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Abstract

We prove that, for every z � 00 with z00 > 000 (i.e. z 2 �L2), the structure D(� z)
of the Turing degrees below x is biinterpretable with �rst order arithmetic up to
double jump. As a corollary, every relation on D(� z) which is invariant under
double jump is de�nable in D(� z) if and only if it is de�nable in arithmetic.

1 Introduction

A major issue in the analysis of relative complexity of computation over the past few
decades has been the determination of the complexity of various structures that capture
some reducibility, i.e. a notion of relative computability, and a class of sets (A � N)
(or equivalently functions f : N! N) whose relative complexities are to be compared.
The basic notion of relative complexity is that of Turing. We say that A �T B if
there is a Turing machine �e, equipped with an oracle for B, i.e. access to membership
information about B, which can compute membership in A. The trend has been to show
that such structures are as complicated as possible: �rst, in the sense that their theories
are as complicated as possible given the de�nability of the structure itself in some (often
second order) version of arithmetic; second, in the sense that the class of relations on the
structures de�nable in them is as rich as possible.
Considering only Turing reducibility, the class of sets to consider �rst is that of all

subsets of N. As usual, we move to the equivalence classes under �T , i.e. the (Turing)
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degrees), to de�ne the basic structure D of these degrees under the induced relation �T .
Then one considers important or natural substructures of D. The most prominent of
these are the recursively enumerable degrees (those of sets with e¤ective enumerations),
R, the degrees of sets recursive in the halting problem, D(� 00) and the degrees of sets
de�nable in (�rst order) arithmetic, A. These last degrees are closed under relativizations
of the halting problem, i.e. the (Turing) jump sending A to A0 (the halting problem for
machines with oracle A). From basic facts connecting de�nability in arithmetic to the
jump operator, it follows that A is the least ideal in D closed under the jump. (D is an
uppersemilattice, so an ideal in D is a downward closed subset closed under join.) Also
of interest, then, are the other ideals closed under the jump.

The complexity of the theories of all of these structures are known to be as high
as possible. They are each easily seen to be (recursively) interpretable in the version
of second order arithmetic with quanti�cation over sets with degrees in the speci�ed
structures. Thus their theories are reducible (even by a one-one function) to those of
the corresponding structure for arithmetic. One then proves a converse that each such
structure of arithmetic is interpretable in the associated degree structure. Thus the
theory of each degree structure is recursively equivalent to that of the corresponding
structure of arithmetic. (These results are due to Simpson [1977] for D, Harrington and
Slaman and Slaman and Woodin (see Nies, Shore and Slaman [1998]) for R, Shore [1981]
for D(� 00) and Nerode and Shore [1980] for all ideals closed under jump.) By their
interpretability in (some version of) arithmetic, the most one could hope for in terms of
de�nability in these degree structures would be that all relations invariant under Turing
degree and de�nable in the corresponding structure for arithmetic are de�nable in the
degree structure. To date, the best general results have been that relations invariant
under double jump de�nable in each structure of arithmetic are de�nable in the associated
degree structure. The known results are due to Slaman and Woodin (see Slaman [1991]
and [2008]) for D, Nies, Shore and Slaman [1998] for R and Shore [2007] for ideals closed
under jump which also contain 0(!), the e¤ective join of the 0(n), the �nite iterations
of the jump. Possible routes to this result for D(� 00) are outlined in Shore [1988] and
more concretely in Nies, Shore and Slaman [1998] but a crucial ingredient is missing from
these sketches (comparison maps between models as explained below). We supply this
missing ingredient and so prove the result for D(� 00). Indeed by making use of some
more recent general results on constructing 1-generics for various notions of forcing below
degrees z in GL2 (z00 > (z _ 00)0) from Cai and Shore [2012] applied to the analysis of
1-genericity for two speci�c such types of forcing in Greenberg and Montalbán [2004],
we simultaneously prove the same results for D(� z) for any z � 00 with z00 > 000. The
corresponding question for A is an important open problem whose solution should lead
to other interesting theorems.

