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Abstract

We prove that determinacy for all Boolean combinations of Fσδ (Π0
3) sets implies

the consistency of second-order arithmetic and more. Indeed, it is equivalent to the
statement saying that for every set X and every number n, there exists a β-model
of Π1

n-comprehension containing X.
We prove this result by providing a careful level-by-level analysis of determinacy

at the finite level of the difference hierarchy on Fσδ (Π0
3) sets in terms of both

reverse mathematics, complexity and consistency strength. We show that, for
n ≥ 1, determinacy for sets at the nth level in this difference hierarchy lies strictly
between (in the reverse mathematical sense of logical implication) the existence of
β-models of Π1

n+2-comprehension containing any given set X, and the existence
of β-models of ∆1

n+2-comprehension containing any given set X. Thus the nth
of these determinacy axioms lies strictly between Π1

n+2-comprehension and ∆1
n+2-

comprehension in terms of consistency strength. The major new technical result
on which these proof theoretic ones are based is a complexity theoretic one. The
nth determinacy axiom implies closure under the operation taking a set X to the
least Σn+1 admissible containing X (for n = 1, this is due to Welch [2012]).

1 Introduction

There are several common ways to calibrate the strength of mathematical or set theoretic
assertions. One venerable one is proof theoretic. We say that a theory T is proof
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theoretically stronger (or of higher consistency strength) than one S, T >c S, if T
proves the consistency of S. (Here one assumes that the languages and theories being
considered are countable, include basic arithmetic (or some natural interpretation of it
as in set theory) and are equipped with a standard Gödel numbering of sentences and
proofs so that the statement that S is consistent has a natural representation, Con(S),
in the language as does T ` Con(S).) This ordering is strict by Gödel’s incompleteness
theorem, i.e. for no reasonable T can T ` Con(T ).

Another important calibration is that provided by reverse mathematics. Here one
works in the setting of second order arithmetic, i.e. the usual first order language and
structure 〈M,+,×, <, 0, 1〉 supplemented by distinct variables X, Y, Z that range over
a collection S of subsets of the domain M of the first order part and the membership
relation ∈ between elements of M and S. Most of countable or even separable classical
mathematics can be developed in this setting based on very elementary axioms about the
first order part of the modelM, an induction principle for sets and various set existence
axioms. At the bottom one has a weak system of axioms called RCA0 that correspond
to recursive constructions. One typically then adds additional existence axioms to get
other systems P .

The endeavor here is to calibrate the complexity of mathematical theorems by deter-
mining precisely which system P of axioms are needed to prove a give theorem Θ. This
is done in one direction in the usual way showing that P ` Θ. The other direction is a
“reversal” that shows that RCA0 + Θ ` P . The standard text here is Simpson [2009] to
which we refer the reader for general background. There is also a brief presentation of
the subject and the standard systems in Montalbán and Shore [2012] of which this paper
is really a continuation. We henceforth refer to Montalbán and Shore [2012] as [MS] and
rely heavily on its proofs and results.

One natural hierarchy of axiomatic (or proof theoretic) systems is given by Π1
n-CA0

and ∆1
n-CA0: the axioms that say that every set defined by a Π1

n formula (with set
parameters) or, respectively, by both Π1

n and Σ1
n formulas exists. (We assume familiarity

with the usual hierarchy of formulas and relations Σ0
n, Π0

n. ∆0
n and Σ1

n, Π1
n, ∆1

n that
measure the complexity of prenex normal formulas by the number of alternations of first
or second order quantifiers, respectively.) The system at the bottom of this hierarchy,
Π1

1-CA0 is the strongest of the systems usually studied in reverse mathematics and so far
suffices for almost all mathematical theorems. The systems we consider are all stronger
than Π1

1-CA0 and indeed exhaust the hierarchy with examples provable from Π1
n-CA0 but

not ∆1
n-CA0 for each n ≥ 3 and even one not provable in full second order arithmetic,

Z2 = ∪{Π1
n-CA0|n ∈ ω}.

These systems are taken from the realm of axioms of determinacy. This subject has
played an important role historically as an inspiration for increasingly strong axioms (as
measured by consistency strength) both in reverse mathematics and set theory. We have
given a brief overview of this history in [MS, §1] and refer the reader to that paper for
more historical details and other background.
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In that paper we analyzed the reverse mathematical strength of a hierarchy of low
levels of determinacy axioms, n-Π0

3-DET and ω-Π0
3-DET, which we now define.

Definition 1.1 (Games and Determinacy). Our games are played by two players I and
II. They alternate playing 0 or 1 with I playing first to produce a play of the game which
is a sequence x ∈ 2ω. A game GA is specified by a subset A of 2ω. We say that I wins a
play x of the game GA specified by A if x ∈ A. Otherwise II wins that play. A strategy
for I (II) is a function σ from binary strings p of even (odd) length into {0, 1}. It is a
wining strategy if any play x following it (i.e. x(n) = σ(x � n) for every even (odd) n) is
a win for for I (II). We say that the game GA is determined if there is a winning strategy
for I or II in this game. If Γ is a class of sets A, then we say that Γ is determined if
GA is determined for every A ∈ Γ. We denote the assertion that Γ is determined by Γ
determinacy or Γ-DET.

Recall that the Π0
3 subsets of 2ω are the Fσδ ones, i.e. the countable intersections of

countable unions of closed sets or equivalently the ones definable by formulas of the Π0
3

form ∀n∃m∀kR(x, n,m, k, Z) for some recursive predicate R and Z ∈ 2ω. There are a
couple of equivalent definitions of the natural hierarchy on the Boolean combinations of
these sets (or ones from any class Γ) called the (finite) difference hierarchy. Here is one
that generalizes into the transfinite. If carried out through ℵ1 many steps, it exhausts
all of the ∆0

4 sets (those representable by both Σ0
4 and Π0

4 formulas of arithmetic or
equivalently in both Gδσδ and Fσδσ).

Definition 1.2 (Finite Differences on Π0
3). A set A ⊆ 2ω is m-Π0

3 if there are Π0
3 sets

A0, A1, . . . , Am−1, Am = ∅ such that

x ∈ A⇔ the least i such that x /∈ Ai is odd.

It is ω-Π0
3 if it is m-Π0

3 for some m < ω.

While we used this standard definition for our proofs of determinacy in [MS] (see
Theorem 1.5 below), we there used another one for our negative results (see Theorem 1.6
below). We utilize that representation for our major technical result, Theorem 1.8, here
as well.

Definition 1.3. A set A ⊆ 2ω is Π0
3,n if there exist Π0

3 sets A0, ..., An such that An = 2ω

and
x ∈ A⇔ the least i such that x ∈ Ai is even.

We say that the sequence 〈Ai|i ≤ m〉 represents A (as a Π0
3,n set).

For the purposes of establishing or contradicting determinacy the two hierarchies are
equivalent and so we may use either class in our proofs about n-Π0

3-DET.
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Remark 1.4 ([MS, Corollary 2.7]). For every n, determinacy for n-Π0
3 sets is equivalent

to that for Π0
3,n.

The major reverse mathematical results of [MS] are the following:

Theorem 1.5. For each m ≥ 1, Π1
m+2-CA0 ` m-Π0

3-DET.

Theorem 1.6. For every m ≥ 1, ∆1
m+2-CA 0 m-Π0

3-DET.

Corollary 1.7. Determinacy for the class of all finite Boolean combinations of Π0
3 classes

of sets (ω-Π0
3-DET) cannot be proved in second order arithmetic.

In [MS], we also showed that ω-Π0
3-DET does not prove even ∆1

2-CA0 (or Π1
n+2-CA0

even over ∆1
n+2-CA0) and so ω-Π0

3-DET and Z2 are reverse mathematically incomparable.

When we spoke about these results at Berkeley, John Steel asked the natural question
of whether we could improve our reverse mathematical result that ω-Π0

3-DET is not
provable in Z2 to show that it actually implies the consistency of Z2. If so, while the
two theories are incomparable in the sense of reverse mathematics, ω-Π0

3-DET would
be strictly stronger than Z2 in the proof theoretic one. This appears to be a delicate
proof theoretic question falling outside the scope of our usual recursion or set theoretic
methods as the results of [MS] show that ω-Π0

3-DET does not prove the existence of
an ω-model of Z2. (See Corollary 1.16.) Nonetheless, in this paper we show that this
is indeed the case and that much more is true by proving stronger results at every step
along the finite difference hierarchy. Our goals here are thus primarily proof theoretic
but we also prove reverse mathematical and recursion (complexity) theoretic results and
then use them to establish the proof theoretic ones.

In this setting, all the theories we might consider are formulated in the language of
second order arithmetic and include at least RCA0 although we generally omit explic-
itly mentioning the inclusion of RCA0 in our theories. Thus we can take a standard
formulation of Con(T ).

