
hence there is no issue defining g so that it maps ās to b̄s.)

It is clear that g can be computed from an enumeration of I. �

III.4. Uniform computable categoricity

An issue we have to be constantly aware of when working with computable struc-
tures is that different copies of same structure may behave differently computationally.
Computable categorical structures are the ones where this issue does not show up. They
are the ones whose computable copies all have the same computability theoretic prop-
erties. We will study them in Chapter VIII. For now, we consider the stronger notion
of uniform computable categoricity.
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Definition III.4.1. A computable structure A is uniformly computably categorical
if there is a computable operator that, when given as an oracle the atomic diagram D(B)
of a computable copy B of A, outputs an isomorphism form B to A. A computable
structure A is uniformly relatively computably categorical if there is a computable op-
erator that, when given D(B) for a (not necessarily computable) copy B of A, outputs
an isomorphism form B to A.

Notice that if a structure A has a c.e. Scott family of ∃-formulas, and B is a copy
of A, then the set IA,B from Observation III.3.2 is c.e. in D(B) and has the back-and-
forth property. Then, by Lemma III.3.3, we get that A and B are D(B)-computably
isomorphic. Furthermore, the definition of IA,B, and the construction from Lemma
III.3.3 are completely uniform, and produce a computable operator as needed in the
definition of uniformly relatively computably categoricity.

Theorem III.4.2 (Ventsov [Ven92]). Let A be a computable structure. The follow-
ing are equivalent:

(1) A is effectively ∃-atomic.
(2) A is uniformly relatively computably categorical.
(3) A is uniformly computably categorical.

Proof. That (1) implies (2) was observed in the previous paragraph. It is obvious
that (2) implies (3). The proof that (3) implies (1) is quite a bit more elaborate.

Suppose Γ is a computable operator such that ΓD(B) is an isomorphism from B to
A for every computable copy B of A. We first claim that for every tuple q̄ ∈ A<N, if
ΓDA(q̄) converges on 0, ..., k − 1, then

q̄ � k is automorphic to ΓDA(q̄) � k,

where
ΓDA(q̄) � k = (ΓDA(q̄)(0),ΓDA(q̄)(1), ...,ΓDA(q̄)(k − 1)) ∈ Ak.

Here comes the key observation: the value of ΓDA(q̄) � n̄ depends only on DA(q̄) ∈ 2<N,
while it determines the automorphism orbit of q̄ � n̄. The claim is true because we can
always extend q̄ to a computable onto map g : N → A so that, for B = g−1(A), ΓD(B)

is an isomorphism from B to A. Since g is also an isomorphism from B to A, the
two images of (0, ..., k − 1) through those isomorphisms must be automorphic; namely
g � k = q̄ � k and ΓD(B) � k = ΓDA(q̄) � k (see figure below).

A Bg

∼=
oo ΓD(B)

∼=
// A

q̄ � k (0, ..., k − 1)�oo � // ΓDA(q̄) � k

Now, given a tuple ā ∈ A<N, we need to produce an ∃-formula defining its orbit,
and we need to find this formula computably. Search for q̄ ∈ A<N extending ā such that
ΓDA(q̄) converges on 0, ..., |ā| − 1. We now claim that the following formula defines the
orbit of ā:

ϕā(x̄) ≡ (∃ȳ)“D(x̄, ȳ) = σ, ”
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where σ = DA(q̄) ∈ 2<N. (Recall from Observation I.1.8 that, for each σ ∈ 2`|z̄| , there is
a quantifier-free formula ϕatσ (z̄) which holds if and only if D(z̄) = σ.) Clearly, ā satisfies
ϕā. Suppose now that A |= ϕā(c̄); we need to show that ā and c̄ are automorphic. Then
there is p̄ ⊇ c̄ such that DA(p̄) = σ = DA(q̄). So

ΓDA(p̄) � |ā| = ΓDA(q̄) � |ā|.
By our first claim above, the left-hand-side is automorphic to p̄ � |ā| = c̄, and the right-
hand-side is automorphic to q̄ � |ā| = ā. �

III.5. Existential atomicity in terms of types

The usual definition of atomic models in model theory is in terms of types (as in
(A2) below). We show in this section that, for ∃-atomic models, it is enough to look at
∀-types instead of full first-order types.

We need to review some basic definitions. A ∀-type on the variables x1, ..., xn is a
set p(x̄) of ∀-formulas with free variables among x1, ..., xn that is consistent, i.e., that is
satisfied by some tuple a1, ..., an in some structure. We say that a ∀-type is realized in
a structure A if it is satisfied by some tuple in A. Given ā ∈ A<N, the ∀-type of ā in A
is the set of ∀-formulas true of ā:

∀-tpA(ā) = {ϕ(x̄) : ϕ is a ∀-formula and A |= ϕ(ā)}.
(The obvious assumption here is that |x̄| = |ā|.)

The reason we allow types to be partial is that ∀-types are never complete, as we
could not add the negation of ∀-formulas. For the same reason, instead of principal
types, we have to deal with supported types.

Definition III.5.1. A type p(x̄) is ∃-supported within a class of structures K if there
exists an ∃-formula ϕ(x̄) which is realized in some structure in K and which implies all
of p(x̄) within K; that is, A |= ∀x̄(ϕ(x̄)→ ψ(x̄)) for every ψ(x̄) ∈ p(x̄) and A ∈ K. We
say that p(x̄) is ∃-supported in a structure A if it is ∃-supported in K = {A}.

Theorem III.5.2. For every structure A, the following are equivalent:

(A1) A is ∃-atomic.
(A2) Every elementary first-order type realized in A is ∃-supported in A.
(A3) Every ∀-type realized in A is ∃-supported in A.

Proof. It is not hard to see that (A1) implies (A2) and that (A2) implies (A3).
Let us prove that (A3) implies (A1).

For each ā ∈ A<N, let ϕā(x̄) be an ∃-formula supporting the ∀-type of ā. We need to
show that S = {ϕā : ā ∈ A<N} is a Scott family for A. Notice that A |= ϕā(ā), because
otherwise ¬ϕā would be part of the ∀-type of ā, and hence implied by ϕā, which cannot
be the case because ϕā is realizable in A. Consider the set

IA = {(ā, b̄) ∈ A<N × A<N : A |= ϕā(b̄)}.
First, let us prove IA is symmetric; that is, that if A |= ϕā(b̄), then A |= ϕb̄(ā). If not,
then ¬ϕb̄(x̄) would be part of the ∀-type of ā, and hence implied by ϕā. But we know
this is not the case because b̄ models both ϕā and ϕb̄.

We now claim that IA has the back-and-forth property (Definition III.3.1). For,
suppose (ā, b̄) ∈ I. Observe ā and b̄ must satisfy the same ∀-types as they both satisfy
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ϕā and ϕb̄ which support their respective ∀-types. In particular, they satisfy the same
τ|ā|-atomic formulas and hence have the same atomic diagrams. To show the second
condition in Definition III.3.1, take c ∈ A. If there was no d ∈ B with 〈āc, b̄d〉 ∈ IA,
we would have that B |= ¬∃yϕāc(b̄, y). This formula would be part of the ∀-type of b̄,
and hence implied by ϕb̄. But then, since A |= ϕb̄(ā), we would have A |= ¬∃yϕāc(ā, y),
which is not true as witnessed by c. The third condition of the back-and-forth property
follows from the symmetry of IA.

Finally, to see that S is a Scott family for A, notice that if ϕā(b̄) and ϕā(c̄) both hold,
then, by Lemma III.3.3, both b̄ and c̄ are automorphic to ā, and hence automorphic to
each other. �

III.6. Building structures and omitting types

Before we continue studying the properties of ∃-atomic structures, we need to make
another stop to prove some general lemmas that will be useful in future sections. First,
we prove a lemma that will allow us to find computable structures in a given class of
structures. Second, using similar techniques, we prove the type omitting lemma for
∀-types, and its effective version.

We need to define one more level of the hierarchy of infinitary formulas.

Definition III.6.1. An infinitary Π2 formula (denoted Πin
2 ) is a countable infinite

(or finite) conjunction of formulas of the form ∀ȳψ(ȳ, x̄), where each formula ψ is Σin
1 ,

and x̄ is s fixed tuple of free variables. Such a formula is computable infinitary Π2

(denoted Πc
2) if the formulas ψ are Σc

1 and the list of indices of the formulas ψ is
computably enumerable. A class of structures is Πc

2 if it is the class of all the ω-
presentations that satisfy a certain Πc

2 sentence.

Assume, without loss of generality, we are working with a relational vocabulary τ .
Given a class of structure K, we let Kfin be — essentially — the set of all the finite
substructures of the structures in K:

Kfin = {DA(ā) : A ∈ K, ā ∈ A<N} ⊆ 2<N.

Exercise III.6.2. Show that Kfin is positive-tt equivalent to
⋃
{∃-Th(A) : A ∈ K}.

In particular, they are both Turing and enumeration equivalent. (For the definition of
positive-tt reducibility, see page xiii.)

Lemma III.6.3. Let K be a Πc
2 class for which Kfin is c.e. Then there is at least one

computable structure in K.

Proof. We build a structure in K by building a finite approximation to it as in
Defintion I.1.5. That is, we build a nested sequence of finite structures As, s ∈ N, where
As is a τks-structure whose domain is an initial segment of N, and where ks −−−→

s→∞
∞.

Furthermore, we require that each As be in Kfin (i.e., the diagram of As be in Kfin),
and that As ⊆ As+1 (as τks-structures). At the end of stages, we define the τ -structure
A =

⋃
s∈NAs.

Let
∧∧

i∈I ∀ȳiψi(ȳi) be the Πc
2 sentence that axiomatizes K, where each ψi is Σc

1. To

get A ∈ K, we need to guarantee that, for each each i and each ā ∈ A|ȳi|, we have



34 III. EXISTENTIALLY-ATOMIC MODELS

A |= ψi(ā). For this, when we build As+1, we will make sure that,

(?) for every i < s and every ā ∈ A|ȳi|s , As+1 |= ψi(ā).

Notice that since ψi is Σc
1, As+1 |= ψi(ā) implies A |= ψi(ā). Thus, we would end up

with A |=
∧∧

i∈I ∀ȳiψi(ȳi).
Now that we know what we need, let us build the sequence of As’s. Suppose we have

already built A0, ...,As and we want to define As+1 ⊇ As. All we need to do is search
for a finite structure in Kfin satisfying (?), which we can check computably. We need
to show that at least one such structure exists. Since As ∈ Kfin, there is some B ∈ K
which has a substructure Bs τks-isomorphic to As. Since B |=

∧∧
i∈I ∀ȳiψi(ȳi), for every

i < s and every b̄ ∈ B|ȳi|s , there exists a tuple in B witnessing that B |= ψi(b̄). Let Bs+1

be a finite τks+1-substructure of B containing Bs and all those witnessing tuples, where
ks+1 > ks is so that all the symbols in the ∃-disjunct of the ψi witnessing B |= ψi(b̄) for
i < s appear in τks+1 . Then Bs+1 satisfies (?) with respect to Bs as needed. �

Corollary III.6.4. Let K be a Πc
2 class of structures, and S be the ∃-theory of some

structure in K. If S is c.e. in a set X, then there is an X-computable ω-presentation
of a structure in K with ∃-theory S.

Proof. Add to the Πc
2 axiom for K the Πc,X

2 sentence saying that the structure
must have ∃-theory S: ∧∧

“∃ȳψ(ȳ)”∈S

∃ȳψ(ȳ)

 ∧

∀x̄ ∨
σ∈2

`|x̄|
“∃ȳϕσ(ȳ)”∈S

ϕσ(x̄)

 ,

where ϕatσ (x̄) is the formula “D(x̄) = σ” (see Observation I.1.8) and `s is the length

of D(ā) for a tuple ā of length s. Let KS be the new Πc,X
2 class of structures. All

the models in KS have ∃-theory S, and hence Kfin
S is enumeration reducible to S, and

hence it is c.e. in X too. Applying Lemma III.6.3 relative to X, we get an X-computable
structure in KS as wanted. �

Not only can we build a computable structure in such a class K, we can build one
omitting certain types.

Lemma III.6.5. Let K be a Πin
2 class of structures. Let {pi(x̄i) : i ∈ N} be a sequence

of ∀-types which are not ∃-supported in K. Then there is a structure A ∈ K which omits
all the types pi(x̄i) for i ∈ N.

Furthermore, if K is Πc
2, Kfin is c.e. and the list {pi(x̄i) : i ∈ N} is c.e., we can

make A computable.

Proof. We construct A by stages as in the proof of Lemma III.6.3, the difference
being that now we need to omit the types pi. So, on the even stages s, we do exactly
the same thing we did in Lemma III.6.3, and we use the odd stages to omit the types.
That is, we build a sequence of finite τks-structures A0 ⊆ A1 ⊆ · · · and at even stages
we define As+1 so that it satisfies (?) from Lemma III.6.3 guaranteeing that A belongs
to K. At odd stages, for s + 1 = 2〈i, j〉 + 1, we ensure that the jth tuple ā does not
satisfy pi as follows. For this, we need to define As+1 so that ā satisfies some ∃-formula
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whose negation is in pi. Let b̄ = As r ā, and let σ = DAs(ā, b̄). So we have that ā
satisfies ∃ȳ (D(ā, ȳ) = σ). Since pi is not ∃-supported in K, there exists a ∀-formula
ψ(x̄) ∈ pi which is not implied by ∃ȳD(ā, ȳ) within K. That means that, for some finite
B ∈ Kfin extending As, we have B |= ¬ψ(ā). Since such B and ψ exist, we can wait
until we find them and then define As+1 accordingly. �

III.7. Scott sentences of existentially atomic structures.

Existentially atomic structures are also among the simplest ones in terms of the
complexity of their Scott sentences.

Definition III.7.1. A sentence ψ is a Scott sentence for a structure A if A is the
only countable structure satisfying ψ.

We will see in Part 2 that every countable structure has a Scott sentence in Lω1,ω.
For now, we prove it only for ∃-atomic structures.

Lemma III.7.2. Every ∃-atomic structure has a Πin
2 Scott sentence. Furthermore,

every effectively ∃-atomic computable structure has a Πc
2 Scott sentence.

Proof. Let S be a Scott family of ∃-formulas for A. For each ā ∈ A<N, let ϕ|ā|(x̄)
be the ∃-formula defining the orbit of A. (For the empty tuple, let ϕ∅() be a sentence
that is always true.) For any other structure B, consider the set

IB = {(ā, b̄) ∈ A<N × B<N : B |= ϕā(b̄)}.
If IB had the back-and-forth property, then, by Lemma III.3.3, we would know that B
is isomorphic to A (notice that (〈〉, 〈〉) ∈ IB). Recall form the proof of Theorem III.5.2
that IA has the back-and-forth property. Thus, if B is isomorphic to A, then so does
IB. We get that IB has the back-and-forth property if and only if B is isomorphic to A.
The Scott sentence for A says of a structure B that IB has the back-and-forth property:∧∧

ā∈A<N

∀x1, ..., x|ā|

(
ϕā(x̄)⇒

(
∀y
∨∨
b∈A

ϕāb(x̄y)

)
∧

(∧∧
b∈A

∃yϕāb(x̄y)

))
.

As for the effectivity claim, if A is a computable ω-presentation and S is c.e., then the
map ā 7→ ϕā is computable, and the conjunctions and disjunctions in the Scott sentence
above are all computable. �

To prove the other direction, we need to go through the type omitting theorem for
∀-types.

Theorem III.7.3. Let A be a structure. The following are equivalent:

(1) A is ∃-atomic.
(2) A has a Πin

2 -Scott sentence.

Proof. We already know that (1) implies (2). For the other direction, suppose ψ
is a Πin

2 Scott sentence for A, but that A is not atomic. By Theorem III.5.2, there is
a ∀-type realized in A which is not ∃-supported. But then, by Lemma III.6.5, there
exists a model of ψ which omits that type. This structure could not be isomorphic to
A, contradicting that ψ was a Scott sentence for A. �

Lemma III.7.4. Let A be a structure. The following are equivalent:
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(1) A is ∃-atomic over a finite tuple of parameters.
(2) A has a Σin

3 -Scott sentence.

As the reader might be able to guess by now, a Σin
3 -formula is a countable disjunction

of formulas of the form ∃ȳψ(ȳ, x̄), where ψ is Πin
2 and x̄ is a fixed tuple of variables.

Proof. If A is ∃-atomic over a finite tuple of parameters ā, then (A, ā) has a Πin
2

Scott sentence ϕ(c̄). Then ∃ȳϕ(ȳ) is a Scott sentence for A.
Suppose now that A has a Scott sentence

∨∨
i∈N ∃ȳiψi(ȳi). A must satisfy one of

the disjuncts, and that disjunct must then also be a Scott sentence for A. So, suppose
the Scott sentence for A is ∃ȳ ψ(ȳ), where ψ is Πin

2 . Let c̄ be a new tuple of constants
of the same size as ȳ. If ϕ(c̄) were a Scott sentence for (A, ā), we would know A is
∃-atomic over ā — but this might not be the case. Suppose (B, b̄) |= ϕ(c̄). Then B
must be isomorphic to A, but we could have (B, b̄) 6∼= (A, ā). However, it is enough
for us to show that one of the models of ϕ(c̄) is ∃-atomic over c̄. Since there are only
countably many models of ϕ(c̄), there are countably many ∀-types among the models of
ϕ(c̄). Thus, we can omit the non-∃-supported ones while satisfying ϕ(c̄). The resulting
structure would be ∃-atomic over c̄ and isomorphic to A by Theorem III.5.2. �

III.8. Turing degree and enumeration degree

To measure the computational complexity of a structure, the most common tool is
its degree spectrum, which we will study in Chapter V. A much more natural attempt to
measure the computational complexity of a structure is given in the following definition
— unfortunately, it does not always apply.

Definition III.8.1 (Jockusch and Richter [Ric81]). A structure A has Turing de-
gree X ∈ 2N if X computes a copy of A, and every copy of A computes X.

It turns out that if we look at a similar definition, but on the enumeration degrees,
we obtain a better behaved notion.

Definition III.8.2. A structure A has enumeration degree X ⊆ N if every enumer-
ation of X computes a copy of A, and every copy of A computes an enumeration of X.
Recall that an enumeration of X is an onto function f : N→ X.

Equivalently, A has enumeration degree X if and only if, for every Y ,

Y computes a copy of A ⇐⇒ X is c.e. in Y .

Notice that, for X,Z ⊆ N, if A has enumeration degree X, then A has enumeration
degree Z if and only if X and Z are enumeration equivalent.

Example III.8.3. Given X ⊆ N, the standard example of a structure with enumer-
ation degree X is the graph GX , which is made out of disjoint cycles of different lengths
and which contains a cycle of length n + 3 if and only if n ∈ X. It is not hard to see
that every presentation of this graph can enumerate X: Whenever we find a cycle of
length n + 3, we enumerate n into X. For the other direction, if we can enumerate X,
we can build a copy of GX by enumerating a cycle of length n + 3 every time we see a
number n enter X.
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Example III.8.4. Given X ⊆ N, consider the group GX =
⊕

i∈X Zpi , where pi is
the ith prime number. Then GX has enumeration degree X: We can easily build GX
out of an enumeration of X, and for the other direction, we have that n ∈ X if and
only if there exists g ∈ GX of order pn.

Exercise III.8.5. Show that both the graph and the group from the previous ex-
amples are ∃-atomic.

Note that A has Turing degree X if and only if has enumeration degree X ⊕ Xc

(where Xc is the complement of X). This is because X ≤T Y ⇐⇒ X ⊕ Xc is c.e.
in Y . So, in either of the examples above, we can get a graph or a group of Turing
degree X by considering GX⊕Xc . A set X is said to have total enumeration degree if
it is enumeration equivalent to a set of the form Z ⊕ Zc. There are sets which do not
have total enumeration degree [Med55]. Those are exactly the sets X for which the
set {Y ∈ 2N : X is c.e. in Y } has no least Turing degree, as, if Z were the least Turing
degree in that set, then X would be enumeration equivalent to Z ⊕ Zc (because we
would have that, for all Y , X is c.e. in Y if and only if Z ≤T Y , if and only if Z ⊕ Zc

is c.e. in Y ). It follows that if a structure has enumeration degree X and X does not
have total enumeration degree, then the structure does not have Turing degree.

The enumeration degree of a structure is indeed a good way to measure its compu-
tational complexity — if the structure has one. In general, structures need not have
enumeration degree. Furthermore, there are whole classes of structures, like linear or-
derings for instance, where no structure has enumeration degrees unless it is already
computable (Section V.1). Before getting into that, the rest of the section is dedicated
to classes whose structures all have enumeration degree.

Theorem III.8.6. Let K be a Πc
2 class, all whose structures are ∃-atomic. Then

every structure in K has enumeration degree given by its ∃-theory.

The proof of Theorem III.8.6 needs a couple of lemmas that are interesting on their
own right.

Lemma III.8.7. Let S be the ∃-theory of a structure A. If A belongs to some Πc
2

class K where A is the only structure with ∃-theory S, then A has enumeration degree
S.

Proof. By Corollary III.6.4, if X can compute an enumeration of S, then it can
compute an ω-presentation of a structure B ∈ K with ∃-theory S. By the assumption
on K, A and B must be isomorphic. So, X is computing a copy of A. Of course, every
copy of A can enumerate S, and hence A has enumeration degree S. �

Lemma III.8.8. If A and B are ∃-atomic and have the same ∃-theory, then they are
isomorphic.

Proof. We prove that A and B are isomorphic using a back-and-forth construction.
Let

I = {〈ā, b̄〉 : ∀-tpA(a0, ..., as) = ∀-tpB(b0, ..., bs)}.
We need to show that I has the back-and-forth property (Definition III.3.1). Clearly,
∀-tpA(a0, ..., as) = ∀-tpB(b0, ..., bs) implies DA(a0, ..., as) = DB(b0, ..., bs). By assump-
tion, 〈∅, ∅〉 ∈ I. For the second condition in Definition III.3.1, suppose 〈ā, b̄〉 ∈ I, and let
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c ∈ A. Let ψ be the principal ∃-formula satisfied by āc. Since ∀-tpA(ā) = ∀-tpB(b̄), there
is a d in B satisfying the same formula. We need to show that ∀-tpA(āc) = ∀-tpB(b̄d).
Let us remark that since we do not know A and B are isomorphic yet, we do not know
that ψ generates a ∀-type in B.

First, to show ∀-tpA(āc) ⊆ ∀-tpB(b̄d), take θ(x̄y) ∈ ∀-tpA(āc). Then

“∀y(ψ(x̄y)→ θ(x̄y))” ∈ ∀-tpA(ā) = ∀-tpB(b̄),

and hence θ ∈ ∀-tpB(b̄d). Let us now prove the other inclusion. Let ψ̃(x̄y) be the

∃-formula generating ∀-tpB(b̄d). Then since ¬ψ̃ 6∈ ∀-tpB(b̄d), by our previous argument,

¬ψ̃ 6∈ ∀-tpA(āc) either, and hence A |= ψ̃(āc). The rest of the proof that ∀-tpB(b̄d) ⊆
∀-tpA(āc) is now symmetrical to the one of the other inclusion: For θ̃(x̄y) ∈ ∀-tpA(b̄d),

we have that “∀y(ψ̃(x̄y)→ θ̃(x̄y))” ∈ ∀-tpA(āc), and hence θ ∈ ∀-tpB(āc). �

Proof of Theorem III.8.6. The proof is immediate from Lemmas III.8.7 and
III.8.8. �

The following gives a structural property that is sufficient for a structure to have
enumeration degree. The property is far from necessary though.

Exercise III.8.9. Suppose that a structure A has a Σc
3 Scott sentence. prove that

A has enumeration degree.

Example III.8.10 (Frolov, Kalimullin and R. Miller [FKM09]). Consider the class
K of fields of finite transcendence degree over Q. This class is not Πc

2, but if we consider
Kn to be the class of fields of transcendence degree n, and add n constant symbols
to name a transcendence basis, v1, ..., vn, then we do get a Πc

2 class. Since all these
fields are algebraic over Q(v1, ..., vn), they are ∃-algebraic, and hence ∃-atomic. It then
follows from Theorem III.8.6 that every such field has enumeration degree, namely the
enumeration degree of the ∃-type of a transcendence basis.

Furthermore, for every setX, there is an algebraic field whose ∃-theory is enumeration-
equivalent to X: Take the field that contains the pnth roots of unity if and only if n ∈ X,
where pn is the nth prime number. Clearly, from an enumeration of X, one can build
such a field, and hence enumerate its ∃-theory, and conversely, the ∃-theory of that field
can enumerate X.

Example III.8.11 (Calvert, Harizanov, Shlapentokh [CHS07]). Torsion-free abelian
groups of finite rank always have enumeration degree. If we add a base of the group
as parameters, then the class of torsion-free abelian groups generated by such a base is
Πc

2. These groups are clearly ∃-algebraic and ∃-atomic, as every element is generated
as a Q-linear combination of the base. Thus, they have enumeration degree.

Furthermore, for every set X there is a torsion-free abelian group of rank one with
enumeration degree X: Consider the subgroup of Q generated by 1/pn for n ∈ X.

Example III.8.12 (Steiner [Ste13]). Graphs of finite valance with finitely many
connected components always have enumeration degree and can have all possible enu-
meration degrees: First, we need to add a constant element for each connected compo-
nent. Now, saying that every element is connected to one of these elements becomes
Πc

2. However, saying that the group is finite valance is not Πc
2. But the ∀-theory of a

graph of finite valance says that it has finite valance: for each constant element, and
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for each k ∈ N, is says that there is a certain finite number of nodes at distance k from
that constant. For the same reason, these graphs ∃-algebraic, and hence ∃-atomic. It
then follows from Lemma III.8.7 that they have enumeration degree.