Such results on de�nability are now generally approached through the stronger notions
of biinterpretability and biinterpretability up to double jump due to Harrington for the
r.e. degrees and Slaman and Woodin for other structures (see Slaman [1991] and [2008]).
We de�ne these notions in §2. There also supply statements of, and references for, the
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somewhat scattered results we need about coding arithmetic into degree structures and
forcing in arithmetic. More details and some proofs can be found in our lecture notes
Shore [2013]. Our main theorem on biinterpretability up to double jump (Theorem 3.4)
is proven in §3. The major consequence is Theorem 3.5 that, for z � 00 with z00 > 000, a
relation on D(�z) which is invariant under the double jump is de�nable in D(�z) if and
only if it is de�nable in true �rst order arithmetic.

2 Background Information

We begin our path to coding arithmetic into D(� z) (or any degree structure S) with a
speci�c highly e¤ective form of coding orderings of type ! called nice e¤ective successor
structures introduced in Shore [1981]. They have been used as well in Nies, Shore and
Slaman [1998] and Shore [2007] which contains (in §3) a good presentation. For our
purposes all we need to know is that the scheme provides a way of coding a sequence
hdni of independent degrees (i.e. no dn is below the join of the rest of the degrees dm) by
�nitely many parameters �q which generate a partial lattice including the dn. We assume
that the �rst element �q0 of �q is a bound on all the other elements needed to determine
this partial lattice. The crucial property of this coding is the following:

Proposition 2.1. Given a �q determining a nice e¤ective successor structure, the set of
indices, relative to Q0 2 �q0, for the degrees in the ideal generated by the dn is �Q03 and
any set S such that S = fnjdn � g0;g1g for any g0;g1 � q0 is also �Q03 . We say that
the set S is coded (with respect to the structure determined by �q) by the degrees g0 and
g1. Moreover, for every S 2 �X3 with Q0 �T X, the set of indices relative to X, for the
ideal generated by fdnjn 2 Sg is �X3 .

We next want to extend the sequence of parameters �q to one �p such that there are
formulas with parameters �p providing an interpretation of arithmetic on the domain
consisting of the dn given by �q that identi�es dn with the nth element of this model,
M(�p). (See Hodges [1993] for a general explanation of interpretations of one structure in
another.) For our purposes, we just need formulas 'D(x), '+(x; y; z), '�(x; y; z), '<(x; y)
all with parameters �p and an additional one 'c(�p) called a correctness condition that
asserts at least that, for any �p, the structure M(�p) with domain D(�p) = fx 2 SjS �
'D(x)g and relations+;� and< de�ned by '+(x; y; z), '�(x; y; z), '<(x; y), respectively,
is a model of some standard �nite axiomatization of arithmetic and that the dn form an
initial segment of its domain. Providing the translation of the axioms of arithmetic is a
general fact about interpretations as is saying that d0 is the 0 of the structure. Saying
that the dn form an initial segment is phrased by using the de�nition of the way dn+1 is
generated (in terms of _ and ^) from the degrees in �q. We also want to add a condition
to 'c that, in the degree structures we study, will guarantee that the modelsM(�p) for
which �p satis�es it are all standard. As we code sets S in such models by exact pairs
g0, g1 for the ideal generated by fdnjn 2 Sg, we can translate the sentence x 2 S into
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arithmetic inM(�p) by 'D(x) & x � g0;g1. (Degrees g0 and g1 are an exact pair for an
ideal I if I = fxjx � g0;g1g. Note also that by the independence of the dn the ideal
generated by fdnjn 2 Sg contains no dm for m =2 S.) We write this as 'S(x; �g; �p). To
say thatM(�p) is standard, it su¢ ces to say that every nonempty bounded subset of its
domain as coded by a pair g0, g1 has a greatest element as long as the set fdnjn 2 Ng
is so coded. To this end, we want a theorem that guarantees the existence of exact pairs
for the ideals generated by �Q03 sets of indices. We give one which follows from Shore
[1981] where it is proved for a r.e. in b and Ambos-Spies et al. [2009] or Cai and Shore
[2012] where it is proven that, even for a 2 GL2(b), there is an â 2 [b; a) with a r.e. in
â.

