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Abstract. We analyze the complexity of ascendant sequences in locally nilpotent
groups, showing that if G is a computable locally nilpotent group and x0; x1; : : : ; xN 2
G, N 2 N, then one can always �nd a uniformly computably enumerable (i.e. uni-
formly �01) ascendant sequence of order type ! + 1 of subgroups in G beginning with
hx0; x1; : : : ; xN iG, the subgroup generated by x0; x1; : : : ; xN in G. This complexity is
surprisingly low in light of the fact that the usual de�nition of ascendant sequence
involves arbitrarily large ordinals that index sequences of subgroups de�ned via a trans-
�nite recursion in which each step is incomputable. We produce this surprisingly low
complexity seqeunce via the e¤ective algebraic commutator collection process of P. Hall,
and a related purely algebraic Normal Form Theorem of M. Hall for nilpotent groups.

1. Introduction

1.1. Computable Algebra. Computable algebra goes back at least to the work of
Kronecker in the 1880s [Kro82]. He showed that every ideal in a computable presentation
of Z[X0; X1; : : : ; XN ], N 2 N, is computable. Later on, van der Waerden [vdW] showed
that there is no universal algorithm for factoring polynomials over all computable �elds.
After the development of modern computability theory by Alan Turing in the 1930s,
computable ring and �eld theory was �rst given a more formal treatment by Fröhlich
and Shepherdson in [FS56], where they showed that there is a computable �eld with
no computable splitting algorithm. More early contributions to computable ring and
�eld theory followed soon after from Rabin [Rab60], Metakides and Nerode [MN77], and
others.
In addition to computable rings and �elds, however, mathematicians have been in-

terested in the algorithmic properties of computable groups for the last hundred years.
The most important and well-known result from computable group theory is surely the
unsolvability of the Word Problem, which is also one of the �rst problems outside of
logic that was shown to be undecidable. Ever since this important result was established
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by Novikov [Nov55] and Boone [Boo54], both algebraists (i.e. combinatorial group the-
orists) and logicians (i.e. computability theorists) have been examining the algorithmic
and de�nability properties of groups.

1.2. Computable Group Theory. One of the main objectives of computable group
theory is to determine the existence and nature of algorithms that decide local and global
properties of groups. Local properties are those pertaining to the elements of a group,
while global properties speak about groups as a whole. The three most important decision
problems, formulated by Max Dehn in 1911, are the word, conjugacy, and isomorphism
problems [Mil91]. The �rst two problems talk about local properties, while the third
problem concerns a global relationship. Some of the motivations for studying these
problems come from algebraic topology. Let G be a �nitely presented group, and let T
be a �nite complex with �1(T ) = G (i.e. G is the fundamental group of T ). Then the word
problem for G asks whether or not a product of generators for G is equal to the identity,
and is equivalent to deciding whether or not a closed loop in T is contractible. The
conjugacy problem for G asks whether or not two products of generators are conjugates
in G, and corresponds to determining whether two closed loops in T are freely homotopic.
The isomorphism problem asks whether two spaces have the same fundamental groups,
and thus gives a method for distinguishing between spaces. Questions such as these and
others have been pursued by combinatorial group theorists for the last hundred years.
For more information see [Mil91].

In addition to algebraists and combinatorial group theorists, though more recently,
logicians and computability theorists have also asked and answered questions about the
algorithmic properties of computable groups. But whereas algebraists are usually con-
cerned only with decidability and simply classify things as either decidable or undecidable,
logicians and computability theorists have �ner hierarchies that can distinguish among
undecidable properties as well. These distinctions between various undecidable charac-
teristics and constructions allow logicians to more precisely characterize the complexity of
algebraic constructions and extract de�nability results as corollaries of the computability
theory. Some examples of these sorts of theorems can be found in Simpson�s text on
reverse mathematics [Sim09], Ash and Knight�s book on computable structures [AK01],
as well as recent work of Solomon on ordered groups [Sol99], and a very recent article
of Csima and Solomon on nilpotent groups [CS11]. We now turn our attention to the
current article, which classi�es the complexity of ascendant sequences in locally nilpotent
groups in terms of the computability hierarchy.

1.3. Our Paper. This article was �rst inspired by T. A. Slaman, who, in an informal
conversation asked the �rst author to �nd some computationally necessarily complicated
group-theoretic constructions. The construction of ascendant sequences in locally nilpo-
tent groups seemed like a natural candidate for a complicated construction, because they
are sequences of subgroups indexed by arbitrarily large ordinals such that each succes-
sor in the sequence depends upon its predecessor in an incomputable way. In other
words, ascendant sequences can be thought of as paths of ordinal length through �trees
of subgroups.�We restricted ourselves to countable locally nilpotent groups because this
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is the most general context in which standard computability theory applies and ascen-
dant sequences beginning with �nitely generated subgroups always exist (the de�nition
of ascendant subgroup is given in the next section). Indeed, in this context a standard
construction uses the fact that the normalizer of any proper subgroup of is a proper
extension of the subgroup [Rob96, Theorem 5.2.4]. One then proceeds to build the de-
sired sequence by taking normalizers at successor steps and unions at limits. The process
terminates at some countable ordinal since the group is countable and at least one new
element is added at every successor stage.