One can show that for every X there is a connected graph of finite valance and
enumeration degree X. The graphs GX from III.8.3 are not connected, but a small
modification would work. We let the reader figure this one out.

Exercise III.8.13. Show that if A is ∃-atomic and has enumeration degree, then
the enumeration degree is given by it ∃-theory. Hint in footnote.1

1Show that every ∃-type is e-reducible to the ∃-theory of A.





CHAPTER IV

Generic presentations

Forcing and generics are a useful tool all over computability theory. The first forcing-
style argument in computability theory can be traced back to the Kleene–Post construc-
tion [KP54] of two incomparable degrees — published a decade before the invention
of forcing. In this chapter, we give an introduction to forcing in computable structure
theory. We will develop a more general framework for forcing in Part 2, once we gain
more familiarity with infinitary languages. For now, instead of looking at fully generic
objects, we consider 1-generics, which have relatively low computational complexity.

The notion of forcing was introduced by Cohen to prove that the continuum hypoth-
esis does not follow from the axioms of set theory in ZFC. Soon after, forcing became
one of the main tools in set theory to prove independence results of all kinds. Generic
objects are “generic” or “typical” in the sense that they do not have any property that
is satisfied by a meager class of objects, where meagerness is viewed as a notion of
smallness. This implies that if a generic satisfies a particular property, there is a clear
reason that forces it to have the property, and it is never by coincidence. Our forc-
ing arguments will essentially have that form: if a generic presentation has a certain
computational property, then there must be a synthactical reason for it.

Generic objects come in all different shapes and sizes, but here, we will only consider
Cohen generics. A Cohen generic real is a real in NN that does not belong to any meager
set, where a subset of NN is meager if it is contained in a countable union of nowhere-
dense closed sets, and a set is nowhere dense if it is not dense when restricted to any
open set. Meager sets are considered to be small sets — for instance, Baire’s category
theorem states that no countable union of meager set can cover all of NN. If a real
belongs to a particular meager set, this would a particular property this real has that
most reals do not have. The key property that generics have is the following: If G ∈ NN

is generic, P ⊆ NN is a property, and G ∈ P , then there is a finite initial segment σ ⊆ G
which forces G to belong to P in the sense that every generic extending σ belongs to P .
One problem that arises is that every real belongs to a meager set, namely the singleton
that contains itself. That is why in set theory one has to work with generic reals that
live outside the universe of sets. For the purposes of computability theory, we do not
need to consider all meager sets, but only countably many.

We start this chapter by reviewing 1-generic reals; these are the ones that avoid all
nowhere-dense closed sets given as the boundaries of effectively open sets (Definition
IV.1.1). They were introduced by Jockusch [Joc80], but the construction of Kleene–
Post [KP54] already gives 1-generic reals 26 years earlier. See Exercise IV.1.7 below for
a proof of Kleene–Post’s result that every countable partial ordering embeds into the
Turing degrees using 1-generics. They where then used in all kinds of embeddability

41
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results into the Turing degrees and other kind of degrees. They are also often used in
effective randomness and in reverse mathematics.

The objective of this chapter, though, is to introduce 1-generic enumerations and 1-
generic presentations of structures, which are similar to the notions originally considered
independently by Knight [Kni86], and by Manasse and Slaman (later published in
[AKMS89]). We will develop a more general notion of forcing and generics later in
Part 2. For now, 1-generic presentation are enough for the results in this first part of the
book. We will use them in the next chapter to prove Richter’s theorem V.1.7, Knight
et al.’s theorem V.3.1 and Andrews and Miller’s theorem V.3.6.

IV.1. Cohen Generic reals

W review the standard notion of 1-genericity on reals and prove some of their basic
properties. We will extend these proofs to generic enumerations of structures in the
next sections.

For R ⊆ N<N, define the open subset of NN generated by R to be

[R] = {X ∈ NN : ∃σ ∈ R (σ ⊂ X)}.
A subset of NN is effectively open if it is of the form [R] for some c.e. R ⊆ N<N. A real
G ∈ NN is 1-generic if and only if it avoids the boundaries of all effectively open sets.
Thus, for every effectively open set, either G is well inside it or well outside it. Here is
an equivalent, more combinatorial definition.

Definition IV.1.1 (Jockusch [Joc80]). We say that a string γ ∈ N<N decides a
subset R ⊆ N<N if either there exists σ ⊆ γ with σ ∈ R or, for all σ ⊇ γ, σ 6∈ R. A
real G ∈ NN is 1-generic if for every c.e. subset R of N<N, there is an initial string of G,
G � k for some k, which decides R.

The reason we use the words “decide” and “force” is the following: Let G be 1-
generic and [R] be an effectively open set. For γ ⊂ G, if (∃σ ⊆ γ) σ ∈ R, we say that γ
forces G to be in [R], while if (∀σ - γ) σ 6∈ R, then we say that γ forces G to be outside
[R]. (Recall that σ - γ means that σ and γ are compatible, i.e., that either σ ⊆ γ or
γ ⊆ σ.) In either case, γ decides whether G belongs to [R] or not.

One can require more genericity by requiring G to decide more sets, e.g., α-generics
decide all Σ0

α sets R, as we will see in Part 2. Cohen generics decide all sets R in the
universe — we will not deal with these in this book.

Observation IV.1.2. 1-generic reals are not computable: For each computable
C ∈ NN, consider RC = {σ ∈ N<N : σ 6⊂ C}. Since there is not enough room in RC to
force out of it, any 1-generic must be be forced to be in [RC ] and hence different from
C.

Lemma IV.1.3. There is a 1-generic real computable from 0′.

Proof. This is essentially an effective version of the Baire category theorem.
We build a 1-generic G as the union of a nested sequence of finite strings p̄0 ⊆ p̄1 ⊆

· · · ∈ N<N. Let p̄0 be the empty string. At stage s + 1 = e, we define p̄s+1 so that it
decides the eth c.e. set We ⊆ N<N: If there is a q̄ ⊇ p̄s with q̄ ∈ We, we let p̄s+1 = q̄.
Otherwise, we let p̄s+1 = p̄s. At the end of stages, we define G =

⋃
s p̄s. It is not hard
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to check that G is 1-generic. (To see that the lengths of the p̄s’s go to infinity, notice
that the set {σ ∈ N<N : |σ| ≥ n} is c.e. for every n, and hence is eventually considered
as one of the We’s.)

The only step in the construction that was not computable was checking whether
there existed q̄ ⊇ p̄s with q̄ ∈ We. This is a question 0′ can answer, and hence the whole
construction is computable in 0′. �

For the next lemma, we need to consider the relativized version of 1-genericity. Given
X ∈ NN, we say that G ∈ NN is X-1-generic if every X-c.e. subset of N<N is decided by
an initial segment of G. The next lemma says that generics do not enumerate new c.e.
sets.

Lemma IV.1.4. Let G,X ∈ NN. Suppose that G is X-1-generic. Then X is not c.e.
in G, unless X is c.e. already.

Proof. Suppose that X = WG
e for some e ∈ N; we will show that X is already c.e.

Consider the set of strings which “force ‘WG
e 6⊆ X.’ ”

Q = {q̄ ∈ N<N : ∃n (n ∈ W q̄
e ∧ n 6∈ X)}.

Notice that Q is c.e. in X, and hence it is decided by some initial segment of G — say
by G � k. If we had G � k ∈ Q, we would get n ∈ WG

e and n 6∈ X, contradicting our
assumption. Thus, no extension of G � k is in Q.

We now claim that

X = {n ∈ N : (∃q̄ ⊇ G � k) n ∈ W q̄
e }.

Notice that this would show that X is c.e. as needed. As for the claim: If n ∈ X, then,
since X = WG

e , there is some initial segment q̄ of G satisfying n ∈ W q̄
e . For the other

inclusion, if there exists q̄ ⊇ G � k with n ∈ W q̄
e , then n must belong to X as otherwise

q̄ would be an extension of G � k in Q. �

In particular, we get that if G is X-1-generic, then G computes X if and only if
X is computable (using that computable is equivalent to c.e. and co-c.e.). Thus, if
G is X-1-generic, G and X form a minimal pair (i.e., there is no non-computable set
computable from both): This is because if Y ≤T X, then G is Y -1-generic too.

The following lemma shows that 1-generics do not code much information on their
jumps.

Lemma IV.1.5. Every 1-generic real G is generalized low; that is, G′ ≡T G⊕ 0′.

Proof. That G′ ≥T G⊕ 0′ is true for all reals G. Let us prove that G′ ≤T G⊕ 0′.
Take e ∈ N; we want to decide if ΦG

e (e) ↓ using G⊕0′ as oracle uniformly in e. Consider
the set

Re = {q̄ ∈ N<N : Φq̄
e(e) ↓}.

Since Re is c.e., it is decided by G. Notice that 0′ can tell if a string γ decides Re or
not, and if it does, whether it forces G ∈ [R] or G 6∈ [R]. Then, using G ⊕ 0′, we can
find k ∈ N such that G � k decides Re. If G � k ∈ Re, we know that ΦG

e (e) ↓ and hence
e ∈ G′. If no extension of G � k is in Re, then ΦG

e (e) ↑ and hence e 6∈ G′. �

The following lemma shows that if we split a 1-generic in two pieces, then not only
the pieces are 1-generic themselves, but also 1-generic relative to each other.
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Lemma IV.1.6. Let G,H ∈ NN. Then G⊕H is 1-generic if and only if G is 1-generic
and H is G-1-generic.

Proof. Suppose first that G ⊕ H is 1-generic. Consider a c.e. operator W which
outputs subsets of N<N. To prove that H is G-1-generic, we need to show that H decides
WG using the genericity of G ⊕ H. Consider the c.e. set of pairs of string that force
H ∈ [WG]:

R = {γ ⊕ δ ∈ N<N : δ ∈ W γ}.
G⊕H must decide R. If we have γ ⊕ δ ⊂ G⊕H with γ ⊕ δ ∈ [R], then δ ∈ WG and
H is forced into [WG]. If we have that (∀τ ⊇ γ ⊕ δ) τ 6∈ R, then (∀σ ⊇ δ) σ 6∈ WG and
H is forced out of [WG].

In exactly the same way we can show that G is H-1-generic, and in particular 1-
generic.

For the other direction, suppose G is 1-generic and H is G-1-generic. Let R be a
c.e. subset of N<N; we must prove that G ⊕H decides it. Assume R is closed upward
under inclusion of strings; this is without loss of generality as deciding R is equivalent
to deciding its upward closure. Define

S1 = {δ ∈ N<N : (G � |δ|)⊕ δ ∈ R}.
S1 is c.e. in G and thus H must decide it. If there is a δ1 ⊂ H with δ ∈ S1, then
G � |δ1| ⊕ δ1 forces G ⊕ H to be in [R]. So, suppose there is δ1 ⊂ H no extension of
which is in S1. Define

S0 = {γ ∈ N<N : ∃δ ∈ N<N (δ ⊇ δ1 & |δ| = |γ| & γ ⊕ δ ∈ R}.
G must decide S0. There cannot be a γ ⊆ G with γ ∈ S0, because the witness δ would
be an extension of δ1 in S1. So, there is γ ⊆ G no extension of which is in S0, and hence
we get that γ ⊕ (H � |γ|) forces G⊕H out of [R]. �

Such H and G are said to be mutually generic. Similarly, we can get an infinite
sequence of mutually generic reals by taking the columns {G[n] : n ∈ N} of a 1-generic
G.

Exercise IV.1.7. Prove Kleene–Post’s theorem that every countable partial or-
dering embeds into the Turing degrees. To prove it, given a partial ordering (P,≤P ),
consider a bijection f : P × N → N, and consider the pull-back H = f−1(G) of a 1-
generic real G ⊆ N. Show that the map p 7→

⊕
q≤P pH

[q] : P → NN induces the desired
embedding.

Exercise IV.1.8. Prove that the countable atomless Boolean algebra embeds into
the Turing degrees preserving joins and meets.Hint in footnote.1

IV.2. Generic enumerations

We now move to consider generic enumerations of structures. The main difference
with 1-generics reals, is that instead of deciding the c.e. subsets of N<N, we now decide
the r.i.c.e. subsets of A<N.

1Consider a 1-generic subset H of Q and then given an element a of the interval algebra of Q, map
it to a ∩H.
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We assume throughout the rest of the chapter that A is an ω-presentation of a τ -
structure. Given a set A, let A? be the set of all finite strings from A whose entries are
all different:

A? = {σ ∈ A<N : (∀i 6= j < |σ|) σ(i) 6= σ(j)}.

Definition IV.2.1. We say that γ ∈ A? decides a subset R ⊆ A? if either there is
σ ⊆ γ with σ ∈ R or, for all σ ⊇ γ, we have σ 6∈ R. We say that a one-to-one function
g ∈ AN is a 1-generic enumeration of A if, for every r.i.c.e. set R ⊆ A?, there is an
initial segment of g which decides R.

The existence of 1-generic enumerations follows from the Baire category theorem.
As in Lemma IV.1.3, we can build a 1-generic enumeration of A computably in D(A)′

by finite approximations deciding all D(A)-c.e. sets. Since we only need to decide the

r.i.c.e. sets, we can do this with less than D(A)′: The lemma below says that ~KA is

enough. See II.2.3 for the definition of the complete r.i.c.e. set ~KA from Definition, and
recall that we always have ~KA ≤T D(A)′, but that sometimes we have ~KA <T D(A)′

(Exercise II.2.6).

Lemma IV.2.2. Every ω-presentation A has a 1-generic enumeration computable in
~KA.

Proof. We build g as the union of a strictly increasing sequence {p̄s : s ∈ N}
with p̄s ∈ A?. Recall from Remark II.2.4 that there is a D(A)-effective enumeration
{R0, R1, ....} of the r.i.c.e. subsets of A?. At stage s + 1 = e, we define p̄s+1 to decide
the eth r.i.c.e. set Re ⊆ A? as follows: If there is a q̄ ⊇ p̄s with q̄ ∈ Re, we let p̄s+1 = q̄.
Otherwise, we let p̄s+1 = p̄s. Finally, we let g =

⋃
s p̄s ∈ AN. It is not hard to check

that g is one-to-one and 1-generic.
To carry on this construction, we need to check at each stage s + 1 whether there

exists q̄ ⊇ p̄s with q̄ ∈ Re or not. The set of p̄’s such that ∃q̄ ⊇ p̄(q̄ ∈ Re) is Σc
1-definable

and its index can be obtained uniformly from e. Hence, ~KA can decide whether p̄s
belongs to it or not, and thus, the whole construction is computable in ~KA. �

It is not hard to see that a 1-generic enumeration must be onto (the set {p̄ ∈ A? :∨
i<|p̄| p̄(i) = a} is r.i.c.e. for all a ∈ A), and hence that it indeed is an enumeration of

A. Using the pull-back (see Section I.1.7), each 1-generic enumeration induces what we
call a 1-generic presentation:

Definition IV.2.3. An ω-presentation C is a 1-generic presentation of A if it is the
pull-back g−1(A) of some 1-generic enumeration g of A.

The reason we defined 1-generic enumerations of A using r.i.c.e. sets, instead of
D(A)-c.e. sets, is that we get a notion that is independent of the given ω-presentation
of A:

Lemma IV.2.4. Let A and B be isomorphic. Any 1-generic presentation of A is also
a 1-generic presentation of B.

Proof. Let h : A → B be an isomorphism. The key point is that h preserves
Σc

1-definable sets.
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Suppose that g : N → A is a 1-generic enumeration of A, and let C = g−1(A). We
want to show that C is a 1-generic presentation of B too. Since C = (h ◦ g)−1(B), it is
enough to show that h ◦ g is a 1-generic enumeration of B. Let R ⊆ B? be Σc

1-definable
in B with parameters; we need to show that h ◦ g decides it. Since h is an isomorphism,
h−1(R) ⊆ A? is Σc

1-definable in A with parameters, and hence decided by g. Let k ∈ N
be such that either g � k ∈ h−1(R) or, for all σ ∈ A? with σ ⊇ g � k, we have σ 6∈ h−1(R).
Applying h, we get that (h ◦ g) � k decides R, as wanted. �

In particular, a 1-generic presentation of a structureA is also a 1-generic presentation
of itself. Thus, an ω-presentation C is a 1-generic presentation if and only if every r.i.c.e.
set R ⊆ C? = N? is decided by some tuple of the form 〈0, 1, ..., k − 1〉.

IV.3. Relations on generic presentations

Generic presentations are useful because whatever happens to them, happens for a
reason. For instance, we will see that if a relation is c.e. on a generic presentation, it
is because it was r.i.c.e. already (assuming the ω-presentation is generic relative to the
relation too). In Theorem II.1.14, we showed that a relation R ⊆ A<N is Σc

1-definable
with parameters if and only if RB is c.e. in D(B) for every (B, RB) ∼= (A, R) (i.e., it is
r.i.c.e.). The following theorem, which is the analog of Lemma IV.1.4, shows that we do
not need to consider all the copies of (A, R), but just one that is 1-generic. The proof
of Ash–Knight–Manasse-Slaman; Chisholm’s Theorem II.1.14 can then be though of as
building a 1-generic copy of (A, R).

Theorem IV.3.1. Let A be a structure and R ⊆ A<N. Suppose (A, R) is a 1-generic
presentation. Then R is c.e. in D(A) if and only if R is r.i.c.e.

Proof. Clearly, if R is r.i.c.e. it is c.e. in D(A). Let us prove the other direction.

Suppose that R = W
D(A)
e for some e ∈ N. Consider the same set we used in the

proof of Theorem II.1.14, in which we were trying to build a generic enumeration C of

A satisfying W
D(C)
e 6⊆ RC:

Q = {q̄ ∈ A? : ∃`, j1, ..., j` < |q̄|
(
〈j1, ..., j`〉 ∈ WDA(q̄)

e and 〈qj1 , ..., qj`〉 6∈ R
)
}.

It is not hard to see that Q is r.i.c.e. in (A, R). So Q is decided by some tuple of the
form 〈0, ...., k−1〉 ∈ A?. We cannot have 〈0, ...., k−1〉 ∈ Q, as otherwise there would be

a tuple 〈j1, ..., j`〉 ∈ WD(A)
e with 〈j1, ..., j`〉 6∈ R, contradicting that R = W

D(A)
e . Thus,

no extension of 〈0, ..., k − 1〉 is in Q. Let p̄ = 〈0, ..., k − 1〉. It now follows from Claim
1 inside the proof of Theorem II.1.14 that R is Σc

1-definable in A with parameters p̄ as
needed. To be more explicit, recall that the proof of Claim 1 went through proving that

R = {(qj1 , ..., qj`) : for q̄ ∈ A? and `, j1, ..., j` < |q̄|,
with q̄ ⊇ p̄ and (j1, ..., j`) ∈ WDA(q̄)

e }. �
Recall that a set X ⊆ N is coded by A if and only if it is c.e. in every presentation

of A (see Subsection II.1.4). This is equivalent to saying that ~X is r.i.c.e. in A, where
~X is the subset of A<N capturing X (Definition II.1.17).

Corollary IV.3.2. Let X ⊆ N and suppose (A, ~X) is a 1-generic presentation.
Then X is c.e. in D(A) if and only if it is coded by A.
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Proof. Immediate from the previous theorem. �

Let us remark that saying that (A, ~X) is a 1-generic presentation is equivalent to
saying that A is X-1-generic.

Corollary IV.3.3. For every ω-presentation B, there is another ω-presentation
A ∼= B such that, a set X ⊆ N is c.e. in both D(A) and D(B) if and only if it is coded
by B.

Proof. If X is coded by B, by definition it is c.e. in D(B) and in D(A) for every
copy A of B.

For the other direction, let Y = D(B)′ and let A be Y -1-generic. If X is c.e. in
D(B), then X ≤T Y and hence A is 1-X-generic. If X is also c.e. in D(A), by the
previous corollary, X is coded by A and hence also by B. �

The next lemma is the analog of Lemma IV.1.5 that says that 1-generics are gen-
eralized low. Recall from Exercise II.2.6 that there are ω-presentations B with ~KB <T

D(B)′.

Lemma IV.3.4. [Vat11] If B is 1-generic, then ~KB ≡T D(B)′.

Proof. We already know that ~KB ≤T D(B)′ for every presentation B. Let us prove

that ~KB ≥T D(B)′. Take e ∈ N; we want to decide if Φ
D(B)
e (e) ↓ using ~KB as an oracle

uniformly in e. Consider the set

Re = {q̄ ∈ B? : ΦDB(q̄)
e (e) ↓}.

Since Re is r.i.c.e., it is decided by some tuple of the form 〈0, ..., k−1〉. The set of tuples
which force g ∈ [Re], namely

{p̄ ∈ B? : ∃q̄ ⊆ p̄ (q̄ ∈ Re)},
is Σc

1. The set of tuples which force g 6∈ [Re], namely

{p̄ ∈ B? : ∀q̄ ⊇ p̄ (q̄ 6∈ Re)},
is Πc

1. Using ~KB, we can then find such a k and decide whether 〈0, ..., k − 1〉 forces
g ∈ [Re] and hence that e ∈ D(B)′, or 〈0, ..., k − 1〉 forces g 6∈ [Re] and hence that
e 6∈ D(B)′. �





CHAPTER V

Degree Spectra

Among the main objectives of the field is measuring the computational complexity
of structures. There are various ways of doing this. The most common one is through
degree spectra.

We already know how to assign a Turing degree to an ω-presentation (namely
D(A), as in Subsection I.1.1), but a structure may have many ω-presentations with
different Turing degrees. We want a measure of complexity that is independent of the
ω-presentation.

Definition V.0.5. The degree spectrum of a structure M is the set

DgSp(M) = {X ∈ 2N : X computes a copy of M}.
Degree spectra are closed upward under Turing reduction. Thus, we can think of

them as sets of Turing degrees rather than sets of reals. As it follows from Knight’s
Theorem I.2.1, DgSp(A) is the set of Turing degrees of the copies of A, provided A is
non-trivial.

Understanding which subsets of the Turing degrees can be realized as degree spectra
is an important open question in the area.

V.1. The c.e. embeddability condition

In her Ph.D. thesis [Ric77], Linda Richter showed that there are structures which do
not have enumeration degree (Definition III.8.2). She gave a general sufficient condition
for this to happen:

Definition V.1.1. [Ric81, Section 3] A structure A has the computable embed-
dability condition if each ∃-type realized in A is computable. A structure A has the c.e.
embeddability condition if each ∃-type realized in A is c.e.

The reason Richter introduced this notion was to prove Theorem V.1.4 and the
corollary below it.

Historical Remark V.1.2. Richter’s original definition was not in terms of types,
but in terms of finite structures embeddable in A and extending a fixed tuple, as in the
following exercise. Also, she defined the computable embeddability condition and not the c.e.
one. However, Theorem V.1.4 below has a more rounded statement when we consider the
latter notion. In Russia, structures with the c.e. embeddability condition are called locally
constructivizable.

Exercise V.1.3. For each tuple ā ∈ A<N, prove that the set

{DA(āb̄) : b̄ ∈ A<N} ⊆ 2<N

is “positive-tt equivalent” to ∃-tpA(ā). In particular, they are both Turing and enumer-
ation equivalent. (For the definition of positive-tt reducibility, see page xiii.)

49
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Theorem V.1.4. (Richter) Let A be any structure. The following are equivalent:
(1) A has the c.e. embeddability condition.
(2) Every set X ⊆ N coded by A is already c.e.

Recall from Section II.1.4 that X is coded by A if X is c.e. in every presentation of
A.

Proof. To show that (1) implies (2), recall Knight’s Theorem II.1.21 that if X is
coded by A, it must be enumeration reducible to some ∃-type realized in A. Since these
are all c.e., X must be c.e. too.

For the other direction, notice that every ∃-type realized in A is coded by A, and
hence (2) implies they are all c.e. �

Corollary V.1.5. If A has the c.e. embeddability condition and has enumeration
degree X, then X ≡e ∅.

Corollary V.1.6. If A has the c.e. embeddability condition and has Turing degree
X, then X ≡T ∅.

Proof. Apply the previous corollary to X ⊕Xc. �

Richter’s original result is actually stronger than Theorem V.1.4. We say that X
and Y from a c.e.-minimal pair if no set is c.e. in both X and Y , unless it is already
c.e.

Theorem V.1.7. (Richter) Let A have the c.e. embeddability condition. Then, for
every non-computable set X, there is a copy B of A that forms a c.e.-minimal pair with
X.

Notice that a c.e.-minimal pair is also a minimal pair in the sense that whenever a
set is computable in both X and D(B), it is already computable.

Proof. Let B be an X ′-1-generic presentation of A. Let Y be c.e. in both X and
D(B). Since Y is c.e. in X, B is Y -1-generic. Then, since Y is c.e. in D(B), Y must be
coded by A (Corollary IV.3.2) and thus be c.e. �

Example V.1.8. Richter then showed that linear orderings have the computable
embeddability condition. This is because the set of finite extensions of a tuple a1, ..., ak,
namely {DA(āb̄) : b̄ ∈ A<N} ⊆ 2<N, is determined by the ordering among the elements
of the tuple, how many elements are in between each pair from the tuple, how many
elements are to the left of the whole tuple, and how many are to the right. By “how
many,” we mean either a finite number or infinity. Thus, a k-type is determined by a
permutation σ of {1, 2, ..., k}, and a k+ 1 tuple from N∪{∞}. Given that information,
one can computably decide if an ∃-formula belongs to the type or not.