Theorem 2.2. If b <T a and a 2 �L2(b) and I is a �B3 ideal in D(� b) then there is an
exact pair for I below a.

To see that this su¢ ces for our added correctness condition to de�ne a class of stan-
dard models requires a further condition that restricts �q0 to L2. The point then is that if
�q0 < z and �q0 2 L2 then z 2 �L2(�q0) and so we have enough exact pairs below z to de�ne
the standard part of any M(�p) with �p 2D(� z). Once we argue that this is possible
(Theorem 3.1), Theorem 2.2 and our calculation that the ideal generated by the dn is �

Q0
3

shows that our correctness condition picks out only standard models as long as �q0 2 L2.
In the other direction, it also shows that (with these expanded correctness conditions)
the sets coded inM(�p) by pairs below any x � �q0 not in L2 are precisely those �X3 . This
suggests a route to the characterization of x00 via the following standard fact.

Proposition 2.3. For any sets A and B and n 2 N, A(n) �T B(n) if and only if
�An+1 = �

B
n+1.

Proof. By the hierarchy theorem �Xn+1 = �
X(n)

1 , so if A(n) �T B(n), then �An = �
B
n . On

the other hand, for any Z and W , �Z1 = �
W
1 i¤ Z �T W , since the equality implies that

both Z and �Z (W and �W ) are �1, i.e. r.e., in W (Z) and so each is recursive in the
other. Thus if �An+1 = �

B
n+1 then �

A(n)

1 = �B
(n)

1 and so A(n) �T B(n) as required.

We now turn to the notions of invariance under, and biinterpretability up to, the
double jump.

De�nition 2.4. A relation R(x1; : : : xn) on degrees is invariant under the double jump
if, for all degrees x1; : : :xn and y1; : : :yn such that x00i = y

00
i for all i � n, R(x1; : : :xn),

R(y1; : : : ;yn).

De�nition 2.5. A degree structure S is biinterpretable with arithmetic if it is inter-
pretable in arithmetic and we have formulas in parameters �p (including a correctness
condition) and a formula 'S(x; �y) which de�nes sets (coded) in the model given by �p as
described above which provide an interpretation of true arithmetic in S (i.e. the mod-
els M(�p) satisfying the correctness condition are all standard). Moreover, there is an
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additional formula 'R(x; �y; �p) such that S � 8x9�y'R(x; �y; �p) and for every a; �g 2 S,
S �'R(a; �g; �p) if and only if the set fnj'S(dn; �g; �p)g (where dn is the nth element of the
modelM(�p) coded by the parameters �p) is of degree a. These last conditions then say
that the set coded inM(�p) by �g is of degree a and that all degrees a in S have codes �g
for a set of degree a. If we weaken the second condition on 'R so that for every a; �b 2 S,
S �'R(a; �b; �p) if and only if the set fnj'S(dn; �b; �p)g has the same double jump as a, we
say that S is biinterpretable with arithmetic up to double jump

It is not hard to see that, if a degree structure S is biinterpretable with arithmetic up
to double jump, then we know all there is to know about the de�nability in S of relations
invariant under the double jump.

Theorem 2.6. If a degree structure S is biinterpretable with arithmetic up to double
jump, then a relation on S which is invariant under double jump is de�nable in S if and
only if it is de�nable in arithmetic.

Proof. Consider any de�nable relation Q(�x) on S. By the assumption that S is inter-
pretable in arithmetic, we know that Q is de�nable in arithmetic. For the other direction,
suppose Q is de�nable by a formula �( �X) of arithmetic with additional set variables �X
and relation 2 between numbers and elements of �X, i.e. � de�nes the property that
the sequence of the degrees of �X satis�es Q. Q is then de�ned in S by the formula
	(�z) � 9�p; �g0 : : : 9�gn�1('c(�p) &

V
i<n

'R(zi; �gi; �p) ! �T (�gi; �p)) where T is the translation

of formulas of second order arithmetic given after Proposition 2.1. Here our correctness
condition 'c guarantees that the modelM(�p) is standard and we also assume that the
requirements of the de�nition of biinterpretability are satis�ed. So the translation of �
asserts (because of the properties of 'R) that a sequence of sets of degree zi satisfy � (in
N), i.e. Q holds of �z.