Via hyperarithmetic theoretic techniques we soon realized that there is a single com-
putable ordinal � such that, for any computable locally nilpotent group, all such se-
quences can be computed from ;(�) �i.e. the �th iteration of Turing�s Halting Set. This
ruled out the possibility of ascendant sequences being �11-complete, but left open the
interesting question of determining the least ordinal � with this property. At this point
it seemed to the authors that � = ! and that we could prove this by constructing
a locally nilpotent group G containing an ascendant sequence of subgroups of length
! + 1 = f0; 1; 2; : : : ; !g1, H0CH1C � � � CHnC � � � , n 2 !, H! = [n2!Gn = G, and a
computable function f : ! ! ! such that for all n 2 !, Hf(n) computes the nth iteration
of Turing�s Halting Set, denoted ;(n). We made some attempts at constructing such a
sequence, but were ultimately unsuccessful.

We then came across a (computable) construction of P. Hall from the 1920s, and a
related purely algebraic theorem of M. Hall from the 1950s about nilpotent groups, that
revealed a beautiful interaction between algebra and computability and showed that, in
fact, ascendant sequences in computable locally nilpotent groups that begin with �nitely
generated groups are uniformly computably enumerable.2 In other words, if G is a
computable locally nilpotent group, then there is a uniform algorithm that, for every
�nite sequence of elements g0; g1; : : : ; gn 2 G; n 2 !, enumerates an ascendant sequence
of subgroups in G beginning with the cyclic subgroup generated by g0; : : : ; gn. This result
is quite remarkable, given that on the surface ascendant sequences seem very complicated
because their de�nitions are given by trans�nite induction on ordinals. In other words,
it is the extent of our failure in achieving Slaman�s goal and producing a complicated
group theoretic construction that makes this article interesting.

1.3.1. The plan of this paper. The next section introduces the basic de�nitions and nota-
tion that we will use throughout this article. In Section 3 we describe the purely algebraic
commutator collection process of P. Hall, and a related theorem of M. Hall concerning
nilpotent groups. These are the key to our analysis of the complexity of ascendant se-
quences in locally nilpotent groups. Finally, in Section 4 we use these results along with
some computable analysis of nilpotent groups to prove our main theorem that says ascen-
dant sequences in locally nilpotent groups beginning with �nitely generated subgroups
are uniformly computably enumerable. Also, we should point out that, although we

1Here ! = f0; 1; 2; : : :g denotes the natural numbers.
2Recall that a set A � N is computably enumerable whenever there is a �nite algorithm that lists the

elements of A, not necessarily in order.
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will work primarily with computable locally nilpotent groups, all of our computability
theoretic results relativize to arbitrary locally nilpotent groups.

2. Preliminaries and Definitions

2.1. Computability Theory. Our terminology and notation mainly follows [Soa87,
Soa]. We use ! = f0; 1; 2; : : :g to denote the set of natural numbers. We say that a
computable function ' : ! ! ! is total if its domain is all of !, and we say that ' is
partial otherwise. Fix a computable listing f'ege2! of the partial computable functions;
then the Halting Set (i.e. Turing�s Halting Set) is de�ned as ;0 = fe 2 ! : 'e(e) haltsg.
We say that a set A � ! is computably enumerable whenever A is the range of some
partial computable function ', i.e. a set A � ! is computably enumerable if and only if
there is a computable algorithm that can list the elements of A (not necessarily in order).
It is well-known (and not di¢ cult to verify) that ;0 is computably enumerable. From the
de�nition it easily follows that a set A � ! is computably enumerable if and only if it is
�01-de�nable, i.e. if and only if it can be de�ned via �nitely many existential quanti�ers
(ranging over natural numbers) over a computable predicate. All of these de�nitions can
be relativized to an arbitrary incomputable oracle set X � !. For more information on
oracle computability and related notions consult [Soa87, Chapter III]. Let A;B � !. We
write A �T B to mean that B computes A, and we write A �T B to mean that A �T B
and B �T A. It is not di¢ cult to check that �T is an equivalence relation on 2!; the
resulting equivalence classes are known as Turing degrees.
Let 2<! denote the set of �nite strings of 0s and 1s that we think of as a binary tree

with root ��the empty string. For all �; � 2 2<! we write � � � to mean that � is an
initial segment of � . We say that � 2<! is a tree whenever T is downward closed under �,
i.e. whenever for all � 2 T we have that, for all � � �, � 2 T . Fix a computable coding of
the elements of 2<! as natural numbers; then we may speak of computable sets of strings
and trees in 2<! in the obvious way. We say that a set A � ! is of PA Turing degree
whenever we have that for every in�nite computable tree T there is an A-computable
in�nite binary string all of whose �nite initial segments belong to T .3 These sets are
always incomputable and, indeed, have signi�cant computational strength. A set is of
PA Turing degree if and only if it can compute a complete and consistent extension of
Peano Arithmetic, and this is the source of their name. It is also well-known that there
exist computably enumerable sets, A;B � !, such that any set C � ! for which A � C
and C \B = ; is of PA Turing degree. We will use this characterization of PA sets and
the (well-known) fact that ! n (A [ B) is in�nite in the proof of Theorem 4.4 below. If
a set A � ! is both of PA and computably enumerable Turing degree, then A �T ;0.
This is known as Arslanov�s Completeness Criterion; see [Soa87, Theorem V.5.1] for more
details.