Example V.1.9. Richter also showed that trees in the language of posets also have
the computable embeddability condition. We defer this proof to Part 3, where we will
prove that the class of trees is Σ-small.
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V.2. Co-spectra

The degree spectrum of a structure measures how difficult it is to present the struc-
ture. If instead we want to measure how much information is encoded in a structure,
the first approach is to use co-spectra. This is not the only approach because, as we
will see later, information can be coded within a structure in many different ways — as
for instance, it can be coded in the jump of the structure without getting reflected in
the co-spectra.

Definition V.2.1. The co-spectra of a structure A is the set

co-DgSp(A) = {X ⊆ N : X is coded by A}.

Recall that X is coded by A if and only if ~X is r.i.c.e. in A, if and only if X ≤e
∃-tpA(p̄) for some p̄ ∈ A<N, and if and only if X is c.e. in every Y ∈ DgSp(A) (see
Section II.1.4). Note that a structure has trivial co-spectrum (i.e., the class of just the
c.e. sets) if and only if it has the c.e. embeddability condition.

Definition V.2.2. A set S ⊆ P(N) is an ideal in the enumeration degrees if it is
closed downward under enumeration reducibility and closed under joins.

Co-spectra are always ideals in the enumeration degrees. The reverse is also true.

Lemma V.2.3 (Soskov [Sos04]). Every countable ideal in the enumeration degrees
S ⊆ P(N) is the co-spectrum of some structure.

Proof. Given a set X, let GX be the graph from Example III.8.3 with one modifi-
cation: GX is made out of cycles of length n + 3 for n ∈ X, all of these cycles sharing
exactly one common node — we call it a flower graph because the cycles look like petals
coming out of a center node. For a set S ⊆ P(N), let G∞S be the graph formed by the
disjoint and disconnected union of the graphs GX for X ∈ S, each one repeated infinitely
often. Clearly S ⊆ co-DgSp(G∞S ), as for every X ∈ S, X is c.e. in every copy of GX .
Conversely, we claim that the ∃-type of any tuple p̄ ∈ A<N is e-reducible to a finite join
of X’s in S. To see this, let X1, ..., Xn ∈ S be such that the elements of p̄ are in

⋃n
i=1 GXi .

Let G̃ consist of
⋃n
i=1 GXi and infinitely many copies of GN (i.e., GY for Y = N), and let

q̄ be the tuple in G̃ corresponding to p̄ (i.e., under the isomorphism between the pieces
of the form

⋃n
i=1 GXi). We claim that ∃-tpG(p̄) = ∃-tpG̃(q̄): just observe that there are

embeddings G → G̃ (because each GX embeds in GN) and G̃ → G (because N ∈ S)
matching p̄ and q̄, and recall that ∃-formulas are preserved forward under embeddings.
One can easily build a copy of G̃ from an enumeration of X1 ⊕ · · · ⊕ Xn, and hence
∃-tpG̃(q̄) ≤e X1 ⊕ · · · ⊕Xn ∈ S. We conclude that ∃-tpG(p̄) ∈ S. �

Richter’s Theorem V.1.7 can be generalized to arbitrary co-spectra as follows.

Lemma V.2.4. Suppose that every set in co-DgSp(A) is c.e. in Y . Then there is a
copy B of A such that D(B) and Y are a c.e.-exact pair for co-DgSp(A); that is, such
that, for Z ⊆ N, Z ∈ co-DgSp(A) if and only if Z is c.e. in both D(B) and Y .

Proof. Let B be a Y ′-1-generic copy of A. Suppose now that X is c.e. in both Y
and D(B). Since X is a column in Y ′, B is also X-1-generic. Then, by Corollary IV.3.2,
X must be coded by B, and hence belongs to co-DgSp(A). �
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Recall from Corollary IV.3.3, that we can actually get two copies B and C of a
structure A such that a set Z is c.e. in in both if and only if it is in co-DgSp(A). That
is, D(B) and D(C) for a c.e.-exact pair for co-DgSp(A).

V.3. Degree spectra that are not possible

In this section, we look at upward closed sets of Turing degrees that cannot be degree
spectra.

The first observation along these lines is that degree spectra are always Borel. This
will follow from Part 2 where we prove that every structure has a Scott sentence. But
among upward closed Borel sets of Turing degrees, we know very little about which ones
can be degree spectra and which ones cannot.

V.3.1. No two cones. One of the most best-known results in this vein is due to
Knight and her group in the 90’s and says that no degree spectrum can be a non-trivial
union of two upper cones of Turing degrees — not even the union of countably many
upper cones. Her result also applies to the following kind of cone: the enumeration
upper cone with base X, nameley the set {Z ∈ 2N : X is c.e. in Z}.

Theorem V.3.1 (Knight et al.). No degree spectrum is the union of countably many
enumeration upper cones, unless it is equal to just one enumeration upper cone.

Proof. Suppose that we have X1, X2, ... ⊆ N and a structure A with

DgSp(A) =
⋃
n∈N

{Z ∈ 2N : Xn is c.e. in Z}.

Let X =
⊕

nXn. Let C be a copy of A such that C is X-1-generic. Since D(C) ∈
DgSp(A), there must be an n such that Xn is c.e. in D(C). From Lemma IV.3.2, we
get that Xn is coded by C. But then DgSp(A) ⊆ {Z ∈ 2N : Xn is c.e. in Z}, and hence
DgSp(A) = {Z ∈ 2N : Xn is c.e. in Z} is a single enumeration upper cone. �

Observation V.3.2. No degree spectrum is the union of countably many Turing
upper cones, unless it is equal to just one Turing upper cone: To see this, replace Xn

by Xn ⊕Xc
n in the proof of the theorem above.

Proof. �

V.3.2. Upward closure of Fσ. We can generalize Observation V.3.2 quite a bit
by extending some ideas of U. Andrews and J. Miller [AM15]. Recall that we give NN

and 2N the product topology of the discrete topology on N and 2 respectively. Thus,
the topology on NN is generated by the basic open sets [σ] = {X ∈ NN : σ ⊂ X} for
σ ∈ N<N, and similarly on 2N. Open set are then of the form [R] =

⋃
{[σ] : σ ∈ R} for

some R ⊆ N<N. The complement of [R] can then be viewed as the set of paths through
the tree T = {τ ∈ N<N : (∀σ ∈ R)σ 6⊆ τ}. We thus have that a set P ⊆ NN is closed if
and only if it is the set of paths [T ] through some tree T ⊆ N<N. One can show that a
set is closed if and only if it can be defined as the set of all X ∈ N<N which satisfy some
boldface Π0

1-formula ϕ(X) of arithmetic. When ϕ(X) can be taken to be lightface Π0
1,

we say that P is a Π0
1 class. This coincides with the case when T can be taken to be

computable.
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Definition V.3.3. A set P ⊆ N<N is a Π0
1 class if there exists a computable tree T

such that P = [T ].

Recall that a subset of NN is Fσ if it is a countable union of closed sets, or equivalently,
if it can be defined by a boldface Σ0

2-formula ϕ(X) of arithmetic. For F ⊆ NN, we define
the Turing-upward closure of a set F to be {X ∈ NN : ∃Y ∈ F (Y ≤T X)}.

Theorem V.3.4. A degree spectrum is never the Turing-upward closure of an Fσ
set of reals in NN, unless it is an enumeration-cone.

Corollary V.3.5 (Knight et al.). A degree spectrum is never the countable union
of countably many Turing-cones, unless it is a single cone.

Proof of Corollary. Every countable set is Fσ, so if a degree spectra is the
Turing-upper closure of a countable set, it must be an e-cone. But no e-cone is the
Turing-upper closure of a countable set unless is the whole NN: To see this, if X0, X1, ...
are non-computable and all can compute enumerations of a set Z, then an X-1-generic
enumeration of Z, where X =

⊕
nXn, is not in the cone above any of the Xn’s. �

Another corollary is that the following familiar classes of degrees are not degree
spectra: DNC degrees, ML-random degrees, and PA degrees — they are are all Fσ
classes of reals. We will get this and a bit more below in Corollary V.3.7, after we prove
the following theorem, which contains some of the main ideas to for Theorem V.3.4.

Theorem V.3.6 (U. Andrews, J. Miller [AM15, Proposition 3.9]). Let A satisfy
the c.e. embeddability condition. Then A has a copy B such that, for every Π0

1 class
P ⊆ NN, D(B) computes no real of P unless P has a computable member already.

Proof. Let g be a 1-generic enumeration of (A, ~KA) and let B be the 1-generic

presentation obtained as the pull-back of A through g (recall that ~KA is a complete
r.i.c.e. relation onA). Such an enumeration g will be called 2-generic in Part 2. Consider
a Π0

1 class P and let T ⊆ N<N be a computable tree with P = [T ]. Let Φ be a
computable operator such that ΦD(B) is a path through T , i.e., ΦD(B)(n) ∈ Nn ∩ T and
ΦD(B)(n) ⊆ ΦD(B)(n+ 1) for every n. We need to prove that P has a computable path.

Let us start by forcing ΦD(B) to output the right kind of values. For this, consider
the set of strings which force ΦD(B) not to:

Q0 = {p̄ ∈ A? : ∃n < |p̄| (ΦDA(p̄)(n) ↓& ΦDA(p̄)(n) 6∈ Nn ∩ T )}.

The set Q0 is r.i. computable in A, and hence decided by some initial segment of the
enumeration g. No initial segment of g is in Q0 because ΦDA(B)(n) ∈ Nn ∩ T , so there
must be an initial segment b̄0 ∈ A? of the enumeration of B such that no extension
of b̄0 is in Q0. This means that whenever p̄ ∈ A? extends b̄0, if ΦDA(p̄)(n) ↓, then
ΦDA(p̄)(n) ∈ Nn ∩ T .

Second, we force the values of ΦD(B) to be compatible. For this, consider the set of
strings which force they are not:

Q1 = {p̄ ∈ A? : ∃n < |p̄| (ΦDA(p̄)(n) ↓& ΦDA(p̄)(n+ 1) ↓&
ΦDA(p̄)(n) 6⊆ ΦDA(p̄)(n+ 1)}.
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The set Q1 is r.i. computable in A, and hence decided by some initial segment of the
enumeration g. Again, since ΦD(B) ∈ [T ], no initial segment of g is in Q1, and there
must be one, b̄1 ∈ A?, none of whose extensions is in Q1. We may assume b̄1 ⊇ b̄0.

Third, we force that ΦD(B) is total: For this, consider the set of strings which force
ΦD(B) to be undefined at some n ∈ N:

Q2 = {p̄ ∈ A? : ∃n ∈ N∀q̄ ∈ A?
(
q̄ ⊇ p̄→ ΦDA(q̄)(n) ↑

)
}.

The set Q2 is Σc
2 in A, and hence r.i.c.e. in (A, ~KA) and decided by an initial segment

of g. (To see that Q2 is Σc
2, observe that {〈p̄, n〉 : ∀q̄ ∈ A?

(
q̄ ⊇ p̄→ ΦDA(q̄)(n) ↑

)
} is

co-r.i.c.e. in A and hence Πc
1-definable.) We cannot have an initial segment of g in Q2

because we would have that ΦD(B)(n) ↑ for some n. So, for some initial segment b̄2 of
g, we have that for every p̄ ∈ A? extending b̄2 and every n, there is a q̄ ∈ A? extending
p̄ for which ΦDB(p̄)(n) ↓. We may assume b̄2 ⊇ b̄1.

Now, using ∃-tpB(b̄2) as a parameter, which we know is c.e., we define a computable
path through P . Define a path {σn : n ∈ N} ⊆ T step by step as follows. Let σ0 be the
empty string. Given σn, chose σn+1 ∈ Nn+1 ∩T with σn+1 ⊇ σn to be a string such that

A |= ∃x̄(ΦDA(b̄2,x̄)(n+ 1) = σn+1),

or equivalently, such that there exists τ ∈ 2<N with Φτ (n + 1) = σn+1 for which the
formula ∃x̄(D(b̄2, x̄) = τ) is in ∃-tpB(b̄2). We know σn+1 exists because, if ān was the

witness to define σn (i.e., ΦDA(b̄2,ān)(n) = σn), then we know there is an extension ān+1

of ān such that ΦDA(b̄2,ān+1)(n+ 1) ↓. We also know that ΦDA(b̄2,ān+1)(n+ 1) must be in
Nn+1 ∩ T and must extend σn. That is our σn+1. �

Recall that a real X ∈ 2N is diagonal non-computable (DNC) if ∀n(X(n) 6= Φn(n));
a real is ML-random if it does not belong to any effectively-null Gδ set; and a real is
PA if it computes a complete theory extending the axioms of Peano arithmetic. See
[Nie09] for more background on these classes.

Corollary V.3.7 (U. Andrews, J. Miller [AM15]). The class of DNC degrees,
the class of ML-random degrees, and the class of PA degrees are not degree spectra.
Furthermore, if a structure has the c.e. embeddability property, its degree spectrum is
not contained in any of these classes.

Proof. All these classes are easily seen to be Fσ, and hence they cannot be degree
spectra.

Furthermore, The classes of DNC and PA reals are both Π0
1 classes without com-

putable members, and the class of ML-random reals is an effective countable union of
Π0

1 classes without computable members. So, the second part of the corollary follows
form Theorem V.3.6. �

Let us now give the proof of V.3.4, for which we recommend the reader reads the
proof of Theorem V.3.6 first.

Proof of Theorem V.3.4. Suppose A is a structure whose degree spectrum is
the Turing-upper closure of an Fσ set F ⊆ 2N. Assume F =

⋃
i∈N Pi where each Pi = [Ti]

for trees Ti ⊆ 2<N. Let g be a (
⊕

i∈N Ti)-1-generic enumeration of (A, ~KA) and let B be

the pull-back structure. There is a computable functional Φ and an i such that ΦD(B)
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is a path through Ti, i.e., ΦD(B)(n) ∈ Nn ∩ Ti and ΦD(B)(n) ⊆ ΦD(B)(n+ 1) for every n.
As in the proof of Theorem V.3.6, there is an initial segment b̄ ∈ A? of the enumeration
g which has no extensions in Q0, Q1, and Q2. That, the tuple b̄ satisfies:

(1) (∀q̄ ⊇ b̄, q̄ ∈ A?), if ΦD(q̄)(n) ↓, then ΦD(q̄)(n) ∈ Ti ∩ 2N

(2) (∀q̄ ⊇ b̄, q̄ ∈ A?), if ΦD(q̄)(n) ↓& ΦD(q̄)(n+ 1) ↓, then ΦD(q̄)(n) ⊂ ΦD(q̄)(n+ 1).
(3) (∀n ∈ N∀q̄ ⊇ b̄, q̄ ∈ A?)(∃p̄ ⊇ q̄, p̄ ∈ A?) ΦD(p̄)(n) ↓.

Consider now the tree of possible values of Φ:

S = {σ ∈ 2<N : (∃q̄ ⊇ b̄, q̄ ∈ A?) σ ⊆ ΦD(q̄)}.
By the assumptions on b̄, we get that S is a subtree of Ti without dead ends. From its
definition we get hat S is r.i.c.e. in A. On the other hand, every enumeration of S can
compute a path through S, and hence a path through Ti, which must then compute a
copy of A. Therefore, A has e-degree S. �

There are enumeration cones which are the Turing upward closure of closed sets,
but which are not Turing cones. Furthermore, J. Miller and M. Soskova proved this is
the case for all continuous degrees which are not total.

V.4. Some particular degree spectra

We already saw that all upper cones and enumeration cones can be realized as degree
spectra (Example III.8.3). In this section, we look at another easy-to-describe but more
surprising degree spectra.

V.4.1. The Slaman–Wehner Family. The Slaman–Wehner structure is one that
has no computable copy, but is computable in any non-computable set. The best way
to describe it is using families of sets.

Definition V.4.1. We say that X can enumerate a family S ⊆ P(N) if there is an
X-c.e. set W such that S = {W [n] : n ∈ N}.

Observation V.4.2. For every countable family S ⊆ P(N), there is a graph G∞S such
that, for every oracle X, X can compute a copy of G∞S if and only if X can enumerate S:
As in the proof of Lemma V.2.3, consider the bouquet graph G∞S =

⋃
Y ∈S,i∈N GY , where

GY is the flower graph coding Y , that is GY contains a cycle of length n + 3 for each
n ∈ Y , and all the cycles intersect in one node. Notice that each GY appears infinitely
often in GS.

Theorem V.4.3 (Slaman [Sla98], Wehner [Weh98]). There is a structureW whose
degree spectrum is {X ∈ 2N : X not computable}.

Proof. Consider the family

F = {F ⊕ {n} : F ⊆ N finite & F 6= Wn},
and letW = G∞F as in the observation above. We claim that X can enumerate F if and
only if X is not computable.

Suppose F had a computable enumeration. We could then build a function g that,
on input n, outputs the c.e. index of a finite set Wg(n) with Wg(n) 6= Wn: just look
through the enumeration of F until you find a column of the form F ⊕ {n} for some F
and output the c.e. index of that F . This contradicts the recursion theorem.
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For the other direction, suppose X is not computable. We define an X-computable
enumeration of F . Let Y = X ⊕ Xc, which we know is not c.e. At the beginning of
stage t, enumerate into F all the sets of the form F ⊕ {n} for all F ⊆ t, and all n < t.
If, among the columns that have been enumerated so far, one is of the form F ⊕n with
F = Wn[t] (the stage-t approximation to Wn), we take it as a threat, and we add to
F the least element of Y that is not in F already. The idea is that no column can be
threatened infinitely often because that would imply that Wn = F ∪ Y , which we know
is not c.e.

More formally: Fix n ∈ N; we want to enumerate the family Fn = {F : F ⊆
N finite & F 6= Wn} uniformly in n. For each finite set F and every s ∈ N, we will
enumerate a set RF,s with the objective of having

{RF,s : F ⊆ N finite, s ∈ N} = Fn.
We define RF,s by stages as RF,s =

⋃
t∈NRF,s[t], where each RF,s[t] is finite. For t ≤ s,

let RF,s[t] = F . At stage t + 1, if RF,s[t] = Wn[t], we take it as a threat and let
RF,s[t + 1] = RF,s[t] ∪ {y}, where y is the least element of Y r RF,s[t]. The threats to
RF,s must eventually stop, as otherwise we would have Wn =

⋃
t∈NRF,s[t] = F ⊕ Y ,

which is not c.e. Thus, RF,s will end up being finite and not equal to Wn, and hence
RF,s belongs to Fn. On the other hand, for every finite set F 6= Wn, we have RF,s = F
for large enough s: Take s so that (∀t > s) F 6= Wn[t]. �

Kaliullin [Kal08] showed that the non-∆0
2 degrees are a degree spectrum (see Ex-

ercise VII.3.7). On the other hand, U. Andrews, M. Cai, I. Kalimullin, S. Lempp, J.
Miller, and A. Montalbán showed [ACK+] that the class of non-∆0

n degrees cannot be
a degree spectrum, for n ≥ 3. It remains open whether the non-arithmetic degrees from
a degree spectrum.



CHAPTER VI

Comparing Structures

Another tool for measuring the complexity of an object is to have a way to compare
it to other objects. For sets of natural numbers, there are various ways to compare
their complexity: Turing reducibility, enumeration reducibility, many-one reducibil-
ity, etc. For structures, there are also various ways, the most important ones being
Muchnik reducibility, Medvedev reducibility, effective interpretability (also known as
Σ-definability), and effective bi-interpretability.

VI.1. Muchnik and Medvedev reducibilities

Let us start by defining these reducibilities on classes of sets:

Definition VI.1.1. A class R ⊆ 2N is Muchnik reducible to a class S ⊆ 2N if every
real in S computes a real in R [Muč63]. If so, we write R ≤w S, where the ‘w’
stands for “weak,” in contrast to the following stronger reducibility. A class R ⊆ 2N

is Medvedev reducible to a class S ⊆ 2N if there is a computable operator Φ such that
ΦX ∈ R for every X ∈ S [Med55]. If so, we write R ≤s S.

Here is the idea behind these notions. Suppose we have two problems, R and S,
which involve finding reals with certain properties. Let R and S be the sets of reals
which are solutions to R and S respectively. For either of the two reductions above, R
reduces to S if and only if we can produce a solution for R using a solution for S.

Both notions generalize both Turing reducibility and enumeration reducibility: For
X, Y ⊆ N, we have that X ≤T Y if and only if {X} ≤w {Y }, and also if and only if
{X} ≤s {Y }. We have that X ≤e Y if and only if the set of enumerations of X (i.e.,
the set of onto functions f : N→ X) is Muchink reducible to the set of enumerations of
Y , and also, but less trivially, if and only if the set of enumerations of X is Medvedev
reducible to the set of enumerations of Y (Selman [Sel71]).

When we are considering countable structures, we apply these reducibilities to the
set of their ω-presentations:

Definition VI.1.2. A structure A is Muchnik reducible to a structure B if every
ω-presentation of B computes an ω-presentation of A or, more precisely, the atomic
diagram of every ω-presentation of B computes the atomic diagram of an ω-presentation
of A. If so, we write A ≤w B. A structure A is Medvedev reducible to a structure
B if there is a computable operator Φ such that, for every ω-presentation B̂ of B,

ΦD(B̂) = D(Â) for some ω-presentation Â of A — we write A ≤s B. We denote the
respective notions of equivalence by ≡w and ≡s (i.e., A ≡w B ⇐⇒ A ≤w B & B ≤w A
and A ≡s B ⇐⇒ A ≤s B & B ≤s A).

57
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Observation VI.1.3. Muchnik reducibility does not capture any more information
than degree spectra:

A ≤w B ⇐⇒ DgSp(A) ⊇ DgSp(B).

Example VI.1.4. Given linear orderings A and B with A isomorphic to a closed
segment [a, b]B of B, A ≤w B.

Example VI.1.5. Given a ring R, R[x] ≤s R.

Example VI.1.6. Given a structure A, there exists a graph GA such that A ≡s GA.
We will develop this example later in Section VI.2.2.

Example VI.1.7. For a group G, GN ≤s G, but G 6≤w GN. Take G =
⊕

n∈N Zpn ⊕⊕
n∈Nr0′ Zpn .

These reducibilities form upper-semi-lattices; that is, given structures A and B, if
we define A ⊕ B by putting together disjoint copies of A and B and adding a unary
relation A that holds only of the elements in the copy of A, then A⊕B is the least upper
bound of A and B according to both Muchnik and Medvedev reducibilities. In both
cases there is a least degree: If a structure has a computable copy, it reduces to every
other structure. Another interesting observation is that there is a least non-computable
structure.

Observation VI.1.8. The Slaman–Wehner structureW from Theorem V.4.3 has no
computable copies and is Medvedev reducible to all other structures without computable
copies. All we have to observe is that the construction in V.4.3 is uniform in X, i.e.,
that it produces a computable operator Φ such that, for every non-computable X, ΦX

is the atomic diagram of a copy of W .

The following lemma provides some structural information that we can deduce from
having a structure Muchnik or Medvedev reducible to another.

Lemma VI.1.9. If A ≤w B, then for every tuple ā ∈ A<N, there is a tuple b̄ ∈ B<N

such that ∃-tpA(ā) ≤e ∃-tpB(b̄). If also A ≤s B, then ∃-Th(A) ≤e ∃-Th(B).

We will show that this lemma is also true for Σc
α types and theories in Part 2.

Proof. For the first part, suppose that A ≤w B and take ā ∈ A<N. Essentially we
use that co-DgSp(A) ⊆ co-DgSp(B): Since ∃-tpA(ā) is c.e. in every copy of A, it is
also c.e. in every copy of B, and hence it is coded by B. By Knight’s Lemma II.1.21,
∃-tpA(ā) ≤e ∃-tpB(b̄) for some tuple b̄ ∈ B<N.

Suppose now that A ≤s B via a is a computable operator Φ. For a finite tuple
σ ∈ 2<N approximating (possibly the diagram of B), and for an ∃-sentence ψ, we write
“Φσ |= ψ” if the finite diagram output by Φσ (possibly approximating D(A)) is enough
to witness that ψ holds. Notice that since ψ is finitary existential, A |= ψ if and only if
ΦD(B) � s |= ψ for some s ∈ N.

To show that ∃-Th(A) ≤e ∃-Th(B), consider an ∃-formula ψ about A. Then A |= ψ

if and only if there is some copy B̃ of B such that ψ holds in ΦD(B̃). This holds if

and only if ΦD(B̃) � s |= ψ for some s ∈ N. Let p̄ ∈ B<N be an initial segment of the
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presentation B̃ such that DB(p̄) ⊇ D(B̃) � s. We then have that A |= ψ if and only if
ΦDB(p̄) |= ψ for some p̄ ∈ B<N. Thus,

A |= ψ ⇐⇒ Φσ |= ψ for some σ ⊆ DB(p̄) for some p̄ ∈ B<N.

The set {σ ∈ 2<N : Φσ |= ψ} is computable, and the formula “∃x̄(D(x̄) ⊇ σ)” is
answered by ∃-Th(B). We then get an e-reduction from ∃-Th(B) to ∃-Th(A): Given
an enumeration of ∃-Th(B), enumerate ψ into ∃-Th(A) once you find σ ∈ 2<N with
Φσ |= ψ a see that “∃x̄(D(x̄) ⊇ σ)” is enumerated in ∃-Th(B). �

So far, Muchnik and Medvedev reducibilities seem to behave in a similar way. How-
ever, one of the main differences is that adding constant to the structures does not affect
Muchnik reducibility, while the following lemma shows that it does affect Medvedev re-
ducibility.

Lemma VI.1.10. There are structures B and C and c ∈ C with B ≤s (C, c), but
B 6≤s C.

Notice that B ≤s (C, c) implies B ≤w C, and hence this is an example where the
Muchnik and Medvedev reducibilities differ.

Proof. Let Z be a non-c.e. set. Consider the following families of sets and their
respective bouquet graphs (as in Observation V.4.2):

• S0 = {F : F ⊂ N finite} and A = G∞S0
.