We also need some facts about forcing in arithmetic. The setting is standard. We
consider only recursive notions of forcing, i.e. recursive partial orders P for which forcing
sentences of the form �G�Ae (x) #= y is recursive in A for any set A: Hence forcing
existential sentences (in A) is �1 (�A1 ) and for universal ones it is �1 (�

A
1 ). For a class C

of dense sets, C-generic �lters G and C-generic sequences hpki are de�ned as usual: they
meet all the dense sets in C. If C is the collection of all sets De = fpjp 
 �Ge (e) # or
(8q �P p)(q 1 �G)e (e) #g (De = fpjp 
 �A�Ge (e) # or (8q �P p)(q 1 �A�Ge (e) #g) then
the associated generic �lters, sequences and objects G are called 1-generic (over A). We
use the following results (and various relativizations):

Theorem 2.7 (Cai and Shore [2012]). If A =2 GL2 then for any recursive notion of
forcing P and any collection C of dense sets uniformly recursive in A� 00 (such as those
for 1-genericity) there is C-generic sequence hpsi �T A and so the associated C-generic
G is also recursive in A.
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The next two theorems reduce constructions of Shore [1982] and Slaman and Woodin
[1986], respectively, to constructing 1-generics for recursive notions of forcing. The last
Proposition is a standard argument.

Theorem 2.8 (Greenberg and Montalbán [2004]). Given a recursive partial lattice
L, there is a recursive notion of forcing for which any 1-generic G computes an embed-
ding of L into the degrees below G which is uniformly recursive in G. So, in particular,
one for which any 1-generic G computes degrees �q determining a nice e¤ective succes-
sor structure in which the dn, and indeed all the elements of the embedded lattice, are
uniformly recursive in G.

Theorem 2.9 (Greenberg and Montalbán [2004]). Given any c which uniformly
bounds sets Ci and relations Rj on fdeg(Ci)g there is a recursive notion of forcing for
which any 1-generic over C computes degrees �pj which code the relations Rj on the
degrees of the Ci in the sense that there are �xed formulas 'n independent of C, Ci and
Rj) such that, if Rj is of parity n, Rj(�x) , 'n(�x; �pj) and, moreover, 'n(�x; �pj) holds if
and only if it holds in any (equivalently all) ideals containing the degrees in �pj.

Proposition 2.10. For any recursive notion of forcing P, set A and 1-generic over A
sequence hpki with an associated set G, (A�G)0 �T A0 � hpki.

Proof. To decide if e 2 (A � G)0, �nd a k such that pk 2 De (as in the de�nition of
1-genericity over A). This can clearly be done recursively in A0 � hpki. Then A0 can
decide which clause of the de�nition of De holds and so if e 2 (A�G)0.

3 Biinterpretability up to double jump

We �x a degree z � 00 which is in L2, work in D(� z) and plan to show that D(� z)
is biinterpretable with arithmetic up to double jump. We want to show that there are
degrees �p < z which de�ne a standard model of arithmetic and a correctness condition
as described in §2 that guarantees thatM(�p) is standard for any �p satisfying it.

We begin by de�ning the set fx � zjx 2 L2g. Of course, that it is de�nable would
be an immediate corollary of biinterpretability up to double jump by Theorem 2.6. Now
the proof of this speci�c result uses and illustrates several of the ingredients needed for
the full result. They would su¢ ce to de�ne all the double jump classes in D(� z) and,
with some additional e¤ort, all the subsets of D(� z) invariant under double jump. More
is needed for the full result but, most importantly, we actually need this special case to
prove the full result.

The crucial point for both this special case and the full result is that the sets we can
code below a GL2 degree x are precisely the ones �X3 and the class of sets �

X
3 uniquely

determines x00 by Proposition 2.3.