De�nition 2.1. A computable group is a group coded as a computable subset of the
natural numbers ! such that the corresponding multiplication and inverse operations on

3It is well-known and not di¢ cult to prove that every in�nite binary-branching tree has an in�nite
path; this is known as Weak König�s Lemma.
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! are given by computable functions. We will make no distinction between the abstract
group G and its coding as a subset of !.

2.2. Group Theory. We assume that the reader is familiar with the very basics of
group theory; for more information consult [DF99] or [Lan93]. If G is a group then we
will use either 1G or simply 1 (when there is no confusion about G) to denote the identity
element of G.

De�nition 2.2. Let G be a group, let x0; x1; : : : ; xm 2 G, and let H0; H1; : : : ; Hn �
G, n;m 2 !. Then we write hx0; x1; : : : ; xmi, or sometimes hx0; x1; : : : ; xmiG to avoid
confusion, to mean the subgroup of G generated by fx0; x1; : : : ; xng � G. Similarly,
we write hH0; H1; : : : ; Hni or hH0; H1; : : : ; HniG to mean the subgroup of G generated
by H0 [ H1 [ � � � [ Hn � G. From these de�nitions it follows that if G is a countable
group (coded as a subset of natural numbers) and H 6G is a subgroup of G generated by
K � H, then H is computably enumerable relative to K (and G), i.e. H is �01-de�nable
relative to K (and G), with the precise �01 de�nition being given by

H = fh 2 G : (9n 2 !)(9k1; k2; : : : ; kn 2 K)[
nY
i=1

ki = h]g:

De�nition 2.3. Let G be a group, A;B � G, and x; y 2 G. De�ne [x; y] = x�1y�1xy,
i.e. the commutator of x and y, and de�ne [A;B] to be the subgroup of G generated
by elements of the form [a; b], a 2 A, b 2 B. Recall that G is said to be abelian or
commutative whenever [G;G] = f1Gg. Also recall that Z(G) denotes the center of G,
i.e. for any group G, Z(G) is the unique largest subgroup of G such that [Z(G); G] =
[G;Z(G)] = f1Gg.
De�nition 2.4. Let G be a group. The lower central series of G, fGkgk2!, is given by
G0 = G, and Gk+1 = [G;Gk] for all k 2 !. We say that G is class r nilpotent, r 2 !,
whenever r 2 ! is least such that Gr = f1Gg, and in this case we will index the terms of
this �nite series in increasing order. It is obvious that for all k 2 ! the quotient group
Gk=Gk+1 is abelian. We say that G is nilpotent when it is nilpotent of some class r 2 !.
G is locally nilpotent whenever every �nitely generated subgroup of G is nilpotent.

Let G be a group, and let H be a subgroup of G. Then we write H CG to mean that
H is normal in G.

De�nition 2.5. Let G be a group and let H be a subgroup of G, i.e. H 6G. Then we
say that H is subnormal, i.e. H is a subnormal subgroup of G, whenever there is a �nite
sequence of subgroups H = H0; H1; : : : ; Hn = G, n 2 !, such that

H0 C H1 C H2 C � � � CHn:
We say that H is ascendant, i.e. that H is an ascendant subgroup of G, whenever there
exists an ordinal � and a collection of subgroups fH�g��� such that:
(1) H0 = H;
(2) H� = G;
(3) H� C H�+1, for all � < �; and
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(4) H� = [�<�H� for all limit ordinals � � �.

Any sequence of subgroups of the form fH�g�<�, for some ordinal �, satisfying (1)-(4)
above is called an ascendant sequence.

De�nition 2.6. Let G be a group. We say that G is Baer, i.e. G is a Baer group,
whenever G is generated by all of its subnormal �nitely generated abelian subgroups.
This is equivalent to saying that every cyclic subgroup of G is subnormal [Rob11a, Lemma
2.34]. We say that G is Gruenberg, i.e. G is a Gruenberg group, whenever G is generated
by all of its ascendant �nitely generated abelian subgroups. This is equivalent to saying
that every cyclic subgroup of G is ascendant [Rob11a, Lemma 2.34].

It is well-known [Rob11a, page 61] that all Baer groups are Gruenberg, and that all
Gruenberg groups are locally nilpotent. If G is countable then it is also known that
G is locally nilpotent if and only if G is Gruenberg [Rob11b, page 21]. An example of
an uncountable locally nilpotent group that is not Gruenberg was given by Kargapolov
[Kar63], and independently by Kovács and Neumann (unpublished); see [Rob11b, pages
21-3] for more details.

3. Hall�s Collection Process and
its Computability Theoretic Consequences

We begin this section with a discussion of P. Hall�s commutator collection process.
Although the process was �rst developed by P. Hall [Hal34], we are mostly interested
in a consequence of it that was discovered decades later by M. Hall [Hal50] in the con-
text of nilpotent groups. Hall�s collection process and its consequences have been used
recently by other logicians and computability theorists to analyze nilpotent groups; see
[CS11, GSW03] for example. For more information on the collection process and its
consequences, see [Hal34, Hal50, Hal59] and [CS11, Section 2]. Later on in this section
we will use Hall�s collection process to deduce some useful computability theoretic facts
about locally nilpotent groups.