• S1 = {Z} and B = G∞S1
.

• S2 = S0 ∪ S1 and C = G∞S2
.

The family S0 has a c.e. enumeration. Thus, A has a computable copy and ∃-Th(A)
is c.e. The family S1 does not have a c.e. enumeration. Furthermore, an oracle X can
compute an enumeration of S1 if and only if X can enumerate Z. Thus, DgSp(B) =
{X ∈ 2N : Z is c.e. in X} is the e-cone above Z. The same is true for C: clearly, from
a copy of B, we can produce one of C by attaching a computable copy of A, and given
a copy of C, we can produce a copy of B if we can identify the component of C that
corresponds to GZ . This implies that if c is the center of the flower corresponding to
the component GZ , we get that B ≡s (C, c).

However, every finite substructure of C is isomorphic to some finite substructure of
A, and vice versa. Since an ∃-formula is true of A if and only if it is true of some finite
substructure of A, this implies that ∃-Th(C) = ∃-Th(A), which is c.e. On the other
hand, ∃-Th(B) can enumerate Z, and hence is not c.e. It follows from Lemma VI.1.9
that B 6≤s C. �

Exercise VI.1.11 (Stuckachev [Stu07]). Prove that if a structure A has Turing
degree and B ≤w A, then for some tuple ā ∈ A<N, B ≤s (A, ā).

Kalimullin [Kal09] showed this is not true if we only assume that A has e-degree.

But the difference between Muchnik and Medvedev reducibility is more than just
adding constants, as shown in the corollary below. The theorem before it gives a version
of the Slaman–Wehner structure which is computable from every non-computable oracle,
but not in a uniform way.
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Theorem VI.1.12 (Faizrahmanov and Kalimullin [FK]). There is a structure A that
has an X-computable copy for every non-computable X, but uniformly. That is, there
is no computable single operator Φ such that ΦX is copy of A for each non-computable
X.

Corollary VI.1.13 (Kalimullin [Kal09]). There are structures A andW such that
A ≡w W, but A 6≤s (W , w̄) for any tuple w̄ ∈ W<N.

Proof of Corollary VI.1.13. The structure W is the Slaman–Wehner struc-
ture from Theorem V.4.3 whose degree spectrum is the non-computable sets and for
which there exists a Turing operator that outputs a copy of W whenever a non-
computable set is used as an oracle. Moreover, for any w̄ ∈ W<N, we can produce
such an operator that outputs a copy of (W , w̄): Recall that W =

⋃
n∈NWn, where Wn

is the disjoint union of the flower graphs GF⊕{n} for F ⊂ N finite with F 6= Wn, each
appearing infinitely often. There are finitely many components Wn which contain an
element of w̄, so we can fix a computable enumeration of them. For the other n’s, we
can use the construction of Theorem V.4.3.

The structure A is the one from Theorem VI.1.12. It is Muchnik equivalent toW : it
is computable from any non-computable oracle, and it is has no computable copies, as
otherwise there would be would be a computable operator that produces a computable
ω-presentation of A ignoring the oracle. A is not Medvedev reducible to (W , w̄) for any
w̄ ∈ W<N because if there was a computable operator that produces a copy of A out of
every copy of (W , w̄), we could produce a copy of (W , w̄) and then one of A uniformly
from a non-computable set. �

Proof of Theorem VI.1.12. We modify Wehner’s construction from Theorem
V.4.3. We still consider a family of finite sets of the form F ⊕ {n}, but the difference
with Wehner’s construction is that we think of F as a finite subset of Q instead of N,
and instead of requiring F to be different from the n-th c.e. set, we just require its
maximum to be different from the maximum of the n-th c.e. subset of Q. It works.

Let {Qn : n ∈ N} be an effective enumeration of the c.e. subsets of Q. (For example,
given an effective Gödel numbering q 7→ pqq : Q → N, let Qn = {q ∈ Q : pqq ∈ Wn}.)
Consider the family of sets

F = {F ⊕ {n} : F ⊆ Q finite, n ∈ N,max(F ) 6= max(Qn)},

where the formula max(F ) 6= max(Qn) is assumed to be vacuously true when Qn does
not have a greatest element. Let A be the associated bouquet graph G∞F as in Ob-
servation V.4.2. Recall that the existence of an X-computable presentation of G∞F is
equivalent to the existence of an X-c.e. enumeration of F , that is, an X-c.e. set V with
F = {V [n] : n ∈ N}.

First, let us show that F is computably enumerable in every non-computable set X.
A real is said to be left c.e. if it is of the form sup(Qe) for some c.e. set Qe ⊆ Q. Let α
be X-left c.e., but not left c.e. To see that such an α exists, consider β0 =

∑
i∈X 2−i and

β1 =
∑

i 6∈X 2−i. They cannot be both left c.e., as otherwise X would be computable.
Let α be whichever of β0 or β1 is not left c.e. — this is the only step in the construction
that is not uniform in X. Let {αi : i ∈ N} ⊆ Q be an X-computable increasing sequence
with limit α.
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Fix n. We want to enumerate the family

Fn = {F : F ⊆ Q finite,max(F ) 6= max(Qn)}
uniformly in n. The idea is to enumerate a new component of the form F for each
finite set F ⊆ Q at each stage, and if, at a certain stage t, we are threatened by having
max(F ) = max(Qn,t), we add max(F ) + αt to that component changing its maximum
value. A component can not be threatened infinitely often because we would end up
having sup(Qn) = max(F ) +α, which is not left-c.e. Let us explain this in more detail.
For each finite set F ∈ Q and s ∈ N, we will enumerate a set RF,s uniformly in X, with
the objective of getting

Fn = {RF,s : F ⊆f Q, s ∈ N}.
The idea is that RF,s starts by being F at stage s and then every time it is threaten,
we add a new element to RF,s so as to change its maximum value. To define RF,s, we
will define a non-decreasing sequence {rF,s[t] : t ∈ N} ⊂ Q and then let

RF,s = F ∪ {rF,s[t] : t ∈ ω}.
Let rF,s[t] = max(F ) for all t ≤ s. At stage t + 1 > s, if rF,s[t] = max(Qn,t), let
rF,s[t + 1] = max(F ) + αt, where Qn,t and αt are the stage-t approximation to Qn and
α. We claim that this sequence eventually stabilizes. Otherwise, we would have that

sup(Qn) = lim
t

max(Qn,t) = lim
t
rF,s[t] = max(F ) + α,

contradicting that max(F ) + α is not left c.e. Let rF,s = limt rF,s[t]. Then rF,s 6=
max(Qn) and RF,s ∈ Fn. On the other hand, for every finite F ⊆ Q for which max(F ) 6=
max(Qn), we have that RF,s = F for large enough s: Take s so that max(Qn,t) 6= max(F )
for all t > s, and hence so that rF,s[t] = max(F ) for all t ∈ N.

For the second part of the theorem, let us assume that V is a c.e. operator such
that V X is an enumeration of F for every non-computable X, and let us try to get a
contradiction. For this, we will define a uniformly c.e. sequence Mn of finite subsets
of Q with max(Mn) 6= max(Qn). This will give us a contradiction because, if f is a
computable function such that Qf(n) = Mn, then by the recursion theorem, there must
be an n0 with Wf(n0) = Wn0 , and hence with Mn0 = Qf(n0) = Qn0 .

Using the operator V , we can easily produce a uniform family of c.e. operators
{Un : n ∈ N} such that UX

n ⊆ Q is finite and max(UX
n ) 6= max(Qn) for all non-

computable X and n ∈ N: Search for a column of V X of the form F ⊕ {n} for some F
(i.e., a column that contains the number 2n+ 1), and let UX

n = F .
For X ∈ 2N, let

mX
n = sup(UX

n ) ∈ R ∪ {∞},
which we know is actually a maximum in Q when X is non-computable. For σ ∈ 2<N,
let mσ

n = max(Uσ
n ) ∈ Q ∪ {−∞}, where Uσ

n is the step-|σ| approximation to UX
n for

X ⊃ σ, and where mσ
n = −∞ if Uσ

n = ∅. We have the following properties:

• σ ⊆ τ ⇒ mσ
n ≤ mτ

n.
• If X ∈ 2N is non-computable, then mX

n = mσX
n for some finite σX ⊂ X.

• If X ∈ 2N is non-computable, mX
n 6= max(Qn).

Let T ⊆ 2<N be a computable tree with no computable paths. (For instance, let
T = {σ ∈ 2<N : ∀e < |σ| (σ(e) 6= Φe,|σ|(e))} whose paths are the 2-DNC reals.) The



62 VI. COMPARING STRUCTURES

idea is to use T to define Mn so that its maximum element is the minimum value of mX
n

among all the X ∈ [T ]. Since such X ∈ [T ] would be non-computable, we would have
that max(Mn) = mX

n 6= max(Qn). Let

γ = inf{mX
n : X ∈ [T ]} ∈ R ∪ {−∞};

we will show that γ is actually a minimum. Consider the following sequence approxi-
mating γ:

γ[k] = min(mσ
n : σ ∈ T ∩ 2k).

Since mX
n ≥ mX � k

n for all X and k, we get that γ ≥ γk. To see that the sequence
converges to γ, for ε > 0 one can find X so that γ − ε < mX

n = mσX
n ≤ γ[|σX |]. First,

we claim that this sequence becomes constant from some point on. To see this, let us
observe that the sub-tree {σ ∈ T : mσ

n < γ} must be finite: Otherwise, by König’s
lemma, it would have a path Y ∈ [T ]. But then mY

n = mσY
n < γ contradicting the

definition of γ. So if k0 bounds the lengths of all the strings in that tree, γ[k] = γ for
all k ≥ k0.

Second, we claim that γ = mX
n for some X ∈ [T ]. To see this, let us observe that

the tree {σ ∈ T : mσ
n ≤ γ} must have a path: Otherwise, by König’s lemma, the

tree would be finite, and if k0 bounds the lengths of all the strings in that tree, we
would get γ[k] > γ, which we know does not happen. So, if X is a path through that
tree, mX

n = mσX
n ≤ γ and hence mX

n is minimum among all X ∈ [T ]. It follows that
γ = mX

n 6= max(Qn).
Finally, let

Mn = {γ[k] : k ∈ N}.
Then Mn must be finite and have maximum element γ 6= max(Qn). It is not hard to
see that {Mn : n ∈ ω} is c.e. uniformly in n. This finishes the construction of Mn and
the proof that A cannot be uniformly computed from all non-computable sets. �

VI.2. Computable functors and effective interpretability

There is a third important notion of reducibility which has many more structural
consequences — it even has a structural characterization in terms of interpretations. It
comes from requiring that a Medvedev reduction Φ preserve isomorphisms effectively.

Definition VI.2.1 (R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh [MPSS,
Definition 3.1]). Given structures A and B, a computable functor from B to A consists
of two computable operators, Φ and Ψ, such that:

(1) Φ is a Medvedev reduction witnessing A ≤s B; that is, for every copy B̂ of B,

ΦD(B̂) is the atomic diagram of a copy of A.

(2) For every isomorphism f between two copies B̂ and B̃ of B, ΨD(B̂),f,D(B̃) is an

isomorphism between the copies of A obtained from ΦD(B̂) and ΦD(B̃).

We also require that the operator Ψ preserve the identity and composition of isomor-
phisms:

(3) ΨD(B̂),id,D(B̂) = id for every copy B̂ of B.

(4) ΨD(B̂),g◦f,D(B̌) = ΨD(B̌),g,D(B̃) ◦ ΨD(B̂),f,D(B̌), for copies B̂, B̃ and B̌ of B and

isomorphisms f : B̂ → B̌ and g : B̌ → B̃.
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The pair Φ,Ψ is actually a functor in the sense of category theory. It is a functor from
the category of ω-presentations of B where morphisms are the isomorphisms between
the copies of B, to the category of ω-presentations of A.

Example VI.2.2. Let B be an integral domain (i.e., a commutative ring without
zero-divisors) and let A be the field of fractions of B. That is, A consists of element of
the form p

q
for p, q ∈ B, q 6= 0. Equivalence, addition, and multiplication of fractions is

defined as usual. One can easily build a computable functor that produces a copy of A
out of a copy of B and maps isomorphisms between copies of B to the respective copies
of A. We let the reader check the details. We will develop this example further below
in Example VI.2.4.

We will prove that having a computable functor is equivalent to having an effective
interpretation. Informally, a structure A is effectively-interpretable in a structure B if
there is an interpretation of A in B as in model theory, but where the domain of the
interpretation is allowed to be a subset of B<N instead of just Bn, and where all sets
in the interpretation are required to be “effectively definable” instead of elementary
first-order definable.

Before giving the formal definition, we need to review one more concept. Recall
that a relation R on A<N is uniformly r.i.c.e. (u.r.i.c.e.) if there is a c.e. operator W
such that RB = WD(B) for every copy (B, RB) of (A, R). These are exactly the Σc

1-
definable relations without parameters (Corollary II.1.16). Analogously, R is uniformly
r.i. computable if there is a computable operator Φ such that RB = ΦD(B) for every copy
(B, RB) of (A, R).

Definition VI.2.3. Let A be a τ -structure, and B be any structure. Let us assume
that τ is a relational vocabulary τ = {Pi : i ∈ I} where Pi has arity a(i). So A =
(A;PA0 , P

A
1 , ...) and PAi ⊆ Aa(i).

We say that A is effectively-interpretable in B if, in B, there are u.r.i. computable
relations AB, ∼B, and {RBi : i ∈ I} such that

• AB ⊆ B<N (the domain of the interpretation of A in B),
• ∼B⊆ AB × AB is an equivalence relation on AB (interpreting equality),
• each RBi ⊆ (AB)a(i) is closed under the equivalence ∼B (interpreting the rela-

tions Pi),

and there is a function fBA : AB → A which induces an isomorphism:

(AB/ ∼B;RB0 , R
B
1 , ...)

∼= (A;PA0 , P
A
1 , ...).

Let us clarify this last line. The function fBA : AB → A must be an onto map such that
fBA(ā) = fBA(b̄) ⇐⇒ (ā, b̄) ∈∼B and fBA(ā) ∈ PAi ⇐⇒ ā ∈ RBi for all ā, b̄ ∈ (AB)<N.
Notice that there is no restriction on the complexity or definability of fBA. We use AB
to denote the structure (AB/ ∼B;RB0 , R

B
1 , ...).

If we add parameters, this notion is equivalent to that of Σ-definability, which was
introduced by Ershov [Ers96] and is widely studied in Russia. Ershov’s definition is
quite different in format: it uses HF(B) instead of B<N (see Section II.4.1) and sets that
are ∃-definable over HF(B) instead of Σc

1-definable subsets of B<N (which we know are
equivalent; Theorem II.4.3).
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Example VI.2.4. Recall Example VI.2.2 above. We claim that A is effectively
interpretable in B. Let AB = {(p, q) ∈ B2 : q 6= 0}. Let (p0, q0) ∼B (p1, q1) if
p0 ×B q1 = p1 ×B q0. Let ((p0, q0), (p1, q1), (p2, q2)) be in the graph of addition for AB if
(p0 ×B q1 +B p1 ×B q0)×B q2 = q0 ×B q1 ×B p2. Let ((p0, q0), (p1, q1), (p2, q2)) be in the
graph of multiplication for AB if p0 ×B p1 ×B q2 = q0 ×B q1 ×B p2.

Lemma VI.2.5. An effective interpretation of A in B induces a computable functor
from B to A.

Proof. Since AB, ∼B, and {RBi : i ∈ I} are u.r.i. computable in B, we have a

computable operator that gives us those sets within any copy of B̂, using D(B̂) as an

oracle. We thus have a computable operator Φ that, given B̂ ∼= B, outputs D(AB̂),

the atomic diagram of the congruence (⊆ N<N)-presentation AB̂ of A with domain

AB̂ ⊆ B̂<N = N<N. Fixing a bijection between N and N<N, and using Lemma I.1.9,
we get a computable operator Υ transforming congruence (⊆ ω<N)-presentations into
injective ω-presentations. Both of these computable operators Φ and Υ preserve iso-
morphisms effectively; in other words, they can be easily made into computable func-
tors. Composing these computable functors, Υ ◦ Φ, we get the computable functor we
wanted. �

The following theorem shows that the reversal is also true. Furthermore, given a
computable functor, we can get an effective interpretation that essentially induces the
original functor back, up to effective isomorphism of functors.

Theorem VI.2.6 (Harrison-Trainor, Melnikov, Miller, Montalbán [HTMMM]).
Let A and B be countable structures. The following are equivalent:

(1) A is effectively interpretable in B.
(2) There is a computable functor from B to A.

We will prove this theorem in Part 2 once we have developed more forcing techniques.
The original proof from [HTMMM] does not use forcing, and the reader should be able
to follow it with what we have learned so far. The proof using forcing [HTMM] is much
more informative and can be generalized to a broader setting.

VI.2.1. Effective bi-interpretability. Effective interpretability and Σ-definability
induce notions of equivalence between structures as usual: two structures are equivalent
if they are reducible to each other. Σ-equivalence, the equivalence notion that comes
from Σ-definability, has been widely studied. However, it still does not really capture
the idea of two structures being “the same from a computability viewpoint.” In this
section, we introduce the more recent notion of effectively-bi-interpretability, which is
a strengthening of Σ-equivalence. For this strengthening, we require the composition
of the isomorphisms, interpreting one structure inside the other and then interpreting
the other back into the first one, to be effective. We will show how most computability
theoretic properties are preserved under this equivalence, and how it applies to exam-
ples of structures that we intuitively thought of as being “the same.” Here is the formal
definition:

Definition VI.2.7. [Mond, Definition 5.1] Two structures, A and B, are effectively-
bi-interpretable if there are effective-interpretations of each structure in the other as in
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Definition VI.2.3 such that the compositions

fAB ◦ f̃BA : BA
B → B and fBA ◦ f̃AB : AB

A → A

are u.r.i. computable in B and A, respectively.
Let us explain this messy notation. BA

B ⊆ (AB)<N ⊆ (B<N)<N is the domain of the

interpretation of B within the interpretation of A within B, and f̃BA : (AB)<N → A<N

is the obvious extension of fBA : AB → A from elements to tuples: f̃BA(a0, ..., ak) =

(fBA(a0), ..., fBA(ak)). Notice that since fAB ◦ f̃BA is a partial function from (B<N)<N to
B, it can be coded by a relation on B<N, and it makes sense to require it to be u.r.i.
computable.

Let us make a quick comment on non-relational vocabularies. We have not de-
fined bi-interpretability for non-relational languages, but when the interpretations are
injective, Definition VI.2.7 goes through without problems.

In the next lemma, we see how effective-bi-interpretability preserves most com-
putability theoretic properties. Some of the properties we list will not be introduced
until later in the book, and we delay their proofs until then.

Lemma VI.2.8. Let A and B be effectively-bi-interpretable.
(1) A and B have the same degree spectrum.
(2) A is ∃-atomic if and only if B is.
(3) A is rigid if and only if B is.
(4) The automorphism groups of A and B are isomorphic.
(5) A is computably categorical if and only if B is.
(6) A and B have the same computable dimension.
(7) A has the c.e. extendibility condition if and only if B does.
(8) The index sets of A and B are Turing equivalent, provided A and B are infinite.

(Of course, items (5), (6), and (8) assume A and B are computable.)

Proof. Throughout this proof, assume that A is already the presentation AB that
is coded inside B<N, i.e., with domain AB, and B̃ is the copy of B coded inside A<N,
i.e., with domain BA = BAB . We let f be the isomorphism from B̃ to B.

For part (1), recall from Lemma VI.2.5 that there are computable functors between
A and B, and in particular, that they are Medvedev equivalent, and hence also Muchnik
equivalent.

For part (2), suppose A is ∃-atomic, and hence that every automorphism orbit in
A is ∃-definable. Take a tuple b̄ ∈ B<N; we will show its orbit is also ∃-definable. Let
c̄ ∈ (BA

B
)<N ⊆ (B<N)<N be such that f(c̄) = b̄. The orbit of c̄ is ∃-definable inside

AB, and since AB is ∆c
1-definable in B, the orbit of c̄ is also Σc

1 definable in B. Since
f is Σc

1-definable in B, the orbit of b̄ is also Σc
1 definable. If an orbit is definable by

a disjunction, it must be defined by one of its disjuncts, and hence the orbit of b̄ is
∃-definable in B. It follows that B is ∃-atomic.

For part (3), suppose B is not rigid, and let h be a nontrivial automorphism of
B. It then induces an automorphism of B<N, which then induces an automorphism gh
of AB, which then induces an automorphism hgh of BAB . Since f : BAB → B is u.r.i.
computable, it is invariant; that is, f(ā) = b ⇐⇒ f(hgh(ā)) = h(b). In other words,
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f ◦ hgh = h ◦ f , and since h is nontrivial, hgh must be nontrivial too. It follows that the
automorphism gh of A cannot be trivial either.

For part (4), notice that the composition of the following three maps is the identity
on Aut(B): first the homomorphism h 7→ gh : Aut(B) → Aut(AB); second the ho-

momorphism g 7→ hg : Aut(AB) → Aut(BAB); and third the conjugation isomorphism

induced by f , namely ĥ 7→ f ◦ ĥ ◦ f−1 : Aut(BAB)→ B. We thus get that they they are
all isomorphisms.

For part (5), we need the following observation. Let B1 and B2 be copies of B. The
point we need to make here is that if AB1 and AB2 are computably isomorphic, then so
are B1 and B2: A computable isomorphism between AB1 and AB2 induces a computable
isomorphism between BAB1 and BAB2 , each of which is computably isomorphic to B1 or
B2, respectively. Thus, if A is computably categorical, so is B. For (6), we have that
if B has k non-computably isomorphic copies B1, ...,Bk, then the respective structures
AB1 , ...,ABk cannot be computably isomorphic either. So the effective dimension of A
is at least that of B, and hence, by symmetry, they must be equal.

For part (7), refer to Observation VI.1.3.
In part (8), by the index set of a structure A, we mean the set of all i such that

Wi is the atomic diagram of a structure isomorphic to A. To prove (8), suppose we are
given an index of a computable structure C, and we want to decide if it is isomorphic
to B using the index set of A. Using the formulas in the effective interpretation of A
in B, we can produce a structure AC such that if C ∼= B, then AC ∼= AB. We can then
produce an index for AC, and use the index set of A to check if it is isomorphic to
A. If it is not, then we know C is not isomorphic to B. Otherwise, we need to check
that the bi-interpretability does produce an isomorphism between C and BAC , which 0′′

can check. One has to notice that all index sets compute 0′′, as their domain must be
infinite, and all the formulas “xn = xn” must be in their atomic diagrams. (Given e,
let f(e) be a c.e. index so that Wf(e) = D(A) r {pxn = xnq : n 6∈ We}. Then f(e) is an
index for A if and only if We = N. So we get a reduction from 0′′ (TOT) to the index
set of A.) �

We will prove later that if A and B are effectively-bi-interpretable, then they also
have the same Scott rank (Part 2) and their jumps are effectively-bi-interpretable too
(see Remarks IX.0.13).

VI.2.2. Making structures into graphs. In this section, we show how every
structure is effectively-bi-interpretable with a graph. This result will allow us to reduce
statements about structures in general to statements about graphs, sometimes making
proofs simpler. In Part 3, we will see that there are other classes of structures, like
lattices or fields, that are also complete in the sense that every structure is effectively-
bi-interpretable with one of them.

Theorem VI.2.9. For every structure A, there is a graph GA that is effectively-
bi-interpretable with A. Furthermore, the interpretations are independent of the given
structure. That is, given a vocabulary τ , the Σc

1 formulas used to define the sets involved
in the interpretations are the same for all τ -structures A.

We only sketch the construction and let the reader verify the details.
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The first step is to show that A is effectively-bi-interpretable with a structure H in
the vocabulary {U,E}, where U is a unary relation and E a symmetric binary relation.
The unary relation U picks out the elements that represent the domain of A. The
elements outside U are going to be used to code the relations in A. Enumerate the
domain of A as {a0, a1, ...} and let h0, h1, ... be the corresponding elements in UH. For
each tuple ai1 , ..., aik satisfying the nth relation Rn in τ (of arity k), we attach the
following configuration to hi1 , ..., hik in H, where the top cycle has size 2n+ 5.

hi1 hi2 hi3 hi4

Figure 1. We call this configuration an m-spider, where m is the size
of the top loop (m = 7 in this case). The edges represent the pairs of
elements that satisfy E. Let `m be the number of nodes in the spider
(`m = 13 in this case).

So that both the interpretation of R and that of its complement are ∃-definable, to
each tuple ai1 , ..., aik not satisfying Rn we attach an (2n+ 4)-spider.

It is clear thatA can be effectively interpreted inH: the domain of the interpretation
is UH, and the interpretation of Rn is given by the set of tuples in (UH)k that have a
(2n+ 5)-spider attached to them, which can be expressed by an ∃-formula. This set is
also ∀-definable, as it is the set of tuples which do not have a (2n+ 4)-spider attached
to them.

Conversely, H can be interpreted in A as follows. Use A to interpret UH and, for
each m-spider attached to a tuple hi1 , ..., hik , use the elements

〈〈ai1 , ..., aik〉,m, 1〉, ..., 〈〈ai1 , ..., aik〉,m, `m〉 ∈ A<N × N× N,
to interpret its elements. The domain of this interpretation is u.r.i. computable because,
given a tuple of the form 〈〈ai1 , ..., aik〉,m, i〉 with i ≤ `m, the tuple belongs to the
interpretation if and only if 〈ai1 , ..., aik〉 ∈ RMn , where n = b(m − 3)/2c. Similarly, we
can also decide which pairs of these elements are E-connected.