Theorem 3.1. The set L2 = fx � zjx00 = 000g is de�nable in D(� z).
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Proof. Our analysis of coding in models of arithmetic in §2 shows that we have a way
to, de�nably in D(�z), pick out, via correctness conditions, parameters �p that de�ne
structuresM(�p) which are models of our �nite axiomatization of arithmetic. We have
a correctness condition in §2 which would pick out �p such thatM(�p) is standard if we
also knew that �p0 2 L2. Now consider then the formula  (x) which says of an x < z
that for any �p satisfying this correctness condition with �p0 < x any set S coded inM(�p)
by a pair g0;g1 < x satis�es the (translation of) the formula of arithmetic saying that
S 2 �3. We claim that x 2 L2 if and only this formula holds of x.
First suppose that x 2 L2 and consider any �p as described by  (x). As �p0 < x, there

is a pair g0;g1 < z (not necessarily below x) de�ning the standard part of the model by
Proposition 2.1 and Theorem 2.2 as z 2 �L2(�p0) and so the model must be standard. In
this case, only �P03 = �3 sets can be de�ned in the model by codes below x by Proposition
2.1 and so x satis�es  

Next, if x =2 L2, then by Theorems 2.8 and 2.7 and Proposition 2.10, there are para-
meters �q de�ning a nice e¤ective successor model with �q0< x and �q00 = 0

0. By Theorems
2.9 and 2.7, we can extend these parameters to ones �p de�ning a standard model of
arithmetic which, of course, satis�es the correctness condition for being standard and, as
�p00 = �q

0
0 = 0

0,  (�p0) holds as well. Thus x 2 �L2(�p0) and so every set S 2 �X3 is coded in
M(�p) by some g0;g1 �T x by Proposition 2.1 and Theorem 2.2. Since x00 > 000 there is
an S 2 �X3 � �3 by Proposition 2.3 and so a code for such an S below x as required to
show that x does not satisfy  (x).

Corollary 3.2. The theory of D(� z) is recursively equivalent to that of true arithmetic,
Th(N).

Proof. By the arguments in the proof of the theorem we can pick out the standard
models by our correctness conditions. Thus we can interpret arithmetic in D(� z) and
so Th(N) �1�1Th(D(� z)). The other directions follows as we have pointed out from
the interpretability of D(� z) in arithmetic.

To discuss even the binary relation of two degrees having the same double jump given
by biinterpretability up to double jump, we must have a way to analyze, for any a and b
the sets coded below them in a single common model. This is the crux of biinterpretability
to which we now turn.

Our plan for being able to talk about the sets coded in one modelM(�p) in another
M(�p0) is similar in outline to that used in Nies, Shore and Slaman [1998] for R. We
provide a scheme de�ning isomorphisms between two arbitrary standard models satisfying
the standard correctness condition plus the requirement that �p0 (and �p00) are in L2 which
is de�nable in D(� z) by Theorem 3.1. We call this the strong correctness condition and
assume from now on that any parameters �p used to de�ne a modelM(�p) satisfy it.

Such isomorphisms would allow us to de�nably transfer assertions about (codes for)
sets in di¤erent models to ones expressing the same facts about the same sets in a
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single model and so de�ne the required relation 'R. More precisely, our procedure pro-
vides a formula �(x; y; �z; �z0) such that for any �p and �p0 satisfying the strong correctness
condition �(n;m; �p; �p0) holds if and only if n and m represent the same natural num-
ber in M(�p) and M(�p0), respectively. Using this formula, we can talk about a set
S coded in M(�p0) by parameters �g inside M(�p) by, in our translation of arithmetic,
replacing 'S(x; �g; �p0) (which says the number represented by x in M(�p0) is in S) by
9y['S(y; �g; �p0) & �(x; y; �p; �p0)] which then says that the number represented inM(�p) by
x is in S. Thus we can talk about the set S de�ned inM(�p0) inM(�p) as desired.

Arguments similar to those in the proof of 3.1 then allow us to identify degrees up
to double jump with the sets coded below them in appropriate models. The transfer
procedure we have just suggested then allows us to make the identi�cation in any model
and so de�ne the formula 'R required for biinterpretability up to double jump.

We begin with a lemma used to build such isomorphisms by interpolating a sequence of
additional models between the two given ones and isomorphisms between each successive
pair of such models.