3.1. Hall�s Collection Process. Fix a �nitely generated (countable) nilpotent group
G of rank r 2 !, and a �nite sequence of generators for G, x0; x1; : : : ; xm. Recall that
fGngrn=0 denotes the lower central series of G and is indexed as an increasing sequence
of subgroups with G0 = f1Gg and Gr = G. De�ne the iterated commutator denoted by
[z0; z1; : : : ; zk], zi 2 G, 0 � i � k, recursively via

[z0; z1; : : : ; zn] = [z0; [z1; : : : ; zn]] 2 G; n 2 !; n � 1:

We will now describe Hall�s collection process [Hal34], which is a general computable
procedure for generating a set of basic commutators with assigned weights and order-
ings. We think of commutators as symbols corresponding to elements of G, but two
commutators may correspond to the same group element. Denote the weight of a basic
commutator c by w(c) 2 !.
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First de�ne the set of symbols X = fx0; x1; : : : ; xmg to be the basic commutators of
weight one, and order these commutators via their index x0 <1 x1 <1 � � � <1 xm. We say
that c = [a; b] is a basic commutator of weight k + 1 whenever

(i) a and b are basic commutators of weight � k and w(a) + w(b) = k + 1;
(ii) b <k a; and
(iii) If a is a basic commutator of the form [y; z] then z �k y.
Now, we de�ne an ordering <k+1 on basic commutators, c0 = [a0; b0], c1 = [a1; b1], of

weight � k + 1 via c0 <k+1 c1 whenever
(a) w(c0); w(c1) � k and c0 <k c1;
(b) w(c0) � k and w(c1) = k + 1; or else
(c) w(c0) = w(c1) = k + 1 and (a0; b0) <lexk (a1; b1), where <lexk is the lexicographic

ordering on the pairs of elements of weight k induced by the ordering <k.

It is not di¢ cult to see that the �nitely many commutators in G of weight k 2 !
and their corresponding group elements are computable, uniformly in G, k 2 !, and
x0; x1; : : : ; xn 2 G. This easy observation is all the computability theoretic content that
we will essentially use from Hall�s collection process. In the next subsection we will use
Hall�s collection process and a result of M. Hall [Hal50] to establish some computability
theoretic facts about the de�nability of chains of subgroups in computable nilpotent
groups.

3.2. Hall�s Normal Form Theorem and its Consequences. For our purposes the
following theorem is the most important algebraic fact about �nitely generated nilpotent
groups, and we will use it and its computability theoretic consequences to prove our main
theorem below. Fix G as in the previous subsection. The following is actually an easy
consequence of M. Hall�s Normal Form Theorem [Hal50, Theorem 4.1], although we will
refer to it as Hall�s Normal Form Theorem. Its statement is based on the commutator
collection process of P. Hall [Hal34] given in the last subsection. We refer the reader to
either [Hal50] or [CS11, Section 2] for more details on Hall�s Normal Form Theorem.

Theorem 3.1 (Normal Form Theorem, M. Hall [Hal50]). The following two properties
hold for G:

(1) r 2 ! is the least number such that all commutators in G of weight r are trivial;
and

(2) For each 0 � n � r, Gn is generated by the �nitely many (uniformly computable)
basic commutators of weight n.

The following is a direct computability theoretic consequence of Hall�s theorem above.

Corollary 3.2. Let G be a computable locally nilpotent group and let x0; x1; : : : ; xn 2 G,
n 2 !, be given. Then the lower central series of Xn = hx0; x1; : : : ; xni6G is computably
enumerable, i.e. �01, uniformly in x0; x1; : : : ; xn.

Proof. First of all, note that, via Hall�s collection process, the basic commutators of
weight 0 � k � r are uniformly computable in k and x0; x1; : : : ; xn. The corollary
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now follows from Theorem 3.1 above and the fact that �nitely generated subgroups are
computably enumerable, uniformly in their generators. �

We will now use Hall�s collection process and Theorem 3.1/Corollary 3.2 above to
deduce some more useful algorithmic corollaries of computable locally nilpotent groups.

Lemma 3.3. Let G be a nilpotent group of rank r 2 ! with lower central series
G0 = f1Gg C G1 C � � � C Gr = G;

and let H 6 G. Then we have that
H = H0 C H1 C H2 C � � � C Hr = G;

where Hk = hH;Gki, 0 � k � r.

Proof. The proof is by induction on r 2 !. If r = 0 then G is the trivial group and we
are done. If r = 1 then G is abelian and the theorem easily follows since in this case
G1 = G. Now, suppose that theorem is true for all nilpotent groups of rank less than
some r > 1, r 2 !, and assume that we are given a nilpotent group G of rank r. There
are two cases to consider. The �rst case says that H 6G1. In this case it follows that
HkCHk+1, 0 � k < r, since G16Z(G).
The second case says thatH 
G1. In this case we consider the groupG = G=G1, which

is nilpotent of rank r � 1. Let H be the nontrivial image of H 6G under the canonical
homomorphism ' : G ! G=G1, and let fGkg0�k�r denote the lower central series of G
(indexed in increasing order). Then, for each 0 � k < r, we have that Gk+1 = '�1(Gk).
Also, by the induction hypothesis, it follows that

H = H0 C G H1 C G � � � C G Hr�1 = G;

where Hk = hH;GkiG, for all 0 � k < r. Now, by elementary group theory we have that
Hk = hH;GkiG = '�1(Hk�1), for all 0 < k � r, and, since G16Z(G), it follows that
HkCHk+1, for all 0 � k < r. �

The following is a computability-theoretic consequence of the previous lemma that we
will use in the next section.