Checking that the compositions of the interpretations are u.r.i. computable is also
straightforward: the composition of the interpretations going from A to H and back is
the identity; the interpretation going from H to A<N and back to H<N is a bit more
tedious, but not much harder to analyze.

The second step is to show that every {U,E}-structureH is effectively-bi-interpretable
with a graph G = (G;R). Within G, we will use a subset, G0, to interpret the domain of
H. We use the other elements of G to encode the relations U and E on G0. Enumerate
the elements of H as {h0, h1, ...} and the corresponding ones of G0 as g0, g1, ... . Attach
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to each element gi ∈ G0 one of the following two shapes, depending on whether hi ∈ UH
or not.

gi gi

gi gj

gi gj

Figure 2. We call these configurations 4-flags, 5-flags, 2-connectors, and
3-connectors. We attach 3-flags to the elements that are in U and 4-flags
to the ones out of U . We use 2-connectors to encode E.

Connect two elements of G0 using a 2-connector if and only if the corresponding
elements in H are connected by E. Connect them using a 3-connector if and only if the
corresponding elements in H are not connected by E. The reason we cannot connect the
elements of G0 directly to code E is that we do not want to confuse the elements of G0

with the ones used for the flags. This way, every element of G is either part of a flag (and
hence out of G0), attached to a flag (and hence in G0), or attached to something that is
attached to a flag (and hence part of either a 2-connector or a 3-connector, and out of
G0). Each of these three sets is ∃-definable, and hence G0 is u.r.i. computable. Notice
that the connectors coding the graph E among the elements of H do not get confused
with these flags because since each edge in E is replaced by at least a 2-connectors, the
smallest cycles one could produce are 6-cycles coming from triangles in H.

The relation E is coded by the pairs of elements of G0 which are connected by a
2-connector or, equivalently, not connected by a 3-connector. This is u.r.i. computable.

Again, checking that the composition of the interpretations are u.r.i. computable is
straightforward.

Similar constructions can be found in [HKSS02].



CHAPTER VII

Finite-injury constructions

The technique of finite-injury constructions is among the most important ones in
computability theory, and is used all throughout the field. It was introduced inde-
pendently by Friedberg [Fri57b] and Muchnik[Muc56] to solve Post’s problem, as we
explain below. This technique is used to build computable objects using 0′-computable
information. On a computable construction, we can only only guess at this non-
computable information, so we will be constantly taking steps in the wrong direction
based on wrong guesses, and we will have to be able to recover from those mistakes.

We will see two kinds of finite-injury constructions. The first will be priority con-
structions, and the second true-stage constructions. Depending on the type of construc-
tion we want to do, one could be better than the other.

In a priority construction, one needs to build an object satisfying an infinite list of
requirements whose actions are in conflict with one another — when requirements act,
they may injure the work of other requirements. To control these injuries, requirements
are listed in an order of priorities: Requirements are only allowed to injure weaker-
priority requirements. In the type of constructions we will see, each requirement will
be injured at most finitely many times, and hence there will be a point after which it is
never injured again.

A true-stage construction works in quite a different way. It is based on a combi-
natorial device, the approximation of the true stages, which organizes our guesses on
0′-computable information. The advantage of this combinatorial device is that it can
be generalized to the iterates of the jump, even over the transfinite, as we will see in
Part 2.

VII.1. Priority Constructions

To show how priority constructions work, we give a full proof of the Friedberg–
Muchnik solution to Post’s problem — a seminal result in computability theory. Post
[Pos44] asked whether there was a computably enumerable set that was neither com-
putable nor complete. That question was open for more than a decade, until Friedberg
and Muchnik solved it independently by developing the method of priority construc-
tions.

We will see two more finite-injury priority constructions in Chapter VIII on com-
putable categoricity. We recommend that the reader interested in learning priority
constructions read Theorem VIII.4.3 after fully understanding the proof below. The
third finite-injury priority construction, Lemma VIII.5.8, is more complicated.

Theorem VII.1.1 (Friedberg [Fri57b], Muchnik[Muc56]). There is a low, non-
computable, computably enumerable set.

Recall that a set A is low if A′ ≡T 0′. Low sets cannot be complete.

69
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Proof. We build A as the union of a computable sequence of finite sets A0 ⊆ A1 ⊆
A2 ⊆ · · · satisfying the following requirements for each e ∈ N:

Negative requirements Ne : If ΦAs
e,s(e) ↓ for infinitely many s’s, then ΦA

e (e) ↓.

Satisfying the Ne requirements for all e ∈ N ensures that A is low: We would get that
e ∈ A′ if and only if ΦAs

e,s(e) ↓ for infinitely many s’s. This makes A′ a Π0
2 set. Since A′

is already Σ0
2, we get that A′ is ∆0

2.

Positive requirements Pe : If We is infinite, then A ∩We 6= ∅.

Satisfying the Pe requirements for all e ∈ N ensures that the complement of A is not
c.e., and hence that A is not computable — well, that is unless A is co-finite. We will
also make sure during the construction that A is co-infinite.

We list these requirements by decreasing order of priority as follows:

N0, P0, N1, P1, N2, P2, ....,

the ones to the left having stronger priority than those to the right. Notice that each
requirement has only finitely many requirements that are stronger than it. We think of
each requirement as an individual worker trying to achieve its goal. Except for possible
injuries, the different requirements will work almost independently of each other. Let
us look at each of these requirements individually.

Negative requirements Ne: The only way in which Ne would not be satisfied is
if ΦAs

e,s(e) goes back and forth between converging and not converging infinitely often.

Thus, what Ne needs to do is the following: If it sees that ΦAs
e,s(e) converges, it needs to

try to preserve this computation forever by restraining elements to go into A below the
use of this computation. Here is what Ne does at a stage s. Let re be the use of ΦAs

e,s(e) ↓,
that is, the length of the initial segment of the oracle As used in the computation
ΦAs
e,s(e) ↓. If the computation diverges, let re = 0. During the construction, Ne will not

enumerate any number into A. Instead, it will impose a restraint on weaker-priority
Pi requirements, not allowing them to enumerate elements below re into A. (This is
why we call the Ni negative requirements.) Ne is not allowed to impose anything on
stronger-priority requirements, which may enumerate elements below re and injure Ne.

Positive requirements Pe: It is the Pe requirements that enumerate elements
into A. (This is why we call them positive requirements.) They will enumerate at most
one element each. The plan to satisfy Pe is to wait until we see some number enter
We and enumerate it into A. However, we cannot enumerate just any number, as there
are a couple things we need worry about. First, Pe is not allowed to injure stronger-
priority requirements. In other words, if we let Re = maxi≤e ri, then Pe is not allowed to
enumerate any number below Re into A. Second, we want to make sure A is co-infinite.
To do this, we only allow Pe to enumerate numbers that are greater than 2e. The plan
for Pe can now be restated as follows: At a stage s > e, if We,s ∩ As 6= ∅, we consider
Pe done, and we do not need to ever do anything else for Pe. Otherwise, if there is an
x ∈ We,s greater than 2e and greater than Re, we say that Pe requires attention. Once
Pe requires attention, it acts by enumerating such x into A.

The construction: Let us now describe the full construction. At stage 0, let
A0 = ∅. At each stage s > 0, do the following. First, define re for each e < s; recall
that re is the use of ΦAs

e,s(e). Second, check which requirements Pe, for e < s, require
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attention, and let them act; that is, for each e < s, if We,s ∩ As = ∅ and there exists
x ∈ We,s with x > max(2e, Re), add x to As+1. If no requirement requires attention,
move on to the next stage without doing anything.

Verification: Each requirement Pe acts at most once. Therefore, a requirement Ne

is injured at most e− 1 times, and there is a stage after which it is never injured again.
After this stage, if ΦAs

e,s(e) never converges again, Ne is satisfied. Otherwise, ΦAt
e,t(e) ↓ for

some later stage t. At stage t, Ne will define re to be the use of this computation. After
t, no requirement of weaker priority is allowed to enumerate numbers below re. Since we
are assuming all stronger-priority Pi requirements that ever act have acted already, we
get that At � re is preserved forever, and hence so is the computation ΦAt

e,t(e) ↓, getting

ΦA
e (e) ↓. Ne is then satisfied. In either case, re is eventually constant, either eventually

equal to zero if ΦA
e (e) ↑, or eventually equal to the use of ΦA

e (e) ↓. Since this is true for
all e, Re is also eventually constant.

Let us now verify that the requirements Pe are all satisfied. If a requirement Pe
ever requires attention, it acts, and then it is satisfied forever. Suppose that, otherwise,
there is a stage t after which Pe never requires attention again. Assume t is large enough
so that Re has reached its limit already. Either Pe does not require attention because
it is done, in which case we are done, or because all the numbers in We are below
max(2e, Re). In that case, Pe is trivially satisfied because We would be finite.

Finally, let us notice that A is co-infinite, as it can have at most e elements below 2e
for each e. This is because only the requirements Pi for i < e are allowed to enumerate
numbers below 2e. �

VII.2. The method of true stages

Often in computability theory, we want to use ∆0
2 information to construct com-

putable objects. We then need to computably approximate or guess the ∆0
2 information.

This can get messy, and there are various ways to organize this guessing system. We
will concentrate on the method of true stages for the enumeration of 0′, introduced by
Lachlan in [Lac73]. There are slightly different definitions in the literature — we use
our own, which is quite flexible and applies to a large variety of situations. The reason
for our choice is that, in Part 2, we will be able to extend this notion throughout the
hyperarithmetic hierarchy, obtaining a very powerful technique.

One way of approximating the halting problem 0′ is by the sequence of finite sets

0′s = {e ∈ N : Φe,s(e) ↓} ⊆ N.
Notice 0′s is finite. It is then natural to view 0′s as a finite string, say by considering
0′s ��ms ∈ 2ms+1, where ms = max(0′s). (Recall that X ��m is {x ≤ m : x ∈ X}, or, when
viewed as strings, it is the initial segment of X of length m+ 1.) The problem with this
finite string is that it may always be wrong: It could be that at no stage s > 0 is 0′s ��ms

an initial segment of 0′, viewed as a sequence in 2N. This might indeed be a problem on
some constructions. Lachlan’s idea was to consider 0′s �� ks, where ks is the least element
enumerated into 0′ at stage s (i.e., ks = min(0′s \0′s−1)). The key difference is that there
are infinitely many stages where 0′s �� ks is correct, in the sense that 0′s �� ks is an initial
string of 0′ ∈ 2N. Stages where our guesses for 0′ are correct are called true stages.

We introduce a different approximation to the jump that enjoys better combinatorial
properties. Instead of 0′, we will use the increasing settling time function for 0′, which
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we call ∇. At each stage s, we will computably define a finite string ∇s ∈ N<N which
tries to approximate ∇ ∈ NN. A true stage will be one where ∇s is correct; i.e., it is
an initial segment of ∇. One of the main advantages of using ∇ and ∇s is that they
relativize easily, allowing us to iterate them, as we will see in Part 2.

VII.2.1. The increasing settling time function. The settling time function of
a c.e. set measures how fast its elements are enumerated. For now, we only consider the
one for the halting problem. It has many uses in various constructions, and we will see
a couple of examples in Subsection VII.2.2. We will deviate slightly from the standard
settling time function to consider the strictly increasing version.

VII.2.1.1. The definition of ∇. The settling time function of a set measures the time
a given enumeration takes to settle on an initial segment of the set.

Definition VII.2.1. The i-th true stage (in the enumeration of 0′), denoted ∇(i),
is defined by recursion on i by any of the following three equivalent definitions:

∇(i) = the least t > ∇(i− 1) such that 0′t �� i = 0′ �� i,

= the least t > ∇(i− 1) such that Φi(i) ↓ ⇐⇒ Φi,t(i) ↓,

=


∇(i− 1) + 1 if Φi(i) diverges,

∇(i− 1) + 1 if Φi(i) converges by stage ∇(i− 1),

µt(Φi,t(i) ↓) if Φi(i) converges after stage ∇(i− 1).

We use the value ∇(−1) = 1 as the base case for the recursion, so that ∇(0) > 1. We
call t a true stage if t = ∇(i) for some i. We call ∇ the increasing settling time function
for 0′.

It is not hard to see that ∇ ≡T 0′: Clearly ∇ ≤T 0′. To see the other direction,
notice that i ∈ 0′ ⇐⇒ i ∈ 0′∇(i).

Lemma VII.2.2. The set of true stages is co-c.e., and the set

{(i, t) ∈ N2 : t < ∇(i)}
is c.e.

Proof. Let us first observe that the set of initial segments of ∇, {∇ � i : i ∈ N} ⊆
N<N, is Π0

1. To see this, note that σ = ∇ � i if and only if, for every e < i,

• either Φe(e) ↑ and σ(e) = σ(e− 1) + 1,
• or Φe,σ(e)(e) ↓ and σ(e) is the least t > σ(e− 1) such that Φe,t(e) ↓.

It follows that the set of true stages, i.e., the image of ∇, is Π0
1: This is because t is a

true stage if and only if there exists an increasing finite string σ whose last value is t
(and the previous values are less than t) that is an initial segment of ∇.

As for the second part of the statement, t < ∇(i) if and only if there is no σ ∈
(t+ 1)i+1 which is an initial segment of ∇. �

VII.2.1.2. Domination properties. One of the useful properties of ∇ is that it grows
rapidly when compared to computable functions. For functions f, g : N → N, we say
that

• f majorizes g if (∀m) f(m) ≥ g(m);
• f dominates g if (∃n)(∀m ≥ n) f(m) ≥ g(m).
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The function ∇ is fast growing in this sense: It dominates all computable functions
(Lemma VII.2.5), and every function that dominates ∇ computes 0′ (Lemma VII.2.3).

Lemma VII.2.3. If g : N→ N dominates ∇, then g computes 0′.

Proof. First, modify the first few values of g to get a function f ≡T g that majorizes
∇. Given x ∈ N, we can decide whether x ∈ 0′ by checking if x ∈ 0′f(x). �

Corollary VII.2.4. Every subset of the set of true stages computes 0′.

Proof. If we enumerate in increasing order the elements of a subset of the set of
true stages, we obtain a function that dominates ∇. �

Lemma VII.2.5. Every computable function is dominated by ∇.

Proof. Let g : N → N be a computable function. We may assume g is non-
decreasing, as otherwise we can always replace it with a larger non-decreasing com-
putable function, for instance, m 7→ maxi≤m g(m).

We will find a sequence {s(i) : i ∈ N} for which ∇(s(i)) is very large. More
concretely, we need

∇(s(i)) ≥ g(s(i+ 1)) for all i.

This way, for every m > s(0), if we let i be such that s(i) < m ≤ s(i+ 1), we have

g(m) ≤ g(s(i+ 1)) ≤ ∇(s(i)) < ∇(m).

Thus, for each i ∈ N, we need to find a number s(i) so that Φs(i)(s(i)) takes at least
g(s(i+ 1)) steps to converge. The difficulty is that, to define s(i), we need to know the
value of s(i+ 1). This calls for the use of the — always rather mysterious — recursion
theorem. For each e, we will define a computable function se : N → N uniformly in e,
and we will let s(i) = se0(i), where e0 is such that se0 = Φe0 . Intuitively, you may think
that while we are defining s as se0 , we already know e0 is a computable index for se0 .
The only reason this is not circular is that we must define se to be a total function,
even if Φe is not — maybe it is still a bit circular, but it works.

We define se as follows: Let se(i) be an index for the partial computable function
that, on any input x, ignores x, waits for Φe(i + 1) to converge, and then outputs
g(Φe(i+ 1)). That is,

Φse(i)(x) = g(Φe(i+ 1)).

Notice that se is total, even if Φe(i + 1) ↑, because se(i) outputs just an index for this
program, independent of whether the program computes a total function or not. We
can also make se increasing by the Padding Lemma (see Chapter ). By the recursion
theorem (see Chapter ), there is an e0 such that se0 = Φe0 . Let s(i) = se0(i). Then

Φs(i)(x) = Φse0 (i)(x) = g(Φe0(i+ 1)) = g(se0(i+ 1)) = g(s(i+ 1)),

for every x ∈ N, and in particular for x = s(i). Since the outcome of Φs(i)(s(i)) is
g(s(i+ 1)), it takes at least g(s(i+ 1)) steps to converge (as that is what it takes to just
write that number down in the output tape). Thus, ∇(s(i)) ≥ g(s(i+1)) as wanted. �
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VII.2.2. A couple of examples. Just the fact that the set of true stages is co-
c.e., and that ∇ grows so fast, are enough to make ∇ useful in computability theory
and computable structure theory. We give a couple of examples to illustrate its use. In
Section I.1.2, we built a copy A of the ordering ω = (N;≤) so that the isomorphism
between A and (N;≤) computes 0′. We now produce another such copy A using a
different method.

Lemma VII.2.6. There is a computable ω-presentation A of the ordering (N;≤) such
that any embedding from A to (N;≤) computes 0′.

Proof. The idea is to define A = (A;≤A) together with a computable sequence
a0 <A a1 <A a2 <A · · · such that there are at least ∇(i) elements <A-below ai+1

for every i. This way, if g : A → N is an embedding from A to (N;≤), we would
have that the function i 7→ g(ai+1) majorizes ∇ and hence computes 0′. Recall that
the set {(i, t) : t < ∇(i), i ∈ N} is c.e. We build A by first laying down elements
a0 <A a1 <A a2 <A · · · (say, using the even integers: an = 2n), and then adding
elements bi,t ≤A-in-between ai and ai+1 for each i, t with t < ∇(i). More formally, if
f is a computable one-to-one enumeration of {(i, t) : t < ∇(i), i ∈ N}, name the odd
number 2n+ 1 with the label bi,t if f(n) = (i, t) and then define

aj <A bi,t ⇐⇒ j ≤ i and bj,s <A bi,t ⇐⇒ j < i ∨ (j = i ∧ s < t).

We then get that there are ∇(i) elements ≤A-below ai+1 as needed. �

The following lemma answers the question of how difficult is it to find a basis on a
vector space. A jump is sufficient, as we can computably enumerate a maximal linearly
independent set using the linear dependence relation, which we know is r.i.c.e.The lemma
below shows it is necessary.

Lemma VII.2.7. There is a computable copy of the infinite dimensional Q-vector
space Q∞ where every basis computes 0′.

We will actually show that every infinite linearly independent set in this ω-presentation
computes 0′. Let Q∞ denote the standard ω-presentation of the infinite dimensional
Q-vector space, which has a computable basis {ei : i ∈ N}.

Proof. The idea is to define a copy A of Q∞ by taking the quotient of Q∞ over a
computable subspace U with infinite co-dimension. The equivalence relation generated
by a computable subspace U — namely u ∼ v ⇐⇒ u − v ∈ U — is computable,
and hence we have a computable congruence presentation A, where the projection map
from Q∞ to A is also computable (see Lemma I.1.9).

Define U so that, for every s1 and s2 which are not true stages, es1 and es2 are
linearly dependent in Q∞/U . To get this, all we need to do is add to U a vector of
the form aes1 − es2 for some a ∈ Q, as soon as we realize s1 and s2 are not true.
Before showing how to define U in a computable way, let us see why having such a
U is enough. Suppose I ⊆ A is an infinite linearly independent set in A; we need
to show I ≥T 0′. Since the projection map is computable, we can get an infinite set
J ⊆ Q∞ which is not just linearly independent, but also linearly independent modulo
U . The subspace generated by e0, e1, ...., e∇(n)−1 has dimension n + 1 when projected
to A, because, except for e∇(0), ..., e∇(n−1), all the other vectors are linearly dependent
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among themselves. Therefore, if we take n + 2 vectors v0, ..., vn+1 from J , they cannot
all belong to the subspace of Q∞ generated by e0, e1, ...., e∇(n)−1. Recall that in Q∞,
every vector is given as a linear combination of the bases of ei’s. One of the vectors vi
for i ≤ n + 1 must then use some et for t ≥ ∇(n) − 1 in its representation. Let g(n)
be the largest t such that et appears in the representation of one of the vectors vi for
i ≤ n + 1. The function g majorizes ∇, and hence we can use g to compute 0′ as in
Lemma VII.2.3.

We now have to show how to build U effectively. At each stage s, we define a subset
Us of the set

Vs = {
∑
i<s

pi
qi
ei : pi, qi ∈ Z, |pi| < s, 0 < qi < s},

and, at the end, define U =
⋃
s∈N Us. If we had that U ∩ Vs = Us for every s, then U

would be computable. Therefore, after each stage s, we must take care that no element
of Vs \ Us later enters U . To get U to be a subspace, we need to have each Us closed
under linear combinations within Vs.

Suppose that, at stage s, we discover that s1 and s2 are not true stages and we have
not made es1 and es2 independent in A yet. (Recall that the set of non-true stages is
c.e.) We then want to add a vector of the form aes1 − es2 to U so that we make es1 and
es2 dependent in A without changing U within Vs: All we have to do is search for such
an a ∈ Q such that when we add aes1 − es2 to U , we keep all the vectors in Vs r Us
outside U . That is, we need to make sure that no vector in Vs r Us belongs to the
subspace generated by Us ∪ {aes1 − es2}. We need to show at least one such a exists.
Using basic linear algebra, if a0 6= a1, and es1 and es2 are independent over Us, then the
intersection of the spaces generated by Us ∪ {a0es1 − es2} and by Us ∪ {a1es1 − es2} is
the subspace generated by Us. Since Vs is finite, there can be at most finitely many a’s
which generate elements in Vs r Us. In other words, for all but finitely many a’s, the
space generated by Us ∪ {aes1 − es2} adds no new vectors to Vs that were not in the
subspace generated by Us already. Now that we know such a exist, all we have to do is
look for one.

Notice that U has infinite co-dimension as whenever t1, ..., tk are true stages, et1 , ..., etk
are linearly independent modulo U , as no vector in the subspace generated by them was
ever added to U . �

VII.3. Approximating the settling time function

Every true stage can figure out all the previous true stages in a uniformly computable
way. More precisely: Suppose t = ∇(i) is the ith true stage. Using the fact that
0′t �� i = 0′ �� i, we have that, for j ≤ i, ∇(j) is the least s > ∇(j − 1) such that
0′s �� j = 0′t �� j. If t is not a true stage, we can still apply the same procedure and get
the stages s < t that t believes should be true.

Definition VII.3.1. Given j < t, we define the jth apparent true stage at t, denoted
∇t(j), as the least s ≤ t such that s > ∇t(j − 1) and 0′s �� j = 0′t �� j. Again, to match
with ∇, we are using ∇t(−1) = 1 in the definition of ∇t(0).

This definition only makes sense if s ≤ t, so once we reach a j with ∇t(j) = t, we
cannot define any more apparent true stages, and we let ∇t be the string defined up to
that point. Thus, ∇t is a finite increasing string whose last element is always t.
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From the paragraph preceding the definition, we get that if t is the ith true stage,
then ∇t = ∇ �� i. Furthermore, for every s > t, since 0′t �� i = 0′s �� i = 0′ �� i, we get that
∇s �� i is also correct and equal to ∇ �� i. On the other hand, if t is not a true stage, since
t is the last entry of ∇t, we have that ∇t 6⊆ ∇. For the same reason, if s > t is a true
stage, then ∇t 6⊆ ∇s. In short, for t ∈ N,

t is a true stage ⇐⇒ ∇t ⊂ ∇ ⇐⇒ ∀s > t (∇t ⊆ ∇s).

By an argument similar to the above, we get the following property:

(♣) For every r < s < t, if ∇r ⊆ ∇t, then ∇r ⊆ ∇s.

The reason is that if ∇r ⊆ ∇t, then no number below |∇r| is enumerated into 0′ between
the stages r and t. That would then also be true between the stages r and s, and hence
∇r ⊆ ∇s.

The following two lemmas are intended to give us a feeling for how the sequence
{∇s : s ∈ N} behaves. Let T be the image of the function s 7→ ∇s. We recommend
the reader try to draw a picture of T , and see how the sequence {∇s : s ∈ N} moves
around T .

∇0 = 〈〉

∇1 = 〈1〉

∇2 = 〈1, 2〉

∇3 = 〈1, 2, 3〉

∇4 = 〈1, 2, 3, 4〉 ∇5 = 〈1, 2, 3, 5〉

∇6 = 〈1, 2, 3, 5, 6〉

∇7 = 〈1, 7〉

∇8 = 〈1, 7, 8〉

∇9 = 〈1, 7, 8, 9〉

∇10 = 〈1, 7, 8, 9, 10〉 ∇11 = 〈1, 7, 8, 9, 11〉

Figure 1. Example where 3 is enumerated into 0′ at stage 5, 1 at stage
7 and 4 at stage 11.

Lemma VII.3.2. The set T = {∇s : s ∈ N} ⊆ N<N is a computable tree whose only
path is ∇.

Proof. T is computable because given σ ∈ N<N, we can calculate ∇t, where t is
the last entry of σ, and then check if σ = ∇t.

To show that T is a tree, we need to show that it is closed downward. To do this, all
we have to observe is that if ∇s(i) = t, then ∇s �� i = ∇t. This is because 0′s �� i = 0′t �� i,
and hence the computations of ∇t �� i and ∇s �� i are the same.

About the paths of T , clearly ∇ is one of them. We claim that if ∇s 6⊂ ∇, the set
of extensions of ∇s in T is finite, and hence there is no path extending ∇s. Let t > s
be a true stage. Then ∇s 6⊆ ∇t. By (♣), for all u ≥ t, ∇s 6⊆ ∇u. �

Lemma VII.3.3. The Kleene-Brower ordering, ≤KB, on T produces a computable
ordering of order type ω + ω∗ on which every descending sequence computes 0′.