We also note that, in the context of reverse mathematics, a structure for a first order
language is an, of course countable, set and collection of relations and functions as usual
but we also assume the elementary diagram is given as well. If the theory is one of second
order arithmetic we add on a countable set S of subsets of the domain M of the modelM
as the range of the second order quantifiers. (Simpson [2009] calls these countably coded
models as its collection of allowed sets must be coded into a single set.) Such a model
M = 〈M,S,∈,+,×, <, 0, 1〉 is an ω-model if M = N (the “true” natural numbers). It
is a β-model if, in addition, every Π1

1 sentence (with parameters in M) is true in M if
and only if it is “true”. (One makes sense of the notions of ω and β submodels in the
obvious way.)

In fact, all the theories we actually consider imply Π1
1-CA0 (over RCA0) and so we

use the available interpretations between second order arithmetic and the language of set
theory and the development of L and its fine structure in Π1

1-CA0 in Simpson [2009] and
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[MS] as well as some standard fine structure facts. In particular, for n ≥ 2, if αn is the
least Σn admissible ordinal greater than ω then Lαn is the least β-model of ∆1

n+1-CA0.
Similarly, if ρn is the least Σn nonprojectable ordinal greater than ω, then Lρn is the least
β-model of Π1

n+1-CA0 and if β0 is the least ordinal which is Σn admissible for every n
(or equivalently Σn nonprojectable for every n), then Lβ0

is the least β-model of Z2, (In
all these situations when we refer to an Lγ as a structure for second order arithmetic we
mean the ω-model with sets S taken to be Lγ ∩ R.)

These relations between admissible fragments of L and our strong proof theoretic
systems are really an extension of the usual correspondences between the standard weaker
proof theoretic systems and standard recursion theoretic constructions. In particular,
the system ACA0 corresponds to closure under the Turing jump; ATR0, to closure under
transfinite iterations of the Turing jump; and Π1

1-CA0 to closure under the hyperjump.
(See Shore [2010] for an exposition of the correspondences between the recursion theoretic
structures and ω-models of the proof theoretic systems.) The natural extensions of the
jump and hyperjump operators to larger ordinals are given by the master code hierarchy
for countable initial segments of L (see, for example, Hodes [1980]). In particular, the
jumps corresponding to ∆1

n+1-CA0 and Π1
n+1-CA0 for n ≥ 2 are the closures under the

operators taking X to the least Σn admissible and Σn nonprojectable sets containing
X, respectively. Here the correspondence moves from ω-models to β-models. In this
language, our results (Corollary 1.11) show that the natural operator taking X to the
least model of n-Π0

3-DET containing X lies strictly between the closure under the next
Σn+1 admissible and under the next Σn+1 nonprojectable. We do not know of any other
similar natural operators.

We use this correspondence to achieve our primary goal of locating the consistency
strength of n-Π0

3-DET for each n and of ω-Π0
3-DET with respect to the standard

fragments of Z2. To be precise, we will prove (Corollaries 1.14 and 1.16) that, Π1
n+2-

CA0 >c n-Π0
3-DET>c ∆1

n+2-CA0 for each n ≥ 1 and that ω-Π0
3-DET>c Z2 (and so

ω-Π0
3-DET>c ZFC

− as well). (ZFC− is ZFC without the power set axiom and, as is
pointed out in [MS Proposition 1.4], is a Π1

4 conservative extension of Z2.) In fact, we
will prove that, in each case, the distance between each side of the inequality is much
greater than simple >c. The main technical result we need will be recursion theoretic in
the sense just described:

Theorem 1.8. For n ≥ 1, n-Π0
3-DET ` αn+1 exists.

The case n = 1 is due to Welch [2011, 2012]. We prove this result for n ≥ 2 in §2. To
facilitate our proof theoretic goals, it is also helpful to introduce an operation on theories
T of second order arithmetic that significantly increases consistency strength.

Definition 1.9. If T is a theory in the language of second order arithmetic, then β(T )
is the theory which says that for every set X there is a β-model of T containing X.

Note that for any (at least reasonably definable theory) T , not only is β(T ) >c T
but it is significantly stronger than T in terms of consistency strength. Indeed, while the
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provability of the existence of a model of T always implies consistency, and is equivalent
to the provability of Con(T ) (even over the theory WKL0), the provability of the existence
of even an ω-model of T implies not only Con(T ) but also, for example, Con(T+Con(T ))
and iterations of this operation into the transfinite. The point here is that for any, say
arithmetic, T , Con(T ) is a sentence of arithmetic and so, if provable from S, S also proves
that it is true in any ω-model of T . Thus if S proves that there is an ω-model of T then
it also proves that there is one of T +Con(T ) etc. Of course, by Gödel’s incompleteness
theorem, it can never be the case that T ` β(T ). With this terminology we can state
our main reverse mathematical theorem in which we include for convenience the main
results of [MS] and some simple facts and consequences.

Theorem 1.10. For every n ≥ 1 we have the following provability relations none of
which can be reversed.

1. Π1
n+2-CA0 ` n-Π0

3-DET.

2. Π1
n+2-CA0 ` β(n-Π0

3-DET).

3. β(Π1
n+2-CA0) ` β(n-Π0

3-DET).

4. β(n-Π0
3-DET) ` n-Π0

3-DET.

5. n-Π0
3-DET` β(∆1

n+2-CA0).

6. ∆1
n+2-CA0 ` β(Π1

n+1-CA0).

Π1
n+2-CA0

&.TTTTTTTT
TTTTTTTT

��

β(Π1
n+2-CA0)

��
β(n-Π0

3-DET)

��
n-Π0

3-DET

��
∆1

n+2-CA0

&.TTTTTTT
TTTTTTT

��

β(∆1
n+2-CA0)

��
Π1
n+1-CA0 β(Π1

n+1-CA0)

Proof. When we want to establish β(T ) for some theory T , we simply show that there
is a β-model of T and note that β(T ) always follows by a straightforward relativization.
Similarly, when proving some assertion with set parameters from β(T ), we ignore the
set parameter and argue from the existence of a β-model of T and leave the insertion of
parameters to relativization.

The first implication is Theorem 1.1 of [MS]. For (2), we note that the proof of
Theorem 6.1 of [MS] can be carried out in Π1

n+2-CA0. Given (1) applying that theorem
to n-Π0

3-DET, produces a δ which is a limit of admissibles such that Lδ is a model of
n-Π0

3-DET. Recall that if δ is a limit of admissibles, Lδ is a β-model. That (1) cannot
be reversed follows from (2) as for all of these theories T , T 0 β(T ). That (2) cannot be
reversed follows from noticing that the proof of (2) above shows that, from Π1

n+2-CA0,
one can prove the existence of a δ such that Lδ is a β-model of n-Π0

3-DET. Iterating
this construction ω many times and taking the limit produces an ordinal γ such that Lγ
is a model (even a β-model) of β(n-Π0

3-DET ). The fact that this iteration is possible
follows, for example, from Σ1

2-DC0 which is a consequence of Π1
n+2-CA0 by Simpson [2009,

Theorem VII.6.9].

Now (3) follows from (1) by applying it inside the β-model of Π1
n+2-CA0 given by

the hypothesis of (3). That it is not reversible follows from (2) and the fact that Π1
n+2-

CA0 0 β(Π1
n+2-CA0).
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The next implication, (4), follows from the definition of being a β-model: Each in-
stance of n-Π0

3-DET is a Σ1
2 sentence which is true in some β-model and so has a witness

in that model. Being a witness is a Π1
1 fact and so truth in the β-model implies truth.

This one is clearly non-reversible.

The next implication, (5), is the proof theoretic heart of this paper. It follows from
our main recursion or complexity theoretic result, Theorem 1.8. It gives the existence
of the least Σn+1 admissible ordinal αn+1 and so of Lαn+1 which as noted above is the
smallest β-model of ∆1

n+2-CA0. Of course, this argument relativizes to any X to give the
result required in (5). That (5) cannot be reversed takes some work, and we will do this
in Section 3, where we show that n-Π0

3-DET does not hold in Lα∗n where α∗n is the first
limit of n-admissibles.

The final implication follows from a standard fact about admissible ordinals: The
Σn-nonprojectables are cofinal in the first (n+ 1)-admissible. So, by the remarks above,
L inside any model of ∆1

n+2-CA0 is n+1-admissible and within it the Σn-nonprojectables
are β-models of Π1

n+1-CA0.

One recursion/complexity theoretic corollary of these results is placing the “jump”
operator taking a set X to the least ordinal δ such that Lδ[X] is a (necessarily β) model
of n-Π0

3-DET among the more usual operators.

Corollary 1.11. For every X, the least δ such that Lδ[X] � n-Π0
3-DET is a limit of

admissible ordinals strictly between α∗n[X], the first limit of Σn-admissibles containing
X, and ρn[X], the least Σn-nonprojectable containing X.