Corollary 3.4. Let G be a computable locally nilpotent group, and let x0; x1; : : : ; xn 2 G,
n 2 !. Let r 2 ! be the nilpotence rank of G0 = hx0; x1; : : : ; xni6G, and let H =
hx0; x1; : : : ; xn�1i6G0. Then the series

H = H0 C H1 C H2 C � � � C Hr = G

given by Lemma 3.3 above is computably enumerable, i.e. �01, uniformly in x0; x1; : : : ; xn�1; xn.

Proof. First of all, since G is locally nilpotent it follows that r 2 ! is uniformly com-
putable in x0; x1; : : : ; xn 2 G; to compute r simply search for the least number w 2 !
such that all the (�nitely many and uniformly computable in x0; x1; : : : ; xn) basic com-
mutators of weight w are trivial. The rest of the proof follows the same basic reasoning
as that of Corollary 3.2 above. �
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4. Our Main Results

Let G be a group of cardinality �. It is clear that any ascendant sequence of subgroups
in G must have index strictly less than �+, otherwise the cardinality of G would be
strictly greater than �. On the other hand, there are well-known examples of countable
Gruenberg groups G containing elements x 2 G such that there is no �nite ascendant
sequence beginning with the cyclic group hxi [KO10, page 243], and hence every ascendant
sequence beginning with hxi has order type at least ! + 1. Recall that, since G is
Gruenberg, a countable ascendant sequence beginning with hxi always exists. Also recall
that all locally nilpotent groups are Gruenberg, and that these two notions coincide for
countable groups.

The following theorem says that in a countable locally nilpotent group G every ascen-
dant sequence beginning with the cyclic group hxi6G, x 2 G, can be chosen to have
order type ! + 1, the smallest possible order type. We do not know (although it might
be known) if this result can be extended to higher cardinalities; the obstruction to doing
so comes from the inherently �nite nature of local nilpotence.

Theorem 4.1. Let G be a countable locally nilpotent group, and let a 2 G. Then there is
an ascendant sequence of subgroups of order type !+1 beginning with the cyclic subgroup
hai6G.

Proof. Let fgn : n 2 !g be a countable listing of the elements of G with g0 = a. We
will construct the ascendant sequence fHs : s 2 !g recursively in countably many stages
s 2 !. At stage s = 0 we de�ne n0 = 0 2 ! and set H0 = Hn0 = hai as required by the
theorem. At stage s + 1 > 0, s 2 !, assume that we are given a number ns 2 ! and a
�nite sequence of subgroups fHn : 0 � n � nsg such that for all 0 � n < ns we have that
HnCHn+1 and Hns = hg0; : : : ; gsi.
Now, setH = hHns ; gs+1i, and note that (by induction)H = hg0; g1; : : : ; gs; gs+1i. Thus

H is nilpotent since G is locally nilpotent. Now, if r 2 ! is the nilpotence rank of H, then
Lemma 3.3 above says that we can extend the ascendant sequence fHn : 0 � n � nsg in
the subgroup Hns to a larger ascendant sequence fHn : 0 � n � ns + rg in H such that
H = Hns+r. Now, we �nally set ns+1 = ns + r and proceed to the next stage. This ends
our construction of fHs : s 2 !g. Set H! = G.
By our construction of fHs : s 2 !g it is clear that for each s 2 ! we have that

HsCHs+1, so all that we really need to verify is that [s2!Hs = G. But this follows from
the fact that, by our construction of fHsgs2!, we have that gs 2 Hs, for all s 2 !. �

The following is the main theorem of this article. It gives an unexpectedly low upper
bound on the algorithmic and de�nability complexity of ascendant sequences in com-
putable locally nilpotent groups.

Theorem 4.2. Let G be a computable locally nilpotent group, and let a 2 G. Then there
is an ascendant sequence of subgroups

hai = H0 C H1 C � � � C Hn C � � � H! = [n2!Hn = G
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that is uniformly computably enumerable, i.e. uniformly �01-de�nable with respect to the
index n 2 ! + 1 and a 2 G.

Proof. The proof of the current theorem is essentially a computability-theoretic analog
of the proof of the previous theorem, as follows.
Let g0; g1; : : : ; gk; : : : 2 G, k 2 !, be a computable listing of the elements of G with

g0 = a, and let (�; �) : !�! ! ! be a computable pairing function, as described in [Soa87,
Notation I.3.6]. We will think of the sequence fHn : n 2 !+1g as being given by a single
computably enumerable array of elements H � (! + 1)�G such that the nth row of H,
i.e. Hhni = f(n; x) : x 2 Gg � H, n 2 ! + 1, is equal to Hn. Now, to prove the theorem
it su¢ ces to give an algorithm that for each n 2 !, enumerates (n; x) 2 (!+1)�G into
H so that