The Kleene-Brower ordering, ≤KB, on N<N is defined as follows: σ ≤KB τ if either
σ and τ are incomparable and, for the least i with σ(i) 6= τ(i), we have σ(i) < τ(i), or
σ and τ are comparable as strings and σ ⊇ τ .
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Proof. To prove that (T ;≤KB) ∼= ω + ω∗, we prove that if s is a true stage, then
there are only finitely many strings in T that are ≥KB ∇s; and if s is not a true stage,
then there are only finitely many strings in T that are ≤KB ∇s. For the former claim,
if s is a true stage, then for every t ≥ s, we have ∇t ⊇ ∇s, and hence ∇t ≤KB ∇s. For
the latter claim, if s is not a true stage and t > s is a true stage, then there is a least i
such that ∇s(i) 6= ∇t(i). The reason for this difference must be that i 6∈ 0′s while i ∈ 0′t,
and hence ∇t(i) > s ≥ ∇s(i). Since t is true, we have that, for every u ≥ t, ∇u ⊇ ∇t,
and hence ∇u �� i = ∇s �� i and ∇u(i) = ∇t(i) > ∇s(i). Thus, ∇u ≥KB ∇s.

Every descending sequence must be a subsequence of {∇t : t is a true stage}, and
hence computes 0′ by Corollary VII.2.4. �

Exercise VII.3.4. Show that (T ;≤KB) has a computable ascending sequence.

Exercise VII.3.5. (Hard) Use a priority argument to show that there is an ω-
presentation of ω+ω∗ which has no computable ascending sequence and no computable
descending sequence.

Remark VII.3.6. Hirschfeldt and Shore [HS07, Theorem 2.11] showed that every
ω-presentationof ω+ω∗ must have either an ascending sequence or a descending sequence
that is low relative to the ω-presentation.

Exercise VII.3.7. A small modification of the proof of Theorem V.4.3 can produce
another interesting spectrum. We view a set Γ ⊆ 2<N as a c.e operator by letting
ΓX = {|τ | : τ ⊆ X, τ ∈ Γ}. Given a finite set F ⊆ N, let

ΓF = {∇ � i : i ∈ F} ∪ {τ ∈ 2<N : τ 6⊂ ∇}.
Notice that Γ∇F = F . Consider the family of sets:

F = {ΓF ⊕ {n} : F ⊆ N finite & F 6= W∇
n }.

Prove that

DgSp(GF) = {X ∈ 2N : X not ∆0
2}.

(The first one to construct a structure with this spectrum was Kalimullin [Kal08]. The
construction above is due to Montalbán [ACK+, Theorem 2].)

Exercise VII.3.8. Define a c.e. set A as follows: At stage s, if We,s ∩ As = ∅
and (∃x ∈ We,s) x > 2 · ∇s(∇s(e)), enumerate x into As+1. Prove that A is low and
non-computable.

VII.4. A construction of linear orderings

In this section, we prove a well-known result that is best proved using the method
of true stages we just developed. Given linear orderings A and B, we let A · B be the
ordering on A × B given by 〈a0, b0〉 ≤A·B 〈a1, b1〉 if either b0 ≤B b1, or b0 = b1 and
a0 ≤A a1. Notice that the coordinates are compared from right to left, not as in the
lexicographic ordering. It is just traditional notation. Then, for instance A+A = A·2,
and Z ·A is the linear ordering obtained by replacing each element in A by a copy of Z.

Theorem VII.4.1. Let L be a linear ordering. Then Z · L has a computable copy if
and only if L has a 0′′-computable copy.
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The left-to-right direction is the easy one. On a computable copy of Z · L, the
equivalence relation ∼, given by a ∼ b if and only if they are finitely apart, is 0′′

computable, and hence we can make the copy of Z · L into a 0′′-computable congruence
ω-presentation of L.

The proof of the other direction is divided into a few steps which we prove in separate
lemmas. The first lemma is a general one that will be useful in other settings too. It gives
a way of approximating 0′-computable structures in a way that correct approximations
to the structure happen at the same stages where we have correct approximations to ∇.

Lemma VII.4.2. Let B be a 0′-computable ω-presentation of a structure in a rela-
tional vocabulary τ . There is a computable sequence of finite τ|·|-structures {Bs : s ∈ N}
such that

(∀s < t) ∇s ⊆ ∇t ⇒ Bs is a substructure of Bt,
and

B =
⋃
{Bs : s a true stage}.

Moreover, if ϕ is a ∀-formula true of B, we can make the Bs’s satisfy ϕ too.

Proof. Let At be the τt-substructure of B with domain {0, ..., t}. The sequence
{At : t ∈ N} is 0′ computable. Let Φ be a computable function such that Φ∇(t) is an
index for the finite structure At. If at a stage s we believe ∇s is an initial segment of ∇,
we also believe that Φ∇s outputs the indices of the first few structures in the sequence
{At : t ∈ N}. For each s, let ts be the largest t so that, for every i ≤ t, Φ∇s(i) converges
and outputs an index for a finite structure Ãi satisfying ϕ and so that

Ã0 ⊆ Ã1 ⊆ · · · ⊆ Ãt.
Let Bs = Ãts . We then have that if ∇s ⊆ ∇r, Φ∇s(i) = Φ∇r(i) for all i ≤ ts, and hence
Bs ⊆ Br. If ∇s ⊆ ∇, then Ãts is actually one of the At’s, and hence Bs ⊂ B. �

Lemma VII.4.3. If L has a 0′-computable copy, then (Z×L;<,Adj) has a computable
copy.

Proof. Let {Ls : s ∈ N} be a sequence of finite linear orderings approximating L
as in Lemma VII.4.2.

At each stage s, we build a finite linear ordering As = ({0, ...., ks};≤As ,Adjs) and
an onto, order-preserving map gs : As → Ls such that gs(a) = gs(b) if and only if there
is a finite sequence of Adjs-adjacent elements in between a and b in As. The binary
relations Adjs satisfy that if As |= Adjs(a, b), then there is no element in between a and
b in As, but there could be elements a, b ∈ As without elements in between for which
Adjs does not hold. Thus, As is partitioned into adjacency chains, where an adjacency
chain is a string of elements a0 <As · · · <As ak with Adjs(ai, ai+1) for all i < k and such
that for no b do we have Adjs(b, a0) or Adjs(ak, b). The condition on g above implies
that for each ` ∈ Ls, g−1

s (`) is an adjacency chain.
At each stage s, we need to satisfy the following two properties:

(1) If t ≤ s, then At ⊆ As.
(2) If ∇t ⊂ ∇s, then gt ⊆ gs, and for every ` ∈ Lt, 1 + g−1

t (`) + 1 ⊆ g−1
s (`).

Let us first note that these conditions are enough to build the desired structure
A. Condition (1) allows us to define a computable linear ordering with adjacencies
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As a4 a8 a1 a6 a7 a0 a5 a3 a2 a9

Adjs Adjs Adjs Adjs Adjs Adjs

Ls
`3 `1 `0 `2

gs

Figure 2. The top row are the points in As ordered by ≤As from left to
right. The bottom row are the points in Ls ordered by ≤Ls from left to
right.

A =
⋃
sAs. Condition (2) allows us to define an onto, order-preserving map g =⋃

{gs : s a true stage} : A → L. Furthermore, for every ` ∈ L, g−1(`) must be infinite
and satisfy that any two elements in it are linked by a finite sequence of adjacencies.
Therefore, g−1(`) is isomorphic to Z, and we get that A is isomorphic to Z · L.

Last, we need to show that, at each stage s+ 1, we can define As+1 and gs+1 so they
satisfy (1) and (2). Let t ≤ s be the largest such that ∇t ⊆ ∇s+1. Thus, we know that
Lt ⊆ Ls+1, and we need to define As+1 extending As and gs+1 extending gt. The rest of
the proof is just a brute-force combinatorial argument proving that such an As+1 and
gs+1 exist. We recommend the reader try to prove it before reading it, to understand
the little intricacies of the proof.

First, define Ãs+1 by adding a new element at the end of each adjacency chain in
As, and by attaching each adjacency chain that was not in At to one that was. (To
attach two adjacency chains, we add a new element in between the chains and make it
satisfy Adjs+1 with the ends of the chains.) Extend gt : At → Lt to g̃s+1 : Ãs+1 → Lt so

that, for each ` ∈ Lt, g̃s+1(`) is an adjacency chain in Ãs+1.

At ⊆ As ⊆ Ãs+1 ⊆As+1

Lt ⊆ Ls+1

gt g̃s+1 gs+1

Figure 3. The diagram above commutes.

Second, define As+1 ⊇ Ãs+1 by adding a new element a` in between chains for
each new ` ∈ Ls+1 \ Lt. Of course, if `0 < ` < `1 with `0, `1 ∈ Lt, then the a`
must be in between the chains corresponding to g−1(`0) and g−1(`1). Finally, extend
g̃s+1 : Ãs+1 → Lt to gs+1 : As+1 → Ls+1 by mapping each a` to `. �

Lemma VII.4.4. If (Z · L;≤,Adj) has a 0′ computable copy, then Z · L has a com-
putable copy.

Proof. Let B be the 0′-computable copy of (Z · L;≤,Adj). Let {Bs : s ∈ N} be a
sequence of finite structures approximating B as in Lemma VII.4.2. We assume each Bs
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satisfies the ∀-sentence saying that they are linear orderings and that if Bs |= Adj(a, b),
there is no element in between a and b. However, as for the structures As in the previous
lemma, there will be elements a and b not satisfying Adj(a, b) in Bs and without anything
in Bs in between them.

At each stage s, we build a finite linear ordering

As = ({0, ...., ks};≤As ,Adjs)

and an order-preserving, one-to-one map hs : Bs → As. Again, as with the structures
As from the previous lemma, Adjs satisfies ∀a, b ≤ ks(Adjs(a, b) ∧ a <As b→ @c(a <As

c <As b)), and hence As is partitioned into adjacency chains. We do not require hs to
be onto, not even in the limit. Instead, all we require is that every adjacency chain in
As has an element in the image of hs. Also, we require that two elements of Bs are in
the same adjacency chain if and only if their images are. Notice that we do not require
hs to preserve Adj, but only to preserve the property of being in the same adjacency
chain.

At each stage s, we need to satisfy the following two properties:

(1) If t ≤ s, then ({0, ...., kt};≤At) ⊆ ({0, ...., ks};≤As).
(2) If ∇t ⊆ ∇s, then At ⊆ As and ht ⊆ hs.

Condition (1) allows us to define a computable linear ordering

A = (N;≤A) =
⋃
s

({0, ...., ks};≤As).

Notice that we lose the adjacency relation. Condition (2) allows us to define an em-
bedding h =

⋃
{hs : s a true stage} : B → A, which preserves ordering and adjacencies.

The embedding h produces a bijection between the adjacency chains in B and those in
A, and an embedding of each adjacency chain in B to the corresponding one in A. Since
the adjacency chains in B are isomorphic to Z, the ones in A must also be isomorphic
to Z, and we get that A and B are isomorphic.

Last, we need to show that, at each stage s+1, we can define As+1 and hs+1 so they
satisfy (1) and (2). Let t ≤ s be the largest such that ∇t ⊆ ∇s+1. We need to define
(As+1;≤s+1) extending (As;≤s) and Adjs+1 and hs+1 extending Adjt and ht. The rest
of the proof is just a brute-force combinatorial argument proving that such an As+1,
Adjs+1, and gh+1 exist. Again, we recommend the reader try to prove it before reading
it, to understand the little intricacies of the proof.

Define Ãdjs+1 on As so that it is compatible with Adjt (ignoring Adjs) and so that
every element belongs to an adjacency chain that existed in At. Extend (As;≤s) to
(Ãs+1;≤s+1) by adding one new element a` for each ` ∈ Bs+1 \Bt so that we can extend
ht : Bt → At to hs+1 : Bs+1 → As+1 (recall that Bt ⊆ Bs+1). Also, if two adjacency
chains in Bt have collapsed to one in Bs+1, we need to collapse the respective chains
in As+1: Thus, if two consecutive elements `0, `1 ∈ Bs+1 belong to adjacency chains
that were not separate chains in Bt, but are part of a single chain in Bs+1, we add a
new element a`0,`1 to As+1 in between the adjacency chains corresponding to ht(`0) and
ht(`1) so that we can attach those chains. Define Adjs+1 on As+1 so that hs+1 produces
a bijection between the adjacency chains in Bs+1 and those in As+1. �
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Exercise VII.4.5. (Downey [DK92]) Prove that L has a 0′ computable copy if and
only if (Q + 2 + Q) · L has a computable copy.





CHAPTER VIII

Computable Categoricity

Computably categorical structures are the ones for which all computable ω-presentations
have the same computational properties. This is a desirable property, of course, but
the structures which have it are rather few. The notion was originally introduced by
Mal’cev [Mal62] in 1962 for groups, and has been intensively studied over the past few
decades.

VIII.1. The basics

Most of the properties one considers in computable structure theory are invariant
under computable isomorphisms, but not necessarily under all isomorphisms: Com-
putable ω-presentations may be isomorphic and still have different computational prop-
erties. For instance, there are computable ω-presentations of the countable, infinite-
dimensional Q-vector space Q∞ where all the finite-dimensional subspaces are com-
putable, and there are computable ω-presentations of Q∞ where no non-trivial finite-
dimensional subspace is computable (see [DHK+07]).

Definition VIII.1.1. A computable structure A is computably categorical if there
is a computable isomorphism between any two computable copies of A.

The following somewhat trivial lemma shows how computably categorical structures
are exactly the ones that avoid the behavior of the example above, that is, the ones
where all computable copies have the same computable relations.

Lemma VIII.1.2. Let A be a computable structure. The following are equivalent:

(1) A is computably categorical.
(2) For every R ⊆ An and every computable copy B of A, if R is computable, there

is a computable RB ⊆ Bn with (B, RB) ∼= (A, R).

Proof. To show that (1) implies (2), consider a computable isomorphism g : B →
A, and define RB = g−1(R). For the other direction, consider a computable copy B
of A; we need to build a computable isomorphism between them. Of course, we are
assuming A is infinite, and hence we may assume its domain is N. Let

R = {(n, n+ 1) : n ∈ N} ⊆ N2 = A2.

Since R is computable, there is a computable RB such that (A, R) ∼= (B, RB). Once
we know what element of B corresponds to 0 ∈ A under this isomorphism, we can use
RB to computably find the element of B that corresponds to 1 ∈ A, and then the one
that corresponds to 2 ∈ A, etc. Continuing this process, we get the desired computable
isomorphism between A and B. �

83
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The main question around computable categoricity is “what makes a structure com-
putable categorical?” There has been a lot of work characterizing the computably
categorical structures within certain classes of structures. See Table VIII.1.

Class Condition for computable categoricity Reference

Linear orderings Finitely many pairs of adjacent ele-
ments

Dzgoev and Gon-
charov [GD80], Remmel
[Rem81]

Boolean algebras Finitely many atoms Goncharov [Gon75b], La
Roche [LR78]

Q-vector spaces Finite dimension
Algebraically
closed fields

Finite transcendence over prime sub-
field

Ershov [Erš77]

Ordered abelian
groups

Finite rank Goncharov, Lempp, and
Solomon [GLS03]

Trees of finite
height

Finite type Lempp, McCoy, R. Miller,
and Solomon [LMMS05]

Torsion-free
abelian groups

Finite rank Nurtazin [Nur74]

Abelian p-groups Either (i) (Z(p∞))`⊕G for ` ∈ N∪{∞}
and G finite, or (ii) (Z(p∞))n⊕(Zpk)∞⊕
G where G is finite, and n, k ∈ N

Goncharov [Gon80],
Smith [Smi81]

Table 1. The middle column describes a necessary and sufficient con-
dition condition for a structure within the given class to be computably
categorical. For the definitions of the relevant terms and the proofs, we
refer the reader to the references given in the third column. Each case
requires a different priority argument.

We do not expect such clean characterizations to be always possible. Downey, Kach,
Lempp, Lewis-Pye, Montalbán, and Turetsky [DKL+] showed that there is no structural
characterization for the notion of computable categoricity. They did it by showing
that the index set of the computably categorical structures is Π1

1-complete. We do
have structural characterizations if we consider variations of the notion of computable
categoricity. For instance, recall that we have already introduced uniformly computably
categorical structures in Section III.4 and proved they coincide with the effectively ∃-
atomic ones. This chapter is dedicated to the non-uniform notions which are, in a
sense, more natural. In particular, it is dedicated to the notion of relative computable
categoricity and its connections to plain computable categoricity.

VIII.2. Relative computable categoricity

In this section, we give a purely structural characterization for the computational
notion of relative computable categoricity.

Definition VIII.2.1 ([AKMS89, Section 4][Chi90, Definition V.9]). Given X ∈
2N, anX-computable structureA isX-computably categorical if there is anX-computable
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isomorphism between any two X-computable copies of A. A computable structure A
is relatively computably categorical if it is X-computably categorical for all X ∈ 2N.

Equivalently, A is relatively computably categorical if, for every copy B (computable
or not) of A, there is an isomorphism between B and A that is computable in D(B).

Theorem VIII.2.2 (Ash, Knight, Manasse, Slaman [AKMS89, Theorem 4]; Chisholm
[Chi90, Theorem V.10]). Let A be a computable structure. The following are equivalent:

(1) A is relatively computably categorical.
(2) (A, ā) is uniformly computably categorical for some ā ∈ A<N.
(3) (A, ā) is effectively ∃-atomic for some ā ∈ A<N.

Proof. The equivalence between (2) and (3) was proved in Theorem III.4.2. To see
that (2) implies (1), just notice that for any copy B of A, one can non-uniformly pick
the corresponding tuple āB so that (B, āB) ∼= (A, ā), and then use part (2) of Theorem
III.4.2 to get a D(B)-computable isomorphism between them.

The interesting direction is the implication from (1) to (3), which shares some ideas
with the proof of Theorem III.4.2. Assume A is relatively computably categorical. Out
of this computational assumption, we need to build a syntactical object, namely a c.e.
Scott family of ∃-definitions for the automorphism orbits of the tuples in A<N, over
some parameters.

Let g : N→ A be an enumeration of A that is 2-generic relative to the presentation
of A: We have not defined this yet, so let us say that g is a 1-generic enumeration of

the structure (A; ~KA, ~D(A)), where the diagram of A is being added as real in 2ω (see
Definition IV.2.1). Let B be the generic presentation obtained as the pull-back of A
through g (as in Definition IV.2.3). Since A is relatively computably categorical, and
B ∼= A, there is a computable operator Γ such that ΓD(B) is an isomorphism from B to
A.

The first step is to get a tuple q̄ ⊆ g which forces that ΓD(B) is an isomorphism in
the following sense:

Claim VIII.2.2.1. There is a tuple p̄ ⊆ g such that any tuple q̃ ⊇ p̄ can be extended

to an enumeration g̃ with pull-back B̃ = g̃−1(A) so that ΓD(B̃) is an isomorphism from
B̃ to A.

Let us leave the proof of the claim for later, and start by proving the theorem from
it.

Given tuples q̄ = (q0, q1, ...) ∈ A≤N and n̄ = (n0, ..., n`) ∈ N<N, we use q̄ � n̄ to denote
(qn0 , ..., qn`) ∈ A|n̄|. Since g and ΓD(B) are isomorphisms from B to A, for every n̄ ∈ N<N,

(A, g � n̄) ∼= (B, n̄) ∼= (A,ΓD(B) � n̄).

Recall that if q̄ ⊆ g, then DA(q̄) ⊆ D(B) (Observation I.1.11). Therefore, if we have
q̄ ⊆ g so that ΓDA(q̄) � n̄ converges (i.e., if ΓDA(q̄)(ni) ↓ for all i ≤ `), then ΓDA(q̄) � n̄ is
automorphic to q̄ � n̄ as in the diagram below.

Here comes the key observation: the value of ΓDA(q̄) � n̄ depends only on DA(q̄) ∈
2<N, while it determines the automorphism orbit of q̄ � n̄. Thus, informally: for ā = q̄ � n̄,
the existential formula that says that ā is part of a tuple q̄ with this particular diagram
defines the automorphism orbit of ā. Let us explain this in more detail. The key
observation above can be formally stated as follows:
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A B
ΓD(B)

∼= //
g

∼=oo A

q̄ � n̄ n̄ � //�oo ΓDA(q̄) � n̄

Claim VIII.2.2.2. If q̄, q̃ ⊇ p̄ and ΓDA(q̄) � n̄ ↓, then

DA(q̄) = DA(q̃)⇒ (A, q̄ � n̄) ∼= (A, q̃ � n̄).

To see this, from the previous claim we get an enumeration g̃ ⊃ q̃ such that if

B̃ = g̃−1(A), then ΓD(B̃) is an isomorphism. Then, using the observation from the
diagram above, and that ΓDA(q̄) � n̄ = ΓDA(q̃) � n̄, we get that

(A, q̄ � n̄) ∼= (B, n̄) ∼= (A,ΓDA(q̄) � n̄) = (A,ΓDA(q̃) � n̄) ∼= (B̃, n̄) ∼= (A, q̃ � n̄),

as needed for the claim.
Fix a tuple ā; let us find a ∃-definition for the orbit of ā under automorphisms of A

that fix p̄. Computably, search for a tuple q̄ā ∈ A<N and a tuple n̄ā ∈ N<N such that

q̄ā ⊇ p̄, q̄ā � n̄ā = p̄ā and ΓDA(q̄ā) � n̄ā ↓ .

We will eventually find such tuples because one can always take q̄ā to be a long enough
initial segment of g and take n̄ā so that g � n̄ā = p̄ā. We claim that, for any tuple b̄,

(A, p̄ā) ∼= (A, p̄b̄) ⇐⇒ ∃q̃
(
q̃ ⊇ p̄ ∧ q̃ � n̄ā = p̄b̄ ∧ DA(q̃) = DA(q̄ā)

)
.

For the right-to-left direction, consider such a tuple q̃, and observe that p̄ā and p̄b̄ are
automorphic by Claim VIII.2.2.2. For the left-to-right direction, let q̃ be the tuple that
corresponds to q̄ā through the automorphism mapping p̄ā to p̄b̄.

We can rewrite the right-hand side as an existential formula aboutA with parameters
p̄:

ϕā(p̄, x̄) ≡ ∃ȳ
(
ȳ ⊇ p̄ ∧ ȳ � n̄ā = p̄x̄ ∧ D(ȳ) = DA(q̄ā)

)
,

(where x̄ and ȳ are replacing b̄ and q̃, and where “D(ȳ) = σ” is shorthand for ϕat

σ (ȳ), as
defined in I.1.8). The formula ϕā defines the orbit of ā under automorphisms that fix
p̄. The set {ϕā : ā ∈ A<N} is thus the desired c.e. Scott family of ∃-formulas over p̄.

What is now left now to prove is Claim VIII.2.2.1, that there is a p̄ that forces ΓD(B)

to be an isomorphism from B to A.

Proof of Claim VIII.2.2.1. This is a standard forcing proof as we will see in
Chapter ??. For this particular forcing application, the techniques we have developed
so far in Chapter IV are enough, as we did in Theorem V.3.6.

Recall that g is a 1-generic enumeration of (A; ~KA, D(A)), and B = g−1(A). Let us
start by forcing ΓD(B) to behave correctly wherever it converges. For this, consider the
set of strings which force it not to:

Q1 = {q̄ ∈ A? : ∃n < |q̄|
(
ΓDA(q̄) �n ↓ & DA(ΓDA(q̄) �n) 6= DA(q̄ �n)

)
}.
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The set Q1 is r.i. computable in (A;D(A)), and hence decided by some initial segment of
the enumeration g.1 No initial segment of g is in Q1 because ΓDA(B) is an isomorphism, so
there must be an initial segment p̄1 ∈ A? of g such that no extension of p̄1 is in Q1. This
means that whenever q̄ ∈ A? extends p̄1, if ΓDA(p̄)(n) ↓, then DA(ΓDA(q̄) �n) = DA(q̄ �n).

Second, we force that ΓD(B) is total: For this, consider the set of strings which force
ΓD(B) to be undefined at some n ∈ N:

Q2 = {q̄ ∈ A? : ∃n ∈ N∀r̄ ∈ A?
(
r̄ ⊇ q̄ → ΓDA(r̄)(n) ↑

)
}.

The set Q2 is Σc
2 in A, and hence r.i.c.e. in (A, ~KA) and decided by an initial segment of

g.2 We cannot have an initial segment of g in Q2 because we would have that ΓD(B)(n) ↑
for some n. So, for some initial segment p̄ of g, we have that for every q̄ ∈ A? extending
p̄ and every n, there is a r̄ ∈ A? extending q̄ for which ΓDA(r̄)(n) ↓. We may assume
p̄ ⊇ p̄1.

We claim that p̄ is as wanted. Since p̄ forces out of Q2, for any q̃ ⊇ p̄, we can build
a sequence q̃ ⊆ r̄1 ⊆ r̄2 ⊆ r̄3 ⊆ · · · ∈ A? so that ΓDA(r̄n)(n) ↓ for each n. If we also
make sure that n is in the range of r̄n, we get an onto enumeration g̃ =

⋃
n r̄n : N →

A, which satisfies that ΓD(B̃) is total, where B̃ = g̃−1(A). Since p̄ forces out of Q1,

ΓD(B̃) ◦ g̃−1 : A → A must preserve diagrams and hence be an isomorphism. It follows

that ΓD(B̃) : B̃ → A must be an isomorphism too. �

�

Exercise VIII.2.3. (Hard) (Originated after conversations between Harrison-Trainor,
Hirschfeldt, Kalimullin, Melnikov, Montalbán, and Solomon.) The proof above uses the
fact that A has a computable presentation. We can still have relatively computably
categorical structures which don’t have computable presentation: for any two copies A
and B, there is an isomorphism computable from D(A)⊕D(B).