Lemma 3.3. If d � 00, d 2 L2 , a0; a1 2 L1 and P is a recursive notion of forcing, then
there is a G �T D which is 1-generic for P and such that (A0�G)0 �T 00 �T (A1�G)0.

Proof. Let C consist of the dense sets for 1-genericity over A0 and over A1 (each sep-
arately). As A00 �T A01 �T 00, these sets are uniformly recursive in 00 and so there is
a C-generic sequence recursive in d by Theorem 2.7. Proposition 2.10 then says that
(A0 �G)0 �T 00 �T (A1 �G)0.

We now turn to our main result.

Theorem 3.4. D(� z) is biinterpretable with arithmetic up to double jump.

Proof. Given two modelsM(�p0) andM(�p4) we want to show that there are additional
models M(�pk) for k 2 f1; 2; 3g and uniformly de�nable isomorphisms between the do-
main of these models taking di;n to di+1;n for i < 4. (Given parameters �pk de�ning a
model M(�pk) we write dk;n for the degree representing the nth element of this model.
Similarly, we write �pk;0 for the �rst element of �pk and �qk for the parameters in �pk de-
termining the e¤ective successor structure which provides the domain ofM(�pk).) Thus
(as we explain below) we produce a single formula �(x; y; �z; �z0) which uniformly de�nes
isomorphisms between any two of our models M(�p0) and M(�p4) as described above
(with �z and �z0 replaced by �p0 and �p4).

We begin by choosing �q1 < z as given by a 1-generic over p0;0 sequence for the
recursive notion of forcing of Theorem 2.8. As p0;0 2 L2, z is �L2(p0;0) and so such
�q1 exists by Theorem 2.7 (relativized to p0;0). Note that �q1 (and so �q1;0) is in L1 by
Proposition 2.10 as it is associated with a 1-generic sequence recursive in z. We may
now extend �q1 to �p1 de�ning a standard model M(�p1) by Theorem 2.9 and Theorem
2.7 as z is GL2(�q1). Similarly, we see that there are �q3 and �p3 bearing the same relation
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toM(p4) as �q1 and �p1 do toM(p0). Now as �q1;0 and �q3;0 are both low we may apply
Lemma 3.3 to the forcing of Theorem 2.8 to get �q2 < z (again as z 2 �L2(�q1;0); �L2(�q3;0))
such that both �q1;0 � �q2;0 and �q2;0 � �q3;0 are in L1 and then extend �q2 to �p2 de�ning
M(�p2) as we did for �q1.

We now apply Theorem 2.9 and Theorem 2.7 again (many times) to get the desired
schemes de�ning our desired isomorphisms: Given any n 2 N and i < 4, consider the �nite
sequences of degrees hdi;0; : : : ;di;ni and hdi+1;0; : : : ;di+1;ni. We want to show that there
are parameters �ri < z such that the formula '2(x; y;�ri) (where '2(x; y; �z) ranges over
binary relations as �z varies as in Theorem 2.9) de�nes an isomorphism taking di;k to di+1;k
for each k � n. By the results just cited it su¢ ces to show that the

L
k<n

di;k�
L
k<n

di+1;k are

in L2 for each i < 4. For i = 0, note that �q1 is associated with a 1-generic/p0:0 sequence
which is recursive in z. Thus by Proposition 2.10 (suitably relativized) (�q1�p0;0)0 = p00;0
and so (�q1;0 � �p0;0)

0 = p00;0. As p0;0 2 L2, 000 = �p000;0 = (�q1;0 � �p0;0)
00 as required.

The argument for i = 3 is similar. For the other pairs, we have already guaranteed
that �q1;0 � �q2;0 and �q2;0 � �q3;0 are in L1. (Note that we could not directly de�ne the
isomorphisms between M(�p1) and M(�p3) as the sequences of degrees required in the
argument above would be recursive only in �p1;0 � �p3;0 which could be z and so not in
L2. It is by the use of Proposition 2.10 and the modelM(�p3) that we can make all the
required joins be in L2 as required to apply Theorem 2.7.)

We can now de�ne the desired isomorphism �(n;m; �p0; �p4) between M(�p0) and
M(�p4). We say that an n in the domain of M(�p0) (i.e. 'D(n; �p0)) is taken to m
in the domain of M(�p4) (with �p0;0; �p4;0 2 L2) if and only if there are degrees �pk for
k 2 f1; 2; 3g de�ning models of arithmetic M(�pk) and ones �ri for i < 4 as above such
that each '2(x; y;�ri) de�nes an isomorphism between initial segments of (the domains of)
M(�pi) andM(�pi+1) where the initial segment inM(�p0) is the one with largest element
n and that inM(�p4) has largest element m. Clearly this can all be expressed using the
formulas 'D(x; �pk) and '<(x; y; �pk) de�ning the domains ofM(�pk) and the orderings on
them. Note that the de�nition of this isomorphism is uniform in �p0 and �p4 and that we
have shown that, for any �p0 and �p4 de�ning standard models as guaranteed by our strong
correctness condition, there are parameters below z de�ning all these isomorphisms. In
other words, we have described the desired formula �(x; �y; �z; �z0).

We now wish to de�ne the formula 'R(x; �y; �p0) required in the de�nition of biinter-
pretability up to double jump. (We have replaced �p in De�nition 2.5 by �p0 to match
our current notation.) First, 'R says that, if x 2 L2 (as de�ned by Theorem 3.1), then
�y codes (via our standard 'S) the empty set in M(�p0). In addition, 'R says that, if
x =2 L2 and S is the set coded in M(�p0) by �y, then for every set Ŝ 2 �S3 (as given by
a de�nition in arithmetic inM(�p0) using the de�nition of S via 'S(x; �y;p0)), there are
�g<x and �p4 with �p4;0 < x such that �g codes a set Ŝ4 inM(�p4) and �(n;m; �p0; �p4); then, n
satis�es the de�nition of Ŝ inM(�p0) if and only if 'S(m;�g; �p4), i.e. Ŝ = Ŝ4. By all that
we have done already, this guarantees that every Ŝ 2 �S3 is �X3 . For the other direction,
'R also says that if �g<x and �p4 with �p4;0 < x are such that �g codes a set Ŝ4 inM(�p4)
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then there is a set Ŝ (coded inM(�p0) by some �h) which is �S3 (as de�ned in arithmetic
inM(�p0)) such that Ŝ = Ŝ4 as expressed as above using �. So again by what we have
already done, this guarantees that every Ŝ4 2 �X3 is �S3 . Thus, by Proposition 2.3, S has
the same double jump as X as required.

Theorem 2.6 now gives us our desired result on de�nability in D(� z).

Theorem 3.5. A relation on D(� z) which is invariant under the double jump is de�n-
able in D(� z) if and only if it is de�nable in true �rst order arithmetic. In particular
the jump classes Ln (x(n) = 0(n)) and Hn (x(n) = 0(n+1)) are de�nable in D(� z) for
n � 2.

We can draw one more conclusion about de�nability of one of the two jump classes
not invariant under double jump (H1 and L1).

Corollary 3.6. H1 is de�nable in D(� z).

Proof. This follows from the fact that x < 00 is in H1 if and only if 8w � 009y � x(w00 =
y00) (Nies, Shore and Slaman [1998, Theorem 2.21 and the remarks there on p. 257]). We
can now capture this characterization in D(� z) using our results. An x � z is in H1 if
and only if there is a �p such that inM(�p) for every set W �T 00 (with W coded by any
�h and its being recursive in 00 expressed in arithmetic in M(�p)) there is a y � x such
that the sets coded by �g < y in modelsM(�p0) with �p0 satisfying the strong correctness
condition and with �p00 < y are precisely the sets �

W
3 (and so y

00 = w00). Our isomorphisms
between any two modelsM(�p) andM(�p0) allows us to express this formula in D(� z)
and our results on what sets can be coded below any y show that we get precisely those
which are �Y3 and so the formula says that y

00 = w00 as required.

The de�nability of L1 in D(� z) (or even D(� 00)) and, more generally, full biinter-
pretability, even up to single jump, are major open questions.
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