(1) H0 = hai;
(2) H! = G; and
(3) for all n 2 !, n > 0, we have that Hhni = Hn = f(n; x) : x 2 Gg and Hn�1CHn.
We will now give a stage-by-stage de�nition of such an algorithm.
At stage s = 0 begin enumerating (0; hai) and (!;G) into H, and set n0 = 0 2 !. At

a stage s + 1 > 0, s 2 !, assume that we are given a number ns 2 ! such that we have
already begun enumerating Hn, n 2 f!; 0; 1; : : : ; nsg, and that Hns = hg0; g1; : : : ; gsi.
Now, set H = hHns ; gs+1i = hg0; : : : ; gs; gs+1i, and uniformly compute the nilpotence
rank, rs 2 !, of H �i.e. rs is the least number such that the �nitely many and uniformly
computable basic commutators in the generators g0; : : : ; gs+1 of weight rs are trivial.
Now, Corollary 3.4 above says that there are computably enumerable subgroups fHk :
ns < k � ns + rsg, given uniformly in the generators g0; : : : ; gs+1, such that Hk�1CHk
for all ns < k � ns + rs. Begin (uniformly) enumerating these subgroups at stage s + 1
and proceed to the next stage. This ends the construction of fHn : n 2 !+1g; note that
this construction is uniform in a 2 G.
The veri�cation that fHn : n 2 ! + 1g is indeed an ascendant sequence is similar to

that of the previous theorem, and is left to the reader. �
Corollary 4.3. Let G be a computable locally nilpotent group, and let a0; a1; : : : ; aN 2 G,
N 2 !. Then there is an ascendant sequence of subgroups

ha0; : : : ; aNi = H0 C H1 C � � � C Hn C � � � H! = [n2!Hn = G
that is uniformly computably enumerable, i.e. uniformly �01-de�nable with respect to n 2
! + 1, l 2 !, and a0; a1; : : : ; al.

Proof. The proof is almost identical to that of the previous theorem, and is left to the
reader. �

The following theorem,via Corollary 4.7 and Theorem 4.8, essentially says that the
previous theorem is sharp (in a strong way) and precisely characterizes the best possible
general upper bound on the complexity of ascendant sequences beginning with �nitely
generated subgroups in computable locally nilpotent groups as computably enumerable,
or �01-de�nable.
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Theorem 4.4. There is a nonsimple abelian group G such that every proper nontrivial
subgroup of G is of PA Turing degree.

Proof. The proof is very similar to that of [DHK+07, Theorem 1.5], but instead of work-
ing with a vector space over an in�nite �eld we work with abelian groups, i.e. Z-modules.
If G is an abelian group, we write 0 to denote its identity element, we write + to de-
note the group operation on G, and for all k 2 Z and g 2 G we write k � g to denote
g + g + � � �+ g| {z }

k

2 G. In other words we think of G as a Z-module and use the corre-

sponding notation.
First, �x disjoint computably enumerable sets A;B � ! such that any set C � !

satisfying A � C and B \ C = ; is of PA Turing degree. Recall that ! n (A [ B) is
in�nite. Let G1 denote a computable presentation of the free abelian group on countably
many (ordered) generators e0 � e1 � e2 � � � � in which the Z-linear dependence relation
is uniformly computable and (more generally) all �nitely generated subgroups of G1 are
computable, uniformly in their generators. Let 0 = g0 � g1 � g2 � � � � be a computable
listing of the elements of G1. For all g =

Png
k=0 zk � ek 2 G, ng 2 !, zk 2 Z, let

supp(g) = f0 � k � ng : zk 6= 0g � !;
and let g : !3 ! ! denote a computable injection such that g(i; j; n) > max(supp(gi) [
supp(gj)) for every i; j; n 2 !. We will construct a computable subgroup H CG1, and
let G = G1=H (recall that G is abelian, so that H is automatically normal).
We will satisfy the following requirements for all i; j 2 ! such that gi; gj =2 H:
Ri;j;n: (i) If n =2 A [B, then for all h 2 H and k 2 Z we have that k � gi 6= eg(i;j;n) and

k � gk 6= eg(i;j;n);
(ii) If n 2 A, then eg(i;j;n) � k � gi 2 H for some 0 6= k 2 Z; and
(iii) If n 2 B, then eg(i;j;n) � k � gj 2 H for some 0 6= k 2 Z.

We will now construct a uniformly computable increasing sequence of �nite subsets,

H0 � H1 � H2 � � � � � Hs � � � � � G1

in stages s 2 !, such that the desired subgroup H = [s2!Hs. Simultaneously, we will
construct a computable function f : !4 ! f0; 1g such that f(i; j; n; s) = 1 if and only if
we have acted to satisfy requirement Ri;j;n by stage s of the construction of H, i.e. by the
time we have constructed Hs. We will ensure that for all m 2 ! we have that gm 2 H if
and only if gm 2 Hm, which will ensure that H = [s2!Hs computable.
Now, let H0 = fg0 = 0g and f(i; j; n; s) = 0, for all i; j; n; s 2 ! such that s = 0.

Suppose now that s > 0 and we have constructed the �nite sets H0 � H1 � � � � � Hs �
G1 and de�ned f(i; j; n; t) for all 0 � t � s. Suppose also that, for all i; j; n; s 2 ! such
that gi; gj =2 hHsi, we have:
(a) If f(i; j; n; s) = 0 then part (i) of Ri;j;n is holds;
(b) If f(i; j; n; s) = 1 and n 2 As then part (ii) of Ri;j;n holds; and
(c) If f(i; j; n; s) = 1 and n 2 Bs then part (iii) of Ri;j;n;s holds.
Now, check whether there is a triple hi; j; ni < s such that



12 CHRIS J. CONIDIS AND RICHARD A. SHORE

(1) fgig [Hs is Z-linearly independent;
(2) fgjg [Hs is Z-linearly independent;
(3) n 2 As [Bs; and
(4) h(i; j; n; s) = 0.