(a) Prove that Theorem VIII.2.2 is still true when A does not have computable
copies. (In this case, the Scott family will have extra formulas that are not satisfied by
any tuple in the structure.) Hint in footnote. 3

(b) Show that in the setting of Theorem VIII.2.2, if the ∃-type of the parameters is

c.e. in an oracle X, then A has a Πc,X
2 Scott sentence.

(c) Show that A has enumeration degree given by the ∃-type of the parameters.

VIII.3. Categoricity on a cone

By the Turing cone above X, we mean the set {Y ∈ 2N : Y ≥T X}. Sometimes,
we will just call it a cone. A set R ⊆ 2N is said to be degree invariant if, for every
X, Y ∈ 2N, if X ∈ R and Y ≡T X, then Y ∈ R too. Martin showed that every
degree-invariant set of reals either contains a cone or is disjoint from a cone — if one
assumes enough determinacy. This motivates viewing degree-invariant sets that contain

1Notice that ΓDA(q̄) �n is a tuple in N<N, and we need to use D(A) to figure out DA(ΓDA(q̄) �n) ∈
2<N in this particular presentation of A. When we wrote DA(ΓDA(q̄) �n) 6= DA(q̄ �n), it was a short-
hand for ¬ϕat

σ (q̄ �n) for σ = DA(ΓDA(q̄) �n), where ϕ
at

σ is as in Observation I.1.8.
2To see that Q2 is Σc

2, observe that {〈q̄, n〉 : ∀r̄ ∈ A?
(
r̄ ⊇ q̄ → ΓDA(r̄)(n) ↑

)
} is co-r.i.c.e. in A and

hence Πc
1-definable.

3You need to consider a generic presentation of A tA.
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cones as large, and the ones disjoint from cones as small. It is not hard to show that
countable intersections of large sets are still large, and countable unions of small sets
are still small.

Theorem VIII.3.1 (Martin [Mar68]). If R ⊆ 2N is Borel and degree-invariant,
then it either contains a cone or is disjoint from a cone.

This is true for every degree-invariant set R if we assume the full axiom of de-
terminacy. It is true for every degree-invariant analytic set R if we assume analytic
determinacy.

We sketch this proof for the readers familiar with determinacy. The theorem is not
relevant for the rest of the text, except as a motivation for Definition VIII.3.2. The
reader not familiar with determinacy may freely skip it.

Proof. Consider a game where Player I and Player II alternatively play binary bits
x0, y0, x1, y1, .... ∈ {0, 1} for infinitely many steps.

Player I x0 x1 x2 · · · · · · x̄ ∈ 2N

Player II y0 y1 · · · · · · ȳ ∈ 2N

Player I wins the game if the sequence x̄⊕ ȳ belongs to R, and Player II wins if it does
not. By Borel determinacy, which Martin showed can be proved in ZFC [Mar75], one
of the two players must have a winning strategy s : 2<N → 2.

We claim that if Player I has a winning strategy, then the cone above s is included
in R; while if Player II has a winning strategy, the cone above s is disjoint from R.
Suppose s is a winning strategy for Player I, and let ȳ be any real in the cone above
s; we want to show that ȳ ∈ R. Assume Player II plays ȳ, and let x̄ be the response
to ȳ by a Player I following the strategy s. Since s is a winning strategy, we have that
x̄⊕ ȳ ∈ R, and since ȳ ≥T s, we have that ȳ ≥T x̄. Furthermore, ȳ ≡T x̄⊕ ȳ. Since R
is degree invariant, this implies that ȳ ∈ R, as needed. The case where II has a winning
strategy is analogous.

If R were analytic instead of Borel, we would need to use analytic determinacy to
get this proof to work. Analytic determinacy does not follow from ZFC, but follows
from weak large-cardinal hypotheses like the existence of sharps (Harrington [Har78]).
If we do not want to impose any complexity assumption on R, we would need the full
axiom of determinacy. �

Suppose now we have a property of reals that is invariant under Turing equivalence.
For instance, consider the set of X ∈ 2N such that a given structure A is X-computably
categorical. By Martin’s theorem, this set must be either large or small — assuming
analytic determinacy. In other words, either, relative to almost all oracles, A is com-
putably categorical; or, relative to almost all oracles, A is not computably categorical.

Definition VIII.3.2. A structure A is computably categorical on a cone if there is
a Y ∈ 2N such that A is X-computably categorical for all X ≥T Y .

If A is a natural structure, a property like categoricity must easily relativize. Thus,
for natural A, the three notions of computable categoricity — plain, relative, and on a
cone — must coincide. If we want to understand how computable categoricity works on
“natural” structures, our best bet is to look at it on a cone. The reason is that on-a-cone
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properties avoid counterexamples one can build by diagonalizing against all computable
functions. This is because, now, one would have to diagonalize against all X-computable
functions for almost all X, and there are continuum many of those. This is why it is
often the case that on-a-cone properties have cleaner structural characterizations, as is
the case for computable categoricity:

Theorem VIII.3.3. Let A be a countable structure. The following are equivalent:

(1) A is computably categorical on a cone.
(2) A is ∃-atomic over a finite set of parameters.
(3) A has a Σin

3 Scott sentence.

Proof. The equivalence between the top two statements follows from the relativized
version of Theorem VIII.2.2: Notice that A is computably categorical on a cone if
and only if it is “relatively computably categorical” relative to some oracle X. The
equivalence between the bottom two statements was proved in Lemma III.7.4. �

VIII.4. When relative and plain computable categoricity coincide

We saw in Table VIII.1 that computable categoricity can be completely understood
within certain classes of structures, despite it being Π1

1-complete in the general case.
What is particular about the classes from Table VIII.1 is that, for them, plain and
relative computable categoricity coincide. As we argued in Section VIII.3, for “nat-
ural” structures within any class, the two notions should also coincide. Goncharov
proved that, under certain effectiviness conditions, computably categoricity is indeed
well-behaved. His result is based on a theorem by Nurtazin that deals with yet another
variation of the notion of computable categoricity.

Definition VIII.4.1. Given an ω-presentation of a τ -structureA, we defineED(A) ∈
2N, the elementary diagram of A, the same way we defined its atomic diagram in I.1.2,
but now considering all elementary first-order formulas instead of just the atomic ones.
For i ∈ N,

ED(A)(i) =

{
1 if A |= ϕel

i [xj 7→ j : j ∈ N],

0 otherwise,

where {ϕel

i : i ∈ N} is an effective listing of the elementary first-order τ -formulas.
An ω-presentation A is said to be decidable if ED(A) is computable.

The notion of decidable structure is quite important in computable structure theory.
If one were interested in studying theorems from model theory from a computational
perspective, dealing with decidable structures may be more appropriate than with com-
putable ones. The notions of computable categoricity and effective ∃-atomicity translate
as follows:

Definition VIII.4.2. A is computably categorical for decidable copies if there is a
computable isomorphism between any two decidable copies of A. A is effectively atomic
if it has a c.e. Scott family of elementary first-order formulas (see Definition III.1.2).

Atomic structures are quite important in model theory, while ∃-atomic structure are
relevant in computable structure theory. Exactly as in Theorem III.5.2, a structure is
atomic if and only if every elementary type realized in the structure is supported by an
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elementary formula, and the Scott family for the structure is given by the set of these
supporting formulas. (In the case of full types, supported types are called principal
types, and the supporting formulas are called generating formulas.)

Theorem VIII.4.3 (Nurtazin [Nur74]). Let A be a decidable structure. The fol-
lowing are equivalent:

(1) A is computably categorical for decidable copies.
(2) A is effectively atomic over a finite set of parameters.

Let us highlight that, while in Theorem VIII.2.2 we could build a non-computable
(generic) copy of A to apply relatively computable categoricity, we now need to build a
decidable copy of A to apply the assumptions. Thus, generics will not be useful here,
and the proof will thus have to be quite different.

Proof. An easy back-and-forth argument shows that effective atomicity implies
computable categoricity for decidable copies. We prove the other direction, which re-
quires a finite-injury priority construction. The reader not familiar with priority con-
struction should read Section VII.1 first.

The idea is to build a decidable copy B of A in a way that either there are no
computable isomorphisms between B and A, or there is a c.e. Scott family for A. Thus,
either part (1) fails or part (2) holds. There are two sets of requirements. First, for
each e, we have:

Requirement Re: Either Φe is not an isomorphism from B to A,
or A has a c.e. Scott family over parameters.

If all these requirements are satisfied, then either one of them succeeds in building a
Scott family and we get that A is effectively atomic over parameters, or all of them
succeed in making sure no Φe is an isomorphism, and hence showing that A is not
computably categorical for decidable copies.

As usual, we will build B by building a one-to-one enumeration g : N → A and
defining B as the pull-back g−1(A). The other set of requirements will guarantee that
g is onto.

Requirement Pe: The eth element of the ω-presentation A
is in the range of g.

The requirements are listed in order of priority as usual: P0, R0, P1, R1, .....
We need to ensure that B is decidable despite g not being computable. To be able

to speak in precise terms about this, we first need to define the elementary diagram of
finite tuples the same way we did for atomic diagrams in Definition I.1.7. Given a tuple
ā = (a0, ..., as) ∈ A<N, we define the elmentary diagram of ā in A, denoted EDA(ā), as
the string in 2|ā| such that, for i < |ā|,

EDA(ā)(i) =

{
1 if A |= ϕel

i [xj 7→ aj, j < s],

0 otherwise.

As in Observation I.1.11, we have that if g is an enumeration of A, then

ED(g−1(A)) =
⋃
k∈N

EDA(g � k).
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At each stage s of the construction, we will build an injective finite tuple gs ∈ A<N.
The gs’s will not form a nested sequence, so we will not be able to define g as their
union. But the sequence will have a pointwise limit, and we will be able to define
g(i) = lims gs(i). We still need B to be decidable, though. So even if the gs’s are
not nested, we require the strings EDA(gs) ∈ 2<N to be nested; that is, for all s < t,
EDA(gs) ⊆ EDA(gt). We will then have that

ED(B) =
⋃
s∈N

EDA(gs) ∈ 2N

is computable.
Informally, the idea for satisfying Re is as follows. Re will try to define gs so that,

for some tuple n̄ ∈ N<N, Φe,s � n̄ converges and disagrees with gs � n̄ on some elementary
formula. This way, if Re manages to preserve this tuple gs so that it ends up being an
initial segment of g, since g will be an isomorphism from B to A, Φe will not. To do
this, for every tuple b̄ ∈ A<N, once we see Φe,s � n̄ ↓= b̄ for some n̄ and s, we enlist b̄
as a possible candidate for diagonalization. From that point on, we will be looking for
another tuple c̄ disagreeing with b̄ on some elementary formula, so we can try to define
g � n̄ = c̄. If we find it, Re will require attention, and if attention is given to it at some
stage t, it will define gt so that gt � n̄ = c̄ and try to preserve this initial segment of g.
If we do not find such a disagreeing tuple c̄, the reason is that whatever commitment
we made at stage s about n̄ (namely that we must preserve EDA(gs)) had to imply
all other formulas about b̄, and hence be a principal formula for the type of b̄. If this
happens for all tuples b̄, we can build a Scott family for A. To make sure this works,
we will be monitoring that everything we later commit to regarding b̄ (namely that we
must preserve EDA(gt) for the new gt) is implied by the potentially principal formula.
If it is, then we are not really committing anything new; if it is not, we have found an
opportunity to diagonalize.

What makes this more difficult is that Re must respect the work done by other
requirements. The same way Re would like to preserve the initial segment of g he
defined, higher-priority requirements will like to preserve their initial segments. At the
beginning of stage s + 1, we will define p̄e[s] ⊆ gs to be the initial segment of gs that
has been defined by higher-priority requirements Ri for i < e and Pi for i ≤ e. Re must
preserve p̄e[s]; that is, it is only allowed to define gs+1 extending p̄e[s]. Re must also
preserve ED(gs); that is, it is only allowed to define gs+1 satisfying ED(gs+1) ⊇ ED(gs).

The construction: At any given stage, the first few requirement will be active
and the rest inactive. At each stage, the highest-priority inactive requirement will be
initialized and become active. During the construction, requirements may be canceled,
making them inactive again. At each stage, each active Pe requirement will have an
output string p̄e ∈ A<N, and each active Re requirement an output string r̄e. These
strings will be nested, p̄0 ⊆ r̄0 ⊆ p̄1 ⊆ r̄1 ⊆ · · · , and gs will be the union of the
output strings of the active requirements at stage s. These are not fixed strings, and
the value of p̄e or r̄e may change throughout the stages. We write p̄e[s] or r̄e[s] if we
want to highlight that we are referring to their values at stage s. We will show they
will eventually reach a limit and stop changing.

Requirement Pe only acts the first time it is active after being inactive. If it is
ever canceled, it will act again once it becomes active again. If it acts at stage s + 1,
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its action consists of defining gs+1 = gs
ae (where e refers to the eth element of the

ω-presentation A). Well, that is if e is not in the range of gs already, in which case we
just define gs+1 = gs. Once Pe acts, stage s + 1 is over, and we move on directly to
the next stage, s + 2. We define the output of Pe to be p̄e = gs+1, and this will stay
this way unless Pe is later canceled. Since Pe will only act at a stage when no other
requirement acts, we will have that r̄e−1, the output of Re−1, is included in gs. Thus,
Pe indeed respects higher-priority requirements.

Requirement Re works as follows. At each stage that is active, Re may go through
four phases:

• waiting,
• internal calculations,
• requiring attention, or
• acting.

We need to describe what Re does in each of these phases. We leave the internal
calculations phase for last.

Recall that p̄e is the initial segment of gs given by the output of the requirement
of immediately higher priority, namely Pe. Once Re has been activated, it will stay in
the waiting phase until we reach a stage s at which Φe,s � |p̄e| converges. At the stages
where Φe,s � |p̄e| does not converge, the requirement does not do anything, and we move
on to consider the next active requirement. In the meantime, and until the requirement
acts (if ever), its output is r̄e = p̄e. When we reach a stage s where Φe,s � |p̄e| converges,
we let

ā = Φe,s � |p̄e|
and move to the next phases of internal calculations and deciding if we require attention.

For tuples n̄ ∈ N<N and p̄ ⊆ gs, we let ψn̄,gs(p̄, x̄) be the elementary formula describ-
ing the commitments we have made about n̄ over p̄ in ED(gs):

ψn̄,gs(p̄, x̄) ≡ ∃ȳ (ȳ ⊇ p̄ ∧ ȳ � n̄ = x̄ ∧ ED(ȳ) = σ), where σ = EDA(gs) ∈ 2<N,

and “ED(ȳ) = σ” is shorthand for what one would expect:

“ED(ȳ) = σ” ≡

 ∧
i:σ(i)=1

ϕel

i (ȳ)

 ∧
 ∧
i:σ(i)=0

¬ϕel

i (ȳ)

 .

Notice that A |= ψn̄,gs(p̄, gs � n̄) with witness ȳ = gs.
Re requires attention if it finds an opportunity to diagonalize, that is, if it finds

a tuple n̄ ∈ N<N of numbers greater than |p̄e|, a tuple c̄ ∈ A<N, and an elementary
formula ϕ such that:

(1) Φe,s � n̄ converges,
(2) the tuples p̄e

ac̄ and āaΦe,s � n̄ disagree on ϕ, and
(3) A |= ψn̄,gs(p̄e, c̄).

After Re requires attention, it may be allowed to act. Let q̄ be the witness to
A |= ψn̄,gs(p̄e, c̄). That is,

q̄ ⊇ p̄e ∧ q̄ � n̄ = c̄ ∧ EDA(q̄) = EDA(gs).
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The action of Re is to define gs+1 = q̄ and re-define r̄e, the outcome of Re, also to
be q̄. If Re is never canceled again, and g ends up being an isomorphism from B to A
extending r̄e, Re would have succeeded in diagonalizing against Φe, ensuring that Φe is
not an isomorphism from B to A. This is because, if Φe was an isomorphism, the tuples
p̄e
ac̄ and āaΦe,s � n̄ would have to be automorphic, contradicting they do not satisfy

the same formulas. After this action, we cancel all the weaker-priority requirements,
making them inactive, and finish stage s + 1. Re will not act again, and r̄e will not
change anymore, unless Re is later canceled and re-initialized, in which case it will start
over.

The initial calculations of Re are as follows. While Re is looking for an instance
to require attention, it will enumerate a set of formulas S, and hope it ends up being a
Scott family for A over p̄e. Every time Φe,s converges on some new tuple n̄ of numbers
between |p̄e| and |gs|,

• define ϕn̄(x̄) be the formula ψn̄,gs(p̄e, x̄), and
• enumerate ϕn̄ into S.

By doing this, Re is betting that ϕn̄(x̄) is a formula generating the type of b̄ = g � n̄
within A over p̄e. Later on, at each stage u+ 1 where a weaker-priority requirement Ri

requires attention and wants to extend gu to some tuple h̄, we first check that

A |= ∀x̄(ϕn̄(x̄)→ ψn̄,h̄(p̄e, x̄)).

If it does, we let the weaker-priority requirement do its thing and define gu+1 = h̄. If
it does not, Re does not allow the weaker-priority requirement to act, as instead, Re

is in a position to require attention himself: We know there is a tuple c̄1 satisfying
ϕn̄(c̄1) ∧ ψn̄,h̄(p̄e, c̄1), namely h̄ � n̄, and we know there is another tuple c̄2 that satisfies
ϕn̄(c̄2) ∧ ¬ψn̄,h̄(p̄e, c̄2) because the implication above does not hold. Let c̄ be whichever
of these two tuples disagrees with Φe,s � n̄ on ψn̄,h̄(p̄e, x̄). Since, at stage u, we checked
that A |= ∀x̄(ϕn̄(x̄) → ψn̄,gu(p̄e, x̄)), we have that A |= ψn̄,gu(p̄e, c̄). Re has now found
the witnesses n̄, c̄, and ψn̄,h̄(p̄e, x̄) necessary to require attention at stage u+ 1.

Verifications: After a requirement is initialized, it will act at most once before it is
re-initialized again, if ever. One can then prove, by induction on the list of requirements,
that each requirement will eventually stop being canceled and will then eventually stop
acting, and hence the next requirement will stop being canceled and then eventually
stop acting, and so on. Since the outputs of the requirements only change when they
act, we get that each p̄e and r̄e reaches a limit, and that g is the union of all these limits.
Since each requirement Pe is eventually given the chance to act without being canceled
again, we get that g is onto. Notice that g is one-to-one because each gs is.

Let us now verify that each Re is satisfied. Let se be the last stage in which Pe acted,
so that Re is never canceled after se. Suppose Φe is a computable isomorphism from B
to A. It must then be the case that Re never requires attention after se, as otherwise, Re

would have acted and diagonalized against Φe, as we argued before. We claim that this
implies that Re is successful in making S into a Scott family. For each tuple b̄ ∈ A<N

disjoint from p̄e, there will be some n̄ such that g � n̄ = b̄, and there will be a first stage
sb̄ > se at which Φe,sb̄

� n̄ ↓. At that stage, we enumerate ϕn̄(x̄) (= ψn̄,gsb̄ (p̄e, x̄)) into

S. We need to show that ϕn̄ is indeed a generating formula for the elementary type of
b̄ over p̄e. First, notice that even if gs � n̄ 6= b̄, we still have that A |= ϕn̄(b̄), because,
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for every t ≥ s, since ED(gt) ⊇ ED(gs), we have that A |= ϕn̄(gt � n̄) as witnessed by
ȳ = gt � |gs|. Since Re never requires attention again, at every later stage u > sb̄, we
have that

A |= ∀x̄(ϕn̄(x̄)→ ψn̄,gu(p̄e, x̄)).

Every elementary formula ϕ(p̄e, x̄) that is true of b̄ in A will eventually be part of
EDA(gu) for large enough u. Thus, ϕ is implied by ψn̄,gu(p̄e, x̄), and hence implied by
ϕn̄(x̄). �

If we want to go back to the notion of computable categoricity (for computable
copies), we can modify the proof above if we assume the two-quantifier theory of A is
computable.

Definition VIII.4.4. A ∀∃-formula is one of the form

∀x0∀x1...∀xn∃y0∃y1...∃yk ψ(x̄, ȳ, z̄)

where ψ is finitary and quantifier-free. An ω-presentation A is ∀∃-decidable if we can
effectively decide all ∀∃-formulas about the tuples of A.

Theorem VIII.4.5 (Goncharov [Gon75a]). If A is ∀∃-decidable, then A is com-
putably categorical if and only if it is effectively ∃-atomic over a finite set of parameters.

Sketch of the proof. The proof is very similar to the proof above, but it re-
quires being extra careful with the complexity of certain formulas at various steps of
the construction. For this proof, we only need to preserve our usual atomic diagrams
D(gs) instead of the elementary diagrams ED(gs). This will get us a computable ω-
presentation B. The formulas ψn̄,gs are now defined using D(gs) instead of ED(gs).
Notice that ψn̄,gs is now an ∃-formula. When Re is deciding if it requires attention, it
now wants the tuples p̄e

ac̄ and āaΦe,s � n̄ to disagree on some ∀∃-formula, as that is
what we can check computably. The key point where we used the decidability of A was
during the initial-calculations phase to check whether

A |= ∀x̄(ϕn̄(x̄)→ ψn̄,h̄(p̄, x̄)).

This formula is now ∀∃, which we can decide by the assumption on A. However, we
need to check a bit more. Let ψ∀n̄,gs(p̄e, x̄) be the conjunction of all the ∀-formulas with
indices less than |gs| that are true of gs(n̄) over p̄e. We also check that

A |= ∀x̄(ϕn̄(x̄)→ ψ∀n̄,h̄(p̄, x̄)),

as this also gives us an opportunity to diagonalize. When we are verifying that Re

works, we only need to show that ϕn̄ supports the ∀-type of g � n̄ over p̄e. All these
formulas are implied by ψ∀n̄,gu(p̄e, x̄) for large enough u, so the proof is the same. �

Kudinov [Kud96] showed this result is sharp by building a ∀-decidable computably
categorial structure that is not effectively ∃-atomic. Something we can say about ∀-
decidable computably categorial structures is that they are effectively Σc

2-atomic, as
proved by Downey, Kach, Lempp, and Turetksy [DKLT13, Theorem 1.13].
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VIII.5. When relative and plain computable categoricity diverge

This section is dedicated to proving the following theorem.

Theorem VIII.5.1 (Goncharov [Gon77, Theorem 4]). There is a structure which
is computably categorical, but not relatively so.

This is an important theorem, and its proof illustrates a couple of techniques that
are useful throughout the field. One is the use of families of sets to build structures with
particular properties, which is a very common technique in the Russian school. The
other one is the use of a finite-injury priority argument that is a bit more elaborated
than the two we have seen before.

To prove Theorem VIII.5.1, we will build a c.e. family of sets F ⊆ P(N), and then
take the graph

G1
F =

⊔
X∈F

GX ,

where GX is the flower graph that consists of loops of size n + 3, one for each n ∈ X,
all with a common node. This is almost the same as the graph G∞F we considered in
Observation V.4.2 and Lemma VI.1.10, with the difference that, in G∞F , each X ∈ F is
associated to infinitely many flower graphs GX instead of just one as in G1

F . Let us see
how the relevant properties about structures translate to families.

Definition VIII.5.2. A computable Friedberg enumeration of a family F is a c.e.
set W whose columns are the sets in F without repetition.

Recall from Definition V.4.1 that a computable enumeration for a family F is a c.e.
set W with F = {W [i] : i ∈ N}, allowing for repeating columns. In a Friedberg enu-
meration, every set in F corresponds to exactly one column. In Observation V.4.2, we
showed that F has a computable enumeration if and only if G∞F has a computable copy.
As in Observation V.4.2, one can easily produce a computable Friedberg enumeration
of F out of a computable ω-presentation of G1

F , and vice versa.

Definition VIII.5.3. A family F ⊆ P(N) is discrete if there is a family S of finite
sets such that, for each A ∈ F , there is an F ∈ S with F ⊆ A, and for each F ∈ S,
there is a unique A ∈ F with F ⊆ A. We call such a set S a separating family for F .
We say that F is effectively discrete if F has a c.e. separating family.

Lemma VIII.5.4. Let F ⊆ P(N) be a family with a c.e. enumeration. Then G1
F is

effectively ∃-atomic if and only if F is effectively discrete.

Proof. Suppose F has a separating set S. We need to find ∃-formulas defining
each node of G1

F . Notice that each center of a flower graphs GX is alone in its own
automorphism orbit because each GX appears only once in G1

F . Also notice that if we
have an ∃-formula defining the center of GX , we can find ∃-definitions for all the nodes
in GX : We need to say that the node belongs to a loop of a certain size and that the loop
also contains the center of GX . Thus, we will concentrate on enumerating ∃-definitions
for the centers of the flower graphs. For each X ∈ F , there is a finite set A ∈ S such
that X is the only set in F that contains A. Let ϕX(x) be the formula that says that
x is part of a loop of size n + 3 for each n ∈ A. The center of GX would be the only
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element of G1
F satisfying that formula. Notice that if S is c.e., this produces a c.e. Scott

family.
Suppose now that G1

F is ∃-atomic. For each X, let ϕX be the ∃-formula in the Scott
family satisfied by the center of GX . Let AX be a finite subset of X such that the center
of a flower graph GA also satisfies ϕX . Such an AX must exist because if an ∃-formula
is true of a relational structure, it is also true of a finite substructure. We claim that
{AX : X ∈ F} is a separating family for F . We already argued that such an AX
exists for each X. If AX ⊆ Y for Y ∈ F , then, since ∃-formulas are preserved under
embeddings and GAX embeds in GY , we would have that ϕX holds of the center of GY

too. Since ϕX defines the orbit of the center of GX , we must have X = Y .
Notice that if we have a c.e. enumeration of F , for each columnX of the enumeration,

we can effectively find ϕX within the given c.e. Scott family, and we then effectively
find some AX . �

Recall that a structure is relatively computable categorical if and only if it is ef-
fectively ∃-atomic over some parameters. So, we need to add the parameters to the
previous lemma. We only need one direction.