Proof. That δ is between these two ordinals follows from (5), i.e. Theorem 1.8, and (1).
That the ordering is strict follows from the proof of nonreversability of (5) in Theorem
3.1 and (2).

Another corollary of (the uniformities in the proofs of) implications (1), (3), (4)
and (5) of Theorem 1.10 and standard absoluteness properties are reverse mathemat-
ical and recursion theoretic characterizations of ω-Π0

3-DET. The reverse mathematical
characterization is as being equivalent to another Π1

3 sentence closely tied to Z2. The
recursion/complexity theoretic one is in terms of the least ordinal δ such that Lδ � ω-
Π0

3-DET.

Corollary 1.12. Over RCA0, the following are equivalent:

• ω-Π0
3-DET.

• ∀n(β(Π1
n-CA0)), that is, for every n and every X there is a β-model of Π1

n-CA0

containing X.

7



Corollary 1.13. The least ordinal δ such that Lδ � ω-Π0
3-DET is ∪αn, the supremum

of the least Σn admissibles over n ∈ ω. As can be seen from the proof of Theorem 1.8,
this ordinal is also the least such that Lδ contains winning strategies for all light-faced
ω-Π0

3 games.

Our basic assertions about consistency strength along the hierarchies follow immedi-
ately from the numbered implications (2), (5) and (6) of Theorem 1.10.

Corollary 1.14. For every n ≥ 1 we have the following chain of consistency strength
relations:

· · · Π1
n+1-CA0 <c ∆1

n+2-CA0 <c n-Π0
3-DET <c Π1

n+2-CA0 · · · .

An immediate corollary of this chain (and compactness) is an equiconsistency result
for Z2.

Corollary 1.15. (RCA0) The following are equiconsistent:

1. Z2, i.e., the scheme which contains, for each n ∈ N, the axiom Π1
n-CA0.

2. The scheme which contains, for each n ∈ N, the axiom n-Π0
3-DET.

3. ZFC−, i.e. ZFC without the power set axiom.

Proof. The equiconsistency of the first two is our immediate corollary. That for Z2 and
ZFC− follows from the usual interpretation of ZFC− in Z2 as in Simpson [2009, Ch. VII]
and in particular Theorem VII.5.10 and VII.5.17 there as well as remarks in [MS].

We can say more at level ω but not too much.

Corollary 1.16. Z2 <c Z2 +Con(Z2) <c Z2 +Con(Z2) +Con(Z2 +Con(Z2)) <c · · · <c

ω-Π0
3-DET. However, ω-Π0

3-DET does not prove that there is an ω-model of Z2. These
same relations hold between ω-Π0

3-DET and ZFC− in place of Z2.

Proof. The chain of consistency strengths is immediate. As for ω-Π0
3-DET, the proof

of Theorem 1.10(5) shows that it proves (over RCA0, or equivalently, Π1
1-CA0) that, for

each n, there is a β-model of Π1
n+1-CA0, uniformly in n. Compactness now directly gives

a model of Z2, i.e. ω-Π0
3-DET ` Con(Z2). As Con(Z2) is a sentence of first order

arithmetic it is true in every β-model (indeed every ω-model). In particular, it is true
in all the β-models of Π1

n+1-CA0 proven to exist by ω-Π0
3-DET. Thus ω-Π0

3-DET proves
that, for every n, there is a β-model of Π1

n+1-CA0 + Con(Z2) and so Con(Z2 +Con(Z2)).
We can now iterate this argument by induction.

Finally, ω-Π0
3-DET does not prove that there is an ω-model of Z2 because from (1)

of Theorem 1.10 we get that ω-Π0
3-DET holds in any ω-model of Z2. That the same

assertions hold for ZFC− follows as in the previous Corollary.
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One more version of the connection between Z2 and n-Π0
3-DET is given by the fol-

lowing Corollary:

Corollary 1.17. The Π1
3 consequences of Z2 are the same as those of RCA0 + {n-Π0

3-
DET|n ∈ ω}.

Proof. All the consequences of RCA0 + {n-Π0
3-DET |n ∈ ω} are included in those of Z2 by

Theorem 1.10(1). For the other direction, consider any Π1
3 sentence ϕ = ∀X∃Y ∀Zψ(X, Y, Z)

which follows from Z2, any model M of RCA0 + {n-Π0
3-DET |n ∈ ω} and any set X in

M. Now ϕ is a consequence of Π1
n+1-CA0 for some n. By Theorem 1.10(5), there is, in

M, a β-model M̂ of Π1
n+1-CA0 containing X. The witness Y in M̂ for ∀Zψ(X, Y, Z) is

a also a witness in M as M̂ is a β-model in M. Thus ϕ is true in every model of RCA0

+ {n-Π0
3-DET |n ∈ ω} as required.

2 β-models and ∆1
n+2-CA0

In this section we prove our main result.

Theorem 1.8. For n ≥ 1, n-Π0
3-DET ` αn+1 exists.

Welch [2012] has characterized the complexity of Π0
3-DET in terms of the level of L

at which strategies must first appear by a condition reminiscent of those used here and
in [MS §5]. The case n = 1 in the Theorem follows easily from his characterization and
a simple fact cited in Welch [2011, Proposition 1] from Burgess [1986] (Welch, personal
communication). (The fact that an ordinal ζ for which there is a Σ such that Lζ �2 LΣ

is Σ2 admissible is true even if Σ is a nonstandard element of a model of V = L.) Our
proof does not work for n = 1, so we fix an n ≥ 2 and proceed by defining a class G of
games G and proving two lemmas.

Lemma 2.1. If αn+1 does not exists, then no G ∈ G is determined.

Lemma 2.2. If αn+1 does not exists, then there is a n-Π0
3 game G ∈ G.

We begin with the class G of games. It is formally defined as consisting of all the
games whose winning conditions satisfy four properties given below. Informally, we
specify the objectives of the game in terms of building models of the theory T = KP
+V = L + ¬∃β[(ω, (2ω)Lβ) � Z2]. Now Lγ is countable inside Lγ+1 for γ < β0 by
[MS, Lemma 3.5]. Thus by the relations described above between nonprojectability and
models of Π1

n+1-CA0, T is equivalent to KP +V = L+ ∀γ(Lγ is countable inside Lγ+1).
So a model of T looks like an admissible initial segment of L less than β0. In particular,
in it all sets are countable. Of course, if the model is well-founded then it is an Lα for
an admissible ordinal α ≤ β0. Intuitively, the objective of each player in these games is
to build a model of T whose well-founded part is longer than the opponent’s (with ties
going to I). The games are designed so that being determined would force the existence
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of αn+1. To be precise, we interpret the play of each player in one of our games as the
characteristic function of a set of sentences in the language of set theory and specify
conditions that, if satisfied, determine a winner of the game. We do this by giving a
sequence of conditions with the understanding that the first one to be satisfied tells us
which player wins the game. If none of the conditions is satisfied, any determination
of a winner places the game in G. (Once we see how to describe the conditions by Π0

3

sets this will fit the Π0
3,n hierarchy of Definition 1.3. Determinacy for that hierarchy is

equivalent to that for the n-Π0
3 one level by level as noted in Remark 1.4. We then also

have to organize the conditions into a sequence of the required length.)

We begin with easily defined (i.e. simpler even than Π0
3) conditions that set the basic

conditions for our models.

G1. Each player has to play a complete consistent theory extending T in the sense that
if I fails to do this then II wins while if II fails to do this (while I does play such
a theory), then I wins. Next, i.e. assuming neither player has lost yet in this
way, we let MI and MII be the term-models of these theories, i.e. the structures
whose members are (equivalence classes) of formulas ϕ(x) which, in the appropriate
theory, define unique elements. (See [MS, pp. 241-242]). We next require that these
models are ω-models. (In the same sense as before, i.e. if MI is not an ω-model
then II wins while if MII is not an ω-model (but MI is), then I wins.)

We are now faced with the problem of comparing the two models MI and MII.
Intuitively we want to compare them in the sense of containment but we only have
them as term models so all we can hope for is an isomorphism from one to an initial
segment of the other. If they were both well-founded, this is not hard to understand as
both are then admissible initial segments of L. However, the models may be ill-founded.
We need a definition that makes sense in all cases and does the right thing when at
least one is well-founded. The crucial idea is to reduce everything to subsets of ω by
the countability of every Lβ inside each model. As both are ω-models, there is an easily
definable isomorphism between ωMI and ωMII (the identity on the terms x = 1+1 · · ·+1).
This isomorphism then carries over to the whole model using the definable countings.
The following definition captures this notion and slightly abuses notation by naming
the relation between models as containment. We use notations such as OnMI and RMI

to denote the obvious sets in MI (the ordinals in MI and the subsets of ωMI in MI,
respectively) and similarly for MII. We will use M:: when we want to consider either
or both of MI and MII ambiguously and will use similar notation for other objects
subscripted by I and II.

Definition 2.3. We say that MI is contained in MII, MI ⊆MII, if

∀α ∈ OnMI ∃x ∈ RMI , y ∈ RMII , β ∈ OnMII
[(
MI � x codes Lα

)
∧

(
MII � y codes Lβ

)
∧ ∀n ∈ ω

(
MI � n ∈ x ⇐⇒ MII � n ∈ y

)]
. (1)
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By a real x coding a structure such as < on an ordinal or ∈ on an Lβ (in M::), we
mean that when we view x as a set of pairs of natural numbers the relation defined by
that set of pairs is isomorphic to the one in M::. (We note that while not the definition
given in [MS, §5] this one, with β in place of Lβ, in the form of Claim 5.3 of [MS], is what
is actually used there and should there be taken to be the definition.) We here code all of
Lβ (and so, of course, β recursively in that code) simply because we primarily need the
Lβ and this version eliminates the need to think about going from β to Lβ in the codes.

Armed with this definition we can state the remaining winning conditions

G2. If MII =MI (in the sense that MI ⊆MII and MII ⊆MI) then I wins.

G3. If MI is well-founded, then I wins if

(a) MII is contained in MI, or

(b) MII is ill-founded and MI contains the well-founded part of MII.

G4. If MII is well-founded, then II wins if

(a) MI is contained in MII, or

(b) MI is ill-founded and MII contains the well-founded part of MI.

We next turn to Lemma 2.1. Its proof is fairly short if somewhat tricky. Most of the
ideas in the proof appear in the hint for Exercise 1.4.2 in a draft of a book by Martin
[n.d.]. In that exercise one is asked to prove H. Friedman’s result [1971] that Σ4-DET
implies the existence of β0.

Proof of Lemma 2.1. Suppose G ∈ G and assume that αn+1 does not exist. We show
that no player has a winning strategy for G.

We first claim that the set Y = {α| Lα |= T and every member of Lα is definable in
Lα} is unbounded. If not, let δ = supY , and let α be the least admissible ordinal greater
than δ. LetM be the elementary submodel of Lα consisting of all its definable elements.
Then δ ∈M. Since αn+1 does not exist, every ordinal is countable, and hence there is a
bijection between ω and δ and the <L-least such bijection belongs to M. Thus δ ⊆M,
indeed δ + 1 ⊆M. Since the Mostowski collapse of M is admissible and contains δ + 1,
it must be Lα. It follows that every member of Lα is definable in Lα and hence that
α ∈ Y for the desired contradiction.

Suppose now that player I has a winning strategy σ for G. Let α ∈ Y be such that
σ ∈ Lα. We claim, for our desired contradiction, that if I follows σ and II plays Thα, the
theory of Lα, II wins. First, player I will not play Thα, because if he did, then following
σ would produce exactly the same moves as playing against a strategy for II that just
copies I’s moves. Hence σ could compute the full play of this game and so Thα. However,
Thα 6∈ Lα because every member of Lα is definable in Lα and truth for Lα is not.

11



So,MI 6=MII. Now we have to consider conditions G3 and G4. As we are assuming
MII = Lα it is well-founded. (The term model of Th(Lα) is (isomorphic to) Lα for
α < αn+1.) Since σ ∈ Lα and Thα ∈ Lα+2, Th(MI) ∈ Lα+2, and hence the reals in MI

all belong to Lα+2. So ifMI is well-founded it is an admissible proper initial segment of
Lα = MII and G3 does not apply but G4(a) does and II wins G. If MI is ill-founded,
then the well-founded part of MI is included in Lα as otherwise it would go beyond
Lα and so contain reals beyond Lα+2. So II wins again. Thus, in any case, we have
contradicted the assumption that I has a winning strategy for G.

Finally, suppose that II has a winning strategy σ for G. Again, let α ∈ Y be such
that σ ∈ Lα. We claim that if I plays Thα, he wins. Note that II cannot copy I’s moves,
or he would loose by G2. The rest of the argument is analogous to the one above with I
winning by either G3(a) or G3(b) depending on whetherMII is well-founded or not.

We now turn to the new and much more difficult Lemma 2.2. Our proof adapts and
extends the machinery developed in §5 of [MS].

2.1 Proof of Lemma 2.2

We begin by describing various Π0
3 conditions (i.e. sets) a Boolean combination of which

could be used to specify a game G ∈ G. We then show how to reorganize the game so
as to get one that is Π0

3,n and show that it is in G. (Making G a Π0
3,n game suffices by

Remark 1.4.) Note that to show that a game G is in G it suffices to prove that for every
play of the game which has a winner determined by the rules of G, the specification of G
determines the same winner.

Our description incorporates variants of most of the conditions of [MS, §5] as well as
some new ones. To make our treatment more nearly self-contained, we repeat, at times
with modifications, some of the definitions and proofs from [MS].

First we can clearly guarantee that G1 is satisfied by using the following conditions:

(RI0): II does not play a complete consistent extension of T .
(RII0): I does not play a complete consistent extension of T .

(RI1): MII is not an ω-model.
(RII1): MI is not an ω-model.

For most of the quantifier complexity assertions below a crucial fact to keep in mind
is that the plays of our game specify Th(M::) and so saying that some sentence of set
theory is true in M:: is recursive in the play. Also the map from n to the term denoting
n in M:: is recursive.

Claim 2.4. Conditions (RI1) and (RII1) are Σ0
1. Conditions (RI1) and (RII1) are Σ0

2.

Proof. For the first assertion, saying that the set of sentences played form a complete
and consistent theory is Π0

1. Saying that the axioms of Tn are included in these sets is
also Π0

1.

12



For the second, to say that a term model M is an ω-model, we have to say that
for every term t, if M � t ∈ ω (i.e. in M, the unique element satisfying the associated
formula is a member of ω), then there exists a number n such thatM � t = 1+1+ ....+1,
where 1 is added n times. This is a Π0

2 formula about M.

Next, we can guarantee that G2 is satisfied using the condition

(RI2): MI =MII.

Claim 2.5. Condition (RI2) is Π0
3.

Proof. Note that containment in each direction is Π0
3 by inspecting Definition 2.3.

An inspection of the remaining rules for G shows that if MI (MII we need to let II
win ifMII is well-founded and let I win ifMII is not andMI is its well-founded part. In
§2.2 we introduce a new condition (RInew) to handle this case. Similarly if MII (MI

we need to let I win if MI is well-founded and let II win if MI is not and MII is its
well-founded part. We here use an analogous condition (RIInew).

If MI and MII are incomparable, then the only cases we are interested in, i.e. for
which the definition of G determines a winner of the game, are ones when one of the
models is well-founded. In these cases we will use conditions (RI2 + k) and (RII2 + k) for
k ≥ 1 as defined below to verify that the definition of G is satisfied.

We now turn to a description of the conditions not yet described. We assume from
now on that MI and MII are distinct ω-models of T as will be guaranteed by our
final organization of the conditions (RI0), (RII0), (RI1), (RII1) and (RI2) in §2.4. As
MI 6=MII, the rules for G only specify a winner when at least one of them is well-founded.
Thus we can restrict ourselves to this case. We begin with the cases corresponding to
G3a and G4a.

2.2 Comparable models

We define conditions that will be used to recognize ifMII is ill-founded in the case when
MI ⊂ MII and if MI is ill-founded in the case when MII ⊂ MI with an eye toward
satisfying the rules given by G3(a) and G4(a).

(RInew): MI ⊆MII and, for every β ∈ OnMII \ AII, MI �n L
MII
β .

(RIInew): MII ⊆MI and, for every β ∈ OnMI \ AI, MII �n L
MI
β .

Here AI is the image inside MI of the “intersection” of MI and MII, i.e. the union
of all the Lβ in MI with codes that are in MII as reals which, in MII, also code some
Lδ. This makes sense since we are assuming that one of the models is well-founded
and so isomorphic to an Lβ. The notation for II is analogous and we use A to denote
ambiguously the structure which is (isomorphic to) AI and AII and the isomorphism
between them, i.e. the set of pairs 〈a1, a2〉 such that the isomorphism takes a1 ∈ AI to
a2 ∈ AII.

13



Claim 2.6. The sets A, AI and A2 are Σ0
2.

Proof. For A we have the following Σ0
2 definition.

(z, w) ∈ A ⇐⇒ ∃x ∈ RMI , y ∈ RMII
(
MI � x codes z ∧ MII � y codes w ∧
∀n ∈ ω

(
MI � n ∈ x ⇐⇒ MII � n ∈ y

))
.

For AI we have that z ∈ AI ⇐⇒ ∃w ((z, w) ∈ A), and analogously for AII.

Claim 2.7. (RInew) and (RIInew) are Π0
3 conditions.

Proof. Consider (RInew). As noted in the proof of Claim 2.5, MI ⊆ MII is a Π0
3

condition. Since AII is Σ0
2 by Claim 2.6, the set OnMII \ AII is Π0

2. Finally, as we are
assuming that MI ⊆ MII, MI �n LMII

β means that there is a Σn formula ϕ(x) and

a pair of parameters (x1, x2) ∈ A such that ¬(MI � ϕ(x1) ⇐⇒ LMII
β � ϕ(x2)). As

membership in A is Σ0
2 by Claim 2.6 and satisfaction in each structure or members of it

such as Lβ is recursive in the theories the whole relation is Π0
3 as required. The argument

for (RIInew) is analogous.

Now the crucial fact for our analysis is that certain failures of these conditions produce
a well founded Σn+1 admissible and so would contradict our hypothesis that αn+1 does
not exist.

Lemma 2.8. Suppose MI is the well-founded part of MII and

∃β ∈ OnMII (MI �n LMII
β ).

Then MI is Σn+1 admissible. The same is true with I and II interchanged.

Proof. We prove that MI is Σk admissible by induction on k ≤ n + 1. For k = 1, this
holds by our condition thatMI is a model of KP . (It would also follow from [MS Lemma
3.4] without this assumption on T .) So assume it is k−1 admissible but not k admissible
for k ≤ n + 1. Let a function f witnessing the failure of k admissibility be defined by
the Σk formula ∃uϕ(x, y, u) where ϕ is Πk−1. As every set in MI is countable we may
assume that the domain of f is ω. Of course, f is unbounded in MI. Consider now the
formula θ(x, 〈y0, y1〉) ≡ ϕ(x, y0, y1) & ∀z <L y1¬ϕ(x, y0, z). By Σk−1 admissibility the
second conjunct is equivalent (in MI) to a Σk−1 formula saying that there is a function
from {z|z <L y1} to the associated witness that ϕ(x, y0, z) fails.

Consider now the set S defined inMII as {〈y0, y1〉 |∃x ∈ ω(Lβ � θ(x, 〈y0, y1〉) & Lβ �
(∀ 〈z0, z1〉 <L 〈y0, y1〉)(¬θ(x, 〈z0, z1〉)}. It is clear from the definition of S that, for each
x ∈ ω, there is at most one 〈y0, y1〉 ∈ Lβ put into S by x. On the other hand, for each
x ∈ ω there is a unique 〈y0, y1〉 satisfying θ in MI (as f is a function y0 is unique and
y1 was defined to be least such that ϕ(x, y0, z)). This 〈y0, y1〉 must also satisfy θ in LMII

β

as θ is a conjunct of a Πk−1 and a Σk−1 formula and MI �k−1 L
MII
β . As MI is an initial
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segment of LMII
β , any 〈z0, z1〉 <L 〈y0, y1〉 in LMII

β is inMI and so if it satisfied θ(x, 〈z0, z1〉)
in LMII

β it would satisfy it inMI but, as above, there is only one such pair inMI. So the
only pair put into S by x ∈ ω inMII is the unique 〈y0, y1〉 such thatMI � θ(x, 〈y0, y1〉).
Thus S ⊆MI and, as f was unbounded inMI, we have that ∪S = ∪MI and so we have
defined the well founded part of MII in MII for a contradiction.

The same proof works with I and II interchanged.

The consequence of this key fact that we need to satisfy G3(a) and G4(b) is the
following:

Lemma 2.9. If MI ⊆ MII and MI is well-founded, then (RInew) holds if and only if
MI is equal to the well-founded part ofMII. The same is true with I and II interchanged

Proof. If MI is not equal to the well-founded part of MII, then the well-founded part
of MII is strictly greater than that of MI by our assumptions. Thus there is a β ∈
OnMII −AII such thatMI = LMII

β . For this β we haveMI �n LMII
β and so the required

failure of (RInew).

For the other direction of our if and only if, suppose that MI is the well-founded
part of MII, but that (RInew) does not hold. By Lemma 2.8, MI is n + 1-admissible
contradicting our basic assumption that αn+1 does not exist.

The same proof works with I and II interchanged.

For the remaining cases, we have to primarily consider those where neither MI nor
MII is contained in the other. In this case, we can assume that exactly one of them is
well-founded. (Two well founded models of V = L are always comparable and we already
know that one has to be well-founded for the play to be relevant.) In this case, it suffices,
by the definition of G, to guarantee the player producing the well-founded model wins.

2.3 Incomparable models

IfMI andMII are incomparable (as will be guaranteed at some point in our game by the
failure of previous conditions) we may assume that exactly one of them is well-founded.
We denote the well-founded one byM and the ill-founded one by N . We want to identify
the one which is well founded to determine the winner so as to satisfy G3(b) and G4(b).
Each condition in the sequence to be described below asks for a descending chain in one
of the models. The failure of each successive condition produces a model with one more
level of admissibility. If one condition succeeds then we identify the well founded model
and can declare a winner consistent with G3(b) and G4(b). If all of them fail we produce
a Σn+1 admissible for the desired contradiction.

The idea in the definition of the remaining conditions (R::2+k) is that we want them
to provide evidence that one of the models is ill-founded by finding a nonempty set of
ordinals without a least element. (The nonemptyness was inadvertently left out in [MS]
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but this makes no significant difference in the proofs provided there.) To this end we
define various sets of ordinals in the two models and establish some of their properties.

Looking ahead to our proof of the nonreversal of Theorem 1.10(5) in §3, it would
be useful for the readers of this section to note that all the Lemmas apply to similar
games. To be specific, in §3 we have a theory T ∗n in place of T here. This theory implies
that there are unboundedly many n-admissibles but that the universe has Σ1-cofinality
ω rather than being admissible. It still satisfies all sets are countable. While some of the
conditions defining the game there are different, the general set up is quite similar. When
we consider a play of the game there the cases of interest will be that exactly one of the
two models is the standard model of the theory (Lα∗n) and the other is a nonstandard
model of the theory incomparable (in the above sense of containment) with the standard
model. It is routine to verify that all the Lemmas of this section apply to such a situation.

Definition 2.10.

CMII,1 = {β ∈ OnMII : ∃(x1, x2) ∈ A, ϕ ∈ ∆0,((
∃z ∈ LMII

β MII � ϕ(z, x2)
)
∧

(
MI � ¬∃yϕ(y, x1)

))
}.

CMI,1 is defined analogously.

Claim 2.11. The sets CMII,1 and CMI,1 are Σ0
2.

Proof. By Claim 2.6, A is Σ0
2 while the second line of the definition is computable from

the elementary diagrams of MI and MII.

We now have our first level of the (R::2 + k) conditions:

(RI3): CMII,1 is not empty and has no least element.
(RII3): CMI,1 is not empty and has no least element.

Clearly these conditions are Π0
3.

At this point in [MS] we could assume that the models were incomparable. Unfor-
tunately, in our game will not be able to know that the models are incomparable until
after we consider (RI3), (RII3) and (RI4). This necessitates a real modification in the

definition of C
β1,β2
MII,k

and (Fk−1) which are used below to define the (R::(2 +k)) for k > 1.
We must now allow for the possibility that β1 or β2 might take on the value ∞. (Look-
ing ahead, the advantage of this change is that, if MI ⊆ MII, we might still have that
(F1)(∞, β2) for some β2 when it might fail for every β1 ∈MI (which is well-founded).)

Definition 2.12. For k ≥ 1 we define the condition (Fk)(β1, β2) by

β1 ∈ (OnMI rAI) ∪ {∞} ∧MI � β1 is (k − 1)-admissible ∧
β2 ∈ (OnMII rAII) ∪ {∞} ∧MII � β2 is (k − 1)-admissible ∧

LMI
β1
≡k,A LMII

β2
.
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Here 0-admissibility is taken to be just transitivity and LM::
∞ is taken to be M::. The

symbol ≡k,A denotes Σk-elementary equivalence with parameters from A. In other words,
LMI
β1
≡k,A LMII

β2
means that for every Σk formula ϕ(z), and every x1 ∈ AI and x2 ∈ AII,

if x1 and x2 represent the same set (i.e. (x1, x2) ∈ A), then LMI
β1
� ϕ(x1) ⇐⇒ LMII

β2
�

ϕ(x2).

Claim 2.13. The relation Fk is a Π0
2 property of β1 and β2.

Proof. By Claim 2.6, OnM:: r A:: are Π0
2. Whether βi is (k − 1)-admissible is just one

sentence in the theory of the structure. To check that LMI
β1
≡k,A LMII

β2
, we need to

say that, for every Σk formula ϕ(x), and for every pair of parameters (x1, x2) ∈ A,
MI � ϕ(x1) ⇐⇒ MII � ϕ(x2). As A is Σ0

2 by Claim 2.6, counting quantifiers shows
that (Fk) is Π0

2.

We next define the sets C
β1,β2
MII,k

and C
β1,β2
MI,k

(correcting two typos in [MS]).

Definition 2.14. For k > 1,

C
β1,β2
MII,k

= {β < β2 : ∃(x1, x2) ∈ A, ∃ϕ ∈ Sk−1(
∃z ∈ LMII

β LMII
β2
� ϕ(z, x2)

)
∧

(
LMI
β1
� ¬∃yϕ(y, x1)

)
}.

Here Sk−1 is the class of formulas that are Boolean combinations of formulas of the form
(∀x ∈ z)ψ(x, z, ȳ) where ψ is Σk−1. Again β1 or β2 may be ∞ and LM::

∞ is taken to be

M::. C
β1,β2
MI,k

is defined analogously.

We note the following property of Sk sentences for any ω-models MI and MII pro-
duced according to the rules of our game so far.

Lemma 2.15. If LMI
β1
≡k,A LMII

β2
, then LMI

β1
and LMII

β2
satisfy the same Sk-sentences with

parameters from A substituted for the free variables z and ȳ.

Proof. Let ϕ be a sentence of the form (∀x ∈ z)ψ(x, z, ȳ) with parameters from A where
ψ is Σk. Since ϕ has no free variables, z and ȳ are parameters from A, and so every x ∈ z
is also in A. Since LMI

β1
≡k,A LMII

β2
, we have that for every x ∈ z, LMI

β1
� ψ(x, z, ȳ) ⇔

LMII
β2
� ψ(x, z, ȳ). So, of course, LMI

β1
� ϕ ⇔ LMII

β2
� ϕ. Finally, if φ is a Boolean

combination of sentences of this form, then we also have LMI
β1
� φ⇔ LMII

β2
� φ.

We can now define the remaining conditions R::(2 + k) for k > 1.

Definition 2.16. For k > 1,
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(RI(2 + k)): For every β1, β2, if (Fk−1)(β1, β2), then C
β1,β2
MII,k

is not empty and

has no least element.

(RII(2 + k)): For every β1, β2, if (Fk−1)(β1, β2), then C
β1,β2
MI,k

is not empty and

has no least element.
Here again β1 and β2 may be ∞ as well as ordinals of M

I
and M

II
, respectively.

We must now verify the key properties of the conditions ((R::(2+k))). WhenMI and
MII are incomparable, as remarked above, one of them, denoted by M, is well-founded
and the other, denoted by N , is not. In this case, we only need some modifications of
the proofs in [MS] to accommodate the possibility that β1 or β2 is ∞.

Lemma 2.17. If G1 does not determine the winner of a play of our game (i.e., RIi and
RIIi fail for i < 2), the models M and N produced are incomparable (i.e. G2 does not
determine the winner of the play) and both RI3 and RII3 fail, then there is a β ∈ OnNrA
such that A 41 L

N
β and so β1 and β2 such that F1(β1, β2) holds.

Proof. Suppose the first assertion fails, that is, for every γ ∈ OnN r A, there is a Σ1

formula with parameters in A, that is true in Lγ but not in A. Since conditions (RI3) and
(RII3) are not satisfied, CN ,1 is empty or has a least element δ. If CN ,1 is empty, then,
by definition, A 41 L

N
β for every β ∈ OnN rA. Thus, we may assume that CN ,1 has a

least element δ. Notice that δ cannot be in A because if the witness z for a ∆0 formula
ϕ(z, x2) is in LNδ ⊆ A, then ∃yϕ(y, x1) also holds inM. Let δ > γ0 > γ1 > γ2 > ... be a
descending sequence in OnN rA, converging down to the cut (OnA, OnN rA). For each
i, there is a ∆0 formula ϕi with parameters from A and a <L-least witness zi ∈ Lγi such
that N � ϕi(zi) but A � ¬∃yϕi(y). By thinning out the sequence if necessary, we may
assume that zi ∈ Lγi but zi 6∈ Lγi+1

. So {zi : i ∈ ω} is an <NL -descending sequence. Since

γi 6∈ CN ,1,M � ∃yϕi(y). Let yi be the <ML -least such witness. SinceM is well-founded,
the sequence {yi : i ∈ ω} cannot be a <M

L -descending sequence. So, there exists i < j
such that zj <

N
L zi but yi <

M
L yj. Therefore, Lγj is a witness in Lγj+1 for x showing the

truth in N of the ∆0 formula

ψ(x) ≡ ∃z ∈ xϕj(z) ∧ ∀z ∈ x¬ϕi(z)

but there is no witness for ψ(x) in M. This shows that γj + 1 is in CN ,1, contradicting
our choice of δ as the least element of CN ,1.

Now choose α such that Lα = A and so α ∈ M and β the ordinal of N such that
A 41 LNβ . By the definition of F1, α and β, in the appropriate order, provide the
required witnesses for F1.

Lemma 2.18. Suppose that β1, β2 satisfy (Fk). As the definition of Fk is symmetric
we may suppose that β1 ∈M and β2 ∈ N . Then

1. Lα 4k Lβ1
and A 4k Lβ2

.

2. α is (k + 1)-admissible.
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3. There exists a descending sequence of N -ordinals γ converging down to OnA such
that Lγ 4k Lβ2

.

Proof. If β1 6= ∞, it is simply an ordinal in the well-founded M and LMβ1
= Lβ1

. If

β1 = ∞ then as usual LMβ1
= M but note that in this case, as M is well-founded, we

may also view β1 as the (true) ordinal of M = Lβ1
. For β2 =∞, we simply view LNβ2

as
N .

First, we note that {α} is not Σk definable in Lβ1
with parameters from Lα. Suppose

otherwise. Since α ∈ M � T , every α is countable in Lα+1 ∈ M by [MS Lemma 3.5].
Thus there is a definable over Lα map from ω onto α (possibly with parameters). This
defines in Lα, an ordering of ω of order type α. This ordering cannot belong to N as it
would then define its well-founded part. In Lβ1

we can define this ordering with a Σk

formula using the Σk definition of α and quantification over Lα. Since Lβ1
= LMβ1

≡k,A
LNβ2

, this ordering is definable in LNβ2
by the same formula, and hence belongs N for the

desired contradiction.

Now for part (1), since β1 is (k−1)-admissible, Lβ1
has a Σk-Skolem function without

parameters ([MS Lemma 3.1]). Let H be the Σk-Skolem hull of Lα in Lβ1
. We show that

H = Lα. Note that this implies that Lα 4k Lβ1
(as desired) and also A 4k Lβ2

since
LMβ1
≡k,A LNβ2

by Fk. Suppose that H ) Lα. Let Lγ be the Mostowski collapse of H, so
α < γ ≤ β1. Let α′ be the ordinal in H that is sent to α ∈ Lγ by the collapse. As α′ is
in the image of the Σk Skolem function, {α′} is Σk definable in H with parameters from
Lα . The same formula then gives a definition of {α} in Lγ as the collapse is the identity
on members of Lα. Thus {α} is Σk definable in Lγ with parameters from Lα but clearly

LMγ ≡k,A H ≡k,A LMβ1
.

So {α} would be Σk definable in LMβ1
contradicting our first observation.

(2) Suppose α is not (k+1)-admissible and so (since every ordinal is countable inM)
there is a Πk/Lα function f from ω onto α. Since A 4k LNβ2

, the same formula defining

f over Lα defines a function from ω onto α in LNβ2
. But then, in N we could define its

well-founded part, Lα, for a contradiction.

(3) Now since α is (k + 1)-admissible, there are unboundedly many γ < α such that
Lγ 4k Lα ([MS, Lemma 3.3]). For all these γ we also have LNγ 4k L

N
β2

. The set of γ < β2

such that LNγ 4k L
N
β2

is definable in N . If for some δ ∈ OnN rA, the set of γ < δ such

that LNγ 4k L
N
β2

had supremum α, then α would be definable in N and we know it is not.

So for every δ ∈ OnN rA, there exists γ < δ, γ ∈ OnN rA such that LNγ 4k L
N
β2

.

Lemma 2.19. If in a play of our game the resulting real does not satisfy any condition
(RIi) or (RIIi) for i ≤ 2 + k, then there are β1 and β2 satisfying (Fk).

Proof. Lemma 2.17 shows that there are β1 and β2 satisfying (F1). The proof now
proceeds by induction, so, without loss of generality, we assume that we have witnesses
β1, β2 satisfying (Fk−1).
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We claim that no δ ∈ A is in C
β1,β2
N ,k . Consider δ ∈ A and any Sk−1 formula ∀x ∈

zϕ(z, ȳ) and z2, ȳ2 ∈ LNδ ⊆ A such that LNβ2
� ∀x ∈ z2ϕ(z2, ȳ2). Since Lβ1

and Lβ2
satisfy

the same Σk−1 formulas with parameters from A (by (Fk−1)), LMβ1
� ∀x ∈ z1ϕ(z1, ȳ1),

where z1 and ȳ1 are the images of z2, ȳ2 in M. Thus δ /∈ Cβ1,β2
N ,k by its definition.

Since the conditions (RI(2 + k)) and (RII(2 + k)) are not satisfied, C
β1,β2
N ,k is empty

or has a least element δ, necessarily not in A. By clause (3) of the previous lemma,
there is a descending sequence γ0 > γ1 > γ2 > ... in OnN (all below δ if it exists),
converging down to α = OnA, such that for each i LNγi 4k−1 L

N
β2

. We now argue much as

for Lemma 2.17. We claim that, for some i, Lα 4k LNγi . If not, there is, for each i, a Πk−1

formula ϕi(z) with parameters from A and a <NL -least zi ∈ Lγi such that Lγi � ϕi(zi)
and zi 6∈ A. As LNγi 4k−1 L

N
β2

, LNβ2
� ϕi(zi). By thinning out the sequence if necessary, we

may assume that zi ∈ LNγi but zi 6∈ LNγi+1
. So {zi : i ∈ ω} is an <NL -descending sequence.

Since γi 6∈ C
β1,β2
N ,k , LMβ1

� ∃yϕi(y). Let yi be the <ML -least such witness. Since M is

well-founded, the sequence {yi : i ∈ ω} cannot be a <ML -descending sequence. So, there
exist i < j such that zj <

N
L zi but yi <

M
L yj. Therefore, LNγj ∈ L

N
γj+1is a witness for x

showing the truth in LNβ2
of the Sk−1 formula

ψ(x) ≡ ∃z ∈ xϕj(z, x) ∧ ∀z ∈ x¬ϕi(z, x)

while there is no such witness for the corresponding formula in LMβ1
. This contradicts our

choice of δ as the least element of C
β1,β2
N ,k . Thus we have an i such that Lα 4k LNγi 4k−1 L

N
β2

.

Now LNγi is Σk−1 admissible by [MS Lemma 3.4] as LNβ2
is Σk−2 admissible by (Fk−1)

while α is (even) Σk admissible by our induction hypothesis and the previous Lemma
and so (Fk)(α, γi) as required.

As we shall see in our final organization of the conditions in the next section, the only
situation in which we have to rely on any of these facts without being able to assume
thatMI andMII are incomparable is the argument that F1 holds for some β1 and β2 if
(RI3) and (RII3) both fail. We analyze this situation when it occurs in the next section.

For now we suggest how the final arguments will produce the desired (n+1)-admissible
ordinal by combining Lemmas 2.17-2.19.

Corollary 2.20. If M and N are incomparable ω-models of T derived from a play of
our game with (in our notation as above) M = Lα and (RIi) and (RIIi) both fail for
i ≤ 2 + k, then α is (k + 1)-admissible.

Proof. For k = 1, Lemma 2.17 shows that F1(β1, β2) holds for some β1 and β2. Lemma
2.19 then shows that there are also β1 and β2 such thatFk(β1, β2) holds if k > 1. Finally
Lemma 2.18(2) says that α is (k + 1)-admissible as required.
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2.4 Organizing the Conditions and Verifications

Formally we define our Π0
3,n game G by a list of n many Π0

3 sets A0, A1 . . . , An−1 followed
by An = 2ω. Remember that I wins if the first of these sets containing the play of our
game has an even index and otherwise, i.e. the first one has an odd index, II wins. The
table below contains the definition of the Ai arranged with the even index ones in column
I and the odd index ones in column II in alternating blocks.

win for I win for II

(¬RII0&¬RII1)&
...

A0
[RI0 ∨RI1∨
MI =MII∨
(RInew)∨

(RI3)]
RII0 ∨RII1∨
MI ⊆MII∨

A1 (RIInew)∨
(RII3)∨
(RII4)

MII ⊆MI∨
A2 (RI4)∨

(RI5)
(RII5)∨

A3 (RII6)
...

An−1
...

We end this list with An−1 corresponding to (RII(1 + n)) ∨ (RII(2 + n)) if n ≥ 2 is
even and (RI(1 + n)) ∨ (RI(2 + n)) if n > 2 is odd. (Recall that we are only proving our
theorem for n ≥ 2.) This gives us n many conditions. We finish the description of the
game in standard Π0

3,n format by adding on the the full space 2ω as our (n + 1)st and
last set An. We now argue that the game G specified by this sequence of Π0

3 sets is in G.
If not, then there is a play of G that violates the defining conditions of G. We consider
any play and the set in our sequence in which it first appears and verify that we have
not violated the definition of G.

We begin with a play in A0. By the definition of A0, I has played a complete consistent
extension of T whose term model MI is an ω-model (as ¬RII0 and ¬RII1 hold and so I
has not lost the game yet according to G1). We now check each of the disjunctions in
the rest of the definition of A0 to see that a win by I given by satisfying the disjunction
is consistent with our definition of G. If RI0 or RI1 holds then I wins by G1. If they
fail then II has played a complete consistent extension of T whose term modelMII is an
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ω-model. If MI = MII then I wins by G2. Suppose now that MI 6= MII. Remember
that from now on we only need to consider plays of the game in which at least one of
the models is well-founded to verify that the winner declared by G is consistent with the
definition of G. If (RInew) holds then MI ⊂ MII by our assumption and the definition
of the condition. As we are assuming that (at least) one of the models is well-founded,
MI is certainly well-founded. Then by Lemma 2.9, MI is the well-founded part of MII

but, as the models are not equal, MII is not well-founded and I wins according to G3b.
Next, if (RI3) holds we only have to verify that the play cannot be a win for II according
to the rules for G, i.e. G4a or G4b. Now both of these require that MII is well-founded
but (RI3) says that it is not. So neither condition can require a win for II as desired.

We now move to A1 under the assumption that the play is not in A0. First if RII0
or RII1 hold then II wins the game according to G1. If not, we again have the two
models MI and MII being distinct and we need only consider the case that at least one
is well-founded.

Suppose then that the next condition, MI ⊆ MII, holds and so MI must be well-
founded. Under these conditions, the failure of (RInew) implies, by Lemma 2.9, thatMI

is not the well-founded part of MII and so neither G3a nor G3b can apply. Thus it is
consistent with the definition of G that we declare a win for II.

The next case is that (RIInew) holds and so in particular, MII ⊆MI, MII at least
must be well-founded and, by Lemma 2.9 again, MII is the well-founded initial segment
of MI which cannot be well-founded as MI 6= MII. Once again neither G3a nor G3b
can apply and we are safe.

Next we have (RII3). If it holds then MI is not well-founded and once again we can
safely declare a win for II. Finally, we have to consider the case that all the previous
conditions have failed but (RII4) holds. If we knew that there were β1 and β2 for which
F1 holds, we would again know that MI is not well founded and we can declare a win
for II. If MI and MII are incomparable then Lemma 2.17 tells is that F1 holds as
desired for the α and β described there. Thus we may assume that MII ⊂MI and MII

is well-founded. The failure of (RIInew) then tells us that, by Lemma 2.9, MII is not
equal to the well-founded part of MI. Thus there is a β ∈ OnMI − A and indeed that
α = ∪OnMII ∈MI −A. We then have F1(∞, α) as required.

Now if the play of the game is not in A0 or A1 then we have our modelsMI andMII.
If both are well founded then they are comparable and, by the failure to get into A0 or
A1, MII ⊂MI and according to G3a I should win the game. We claim this outcome is
always in A2 as desired. If we are considering n = 2 (and the sequence of sets from our
table ends with A1) then this is trivial since A2 = 2ω. If n > 2 then it is in A2 by the first
clause of its definition. Thus we may assume from now on (in our check of consistency
with the definition of G) that exactly one of the models is well-founded.

Next suppose that MII ⊆MI so MII is well-founded and not MI. The failure of
(RIInew) and Lemma 2.9 then says that MII is not the well-founded initial segment of
MI. Thus both G4a and G4b fail and it is safe for us to declare a win for I. From this
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point on in our argument we may assume that MI and MII are incomparable as well
as that exactly one is well-founded. At this point (RIi) and (RIIi) fail for i ≤ 3 as does
(RII4). If (RI4) holds, MII is not well-founded since there are, by Lemma 2.17, β1 and
β2 such that F1 holds. It is then safe to declare a win for I. If (RI4) fails, then, by
Corollary 2.20, we have a Σ3 admissible ordinal which is the desired contradiction for the
case n = 2 and we have finished our verification. If n > 2, (RI4) fails but (RI5) holds,
MII is once again not well-founded by Lemma 2.19. Thus we may safely declare a win
for I.

Next consider n = 3. We already know that our play getting into A0, A1 or A2 is
consistent with being in G. If it fails to get into A0, A1 or A2, but satisfies (RII5) or
¬(RII5) ∧ (RII6) then MI is not well-founded as in the previous cases and it is safe to
declare a win for II. If both fail, then Corollary 2.20 provides a Σ4 admissible ordinal for
the desired contradiction. The analysis for all n > 3 is now the same as for n = 3 and
we have that for every n ≥ 2 our Π0

3,n game given by the specifications above is in G to
complete the proof of Lemma 1.6.

3 No reversal

We now prove that (5) in Theorem 1.10 does not reverse. That is, for every n ≥ 2,
β(∆1

n+1-CA0) 0 (n− 1)-Π0
3-DET.

Let α∗n be the first limit of n-admissibles. Thus, R∩Lα∗n |= β(∆1
n+1-CA0) and is itself a

β-model. We will modify the proofs of Theorem 1.8 and Lemma 2.2 to provide a witness
to the nonreversal.

Theorem 3.1. The model given by Lα∗n , i.e. R∩Lα∗n, does not satisfy (n− 1)-Π0
3-DET.

The crucial lemma is the following:

Lemma 3.2. For every n ≥ 2, there is a game G∗n that is (n-1)-Π0
3, such that, if we

interpret the play of each player as the characteristic function of a set of sentences in the
language of set theory, then

1. If I plays Thα∗n, he wins.

2. If I does not play Thα∗n but II does, then II wins.

We first provide the proof of the Theorem from the Lemma.

Proof of Theorem 3.1 from Lemma 3.2. As we mentioned above, R ∩ Lα∗n is a β-model
of β(∆1

n+1-CA0) and so it suffices to show that Lα∗n 2 (n-1)-Π0
3-DET. Let G be as in the

Lemma; and suppose it is determined in Lα∗n . Player II cannot have a winning strategy
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for G in Lα∗n because if II has a winning strategy σ in Lα∗n , σ would also be a winning
strategy in V as R ∩ Lα∗n is a β-model (and σ being a winning stratgey for G is a Π1

1

property). But, I has a winning strategy for G in V by clause (1) of the Lemma. So, I
must have a winning strategy σ for G in Lα∗n . Again, as R∩Lα∗n is a β-model, σ is truly
a winning strategy for I (in V ). We claim that if II plays so as to simply copy I’s moves,
then σ has to play Thα∗n . If not, then at some first point I plays a bit that is different
from Thα∗n . At this point II could stop copying I and just continue playing Thα∗n and he
would win (by clause (2) of the Lemma). Thus σ would not be a truly winning strategy
for I (in V ). We conclude that σ computes Thα∗n as the sequence of I’s plays against II’s
copying his moves and so Thα∗n ∈ Lα∗n for the desired contradiction.

The proof of Lemma 3.2 is similar to that of Lemma 2.2 and we adopt much of its
notation.

We do, however, replace the theory T with the following:

T ∗n = V = L + there are unboundedly many n-admissibles, but only finitely many
below each ordinal.

So, Lα∗n is the least well-founded model of T ∗n and is also a β-model. The general set
up is as in Lemma 2.2 including the notations such as MI,M::,A,AI, (R::i), etc. One
new fact that simplifies the conditions needed for our game is a simple one:

Lemma 3.3. If MI 6= MII are ω-models of T ∗n then they are incomparable (all in the
sense of the notion of containment from Definition 2.3).

Proof. If MI ( MII then there are unboundedly many n-admissibles in MI and some
β ∈ OnMII −A and so infinitely many n-admissibles inMII below β contradictingMII

being a model of T ∗n .

We also change the conditions (R::new) to reflect the new theory:

(RInew∗):

MI is an ω-model of a complete consistent extension of T ∗n and
(∀β ∈ OnMI \ AI ∀m ∀ 〈γ1, . . . , γm〉 an increasing sequence of n-admissibles ≤ β in MI)
{[∃γ ∈ OnMI(∀i ≤ m(γ 6= γi) and MI � γ ≤ β is n-admissible] or [∃i ≤ m(LMI

γi
= AI)]}.

(RIInew∗):

MII is an ω-model of a complete consistent extension of T ∗n and
(∀β ∈ OnMII \ AII ∀m ∀ 〈γ1, . . . , γm〉 an increasing sequence of n-admissibles ≤ β in MII)
{[∃γ ∈ OnMII(∀i ≤ m(γ 6= γi) and MII � γ ≤ β is n-admissible] or [∃i ≤ m(LMII

γi
= AII)]}.

Using the Claims above about quantifier complexity, we can easily verify that saying
that LM::

γi
= A:: is Π0

3 and that the conditions (RInew∗) and (RIInew∗) are also Π0
3.
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We now replace the old conditions (R::new) on our list by the (R::new∗). Because of
Lemma 3.3 we can omit the conditions MI ⊆ MII and MII ⊆ MI in the A1 and A2

groups, respectively. Otherwise, our new game G∗n is defined by the same sequence of
conditions given in §2.4 except that we are producing a Π0

3,n−1 game rather than a Π0
3,n

one:

win for I win for II

(¬RII0&¬RII1)&
...

A0
[RI0 ∨RI1∨
MII =MI∨
(RInew

∗)∨
(RI3)]

RII0 ∨RII1∨
A1 (RIInew

∗)∨
(RII3)∨
(RII4)

A2 (RI4)∨
(RI5)

(RII5)∨
A3 (RII6)

...

An−2
...

Again, we add on 2ω as the last entry but here in the An−1 slot. We must verify
that these conditions define a game G∗n as required for Lemma 3.2. We begin with
characterizing the relevant situations in which (R::new∗) holds.

Lemma 3.4. IfMI andMII are distinct ω-models of T ∗n then (R::new∗) holds if and only
if
(i) ∃γ[(M:: � γ is n-admissible) and LM::

γ = A::].

Proof. Suppose (i) holds and consider any β and 〈γ1, . . . , γm〉 as in the definition of
(R::new∗). (There is such a β by Lemma 3.3.) If (i) holds with witness γ, then either
γ can be added to the list of γi or it is already one of them and so (R::new∗) holds as
required. On the other hand, if (R::new∗) holds and (i) fails then, by Lemma 3.3, there is
a β ∈ M:: −A:: and so by the definition of T ∗n there is an m and a sequence 〈γ1 . . . γm〉
containing all the n-admissibles ≤ β inM::. For this sequence, (R::new∗) guarantees that,
for some i ≤ m, LM::

γ = A:: as required.

We must now verify that these conditions cannot cause a loss for the first player to
play Thα∗n as required. If I plays Thα∗n and so MI = Lα∗n , then the first worry is that
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(RInew∗) and all the other clauses of the first group fail but (RIInew∗) holds. (The two
preceding disjuncts in group A1 clearly contradict MI = Lα∗n by asserting that it is not
an ω-model of Tα∗n .) By the failure of the clauses in A0, MII 6= MI and so by Lemma
3.4 there is an n-admissible γ ∈ MII such that LMII

γ = AII. As γ is admissible it is not
α∗n and so is strictly less than α∗n. In this case we would have γ + 1 in both MI and
MII and so in A for a contradiction. Now RII3 cannot hold as it implies that MI is not
well-founded. The next worry in this case is then that RII4 holds.

We recall that the proofs for the Lemmas of §2.3 apply for theories such as T ∗n whose
models are limits of admissibles and games of the sort we have here when considering
play for which exactly one of the two models constructed is standard and the two are
incomparable. That is precisely our situation at this point in our analysis. Thus we may
use all the Lemmas of §2.3. This suffices, for example, for our current case as Lemma
2.17 shows that there are β1 and β2 such that F1(β1, β2) holds and so RII4 would imply
that MI is not well-founded for a contradiction.

We now show that if II plays Thαn (and so MII = Lα∗n) but I does not, then I does
not win by group A0 being true. The first conjunct in A0 makesMI an ω-model of Tα∗n .
That MII = Lα∗n means that RI0, RI1 and RI3 all fail. By Lemma 3.3, MII 6= MI.
Finally, if RInew

∗ held then we would contradict MII = Lα∗n using Lemma 3.4 as in the
previous argument.

Suppose now that our play has passed the A0 and A1 groups without a winner having
been declared. We are still only concerned with plays in which one player plays Lα∗n , the
other does not, the two models are incomparable (and so the one not equal to Lα∗n is
not well-founded) and both R::new

∗ fail. The Lemmas from §2 and, in particular their
Corollary 2.20, show that if we pass through all the R::2 + i for 1 ≤ i ≤ k without
declaring a winner (i.e. they all fail), then α is Σk+1 admissible. For k = n−1 this would
contradict the assumed situation and, in particular, the failure of R::new

∗ by Lemma 3.4.
Thus one player must win the game and there is a first R::2 + i which holds. Whichever
it is, the associated F has witnesses by Lemma 2.18 and so the other model is not
well-founded. Thus only the player playing Lα∗n can win the game as required.
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