If no such triple exists and gs+1 =2 hHsi, then let Hs+1 = Hs [ fgs+1g. Otherwise, if no
such triple exists and gs+1 2 hHsi, then let Hs+1 = Hs.
Now suppose that there exists a triple hi; j; ni as above, and �x the least such triple.

First, if n 2 A, then �nd the least (under some computable coding of integers) k 2 Z
such that gl =2 hHs [ feg(i;j;n) � k � gigi for all 0 � l � s such that gl =2 Hs. The existence
of such a k 2 Z follows from Lemma 4.5 below and the fact that Z is in�nite. Now,
let H 0

s = Hs [ feg(i;j;n) � k � gig and de�ne f(i; j; n; s + 1) = 1. On the other hand, if
n 2 B, then repeat this action with gj replacing gi. Finally, if gs+1 2 hH 0

si then let
Hs+1 = Hs [ fgs+1g; otherwise let Hs+1 = H 0

s. Also, let f(i; j; n; s + 1) = h(i; j; n; s) for
all other i; j; n 2 !. Lemma 4.6 below says that our inductive hypotheses are maintained
throughout the construction, hence our construction is valid.
Recall that H is a computable normal subgroup of G, since we ensured that for all

s 2 !, gs 2 H if and only if gs 2 Hs. Now, let G = G1=H and note that G is computable
since H is computable. The elements of G are given by <!-least representatives, which
is a computable subset of G1. For any g 2 G1 we let g 2 G be the image of g under
the canonical homomorphism G1 ! G. Now, suppose that W is a nontrivial proper
subgroup of G, and let W0 be such that W = W0=H. Then, since H is computable
it follows that W0 is a W -computable subgroup of G1, such that H 6W06G1. Let
i; j 2 ! be such that gi 2 W0 and gj =2 W0, and de�ne

S = fn 2 ! : eg(i;j;n) 2 W0g:
It follows that S �T W0 �T W , that A � S, and that B \ S = ;. Therefore, S
has PA Turing degree, as required. Finally, note that G is not �nitely generated, since
X = feg(i;j;n) : n 2 ! n (A [B)g generates a free subgroup of G, since no generator of H
mentions any eg(i;j;n) 2 G1, n 2 !. It follows that any generating set for G must include
X, and since ! n (A[B) is in�nite it follows that G is not �nitely generated. Therefore,
G is not simple. �

The following two technical algebraic lemmas are written in the context of the proof of
the previous theorem. These lemmas correspond to [DHK+07, Lemma 2.4] and [DHK+07,
Lemma 2.6], respectively.

Lemma 4.5. Suppose that conditions (1)�(4) hold for some triple hi; j; ni at stage s > 2.
Then, for each 0 � t � s such that gt =2 Hs, there is at most one number kt 2 Z such
that gt 2 hHs [ feg(i;j;n)� kt � gigi. The same is obviously true with the last occurrence of
gi replaced by gj, since our hypotheses on i and j are symmetric.

Proof. Let e = eg(i;j;n). Now suppose, for a contradiction, that there is some 0 � t � s
with g = gt =2 Hs and two distinct numbers k1; k2 2 Z, and corresponding h1; h2 2 hHsi
such that both

g = e� k1 � gi + h1
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and
g = e� k2 � gi + h2

hold. Subtracting these two equations from each other and rearranging terms yields the
equality

h1 � h2 = (k1 � k2) � gi;
which violates condition (1) above, a contradiction. �

Lemma 4.6. The inductive hypotheses (i)�(iii) are maintained throughout the construc-
tion of H.

Proof. First of all, by our construction of H it is easy to check that each �nite set Hs,
s � 2, consists of (�nitely many) linear combinations of �nitely many elements of the
form eg(i;j;n) � k � gi or eg(i;j;n) � k � gj, 0 6= k 2 Z, but never both. Fix s � 2 and let
X = fx0; : : : ; xlg � G1, 0 � l � s, l 2 !, be such a generating set for Hs, and for all
0 � r � l suppose that

xr = eg(ir;jr;nr) � kr � gz; z 2 fir; jrg:

To prove the lemma it su¢ ces to show that for any given triple hi; j; ni that is not
equal to any hir; jr; nri, 0 � r � l, we have that x = eg(i;j;n)� k � gi =2 hXi, for any k 2 Z.
The proof is easy, and by contradiction. Suppose (for a contradiction) that x 2 hXi, i.e.
there exists R � f0; : : : ; lg and a sequence of nonzero integers hcr : r 2 Ri such that

x =
X
r2R

crxr:

In this case we must have that g(i; j; n) 2 [r2Rsupp(xr). Also, since g is injective
and hi; j; ni is distinct from any of the hir; jr; nri, 0 � r � l, it follows that there
exists 0 � r0 � l such that g(i; j; n) 2 supp(gz), z 2 fir0 ; jr0g. Now it follows that
g(ir0 ; jr0 ; nr0) > max supp(gz) and hence

max
[
r2R

supp(xr) > g(i; j; n) > max supp(gi) [ supp(gj):

Finally, if r0 2 R is chosen such that max[r2Rsupp(xr) = max supp(xr0), then by our
construction of g it follows that r0 is the only r 2 R for which g(ir0 ; jr0 ; nr0) 2 supp(xr).
But, by the displayed equation above, this means that cr0 = 0, a contradiction. �

Corollary 4.7. There exists a nonsimple abelian group G such that every nontrivial
�nitely generated subgroup of G computes ;0.