Corollary VIII.5.5. Let F ⊆ P(N) be a discrete family with a c.e. enumeration.
Then if G1

F is effectively ∃-atomic over parameters, F is effectively discrete.

Proof. Let p̄ be the parameters over which G1
F is effectively ∃-atomic. We can

assume the elements of p̄ are the centers of flowers, as from each p ∈ G1
F we can

effectively find the center of the flower it belongs to, and vice-versa, we can effectively
find p from the center of its flower. Since all flowers are completely independent, if we
remove the flowers that contain p̄ from G1

F , we get a bouquet graph G1
F̃ that is effectively

∃-atomic over no parameters. By the previous lemma, the corresponding family F̃ is
effectively discrete, and has a c.e. separating family S̃. Since F was discrete to begin
with with, it has a separating family S, not necessarily c.e. Let S0 be the finite sub-
family of S that corresponds the flowers that contain p̄, i.e., to the sets in F r F̃ . We
then get that S̃ ∪ S0 is a c.e. separating family for F . �

Definition VIII.5.6. A computable equivalence between two computable enumera-
tions, V and W , of a family F is a computable permutation f of N such that W [n] =
V [f(n)] for every n. When such a computable equivalence exists, we say that V and W
are computably equivalent.

Lemma VIII.5.7. G1
F is computably categorical if and only if F has only one Friedberg

enumeration up to computable equivalence.

Proof. We already know that computable ω-presentations of G1
F are in correspon-

dence with c.e. Friedberg enumerations of F . It is not hard to see that computable iso-
morphisms between ω-presentationsof G1

F are then in correspondence with computable
equivalences between c.e. Friedberg enumerations of F . �

Theorem VIII.5.1 now follows from the following lemma.

Lemma VIII.5.8 (Badaev [Bad77]). There is a family F ⊆ P(N) that is not ef-
fectively discrete and has only one computable Friedberg enumeration up to computable
equivalence.
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Proof. Let

E = {0, 2, 4, 6, 8, ...} and Ek = {0, 2, 4, ..., 2k} ∪ {2k + 1}.
For each n ∈ N, the family F will contain one set of the form E ⊕ {n}, and either no
or one set of the form Ek ⊕ {n}. There will be no other sets in F . We will build a
computable Friedberg enumeration U of F . To make F not effectively discrete, we have
the following requirements:

Positive Requirement Pe: We is not a separating family for F .

To make sure F has a unique Friedberg enumeration, we have the following require-
ments:

Negative Requirement Ne: If We is an Friedberg enumeration of
F , then We is computably equivalent to U .

The requirements are listed in decreasing order of priority as usual: N0, P0, N1, P1, ....
All the sets E ⊕ {n}, for n ∈ N, are enumerated into U from the beginning, say on
the even columns of U . The sets Ek ⊕ {n} will be enumerated later on by the positive
requirements Pe. Each Pe will act at most once, enumerating at most one such set. At
each stage, each negative requirement Ni will impose a restraint on the Pe requirements
of weaker priority by not allowing them to enumerate any set of the form Ek⊕{n} with
n < Mi,s ≤ k, where Mi,s is a number defined by Ni at stage s of the construction. Each
stage s of the construction starts with all the requirements Ni, for i < s, independently
doing their own calculations and defining Mi,s. Then, all the requirements Pe for e < s
will independently do their thing as we describe below.

What makes these requirements “positive” and “negative,” is that the Pe enumerate
elements into U , while the Ne prevent elements from being enumerated.

The requirement Pe works as follows. Let {Ce : e ∈ N} be a computable partition
of N; for instance, let Ce = {〈e,m〉 : m ∈ N}. The set Ce is reserved for requirement Pe.
Suppose Pe has not been declared done yet. If we see a finite subset G with pGq ∈ We

such that, for some n ∈ Ce and some m ∈ N, we have

• G ⊆ {0, 2, ..., 2m} ⊕ {n}, and
• for each i ≤ e, either Mi,s ≤ n or m < Mi,s,

then we add Em ⊕ {n} to F (i.e., we enumerate it as a column in U), we declare Pe
done, and we re-initialize all lower-priority Ni requirements. Recall that Mi,s will be
defined by Ni below. All we need to know for now about the sequence Mi,s is that it is
non-decreasing in s, and therefore that it converges to a limit — either to a number or
to ∞. If We were indeed a separating family for F , then for every n, We would contain
some set of the form G = F ⊕ {n} with F ⊆ {0, 2, ..., 2m} for some m. Consider some
n ∈ Ce which is above limsMi,s for all the i ≤ e for which the limit is finite. The
corresponding m would eventually be below all the Mi,s for all the i ≤ e for which the
limit is infinite. Pe would then be allowed to act and enumerate Em⊕{n} into F . This
contradicts that We is a separating family because G would be included in both E⊕{n}
and Em ⊕ {n} — Pe succeeds.

The requirement Ne works as follows. It will be initialized at stage s + 1 = e
and then will be re-initialized every time a higher-priority Pi requirement acts. Since
each Pi acts at most once in the whole construction, there will be a point after which
Ne will never be re-initialized again. Every time Ne is initialized, it starts building
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a computable matching ge between the columns of We to U by finite approximations
ge,0 ⊆ ge,1 ⊆ ge,2 ⊆ · · · → ge, with ge,s ∈ N<N. If it turns out that We is a Friedberg
enumeration of F and that Ne is never re-initialized again, we have to make sure ge is
a computable equivalence between We and U . The rough idea is as follows: At each
stage s, we will look at the columns of We,s and U [s], and hope there is an obvious
way to match them. Whenever we see a set of the form Ek ⊕ {n} in both We,s and
in U [s], we can safely match these columns through ge,s. The problem arises when we
need to match columns of the form {0, 2, ..., 2m}⊕ {n}: These columns may later grow
in different ways and become Ek ⊕ {n} for some k ≥ m in We and E ⊕ {n} in U . To
deal with this, Ne will impose a restraint not allowing sets of the form Ek⊕{n} for any
k ≥ m to be enumerated into U by lower-priority requirements.

Let us start by defining an enumeration {Ve,s : s ∈ N} of F that is tidier than We.
We do this by delaying the enumeration of certain elements, but in a way that if We

is actually an enumeration of F , then all elements of We eventually enter some Ve,s, so
that We =

⋃
s∈N Ve,s. We want Ve,s to satisfy the following properties for every s ∈ N:

• Ve,s ⊆ We,s.
• Every non-empty column of Ve,s is of the form F ⊕ {n} for some F and n.
• For every n, there are at most two such columns, one included in E⊕{n}, and

if there is a second one, it must be of the form Ek ⊕ {n}.
• If Ve,s contains a column of the form Ek ⊕ {n}, then so does U [s].

We can easily get such an enumeration {Ve,s : s ∈ N} just by enumerating the elements
of a column of We,s into Ve,s only once the properties above are satisfied.

Let Me,s be the largest m such that, for every n < m, there is a column in Ve,s
containing {0, 2, 4, ..., 2m}⊕{n}. Notice that Me,s is non-decreasing with s, and that if
We is indeed an enumeration of F , then Me,s converges to∞. Ne imposes the following
restraint on the lower-priority requirements:

No set of the form Ek ⊕ {n} with n < Me,s ≤ k can be enumerated
into F at stage s.

At each stage s, we define a finite partial map ge,s matching columns in Ve,s with

columns in U [s]. We let ge,s(i) = j if and only if V
[i]
e,s and U [j][s] are of the forms A⊕{n}

and B ⊕ {n} for the same n, respectively, and one the following holds:

(1) A and B are equal and of the form Ek for some k.
(2) n < Me,s, A ⊆ E, B = E, and there is no column in U [s] of the form Ek ⊕{n}

with A ⊆ Ek.

We claim that, unless Ne is re-initialized, ge,s ⊆ ge,s+1 for all s: If ge,s matches two
columns of the form Ek ⊕ {n}, those columns will still be matched in ge,s+1. Suppose
now ge,s matches two columns of the form A ⊕ {n} and B ⊕ {n} with A,B ⊆ E. We
then must have that n < Me,s, that {0, ..., 2Me,s} ⊆ A, and there is no column in U [s]
of the form Ek ⊕{n} with A ⊆ Ek. Because of the restraint imposed by Ne, no column
of the form Ek⊕{n} with k ≥Me,s is enumerated into U [s+1]. (Notice that no higher-
priority requirement acts, as we are assuming Ne is not re-initialized at s.) Thus, the
column corresponding to A could not grow in Ve,s+1 to be of the form Ek ⊕ {n} by our
assumption on Ve,s that such columns must appear in U [s+ 1] before they do in Ve,s+1

— this column is therefore still contained in E ⊕ {n}. Since there is still no column in



VIII.5. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY DIVERGE 99

n = 0

E E4

n = 1
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E2
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E1
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Figure 1. In this example, the restrain forbids us to enumerate a column
of the form Ek ⊕ {2} for k ≥ Me, s at stage s. That is, we cannot cross
the horizontal Me,s-line. So, for instance, the column that currently looks
like E ⊕ {2} is not allowed to become of the form Ek ⊕ {2}. The column
E4⊕{0} crossing the line in the picture was enumerated before the current
stage.

U [s + 1] of the form Ek ⊕ {n} with A ⊆ Ek, we get that the columns for A and B are
matched again in the definition of ge,s+1. This proves our claim, and we get that if Ne

is never re-initialized again, ge =
⋃
s ge,s is a computable equivalence between We and

U . �

Notice that the family F is discrete, even if it is not effectively discrete. We thus get
that G1

F is ∃-atomic and computably categorical on a cone. After Goncharov’s result,
there have been various other constructions of computably categorical structures which
are not relatively so. For instance, Khoussainov, Semukhin, and Stephan [KSS07]
built one without using a priority argument, using effective randomness instead. Their
structure is not ∃-atomic over any finite set of parameters, so it is not computably
categorical on a cone. Another example is due to Khoussainov and Shore [KS98,
Theorem 4.2]. They built a computably categorical structure A such that, for each
element a ∈ A, the structure (A, a) is not computably categorical. The Khoussainov–
Shore structure is not relatively computably categorical. This is because otherwise, it
would remain relatively computably categorical if one added parameters.

Exercise VIII.5.9. (Open) What is the index set of computable categoricity on a
cone?
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Exercise VIII.5.10. Let G1
F be a bouquet graph as in Section VIII.5. Show that if

the degree spectrum of G1
F has measure 1, then G1

F has a 0′′-computable copy.Hint in
footnote.4

4Use Sacks’ theorem that the measure of every non-trivial cone is 0.



CHAPTER IX

The Jump of a Structure

Given a structure A, recall that we defined the complete r.i.c.e. relation ~KA by
putting together all Σc

1-definable relations (Definition II.2.3):

~KA = {〈i, b̄〉 : A |= ϕ
Σc

1

i,|b̄|(b̄)} ⊆ N× A<N,

where ϕ
Σc

1
i,j (x̄) is the ith Σc

1 τ -formula with j free variables. We then used this construc-

tion to define the jump of a relation Q ⊆ A<N to be the relation Q′ = ~K(A,Q) (Definition
II.2.7), and proved that this is an actual jump, that is, that Q <ArT Q

′ for all Q ⊆ A<N

(Corollary II.2.9). In this chapter, we consider this same construction, but view it as
an operation from structures to structures.

Definition IX.0.11. Given an τ -structure A, we define its jump to be the new
structure obtained by adding the complete r.i.c.e. relation to it. That is, we let

A′ = (A, ~KA).

Thus, A′ has the same domain as A, but a larger vocabulary. It is a τ ′-structure,
where τ ′ consists of τ together with infinitely many new symbols naming the relations

Ki,j = {b̄ ∈ Aj : A |= ϕ
Σc

1
i,j (b̄)}.

Notice that this definition is independent of the presentation of A. The isomorphism
type of A′ depends only on the isomorphism type of A. However it does depend — in
an unessential way — on the Gödel numbering of the Σc

1 τ -formulas, in the same way
as the Turing jump of a set depends on the Gödel numbering of the partial computable
functions. Also notice that the extended language τ ′ is still a computable relational
language.

Historical Remark IX.0.12. The jump of structures has been introduced on various
independent occasions over the last few years. Other definitions can be found in [Mor04,
Bal06, Sos07, SS09, Puz09, Mon09, Stu09]. The definition we give here is from [Mon12,
Definition 5.1], where the history of the different definitions is explained in more detail.

Remark IX.0.13. Let us remark that the jump preserves effective bi-interpretabilty.
That is, if A and B are effectively bi-interpretable, then so are A′ and B′. The inter-
pretation maps are the same. All one has to observe is that the relation ~KA within the
copy of A interpreted in B is r.i. computable in B′ and vice versa. This is because Σc

2

formulas in A remain Σc
2 in the interpretation.

IX.1. The jump jumps — or does it?

The first thing to know about the jump is whether it is an actual jump, or whether
there is a structure that is equivalent to its own jump. The answer is not straightforward

101
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and depends on the notion of equivalence we use. For the strongest of the equivalences,
namely effectively bi-interpretability, the jump does jump.

Lemma IX.1.1. No structure is Medvedev equivalent to its own jump. In particular,
no structure is effectively bi-interpretable with its own jump.

Proof. We know from Lemma VI.1.9 that if A′ were Medvedev reducible to A, we
would have ∃-Th(A′) ≤e ∃-Th(A). To show that it does not, we claim that ∃-Th(A′)
can enumerate the enumeration jump of ∃-Th(A). The enumeration jump of a set X is
defined to be

J(X)⊕ J(X), where J(X) = {e : e ∈ ΘX
e }

and {Θe : e ∈ N} is an effective list of the enumeration operators as in page xii. A

standard diagonalization argument shows that X cannot enumerate the set J(X). (If

J(X) were enumeration reducible to X, we would have J(X) = ΘX
e for some e. We

would then have that e ∈ J(X) ⇐⇒ e ∈ ΘX
e ⇐⇒ e ∈ J(X).)

Let us now prove our claim that J(∃-Th(A)) ≤e ∃-Th(A′). For e ∈ N, e ∈
J(∃-Th(A)) if and only if, for every finite set D ⊂ N with 〈pDq, e〉 ∈ Θe, D 6⊆ ∃-Th(A).
That is,

e ∈ J(∃-Th(A)) ⇐⇒ A |=
∧∧
D⊆N
〈D,e〉∈Θe

¬
∧
i∈D

ϕ∃i ,

where ϕ∃i is the ith existential τ -sentence. The right-hand side is a Πc
1 sentence about A,

and hence decided in the quantifier-free theory ofA′. So we even get that J(∃-Th(A)) ≤m
∃-Th(A′). �

The question of whether there is a structure that is Muchnik equivalent to its own
jump turned out to be quite interesting.

Theorem IX.1.2 (Puzarenko [Puz11], Montalbán [Mon13c]). There is a structure
A for which A′ is effectively interpretable in A using one element of A as a parameter.
In particular, this structure A is Muchnik equivalent to its own jump.

The techniques used for this proof go beyond the scope of this book; we refer the
reader to the original papers by Puzarenko [Puz11] and Montalbán [Mon13c]. These
two proofs are quite different. Montalbán uses the existence of 0], and is a paragraph
long once the definition of 0] is understood. Puzarenko’s proof works inside ZFC, uses
admissibility theory, and is much more complicated. Both proofs build an ill-founded
ω-model A of ZF− + V = L where, for some ordinal α of the model, (Lα)A ∼= A.

More surprising than the theorem itself is the complexity necessary to prove it.
The theorem below shows that building a structure that is Muchnik equivalent to its
own jump requires infinitely many uses of the power-set axiom. Puzarenko’s proof of
Theorem IX.1.2 uses KP plus ωCK1 + 1 iterations of the power-set axiom. There is still
a gap as to how many iterates of the power-set axiom are needed to prove Theorem
IX.1.2.

Theorem IX.1.3 (Montalbán [Mon13c]). Higher-order arithmetic cannot prove
that there exists a structure A that is Muchnik equivalent to its own jump. Higher-order
arithmetic refers to the union of nth-order arithmetic for all n ∈ N.
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One of the main steps to prove this theorem is to show that, for such a structure
A, the set of reals coded by A, namely {X ⊆ N : ~X is rice in A}, is the second-order
part of an ω-model of full second-order arithmetic. Generalizing this to higher orders,
Montalbán proved that the ω-jump of any presentation of A computes a countably
coded ω-model of higher-order arithmetic.

Exercise IX.1.4. (Hard) Show that if A and A′ are Muchnik equivalent, then

(ω;M) where M = {X ⊆ N : ~X is rice in A}, is a model of second order arithmetic.
Hint in footnote.1

IX.2. The jump-inversion theorems

Friedberg’s jump-inversion theorem [Fri57a] says that every Turing degree above 0′

is the jump of some other degree. There are a couple of different ways in which one
could generalize Friedberg theorem to the jump of structures. We call them the first
and second jump-inversion theorems.

IX.2.1. The first jump-inversion theorem. This theorem is a generalization
of the Friedberg jump-inversion theorem to the semi-lattice of structures ordered by
effective interpretability.

Theorem IX.2.1 (Soskova, Stukachev). For every structure A which codes 0′ (i.e.,
−→
0′ is r.i. computable in A), there is a structure C whose jump is effectively bi-interpretable
with A.

Proof. We proved in Theorem VI.2.9 that every structure is effectively bi-interpretable
with a graph. Therefore, we may assume A is a graph (A;E) with domain A and edge
relation E. The key idea behind this proof is the following: If we are given a linear
ordering isomorphic to either ω or ω∗, deciding which one is the case is a ∆0

2 complete
question. We will thus define C by removing the edge relation E and instead attaching
to each pair of elements of A one of these two linear orderings, depending on whether
there is an edge between the two elements or not.

We define C as (C;A,R), where A is a unary relation and R a 4-ary relation. The
domain C of C consists of the disjoint union of the domain A of A and another set B,
and we use the unary relation A to identify the elements of A. We define the 4-ary
relation

R ⊆ A× A×B ×B
so that is satisfies the following: If we let Ba,b = {c ∈ B : R(a, b, c, c)}, and Ra,b =
{(c, d) ∈ B2 : R(a, b, c, d)}, then (Ba,b;Ra,b) is a linear ordering isomorphic to either ω
or ω∗, and it is isomorphic to ω if and only if (a, b) ∈ E.
C can be easily effectively interpreted in A as follows. Let B = A2 × N and let

C = A∪B (coded as a subset of A<N as in Definition II.1.23). Then define R as follows:

R = {(a, b, (a, b, n), (a, b,m)) ∈ A2 ×B2 : for (a, b) ∈ E & n ≤ m}
∪ {(a, b, (a, b, n), (a, b,m)) ∈ A2 ×B2 : for (a, b) ∈ A2 r E & n ≥ m}.

1You need to show the comprehension axioms hold in (ω;M). First note that every set in M
can be named by an index for a c.e. operator and a tuple p̄ using Corollary II.1.21. Then, translate
set-quantification in the model to quantification over numbers and tuples from A.
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To show that this is actually an effective interpretation of C ′, and not just of C, we need
to show that ~KC (viewed as a relation in A<N) is r.i. computable within A. To see this,
fix an ω-presentation of A. The construction above then gives us an ω-presentation of C.
Use Friedberg’s jump-inversion theorem to get an oracle X ∈ 2N such that X ′ ≡T D(A)
(that is where we use that A codes 0′). We will now construct a second copy, C̃, of C
that is computable in X. For each (a, b) ∈ A2, X ′ knows if (a, b) ∈ E or not, and hence
computably in X, we can uniformly build a linear ordering B̃a,b such that

B̃a,b ∼=

{
(N;≤) if (a, b) ∈ E,
(N;≥) if (a, b) 6∈ E.

To do this, if f(a, b, s) is an X-computable function such that lims∈N f(a, b, s) = 1 if
(a, b) ∈ E and lims∈N f(a, b, s) = 0, then we can define B̃a,b = (N;≤B̃a,b) by

s ≤B̃a,b r ⇐⇒
(
s ≤N r & f(a, b, r) = 1

)
∨
(
r ≤N s & f(a, b, s) = 0

)
.

We let the reader verify this ordering is as needed. We then define C̃ by putting together
A and disjoint copies of all the B̃a,b for (a, b) ∈ A2 and defining R̃(a, b, n,m) ⇐⇒ n,m ∈
B̃a,b & n ≤Ba,b m. An important point is that D(A) can compute an isomorphism

between C and C ′. This is because X ′ can compute isomorphisms between B̃a,b and Ba,b
for all (a, b) ∈ A2. Since D(C̃) ≤T X, we have that ~K C̃ is computable in X ′, and hence

in D(A). Going through the isomorphism between C̃ and C, we get that ~KC is also

computable in D(A). Since this worked for every ω-presentation of A, we have that ~KC

is r.i. computable in A. This proves that we have an effective interpretation of C ′ in A.
The effective interpretation of A within C ′ is even more direct. The domain of the

interpretation is, of course, A itself, as identified by the relation A within C. Notice
that E is now r.i. ∆0

2 in C. This is because, to decide if (a, b) ∈ A2, we need to decide
whether Ba,b ∼= ω or Ba,b ∼= ω∗. For this, we need to decide whether there exists an
element in Ba,b without predecessors, or there exists an element without successors —
both are Σc

2 questions.
The last step is to check that these two effective interpretations form an effective

bi-interpretation; i.e., that the composition of the isomorphisms are r.i. computable in
their respective structures. First, notice that the interpretation of A inside C inside A
is the identity, and hence obviously r.i. computable in A. Second, for the interpretation
of C inside A inside C, the A-part stays the same. The copies of Ba,b are not the same,
but since they are isomorphic to either ω or ω∗, the isomorphism between them can be
computed within a jump of C. �

Historical Remark IX.2.2. For the case of Muchnik equivalence, this theorem was
proved independently on two occasions. One is due to Goncharov, Harizanov, Knight, Mc-
Coy, R. Miller and Solomon by essentially the same proof we gave above [GHK+05, Lemma
5.5 for α = 2], although they were not considering jumps of structures. The other is due to
Alexandra Soskova [Sos07, SS09]. Her construction is quite different and uses Marker ex-
tensions. Stukachev [Stu10, Stu] proved that Soskova’s constructions actually gives effective
interpretations instead of just Muchnik reductions.

IX.2.2. The second jump-inversion theorem. This second jump-inversion the-
orem is not a generalization of the usual jump-inversion theorem to a more general class
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of degrees, but a generalization in the sense that, given X ∈ 2N, it gives Y ∈ 2N with
Y ′ ≡T X and some extra properties.

Theorem IX.2.3 (Soskov). If X computes a copy of A′, then there is a set Y that
computes a copy of A satisfying Y ′ ≡T X.

Proof. By Lemma IV.2.2, there is a 1-generic enumeration g of A computable in
~KA, and hence in X. Let B = g−1(A) and Z = D(B). Since ~KB = g−1( ~KA), we have
that

~KB ≤T ~KA ≤T X.
Since B is 1-generic,

~KB ≡T D(B)′ = Z ′,

as proved in Lemma IV.3.4. Thus, Z ′ ≤T X. By the relativized Friedberg’s theorem,
there is a Y ∈ 2N such that Z ≤T Y and Y ′ ≡T X. This Y computes B, a copy of
A. �

As a corollary, we get that the degree spectrum of the jump of a structure is what
it should be: the set of jumps of the degrees in the spectrum of the original structure.

Corollary IX.2.4. For every structure A,

DgSp(A′) = {X ∈ 2N : X ≥T Y ′ for some Y ∈ DgSp(A)}.

Proof. For the right-to-left inclusion, it is clear that if X ≥T Y ′ for some Y ∈
DgSp(A), then X computes a copy of A′. For the left-to-right inclusion, if X computes
a copy of A′, then by the theorem, there is a Y ∈ DgSp(A) such that X ≥T Y ′. �

Historical Remark IX.2.5. Theorem IX.2.3 was first introduced by Soskov at a talk
at the LC’02 in Munster; a full proof then appeared in [SS09]. It was also independently
proved in [Mon09].
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[BT79] V. Ja. Beljaev and M. A. Tăıclin. Elementary properties of existentially closed systems.
Uspekhi Mat. Nauk, 34(2(206)):39–94, 1979.

[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic Logic,
55(3):1168–1191, 1990.

[CHS07] Wesley Calvert, Valentina Harizanov, and Alexandra Shlapentokh. Turing degrees of iso-
morphism types of algebraic objects. J. Lond. Math. Soc. (2), 75(2):273–286, 2007.

[Coo04] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton, FL, 2004.
[Cut80] Nigel Cutland. Computability. Cambridge University Press, Cambridge-New York, 1980.

An introduction to recursive function theory.
[DHK+07] Downey, Hirschfeldt, Kach, Lempp, A. Montalbán, and Mileti. Subspaces of computable

vector spaces. Journal of Algebra, 314(2):888–894, August 2007.
[DK92] Rodney Downey and Julia F. Knight. Orderings with αth jump degree 0(α). Proc. Amer.

Math. Soc., 114(2):545–552, 1992.
[DKL+] R. Downey, A. Kach, S. Lempp, A.E.M. Lewis-Pye, A. Montalbán, and D. Turetsky. The

complexity of computable categoricity. Submitted for publication.
[DKLT13] Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky. Computable

categoricity versus relative computable categoricity. Fund. Math., 221(2):129–159, 2013.
[End11] Herbert B. Enderton. Computability theory. Elsevier/Academic Press, Amsterdam, 2011.

An introduction to recursion theory.
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