Proof. Let G be as in Theorem 4.4 above. Then every nontrivial �nitely generated
subgroupH of G is proper (since we showed that G is not �nitely generated), computably
enumerable, and of PA Turing degree. It is well-known that all such sets H compute ;0
(this fact is known as Arslanov�s Completeness Criterion; see [Soa87, Theorem V.5.1] for
more details). �
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Theorem 4.8. There is an abelian (and therefore nilpotent) group G such that for all
g0; : : : ; gN 2 G, N 2 !, every ascendant sequence in G beginning with hg0; : : : ; gNi com-
putes ;0.

Proof. Let G be as in Corollary 4.7 and Theorem 4.4 above and note that every ascendant
sequence in G beginning with the �nitely generated subgroup X = hg0; : : : ; gNi contains
X, which computes ;0 via Corollary 4.7 above. �

We end with the following interesting open (and purely group theoretic) question
related to Theorem 4.1 above. To the best of our knowledge the answer is unknown.

Question 4.9. Let G be a locally nilpotent group of cardinality � > !, and let a 2 G. Is
there necessarily an ascendant sequence in G beginning with hai of length at most �+1?

References

[AK01] C. J. Ash and J. F. Knight. Computable structures and the hyperarithmetical hierarchy.
Elsevier, 2001.

[Boo54] W. W. Boone. Certain simple unsolvable problems in group theory, i. Nederl. Wetensch Proc.
Ser. A, 57:231�237, 1954.

[CS11] B.F. Csima and D.R. Solomon. The complexity of central series in nilpotent computable
groups. Ann. Pure App. Log., 162:667�678, 2011.

[DF99] D.S. Dummit and R.M. Foote. Abstract Algebra. John Wiley & Sons, 1999.
[DHK+07] R. Downey, D. Hirschfeldt, A. Kach, S. Lempp, J. Mileti, and A. Montalban. Subspaces of

computable vector spaces. J. Algebra, 314:888�894, 2007.
[FS56] A. Frölich and J.C. Shepherdson. E¤ective procedures in �eld theory. Philosophical Transac-

tions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 248:407�
432, 1956.

[GSW03] R. Göbel, S. Shelah, and L. Wallutis. On universal and epi-universal locally nilpotent groups.
Ill. J. Math., 47:223�236, 2003.

[Hal34] P. Hall. A contribution to the theory of groups of prime power order. Proc. Lon. Math. Soc.,
36:29�95, 1934.

[Hal50] M. Hall. A basis for free lie rings and higher commutators in free groups. Proc. Amer. Math.
Soc., 6:575�581, 1950.

[Hal59] M. Hall. The theory of groups. Macmillan, New York, 1959.
[Kar63] M. I. Kargapolov. Generalized soluble groups. Algebra i Logika, 2:19�28, 1963.
[KO10] L. A. Kurdachenko and J. Otal. Groups with families of generalized normal subgroups.Mono-

gra�as de la Real Academia de Ciencias de Zaragoza, 33:241�254, 2010.
[Kro82] L. Kronecker. Grundzüge einer arithmetischen theorie der algebraischen groössen. J. Reine

Angew. Math., 92:1�122, 1882.
[Lan93] S. Lang. Algebra. Springer-Verlag, 1993.
[Mil91] C. F. Miller. Decision problems for groups �survey and re�ections. In Algorithms and Clas-

si�cation in Combinatorial Group Theory, pages 1�60, 1991.
[MN77] G. Metakides and A. Nerode. Recursively enumerable vector spaces. Ann. Math. Logic,

11:147�171, 1977.
[Nov55] P. S. Novikov. On the unsolvability of the word problem in group theory. Trudy Math. Inst.

Steklov, 44:1�143, 1955.
[Rab60] M.O. Rabin. Computable algebra, general theory and theory computable �elds. Trans. Amer.

Math. Soc., 95:341�360, 1960.
[Rob96] D. J. S. Robinson. A course in the theory of groups. Springer-Verlag, New York, 1996.



THE COMPLEXITY OF ASCENDANT SEQUENCES IN LOCALLY NILPOTENT GROUPS 15

[Rob11a] D. J. S. Robinson. Finiteness conditions and generalized soluble groups, vol. 1, second edition.
Springer-Verlag, Berlin, 2011.

[Rob11b] D. J. S. Robinson. Finiteness conditions and generalized soluble groups, vol. 2, second edition.
Springer-Verlag, Berlin, 2011.

[Sim09] S.G. Simpson. Subsystems of Second Order Arithmetic, second edition. Cambridge University
Press, 2009.

[Soa] R.I. Soare. Computability theory and applications. Springer-Verlag, to appear.
[Soa87] R.I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.
[Sol99] D. R. Solomon. Ordered groups: a case study in reverse mathematics. Bull. Symb. Log.,

5:45�58, 1999.
[vdW] B.L. van der Waerden. Algebra, vol. 1. Springer-Verlag, 2003.

Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA


