
Π11 relations and paths through O∗

Sergey S. Goncharov
Academy of Sciences, Siberian Branch

Mathematical Institute
630090 Novosibirsk, Russia
gonchar@math.nsc.ru

Valentina S. Harizanov
Department of Mathematics

The George Washington University
Washington, D.C. 20052, U.S.A.

harizanv@gwu.edu

Julia F. Knight
Department of Mathematics
University of Notre Dame

Notre Dame, IN 46556, U.S.A.
julia.f.knight.1@nd.edu

Richard A. Shore
Department of Mathematics

Cornell University
Ithaca, NY 14853, U.S.A.
shore@math.cornell.edu

February 25, 2004

1 Introduction
When bounds on complexity of some aspect of a structure are preserved under
isomorphism, we refer to them as intrinsic. Here, building on work of Soskov
[33], [34], we give syntactical conditions necessary and sufficient for a relation
to be intrinsically Π11 on a structure. We consider some examples of computable
structures A and intrinsically Π11 relations R. We also consider a general family
of examples of intrinsically Π11 relations arising in computable structures of
maximum Scott rank.
For three of the examples, the maximal well-ordered initial segment in a

Harrison ordering, the superatomic part of a Harrison Boolean algebra, and the
height-possessing part of a Harrison p-group, we show that the Turing degrees
∗The first three authors gratefully acknowledge support from the National Science Foun-

dation under binational Grant DMS-0075899. The second author was partially supported by
UFF grant of the George Washington University. The fourth author was partailly supported
by NSF grant DMS-0100035.
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of images of the relation in computable copies of the structure are the same as
the Turing degrees of Π11 paths through Kleene’s O. With this as motivation, we
investigate the possible degrees of these paths. We show that there is a Π11 path
in which ∅0 is not computable. In fact, there is one in which no noncomputable
hyperarithmetical set is computable.1 There are paths that are Turing incom-
parable, or Turing incomparable over a given hyperarithmetical set. There is a
pair of paths whose degrees form a minimal pair. However, there is no path of
minimal degree.
In Section 2, we summarize earlier results on intrinsically c.e. and intrinsi-

cally Σ0α relations. In Section 3, we rework Soskov’s results, and we give our
result on intrinsically Π11 relations. In Section 4, we describe the examples. In
Section 5, we show that for the well-ordered initial segment of the Harrison or-
dering and related examples, the degrees of images of the relation in computable
copies of the structure match those of Π11 paths through O. In Section 6, we
give results on degrees of paths through O. In the remainder of the present
section, we give some background. Most of this material may be found in the
book by Ash and Knight [3].

1.1 Kleene’s O
We give a brief description of Kleene’s system of notation for computable ordi-
nals. Further details may be found in [29] or [3]. The system consists of a set O
of notations, together with a partial ordering <O. The ordinal 0 gets notation 1.
If a is a notation for α, then 2a is a notation for α+1. Then a <O 2a, and also,
if b <O a, then b <O 2a. Suppose α is a limit ordinal. If ϕe is a total function,
giving notations for an increasing sequence of ordinals with limit α, then 3 ·5e is
a notation for α. For all n, ϕe(n) <O 3 · 5e, and if b <O ϕe(n), then b <O 3 · 5e.
We may write |a| for the ordinal with notation a. If a ∈ O, then the restric-

tion of <O to the set pred(a) = {b ∈ O : b <O a} is a well ordering of type |a|.
For a ∈ O, pred(a) is c.e., uniformly in a. The set O is Π11 complete. A Π
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subset of O is ∆11 iff it is contained in a set of the form Oα = {b ∈ O : |b| < α},
where α is a computable ordinal.

1.2 Computable infinitary formulas

Next, we say a little about computable infinitary formulas. Roughly speaking,
the computable infinitary formulas are infinitary formulas with disjunctions and
conjunctions over c.e. sets. Taken all together, the computable infinitary for-
mulas have the same expressive power as the formulas in the least admissible
fragment of Lω1ω. It is useful to classify elementary first order formulas, in
prenex normal form, as Σn or Πn. For infinitary formulas, there is no prenex
normal form, but we have the following.

Classification of computable infinitary formulas
1This provides a new solution to Problem 71 on H. Friedman’s list [10].
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1. A computable Σ0, or Π0 formula is a finitary open formula.

2. Suppose α > 0, where α is a computable ordinal.

(a) A computable Σα formula is a c.e. disjunction of formulas ∃uψ(x, u),
where ψ is computable Πβ for some β < α.

(b) A computable Πα formula is a c.e. conjunction of formulas ∀uψ(x, u),
where ψ is computable Σβ for some β < α.

The description above is sufficient for our purposes. To make precise what
is a c.e. set of infinitary formulas, we would assign indices (based on ordinal
notation) to the formulas. For more about computable infinitary formulas,
see [3].

We consider only languages that are computable. This means that we can
decide what is a symbol, and we can effectively determine the type (relation
symbol or function symbol) and arity. We identify formulas with their Gödel
numbers. Our structures will all be countable, with universe a subset of ω,
which we think of as a computable set of constants. In measuring complexity
of structures, we identify A with its atomic diagram D(A). Thus, the stan-
dard model of arithmetic–the natural numbers with the usual addition and
multiplication–is a computable structure.
The most important feature of computable infinitary formulas is given in the

result below.

Theorem 1.1 (Ash) For any structure B, the relation defined in B by a com-
putable Σα formula is Σ0α relative to B, and the relation defined by a computable
Πα formula is Π0α relative to B. Moreover, this is true with all possible unifor-
mity.

Below, we state a Compactness Theorem. Kreisel [23] stated a version of the
result for ω-logic, and Barwise [7] (independently) gave a more general result for
arbitrary admissible fragments of Lω1,ω. The precise statement below is given
in [3].

Theorem 1.2 (Kreisel, Barwise) Let Γ be a Π11 set of computable infinitary
sentences. If every ∆11 subset of Γ has a model, then Γ has a model.

Theorem 1.2 can be used to produce computable structures.

Corollary 1.3 Let Γ be a Π11 set of computable infinitary sentences. If every
∆11 set Γ

0 ⊆ Γ has a computable model, then Γ has a computable model.
The following is a special case of a result of Ressayre [28].

Theorem 1.4 (Ressayre) Suppose A is a hyperarithmetical structure. Let
Γ be a Π11 set of computable infinitary sentences in a finite expansion of the
language of A, and suppose that for each ∆11 set Γ0 ⊆ Γ, A can be expanded to
a model of Γ0. Then A can be expanded to a model of Γ.
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Corollary 1.5 Let A be a hyperarithmetical structure. If a and b are tuples in
A satisfying the same computable infinitary formulas, then there is an automor-
phism of A taking a to b.

These results are all given in [3].

2 Intrinsically c.e. and intrinsically Σ0α relations
Below, we give some basic definitions. The first is from [5], and the second is
from [4], [8].

Definition 2.1 Let A be a computable structure, and let R be a relation on A.

1. R is intrinsically c.e. on A if in all computable copies of A, the image of
R is c.e.

2. R is relatively intrinsically c.e. on A if in all copies B of A (not just
computable copies), the image of R is c.e. relative to B.

If, in the previous definitions, we replace c.e. by Σ0α, ∆
1
1, Π

1
1, then we obtain

definitions of intrinsically, and relatively intrinsically, Σ0α, ∆
1
1, Π

1
1.

Ash and Nerode [5] gave a syntactical condition sufficient for a relation to
be intrinsically c.e. on a structure A. They showed that, with some added effec-
tiveness, on a single copy of A, the condition is also necessary. The syntactical
condition is in the following definition.

Definition 2.2 A relation R is formally c.e. on a structure A if it is defined
by a computable Σ1 formula; i.e., a c.e. disjunction of existential formulas, with
finitely many parameters in A.

Theorem 2.3 (Ash-Nerode) For a relation R on a computable structure A,
under some effectiveness conditions2 , R is intrinsically c.e. on A iff it is formally
c.e. on A.

In [4], [8], it is shown that the syntactical condition by itself, with no added
effectiveness, is necessary and sufficient for a relation to be relatively intrinsically
c.e. on A.

Theorem 2.4 (Ash-Knight-Manasse-Slaman, Chisholm) For a relation
R on a structure A, R is relatively intrinsically c.e. on A iff it is formally
c.e. on A.

2 It is enough to suppose that the existential diagram of (A, R) is computable.
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It would be pleasing if the intrinsically c.e. and relatively c.e. relations co-
incided. Then we could drop the effectiveness conditions from Theorem 2.3.
However, Goncharov [12] and Manasse [26] gave examples of relations R on
computable structures A such that R is intrinsically c.e. but not formally c.e.,
so by Theorem 2.4, R is not relatively intrinsically c.e. on A.

Harizanov [15] considered the degree spectrum of R on A, where this is the
set of Turing degrees of images of R in computable copies of A. The following
is just one of the results.

Theorem 2.5 (Harizanov) Let R be a relation on a structure A, and suppose
R is intrinsically c.e., while ¬R is not. Then, under some extra effectiveness
conditions3 , for any c.e. degree d, there is a computable copy of A in which the
image of R has degree d.

Example: Let A be an algebraically closed field of infinite transcendence
degree–the characteristic may be either 0 or p. Let R be the set of algebraic
elements. Then R is defined by a c.e. disjunction of polynomial equations,
with no parameters, so it is (relatively) intrinsically c.e. There is a copy of A
satisfying the effectiveness conditions of Theorem 2.5. Applying the theorem,
we can produce computable copies of A in which the set of algebraic elements
has any desired c.e. degree.

There are simple examples in which the spectrum consists of a single c.e.
degree.

Example: If A is the standard model of arithmetic, and R is a c.e. set, then
in all computable B ∼= A, the image of R is always c.e., with the same Turing
degree as R.

There are now many deep and interesting results, due to Harizanov [15],
Khoussainov and Shore [22], Hirschfeldt, Khoussainov, Shore, Slinko [18], and
others, illustrating further possible spectra for intrinsically c.e. relations.

Barker [6] lifted the Ash-Nerode Theorem to arbitrary levels in the hyper-
arithmetical hierarchy. Here is the natural extension of the syntactical condition
formally c.e.

Definition 2.6 A relation R on a structure A is formally Σ0α if it is definable
by a computable Σα formula, with finitely many parameters.

Theorem 2.7 (Barker) For a structure A and relation R, under some effec-
tiveness conditions, R is intrinsically Σ0α iff it is formally Σ

0
α on A.

Theorem 2.4 generalizes as follows [4], [8].

3Again, it is enough to suppose that the existential diagram of (A, R) is computable.
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Theorem 2.8 (Ash-Knight-Manasse-Slaman, Chisholm) For a relation
R on a computable structure A, R is relatively intrinsically Σ0α on A iff it
is formally Σ0α on A.

It is natural to consider spectra. In [2], there is one possible generalization
of Harizanov’s result (Theorem 2.5). It involves degrees that are coarser than
Turing degrees. As in [3], the symbol ∆0α is used to denote a complete ∆

0
α set.

(There is such a set naturally associated with each notation for α, but by a
result of Spector [35], the degree depends only on the ordinal and not on the
notation.)

Definition 2.9

1. A ≤∆0
α
B if A ≤T B ⊕∆0α,

2. A ≡∆0
α
B if A ≤∆0

α
B and B ≤∆0

α
A,

3. the equivalence classes under ≡∆0
α
are α-degrees.

Note that ≤∆0
1
, ≡∆0

1
are the same as ≤T , ≡T .

Theorem 2.10 (Ash-Knight) Let A be a computable structure, and let R be
a relation that is not intrinsically ∆0α on A. Then, under some extra effective-
ness conditions, for any Σ0α set C, there is an isomorphism F from A onto a
computable copy with F (R) ≡∆0

α
C.

The proof of Theorem 2.10 is a natural lifting of the proof of Theorem 2.5.
It is not possible to substitute Turing degrees for the coarser α-degrees. In [1],
there are examples of structures A and relations R, satisfying a great deal of
effectiveness, in which certain Σ0α Turing degrees, in particular, minimal degrees,
are impossible for the image of R.

3 Intrinsically ∆1
1 and intrinsically Π11 relations

Soskov gave results characterizing the intrinsically ∆11 relations and the rela-
tively intrinsically Π11 relations. In this section, we first rework Soskov’s results,
and then give our characterization of intrinsically Π11 relations.

3.1 Intrinsically ∆1
1 relations

In [34], Soskov proved the following result–his terminology was different from
ours.

Theorem 3.1 (Soskov) Suppose A is computable, and R is a ∆11 relation that
is invariant under automorphisms of A. Then R is definable in A by a com-
putable infinitary formula, with no parameters.

6



Proof: For simplicity, we suppose R is unary. The main step is the following.

Claim: There is a computable ordinal α such that for all a, b, if a ∈ R, and b
satisfies the computable Πα formulas true of a, then b ∈ R.

Proof of Claim: The structure (A, R) is hyperarithmetical. If there is no ordinal
α as in the claim, then using Theorem 1.4, we get a ∈ R and b /∈ R satisfying the
same computable infinitary formulas. By Corollary 1.5, some automorphism of
A takes a to b, a contradiction. This proves the claim.

Now, letting α be as in the claim, we easily obtain the conclusion of Theorem
3.1. For each a, let ψa(x) be the conjunction of all computable Πα formulas
true of a. Then R is defined by the disjunction of the formulas ψa(x), for a ∈ R.
This is equivalent to a computable infinitary formula.

Remarks:

1. There are no extra effectiveness conditions in Theorem 3.1. It is enough
for A to be hyperarithmetical.

2. Suppose R is invariant in A, so it is definable in some way. If there is
some computable copy in which the image of R is hyperarithmetical, then
in all computable copies, the image of R is hyperarithmetical.

Corollary 3.2 For a computable structure A, and a relation R on A, the fol-
lowing are equivalent:

1. R is intrinsically ∆11 on A,
2. R is relatively intrinsically ∆11 on A,
3. R is definable in A by a computable infinitary formula, with finitely many
parameters.

Proof: Clearly, 3 ⇒ 2 ⇒ 1. To see that 1 ⇒ 3, first note that R has only
countably many images under automorphisms of A. This implies that for some
tuple c, R is invariant under automorphisms of (A, c). Then by Theorem 3.1,
R is definable by a computable infinitary formula, with parameters c.

3.2 Intrinsically Π11 relations

The appropriate syntactical condition is in the following definition.

Definition 3.3 A relation R on A is formally Π11 on A if it is defined in A by a
Π11 disjunction of computable infinitary formulas, with finitely many parameters.

In [33], Soskov proved a result that may be restated as follows.
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Theorem 3.4 (Soskov) For a computable (or hyperarithmetical) structure A
and relation R on A, the following are equivalent:
1. R is relatively intrinsically Π11 on A,
2. R is formally Π11 on A.
Sketch of proof: Clearly, 2 ⇒ 1. To show that 1 ⇒ 2, we build a generic

copy B. The universe of B is a fixed computable set B of constants, and the
forcing conditions are (as in the proofs of Theorems 2.4 and 2.8) finite partial
1 − 1 functions from B to A. For simplicity, we suppose that R is unary. Let
RB be the image of R in B.
There is more than one way to assign indices toΠ11 sets. We consider subtrees

of ω<ω. A path in a tree T is a function f ∈ ωω such that for all n, f ¹ n ∈ T .
We can express the fact that T has no path using a notion of rank. A node
with no successors gets rank 0, and a node with successors gets rank α > 0 if
all of the successors have ranks and α is the least ordinal greater than these
ranks. We assign rank α to the tree if that is the rank of the top node ∅. A
node extends to a path just in case it is unranked. A tree has no path just in
case it has rank. For a computable (or hyperarithmetical) tree that has rank,
the rank must be a computable ordinal. A set S is Π11 (relative to X) iff there
is a family of trees (Tn)n∈ω, uniformly computable (relative to X), such that
n ∈ S iff Tn has no path. For more on Π11 sets and paths through trees, see [29].
As indices for a set S that is Π11 (relative to X), we use indices for the

sequences of trees (Tn)n∈ω described above. In particular, e is a Π11 index for
RB relative to B if for each b, ϕe(b) is an index for a tree Tb ⊆ ω<ω, computable
in B, such that b ∈ RB iff Tb has no path.
Our forcing language includes computable infinitary sentences describing

(B, RB), plus a sentence ψ saying that e is a Π11 index for RB. We describe this
sentence, which is not computable infinitary, and we say how the sentence is
forced. For each b and each computable ordinal α (actually, for each notation),
we have a computable infinitary sentence ρα,b saying that Tb has rank α. Now,
the sentence ψ says ^

b

^
[ b ∈ RB ↔

_
α<ωCK1

_
ρα,b ] .

We define forcing such that p k− ψ iff for all a,

a ∈ R⇔
_

α<ωCK1

_ _
b

_
(∃q ⊇ p) [ q(b) = a & q k− ρα,b ] .

As usual, statements in the forcing language are true of our generic copy
B just in case they are forced. For any computable infinitary sentence ϕ and
any tuple b from the universe of B, we can find a computable infinitary formula
forceb,ϕ(x), in the language of A, such that A |= forceb,ϕ(a) just in case the
condition p taking b to a forces ϕ. Recall the sentences ψ and ρα,b above.
Suppose p k− ψ, where p maps d to c. We get a formally Π11 definition of
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R, with parameters c, as follows. For each pair (α, b), we have a computable
infinitary formula ρ∗(α,b)(c, x) saying

(∃q ⊇ p) [q(b) = x & q k− ρα,b] .

The disjunction of the formulas ρ∗(α,b)(c, x) is the desired formally Π
1
1 definition

of R.

We may extract more information from the proof of Theorem 3.4.

Theorem 3.5 Suppose A is a hyperarithmetical structure, and R is an infinite,
coinfinite relation on A. If X is computable in the image of R in all copies B
such that o(hyp(B)) = ωCK1 , then X is computable.

The proof involves combining steps of the forcing construction with steps
from Ressayre’s construction of a hyperarithmetically saturated structure [28].
We do not give the details.

The next result is the analogue of Theorem 3.1.

Theorem 3.6 Suppose A is a computable structure, and let R be a relation on
A that is Π11 and invariant under automorphisms of A. Then R is formally Π11.
Moreover, there is a definition with no parameters.

Again, for simplicity, we suppose that R is unary. To prove Theorem 3.6,
we use the following.

Lemma 3.7 For each a ∈ R, we can find a ∆11 index for a set D(a), invariant
under automorphisms of A, such that a ∈ D(a) ⊆ R.

Proof of Lemma 3.7: For each a ∈ R, the orbit O1(a) is a Σ11 subset of R,
with index computed from a. By Kleene’s Separation Theorem, there is a ∆11
set D1(a) containing all of O1(a) and none of ¬R, again with index computed
from a. Let O2(a) be the union of the orbits of elements of D1(a). Then O2(a)
is a Σ11 subset of R. There is a ∆

1
1 set D2(a) containing all of O2(a) and none

of ¬R, again with index computed from a. We continue in this way, forming
Dn(a), for all n ∈ ω. Now, D(a) = ∪nDn(a) is invariant under automorphisms,
with a ∈ D(a) ⊆ R. Moreover, D(a) is ∆11, with index computed from a. This
proves the lemma.

Using Lemma 3.7, we complete the proof of Theorem 3.6 as follows. We
have a Π11 set of computable infinitary formulas ψ(x) such that

A |= ψ(x)→
_

c∈D(a)

_
x = c

for some a ∈ R. Among the formulas ψ(x) are definitions of the sets D(a). The
disjunction defines R.

Here is the analogue of Corollary 3.2.
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Corollary 3.8 For a computable structure A and relation R, the following are
equivalent:

1. R is intrinsically Π11 on A,
2. R is relatively intrinsically Π11 on A,
3. R is formally Π11 on A.

Sketch of Proof: Clearly, 3 ⇒ 2 ⇒ 1. The nontrivial implication 1 ⇒ 3
follows from Theorem 3.6 in the same way that the nontrivial implication in
Corollary 3.2 follows from Theorem 3.1.

A relation is properly Π11 if it is Π
1
1 and not Σ

1
1. We have seen that if a relation

R on a computable structure A is invariant and Π11, then it is intrinsically Π
1
1.

Moreover, if there is some computable copy of A in which the image of R is ∆11,
then it is intrinsically ∆11. This shows the following.

Corollary 3.9 If a relation R on a computable structure A is invariant and
properly Π11, then the image of R in any computable copy is also properly Π11.

The next result produces computable copies of a given structure A with
the same intrinsically Π11 relation, but with no hyperarithmetical isomorphism.
Again, for B ∼= A, we write RB for the image of R in B.

Theorem 3.10 Let A be a computable structure, with an invariant Π11 unary
relation R. Suppose that for any invariant ∆11 relation R0 ⊆ R and any ∆11
set Γ0 of computable infinitary formulas, there is a computable structure, not
isomorphic to A, but with the same universe A, such that the identity function
on R0 preserves satisfaction of all formulas in Γ0. Then the identity function
on R extends to an isomorphism from A onto a computable copy B, where A
and B are not hyperarithmetically isomorphic.

Proof: SinceR isΠ11 and invariant, there is aΠ
1
1 definition, with no parameters–

say P is the Π11 set of disjuncts. We use the fact that O is m-complete Π11 (see
[29]). Let f be a computable function witnessing that P ≤m O. For each a ∈ O,
let Pa be the set of all n such that f(n) <O a. We can pass effectively from
a ∈ O to a computable infinitary formula ψa(x) equivalent to the disjunction of
the formulas in Pa.
We describe B by a Π11 set Γ of computable infinitary sentences, in a language

with added constants for the elements of A.

1. We include a sentence saying that B is a computable structure with uni-
verse A.

2. To guarantee that B ∼= A, we include all computable infinitary sentences
true in A (in the language without the constants from A).
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3. To guarantee that RB = RA, we include, for each a ∈ A, sentences ψa(c)
if A |= ψa(c), and ¬ψa(c) if A |= ¬ψa(c).

4. To guarantee that there is an isomorphism that acts as the identity on
R, we include ϕ(c), for each tuple c in R and each computable infinitary
formula ϕ(x) such that A |= ϕ(c).

Remarks: Given the sentences of 4, we could omit the sentences of 2, and
we could reduce 3 to just the sentences of the form ¬ψa(c).

The hypotheses yield a model for any ∆11 subset of Γ. Then, by Barwise-
Kreisel Compactness, Γ has a model. We have a computable structure B that is
isomorphic to A, such that for all a ∈ O, ψBa = ψAa , and the identity function on
R preserves satisfaction of all computable infinitary formulas. For each a ∈ O,
if we expand A and B by constants for all elements satisfying ψa, the resulting
structures are hyperarithmetical, and since they satisfy the same computable
infinitary sentences, they are isomorphic.
We must show that there is an isomorphism from A onto B that acts as the

identity on all ofR. LetA∗ be the structure (A,A,B), with separate relations for
the two structures. Then A∗ is computable. We form a Π11 set Λ of computable
infinitary sentences, in a language with a new binary relation symbol F , in
addition to the symbols of the language of A∗. We include a sentence saying
that F is an isomorphism from A onto B, and sentences for all a ∈ O saying
that F acts as the identity on the set of elements satisfying ψa(x). It follows
from the previous paragraph that for any ∆11 set Λ

0 ⊆ Λ, there is an expansion
of A∗ satisfying Λ0. Then by Theorem 1.4, there is an expansion of A∗ satisfying
all of Λ.

Soskov showed that the notions “intrinsically ∆11” and “relatively intrinsi-
cally ∆11” are equivalent. We have seen that “intrinsically Π

1
1” and “relatively

intrinsically Π11” are also equivalent. We mentioned a result of Goncharov and
Manasse, showing that the notions “intrinsically c.e.” and “relatively intrinsi-
cally c.e.” are not equivalent. It is natural to ask at which levels the notions
differ.

Conjecture: For each computable ordinal α, there exist A and R such that R
is intrinsically Σ0α and not relatively intrinsically Σ

0
α on A.

In [14] the conjecture is proved for all computable successor ordinals, but for
limit ordinals, the method of [14] gives no information.

4 Examples
Here are some examples of computable structures with intrinsically Π11 relations.

1. A Harrison ordering is a computable ordering of type ωCK1 (1+ η). Recall
that η is the order type of the rationals, and for orderings A and B, A · B
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is the result of replacing each element of B by a copy of A. Harrison [17]
showed the existence of such orderings (see also [31] and [3]). In fact,
he showed that for any computable tree T ⊆ ω<ω, if T has paths but
no hyperarithmetical paths, then the Kleene-Brouwer ordering on T is a
computable ordering of type ωCK1 (1+η)+α, for some computable ordinal
α. Let A be a Harrison ordering, and let R be the initial segment of type
ωCK1 . This set is intrinsically Π11, since it is defined by the disjunction of
computable infinitary formulas saying that the interval to the left of x has
order type β, for computable ordinals β.

2. A Harrison Boolean algebra is a computable Boolean algebra of type
I(ωCK1 (1 + η)). Recall that for an ordering C, the interval algebra I(C)
is the algebra generated, under finite union, by the half-open intervals
[a, b), (−∞, b), [a,∞), with endpoints in C. Let A be a Harrison Boolean
algebra, and let R be the set of superatomic elements–those contained
in one of the Frechet ideals. This is intrinsically Π11, since it is defined by
the disjunction of computable infinitary formulas saying that x is a finite
join of α-atoms, for computable ordinals α.

3. Recall that a countable Abelian p-group G is determined up to isomor-
phism by its Ulm sequence (uα(G))α<λ(G), and the dimension of the divis-
ible part (see [21]). A Harrison p-group is a computable Abelian p-group
G such that λ(G) = ωCK1 , uG(α) =∞, for all α < ωCK1 , and the divisible
part D has infinite dimension. A Harrison group is a Harrison p-group for
some p. Let A be a Harrison group, and let R be the set of elements that
have computable ordinal height–the complement of the divisible part.
Then R is intrinsically Π11 on A, since it is defined by the disjunction of
computable infinitary formulas saying that x has height α, for computable
ordinals α.

The Scott Isomorphism Theorem [32] says that for any countable structureA
(for a countable language), there is an Lω1ω sentence σ such that the countable
models of σ are exactly the copies of A. In the proof, Scott assigned an ordinal
to the structure. There is more than one definition of “Scott rank”. The one
used by Sacks [30] involves a sequence of expansions of A. Let A0 = A, let Aα+1

be the result of adding to Aα predicates for the types realized in Aα, and for
limit α, let Aα be the limit of the expansions Aβ, for β < α. For some countable
ordinal α, Aα is atomic. The least such α is the rank. For a hyperarithmetical
structure A, the maximum possible rank is ωCK1 + 1.
Another possible rank, for a hyperarithmetical structure A, is the least or-

dinal α such that for each tuple a in A, there is some β < α such that the
set of all computable Πγ formulas true of a, for γ < β, defines the orbit of a
under automorphisms. These definitions are not equivalent, but they agree to
the extent that if the one rank is a computable ordinal, or ωCK1 , or ωCK1 + 1,
then so is the other.
A hyperarithmetical structure A has rank ωCK1 + 1 just in case there is a

tuple a in A whose orbit under automorphisms is not defined by any computable
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infinitary formula. In the three examples of intrinsically Π11 relations described
above, the structures have Scott rank ωCK1 + 1. Below, we describe a general
class of examples arising in computable structures of this rank.

Proposition 4.1 Let A be a computable structure of Scott rank ωCK1 +1. Let a
be a tuple in A whose orbit is not defined by any computable infinitary formula,
and let R be the complementary relation. Then R is intrinsically Π11, and not∆

1
1.

Proof: We define R by the disjunction of ¬γ(x), where γ(x) is a computable
infinitary formula true of a.

The structures in Examples 1, 2, and 3 above all have Scott rank ωCK1 + 1,
but the intrinsically Π11 relations that we described above are not complements
of single orbits. We can apply Proposition 4.1 to obtain further intrinsically Π11
relations on these same structures. In particular, in the Harrison ordering, if
a is an element outside the well-ordered initial segment, then the orbit of a is
not defined by any computable infinitary formula. Say a is first in its copy of
ωCK1 . Then the orbit of a consists of the elements that are first in their copy of
ωCK1 , but not first over-all. By Proposition 4.1, the complement of this orbit is
intrinsically Π11. It is not ∆

1
1.

In the next section, we show that for Examples 1, 2, and 3, the degree
spectrum of R is the set of Turing degrees of Π11 paths through O.

5 Connections with paths through O
By a path through O we mean a subset of O that is linearly ordered under <O
and includes a notation for each computable ordinal.

1. Let P be the set of Turing degrees of Π11 paths through O.
2. Let N be the set of computable trees T ⊆ ω<ω such that T has a path,
but no hyperarithmetical path.

3. Let L be the set of Turing degrees of left-most paths of trees in N .
4. Let L̂ be the set of Turing degrees of left-most paths of computable trees

T ⊆ ω<ω in which there is a path, and the left-most one is not hyperarith-
metical.

5. Let WH be the set of Turing degrees of maximal well-ordered initial seg-
ments of Harrison orderings.

6. Let W be the set of Turing degrees of maximal well-ordered initial seg-
ments I of computable orderings, where the order type of I is not a com-
putable ordinal.

7. Let SH be the set of Turing degrees of superatomic parts of Harrison
Boolean algebras.

13



8. Let DHp be the set of Turing degrees of divisible parts of Harrison p-
groups. (The divisible part of a Harrison p-group has the same degree as
its complement, which, as we have seen, is intrinsically Π11.)

In this section, we show that P = L = L̂ =WH =W = SH = DHp.

The next result characterizes those orderings that can appear as the maximal
well-ordered initial segments of Harrison orderings.

Theorem 5.1 For an ordering (R,<) of type ωCK1 , the following are equivalent:

1. (R,<) is Π11, and for b ∈ R, the restriction of the ordering to pred(b) is
computable uniformly in b.

2. (R,<) is the maximal well-ordered initial segment in a Harrison ordering.

3. (R,<) is the maximal well-ordered initial segment in a computable order-
ing that has initial segments of type α, for all computable ordinals α.

4. (R,<) is the maximal well-ordered initial segment in a computable order-
ing that has initial segments of type α, for all computable ordinals α, and
has no infinite hyperarithmetical decreasing sequence.

Sketch of proof: Clearly, 2 ⇒ 3, 4 ⇒ 3, and 3 ⇒ 1. To show that 1 ⇒ 2,
we use the Barwise-Kreisel Compactness Theorem. We describe a Π11 set Γ of
computable infinitary sentences, in a language with an infinite computable set of
constants B (= ω) and a binary relation symbol <. First, we include sentences
saying that the universe is equal to B, and < is a computable linear ordering
of B. Next, we include the Π11 set Γ0 consisting of all computable infinitary
sentences true in some known Harrison ordering. Finally, we include the Π11 set
Γ1 of sentences

(∀x) [x < b↔
_

c∈pred(b)

_
x = c ]

for b ∈ R.
For any ∆11 set Γ

0 ⊆ Γ, there is a model. We may suppose that the constants
mentioned in Γ0∩Γ1 are in pred(b). Then Γ0 has a model such that pred(b) is an
initial segment, and the remaining constants from B form a terminal segment
of order type ωα, where α is chosen sufficiently large that Γ0 ∩Γ0 is satisfied. It
is clear that a model of Γ yields a Harrison ordering B with RB = R.
The fact that 1 ⇒ 4 is proved in much the same way, with Γ0 replaced

by the set of sentences saying that (B,<) has no hyperarithmetical decreasing
sequence.

It follows from Theorem 5.1 that WH = W (the sets whose degrees we are
taking are the same). The next result says that W ⊆ P.
Proposition 5.2 Let A be a computable linear ordering, and let (L,<) be the
maximal well-ordered initial segment. If L is not hyperarithmetical, then it has
order type ωCK1 , and deg(L) ∈ P.
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Proof: Clearly, L cannot have order type > ωCK1 . If A has an initial segment
of type α, where α is a computable ordinal, then there is a computable infinitary
formula ϕα(x) defining the initial segment, and the set of elements satisfying
ϕα(x) is hyperarithmetical. Therefore, L cannot have order type < ωCK1 . It
follows that L must have order type exactly ωCK1 .
We must show that L has degree in P. We form another computable ordering

A∗, of type ω×A, by replacing each element a of A by a copy of ω, with elements
ha, ni, for n ∈ ω–A∗ is the lexicographic ordering on A× ω. So, for example,
if a0 is the least element of A, then ha0, 0i is the least element of A∗. Let L∗ be
the maximal well-ordered initial segment of A∗. In passing from A to A∗, what
we have gained is that, given ha, ni ∈ L∗, we can effectively determine whether
it is the first element (ha0, 0i), or a successor (of the form ha, ni, for n > 0), or
a limit (of the form ha, 0i, for a 6= a0), and we can effectively find the successor
of ha, ni (namely, ha, n+ 1i).

Claim: There is a total computable function f that maps L∗ isomorphically
onto an initial segment of O. Moreover, if x is an element of the domain of f of
the form ha, 0i, then x < f(x).

Proof of Claim: We want a computable function f such that

1. f(ha0, 0i) = 1,
2. f(ha, n+ 1i) = 2f(ha,ni), for a ∈ A,
3. f(ha, 0i) = 3 · 5e, for a >A a0, where e > ha, 0i is an index for a <O-
ascending sequence, cofinal in Va = {f(x) : x <A∗ ha, 0i}; e.g., for the
function g such that g(n) is the first element y that we come to, in the
standard enumeration of the c.e. set Va, such that g(m) <O y for all
m < n, and c <O a for all c in the stage n approximation of Va,

4. f(x) = 0 in all other cases.

To obtain the desired f , we apply the Recursion Theorem, as follows. We
have a total computable function σ that takes each e to an index for a partial
computable function k such that

1’. k(ha0, 0i) = 1,

2’. if ϕe(ha, ni) = d, then k(ha, n+ 1i) = 2d,

3’. if a ∈ A, and a 6= a0, then k(ha, 0i) = 3 · 5e0 , where e0 is the index for
the function g that is calculated by the procedure described above, in
terms of the set Va = {ϕe(x) : x <A∗ ha, 0i}, over which we have no
control,

4’. if x is not of the form ha, ni for a ∈ A, then k(x) = 0.
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We let f = ϕe, where ϕe = ϕσ(e). To see that f is total, note that every
number x can be expressed in the form ha, ni. If a /∈ A, then f(x) is defined,
by 4. Suppose a ∈ A. If n = 0, then f(x) is defined by 1 if a = a0, and by 3
if a 6= a0. Finally, to show that f(ha, ni) is defined for n > 0, we proceed by
induction on ω, using 2. Now, we see by induction on < that f maps initial
segments of L∗ onto initial segments of O (under <O). Moreover, by 3, if x has
the form ha, 0i, then f(x) > x. This proves the claim.

Let f be as in the claim. Now, f [L∗] is a Π11 but not hyperarithmetical
subset of O, so it is unbounded. Then f [L∗] = P is a path through O. Thus,
the order type of L∗ is ωCK1 , and so is that of L. Clearly, L and L∗ have the
same Turing degree. Thus, we only have to show that L∗ ≡T P . The fact that
L∗ ≤T P is immediate, since the domain of f is computable and x ∈ L∗ iff
f(x) ∈ P .
For the other direction, to decide whether x ∈ P , using L∗, we first see if

x = 1. If so, then x ∈ P . If not, then we see if x is a power of 2. If x = 2y, then
we apply the same procedure to y, keeping in mind that x ∈ P iff y ∈ P . If not,
then we determine for which numbers z < x, in the usual ordering of ω, z has
the form ha, 0i < x and z ∈ L∗. For each such z, we ask if f(z) = x. If, for some
z, the answer is “yes”, then x ∈ P . Otherwise, x /∈ P , as by our construction,
f(hb, 0i) > hb, 0i, for all b >A a0 and x can only be in P if it is the image of a
limit point hb, 0i in L∗. Eventually, this process terminates, as y < x.

The next result says that P ⊆WH.
Proposition 5.3 If A is a Π11 path through O, then there is a Harrison ordering
B with maximal well-ordered initial segment R such that R ≡T A.

Proof: Jockusch [19] showed that for any Π11 path A through O, there is
another Π11 path C, of the same Turing degree, such that C is regular, where
this means that for c ∈ C, pred(c) is computable, uniformly in c. Then by
Theorem 5.1, there is a Harrison ordering B such that the maximal well-ordered
initial segment is C, ordered by <O.

Now, we consider the sets of degrees of certain paths through computable
trees. Clearly, L ⊆ L̂. The next result says that L̂ ⊆ P.
Corollary 5.4 Suppose T is a computable tree, and let g be the left-most path
in T . If g is not hyperarithmetical, then deg(g) ∈ P.
Proof: We apply Proposition 5.2 to the Kleene-Brouwer ordering on T , and

note that the well-ordered initial segment has the same degree as g, since it
consists of just the nodes in T to the left of g.

The next result says that P ⊆ SH.
Theorem 5.5 Let A be a Π11 path through O. Then there is a Harrison Boolean
algebra B with superatomic part R such that R ≡T A.
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Sketch of proof: We may suppose that A is regular. Note that A ≡T A×ω.
We produce a Harrison ordering A∗, extending A (with <O), a Harrison Boolean
algebra B, with superatomic part R, and a pair of 1 − 1 computable functions
F and G, such that F is defined on A∗ × ω, with

(a, n) ∈ A× ω ⇔ F (a, n) ∈ R ,

and G is defined on B, with

b ∈ R ⇔ G(b) ∈ A× ω .

Assume for the moment that we have A∗, B, F , and G, as described. Then
A× ω ≤1 RB via F , while RB ≤1 A× ω via G. It follows that RB ≡T A.
The objects A∗, B, F , and G will form a model of a Π11 set Γ of computable

infinitary sentences consisting of the following:

1. sentences guaranteeing that A∗ is a computable linear ordering, with uni-
verse ω, such that A, ordered by <O, is an initial segment,

2. sentences guaranteeing that B = (B,∨,∧, 0, 1) is a Harrison Boolean al-
gebra,

3. sentences guaranteeing that F is a computable 1 − 1 function mapping
A∗ × ω into B, such that for a ∈ A, the set of elements F (a, n) is a basis
for the |a|-atoms of B,

4. sentences guarateeing that G is a computable 1− 1 function with domain
B such that for each a ∈ A, G maps the set Ra of elements of “rank” |a|
onto the set Aa of pairs (a, n). (An element is in Ra if it differs from a
finite join of elements of Ba by a finite join of elements of Bd for d <0 a.)

If A∗, B, F , and G satisfy all of Γ, then B is a Harrison Boolean algebra,
and the functions F and G have the properties we want. By the Barwise-Kreisel
Compactness Theorem, Γ has a model if every ∆11 subset has a model. We just
need to prove the following lemma.

Lemma 5.6 Let a ∈ A, where |a| = α. Then there exist a computable Boolean
algebra B of type I(ωα+1) and computable 1−1 functions F and G such that for
each b ≤O a with |b| = β, F takes {b} × ω onto a computable set Bb generating
the β-atoms of B, and G maps Bb onto the set Rb of elements of B of rank β.

Proof of Lemma: Since A is regular, {b ∈ O : b ≤O a} is computable. Let
F (b, n) = (b, n), for b <O a. For any infinite computable set C, we have a
canonical partition into infinitely many infinite computable sets Cn–the kth

element of Cn is the (n, k)th element of C. Using the canonical partitions, we
determine, for b <O c, the relations x ≤ y, for x ∈ Bb and y ∈ Bc. As a first
step, we consider b = 1 and c = a. For x ∈ B1 and y ∈ Ba, we let x ≤ y if, y is
the nth element of Ba, and x is in the nth class in the canonical partition of B1.
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At each succeeding step, we consider the next element d of pred(a), in the
ordering <ω. If d lies between b and c, in the ordering <O, where b and c have
been considered previously, then we take the canonical partition of Bd, and put
the elements of the nth class of Bd below the nth element of Bc. At this point,
corresponding to each z ∈ Bc, we have a class C in Bb and a class C0 in Bd.
We take the canonical partition of C 0 and put the elements of the nth class of
C 0 below the nth element of C.
The union B of the sets Bb, for b <O a, is computable, with infinite comple-

ment. We can form a computable Boolean algebra generated by the elements
of B, with universe ω. Moreover, we can do this so that for all b ∈ pred(a), the
set Rb of elements of rank |b| is computable, uniformly in b. The names for the
elements tell us how they are constructed from elements of Bc for c ≤O b. We
have a computable 1− 1 function G that maps Rb onto Bb, for all b ∈ pred(a).

The next result says that P ⊆ DHp.

Proposition 5.7 If A is a Π11 path through O, then for each prime p, there is
a Harrison p-group G, with height-possessing part R such that R ≡T A.

We may suppose that A is regular. We use the following lemma.

Lemma 5.8 For any a ∈ A, there exist a computable reduced Abelian p-group
G, and computable 1−1 functions F and H such that G has length |a|, with Ulm
invariants all infinite, F has domain pred(a)× ω, where F (b, n) is an element
of A of height |b|, H is defined on the elements of G, aside from the identity,
and H maps the elements of height |b| onto the pairs of the form (b, n).

Proof of Lemma: First, let Ta be the computable tree consisting of ∅ and
any nonempty sequences

σ = hb1, n1i, . . . , hbk, nki ,

where ni ∈ ω, and bi ∈ pred(a), with b1 >O . . . >O bk. Next, let G be the
computable Abelian p-group generated by the nodes of Ta, under the relations
∅ = 0, and pσ = τ , where σ is a successor of τ . Now, we define F , letting
F (b, n) = hb, ni. For b ∈ pred(a), F (b, n) is a group element of order p and
height |b|. For any σ ∈ Ta, apart from ∅, the last term of σ has the form hb, ni,
where |b| is the height of σ in G. For an arbitrary nonzero element of G, say
g = n1σ1 + . . . + nkσk, where σ1, . . . , σk ∈ Ta, the σi are incomparable, and
ni < p, the height of g is the minimum of the heights of the σi. Thus, we can
pass effectively from g to the notation b <O a for its height. From this, we get
a computable function H on the nonzero elements of G, such that if g is the nth
element of height |b|, then H(g) = (b, n).

From the lemma, using Barwise-Kreisel Compactness, we get a Harrison p-
group G and computable 1−1 functions F and H with the following properties:
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1. F is defined on (b, n) for all b in some computable end extension A0 of A
and all n ∈ ω.

2. For b ∈ A, F (b, n) has height |b|, and for b0 ∈ A0, if b0 6= b, then F (b0, n)
does not have height |b|.

3. H is defined on all nonzero elements of G.
4. For b ∈ A, H maps the elements of height |b| onto the pairs of the form
(b, n).

Let R be the set of height-possessing elements of G. To determine whether
x ∈ R, using A, we first check that x is a nonzero element of G, and then see if
the first component of H(x) is in A. To determine whether x ∈ A, using R, we
first check that x ∈ A0, and then see if F (x, 0) ∈ R.

The next result says that WH ⊆ L.
Proposition 5.9 Let (H,<) be a Harrison ordering, and let R be the maximal
well-ordered initial segment. Then there is a tree T with no hyperarithmetical
path, such that if f is its left-most path, then f ≡T R.

Proof: By Theorem 5.1, we may suppose that H has no infinite hyperarith-
metical decreasing sequence. Consider then the tree T of decreasing sequences
in H; i.e.,

σ ∈ T ⇔ (∀n < lh(σ)) [σ(n− 1) <H σ(n) ] .

By our assumption, T has no hyperarithmetical path, so it is in N . If f is the
left-most path of T , then f has degree in L.

Claim: f ≡T R.

Proof of Claim: To see that f ≤T R, note that given f ¹ n, f(n) is the least
k such that k <H f(n − 1) and k /∈ R. To prove that R ≤T f , we show that
n /∈ R ⇔ (∃k ≤ n+1) [f(k) ≤H n]. The implication from right to left is trivial.
For the other direction, we note that f is an increasing function, because any
value for f(n) could have been used as f(k), for any k < n (and we could then
continue on with the values of f(n+ i)) except that f must be left-most. Thus,
f(n + 1) > n. Let k ≤ n be least such that f(k + 1) > n. As n /∈ R, the only
possible reason not to choose n as f(k + 1) is that f(k) ≤H n, as required.

The next result says that SH ⊆ L̂.
Proposition 5.10 Let B be a Harrison Boolean algebra, and let S be the su-
peratomic part. Then there is a computable tree T whose left-most path f is not
hyperarithmetical, such that S ≡T f .

Without loss of generality, we may suppose that B has universe ω. We have
the usual order relation on B given by x ≤B y ⇔ (x ∧ y = x). The crucial
property we need is the following.
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Lemma 5.11 b /∈ S iff there is a dense set (dense in the ordering ≤B) below b.

Proof of Lemma 5.11: First, suppose that b = b0 /∈ S. Then b is a nonzero
element of B/S = B0, which is atomless, and so we can split b0 in B/S to get b1
with 0 <B0 b1 <B0 b0. Indeed, given any d <B0 c ≤B0 b0, we can split c − d in
B0. From this, it follows that we can build a dense set in B0 below b0. For the
other direction, suppose {bi : i > 0} is a dense set in <B below b0. Note that by
induction, every bi is a nonzero element of every Cantor-Bendixson derivative
of B, so all of them are in the complement of S.

For the proof of Proposition 5.10, we begin our analysis of S with a com-
putable ordering <Q of ω that is dense, with right endpoint but no left endpoint,
in which 0 is the right endpoint. We now define a computable tree T all of whose
paths are associated with dense sets below infinitely many elements of B, and
whose left-most path, f , has the same degree as S. Let T consist of the finite
sequences σ with the following two properties:

1. (∀ hn,mi, hn,m0i < lh(σ) ) [σ(hn,mi) <B σ(hn,m0i)↔ m <Q m0 ]

2. (∀n < m) [m < lh(σ)→ σ(hn, 0i) < σ(hm, 0i) ].

It is clear that for every infinite path f in T and every n, {f(hn,mi) : m > 0}
is a dense set in <B below f(hn, 0i). Let f be the left-most path in T .

Claim: f ≡T S.

Note that from the claim, it follows that f is not hyperarithmetical, and deg(S) ∈
L̂, as required.

Proof of Claim: First, we argue that f ≤T S. Suppose we have f ¹ s and
s = hn,mi. If m = 0, then f(s) is the least k such that

(∀l) [ hl, 0i < s→ f(hl, 0i) < k ] & k /∈ S .

If m > 0, suppose that e and i are the immediate predecessor and successor,
respectively, of m in <Q¹ (m+ 1)× (m+ 1). Now, f(s) is the least k such that

f(hn, ei) <B f(hn, ii) and k − f(ha, ei), f(ha, ii− k /∈ S .

Now, we argue that S ≤T f . We claim that n ∈ S if and only if

(∀m ≤ n) [n 6= f(hm, 0i] .

The point here is that at every hm, 0i for m ≤ n, f has as its value the least (in
the ordering of ω) k /∈ S not yet chosen as one of these values.

The next result says that DHp ⊆ L̂.
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Proposition 5.12 Let G be a Harrison p-group, and let D be its divisible part.
Then there is a computable tree T with left-most path f such that f is not
hyperarithmetical, and f ≡T D.

The proof is similar to that for Proposition 5.10. Again, we suppose that G
has universe ω. We have

b ∈ D ⇔ (∃(bi)i∈ω)[b0 = b & (∀i) (bi = p · bi+1)] .
We now define the appropriate tree. Let T consist of the finite sequences σ such
that

1. (∀hn,mi) [σ(hn,mi) = p · σ(hn,m+ 1i) ] and
2. (∀n < m) [m < lh(σ)→ σ(hn, 0i) < σ(hm, 0i) ].
The argument is now much like the one for Boolean algebras. Let f be the

left-most path in T . Given f ¹ s and s = hn,mi, if m = 0, then f(s) is the least
k such that

(∀l) [ hl, 0i < s→ f(hl, 0i) < k ] & k ∈ D .

If m > 0, then f(s) is the least k ∈ D such that f(s) = p · k. Again, for the
other direction, n /∈ D iff (∀m ≤ n) [n 6= f(hm, 0i) ]. Thus, f ∼=T D, so f is not
hyperarithmetical, and its Turing degree is in L̂, as required.
Theorem 5.13 P = L = L̂ =WH = SH = DHp.

Proof: We have all of the pieces. Clearly, L ⊆ L̂, and by Corollary 5.4,
L̂ ⊆ P. By Proposition 5.3, P ⊆ WH. By Theorem 5.5, P ⊆ SH, and
by Proposition 5.7, P ⊆ DHp. By Proposition 5.9, WH ⊆ L. Finally, by
Propositions 5.10 and 5.12, SH,DHp ⊆ L̂.
In view of the results in this section, it is natural to ask whether for all

computable structures A of rank ωCK1 +1, and all tuples a witnessing the rank,
if R is the complement of the orbit of a, the degree spectrum of R must be P.
In fact, this is not true.

Example: Let C be an arbitrary Π11 set. Let (An)n∈ω be a uniformly com-
putable sequence of linear orderings such that An has computable order type if
n ∈ C, and type ωCK1 (1 + η) if n /∈ C. Let A consist of an equivalence relation
partitioning the universe into infinitely many equivalence classes, corresponding
to the universes of the orderings An, and a binary relation that is the union
of the orderings on the structures An. In A, suppose that we can effectively
determine the orderings An and their first elements. (Of course, there are com-
putable copies of A in which we cannot do this.) Let a be the first element in
some equivalence classes on which the ordering has type ωCK1 (1+ η), and let R
be the complement of the orbit of a. For the given copy A, R ≡T C. We can
take C to be properly Π11, but not of degree in P. In the next section we will
show that there are such sets. In particular, we may take C to be properly Π11
of minimal degree, and P contains no minimal degree.
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6 Paths through O
We have seen that for some intrinsically Π11 relations (the maximal well-ordered
initial segments in Harrison orderings, the superatomic parts of Harrison Boolean
algebras, and the height-possessing parts of Harrison groups), the degree spec-
trum is equal to the set P of degrees of Π11 paths through O. The results on
these intrinsically Π11 relations gain meaning from results on P. Older results
are found in papers of Parikh [27], Jockusch [19], and Friedman [11]. Friedman
showed that there is a Π11 path Turing equivalent to O. We show that there are
many further possibilities.
To obtain results about P, we convert questions about Π11 paths through O

to questions about left-most paths through trees. A κ-tree T is a subset of κ<ω

that is closed under initial segments. We will be interested in the cases where
κ = 2 and κ = ω. If κ = 2, we speak of binary branching trees. If κ = ω, we
speak of ω branching trees, or simply trees.
For a tree T ⊆ ω<ω, we are interested in the set

[T ] = {f ∈ ωω : (∀x) f ¹ x ∈ T}

of all paths through T . Note that if T is computable, then [T ] is a Π01 class
of functions f : ω → ω; i.e., there is a computable predicate R such that
[T ] = {f ∈ ωω : (∀x)R(f ¹ x)}. Conversely, for every Π01 class, there is
a computable tree whose paths are precisely the members of this class. The
functions in the Π01 class defined by (∀x)R(f ¹ x) are precisely the paths through
the tree T = {σ : (∀x ≤ lh(σ))R(f ¹ x)}.
An important tool in our analysis will be the ability to convert a ∆02 tree

to a computable tree with paths of the same Turing degrees. One conversion
is well known. If T is a ∆02 tree, then [T ] is a Π

0
2 class of functions in ωω; i.e.,

there is a computable predicate R such that

[T ] = {f ∈ ωω : (∀x) (∃y)R(f ¹ x, f ¹ y)} .

Let g be the least Skolem function, so for each x, g(x) is the least y such that
R(f ¹ x, f ¹ y). Then g ≤T f . For f, g ∈ ωω, let hf, gi be the function on ω
such that

hf, gi(2n) = f(n) and hf, gi(2n+ 1) = g(n) .

For σ, τ ∈ ω<ω, where lh(σ) = lh(τ), we define hσ,τi in a similar way. We have
a computable tree T̂ whose paths are the functions hf, gi such that f ∈ [T ] and
g is the least Skolem function, as above. There is a 1 − 1 degree-preserving
correspondence between [T ] and [T̂ ].
By another definition, common in computability theory, a binary tree is a

function F : 2<ω → 2<ω that preserves both order (⊆) and nonorder ( 6⊆) (see,
for example, [25]). Trees of this kind correspond to binary trees of the kind
above with a special feature–they are “perfect”. The obvious analog for an
ω-tree is a function F : ω<ω → ω<ω that preserves both order and nonorder.
So, for κ ∈ {2, ω}, we refer to a function F : κ<ω → κ<ω that preserves both ⊆
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and 6⊆ as an f-κ-tree–the “f” stands for “function”. The set of paths through
the function tree F is

[F ] = {f ∈ κω : (∃g ∈ κω) [f = ∪n∈ωF (g ¹ n)]} .
We would like to know that X-computable trees described in the different

ways (κ-trees, or f -κ-trees) give rise to the same sets of paths, or at least the
same sets of Turing degrees of paths. In the case where κ = 2, there is nothing
to worry about, at least in one direction. For each X-computable f -binary tree
F , there is an X-computable binary tree TF , uniformly computable in F , such
that F and TF have the same paths. We let

TF = {σ : (∃τ) [σ ⊆ F (τ)]} .
The relation in the other direction is more complicated since, for example,

[F ] is always a nonempty perfect set, while T may have isolated paths, and
terminal nodes. However, these are the only restrictions. If every node in T
splits, i.e., for all σ ∈ T ,

(∃τ0, τ1 ∈ T ) (∃k < lh(τ0), lh(τ1)) [σ ⊆ τ0, τ1 & τ0(k) 6= τ1(k) ],

then there is an f -tree F , computable in T , with the same paths as T . We can
define F by recursion. We let F (∅) = ∅, and given F (σ) = ρ ∈ T , we find the
shortest τ ⊇ ρ such that τˆ0, τˆ1 ∈ T and set F (σˆi) = τˆi.
For ω-trees, even the first direction is unclear, in general. The problem is

that [F ] need not be a closed set, so it need not be the set of paths on a tree. A
condition on the function F sufficient to eliminate this problem is that all the
branches at each node are already distinguished at some fixed finite length; i.e.,

(∀σ) (∃t) (∀m 6= n) [F (σˆm) ¹ t 6= F (σˆn) ¹ t ] .

Another problem is making TF computable in F . For binary trees, the quan-
tification over τ is essentially bounded by the length of σ, and so there is no
difficulty. For ω-trees we add another restriction. We require that F preserve
lexicographic order (<L) as well, i.e.

(∀σ) (∃t) (∀m < n) [F (σˆm) ¹ t <L F (σˆn) ¹ t] .

For binary trees, this is no real restriction on the paths, since we can always
switch the values 0 and 1. In this paper, we consider only such f -trees.
For an X-computable f -tree F of the kind we are considering, TF is always

an X-computable tree with the same paths as F . For κ = ω, we argue (briefly)
that TF is computable uniformly in F . Given σ, we can determine whether
it is in TF , using oracle F . We begin with ∅ and check whether F (∅) ⊇ σ
or F (∅) ⊆ σ. Inductively, we may assume that F (ρ) ⊆ σ. Then we compute
F (ρ î), for i = 0, 1, . . ., until we find i such that one of the following holds:

(i) F (ρ î) ⊇ σ,
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(ii) F (ρ î) ⊆ σ, or

(iii) σ is to the left of F (ρ î).

In case (i), we conclude that σ ∈ TF , and in case (iii), we conclude that σ /∈ TF .
In case (ii), we continue on to the successors of ρ î. This process must terminate
in at most lh(σ) steps.

Recall that N is the set of computable trees that have a path, but not one
that is hyperarithmetical, L̂ is the set of Turing degrees of left-most paths in
these trees, and P is the set of degrees of Π11 paths through O. In the previous
section, we showed that P = L̂.
Proposition 6.1 If c ∈ P, and d is the Turing degree of the left-most path in a
computable tree, then c∨d ∈ P. Hence, P is closed under join, and also under
join with any hyperarithmetical degree.

Proof: Given c ∈ P, choose T0 ∈ N such that the left-most path in T0
has degree c. Let T1 be another computable tree (in N or not), in which the
left-most path has degree d. Form the sum tree

T = T0 ⊕ T1 = {hσ0, σ1i : σi ∈ Ti& lh(σ0) = lh(σ1)} .
It is clear that T ∈ N , and the left-most path in T is hf0, f1i, where fi is the
left-most path in Ti. By Theorem 5.13, deg(hf0, f1i) ∈ P, and it is immediate
that deg(hf0, f1i) = c ∨ d, as required.

Parikh [27] and Friedman [11] provide some restrictions on the degrees in P
by showing that a hyperarithmetical degree which is weak truth table reducible
(wtt-reducible) to all x ∈ P must be computable. This fact can be used to
show that there is a properly Π11 degree not in P. Standard initial segment
constructions produce sets X such that any set Turing reducible to X is also
truth table reducible (tt-reducible) to X, and it is possible to make X also
properly Π11. However, there are much more severe restrictions on the degrees
in P.
We say that a function h dominates f if f(n) ≤ h(n) for all but finitely

many n, and h majorizes f if f(n) ≤ h(n) for all n.

Proposition 6.2 If f is the left-most path in a computable tree T , and f is
not hyperarithmetical (e.g., f ∈ P), then no hyperarithmetical function h dom-
inates f .

Proof: Suppose h is a hyperarithmetical function dominating f . By a finite
change, we may assume that h majorizes f . Consider the h-computable tree

S = {σ : σ ∈ T & (∀n < lh(σ)) [σ(n) ≤ h(n)]} .
Since h majorizes f , f is the left-most path in S, as well as in T . Now, S is
computable in h and h-computably bounded. By relativizing the fact that the
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left-most path in a computable and computably bounded tree is∆02, we conclude
that f is ∆02 relative to h. Hence f is hyperarithmetical, which contradicts the
assumption.

A degree c is array non-computable (or anc) iff for each h ≤wtt ∅0, there is a
function f of degree at most c such that h does not dominate f . A function f
is 1-generic if each computable Σ1 statement about f is decided by some finite
initial segment. Equivalently, f is 1-generic iff for every c.e. set We of finite
sequences, f satisfies (∃σ ⊆ f) [σ ∈ We ∨ (∀τ ⊇ σ) τ /∈ We]. The degree c is
1-generic if it contains a 1-generic function.

Corollary 6.3 Let c ∈ P.

1. c is anc, so it is not minimal.

2. There is a 1-generic degree ≤ c.
3. Any computable lattice with 0, 1 can be embedded in D(≤ c), preserving
0, 1.

4. c is the supremum of two 1-generic anc degrees that form a minimal pair.

5. For every b > c, there exists d < b such that c ∨ d = b.

Proof: The statements now all follow by results of Downey, Jockusch, and
Stob [9].

Of course, there are many properly Π11 degrees that are not anc degrees–
even minimal ones. To see this, we use 1-trees from Lachlan [24]. Take a ∆03
function f : ω → 3 such that D = {n : f(n) = 2} is infinite, and every function
gotten by replacing each of the values 2 by either 0 or 1 (independently) gives
a function of minimal degree. Suppose C is properly Π11. If D is listed in
increasing order as d0 < d1 < d2 < . . ., and g is the function that agrees with
f on D and has value C(i) on di, then g has the desired degree. Many other
examples of properly Π11 degrees that are not in P can be constructed in the
same way.
We wish to provide examples of the types of degrees that do occur in P, and

to analyze the internal structure of P. We continue to use L̂. We begin with
a relatively simple construction that provides a solution to a question raised in
Friedman [11] and Jockusch [19], by showing that there are degrees in L̂, and,
hence, in P, that do not compute ∅0. (At the time this was asked, it was also
a question whether every element of P had the same degree as O.) In fact, we
build a∆02 tree T in which each paths is 1-generic, but none is hyperarithmetical.
It follows that there is a computable tree T̂ with the same properties (the paths
have the same degrees). The left-most path in T̂ will be our desired element of
L̂. The key idea is to construct an f -tree F in which all paths are 1-generic,
and then code a tree S ∈ N into a subtree of F .
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Definition 6.4 If S is a tree, and F is an f -tree, then the S-subtree of F is
the tree S(F ) = {σ ∈ ω<ω : (∃τ) [σ ⊆ F (τ) & τ ∈ S ]}.

For example, if S is ω<ω, then S(F ) = TF .

Remark: If S is an X-computable tree, and F is an X-computable f -tree,
then S(F ) is also an X-computable tree, and [S(F )] ⊆ [F ] (justifying the term
subtree). Each path g ∈ [S] corresponds to a path ∪nF (g ¹ n) in [S(F )], and vice
versa. Moreover, if f ∈ [S(F )], we can form g ∈ ωω such that f = ∪nF (g ¹ n).
Then g is a path in S that is computable in f and X. The fact that g is a path
in S is clear from the definition of S(F ). To compute g(n), assume we have
g ¹ n = τ , where F (τ) = f ¹ m. There is a unique i such that F (τ î) is an
initial segment of f , and this is g(n).

We can now prove the following theorem.

Theorem 6.5 There is a 1-generic degree (and, hence, one not above 00) in P.

Proof: First, we define, by recursion, a ∆02 f -tree F , all of whose paths are
1-generic. Let F (∅) = ∅. Suppose we have defined F (σ), where lh(σ) = n. If
there is some τ ⊇ F (σ) î such that ϕτi (i) ↓, then let F (σ î) be the first one
found in some standard computable search. If not, let F (σ î) = F (σ)ˆ i. Next,
let S be any tree in N . Consider the ∆02 tree S(F ). If f is a path in S(F ),
then f is 1-generic, since it is a path in [F ]. Moreover, f ⊕ ∅0 computes a path
in S, by the remark above, and so cannot be hyperarithmetical. Thus, every
path in the computable tree TS(F ) has 1-generic Turing degree, and none are
hyperarithmetical. The left-most path in TS(F ) is then our desired element of
L̂, and of P.

This construction has many possible variations, incorporating coding of ∆02
sets, avoiding upper cones, and relativization to any Π01 singleton. Using these
ideas, it is possible to produce, for example, incomparable degrees in P. More
complicated results, such as the existence of minimal pairs, require interactions
between sets, and normally involve a construction that is carried out in an
interleaving fashion. We can produce a minimal pair by constructing a ∆02
binary tree F such that any two paths on it form a minimal pair. It is not
clear how to construct such a tree that is ω-branching. To show that there is
a minimal pair in P, we use a more careful analysis of the degree-preserving
translation of Π02 classes into Π

0
1 classes in the case where the first class is the

set of paths on a ∆02 tree.

Proposition 6.6 If T is a ∆02 tree, then there is a computable tree T̂ such that
there is a 1−1 degree-preserving correspondence between [T ] and [T̂ ], which also
preserves lexicographic order. In particular, the left-most paths in T and T̂ have
the same degree.
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Proof: As remarked on p. 69 in [20], in terms of Π01 classes, for every ∆
0
2

tree T , there is a computable predicate R such that the ∆02 tree

T 0 = {σ : (∃y)R(σ, y)}

has the same paths as T . We convert T to a computable tree by using least
Skolem functions again. Let

T̂ = {hσ, τi : lh(σ) = lh(τ) &

(∀n ≤ lh(σ)) [R(σ ¹ n, τ(n)) & (∀m < τ(n)) ¬R(σ ¹ n,m) ]}.

It is clear that if hf, gi ∈ [T̂ ], then f ∈ [T ] and for all n, g(n) is the least y
such that R(f ¹ n, y). Conversely, if f ∈ [T ], and for all n, g(n) is the least
y such that R(f ¹ n, y), then g ≤T f (and so hf, gi ≡T f) and hf, gi ∈ [T̂ ].
Finally, if f1, f2 ∈ [T ], where f1 <L f2, and g1, g2 are the corresponding least
Skolem functions, then hf1, g1i <L hf2, g2i. That is, if they first differ at an
even number, then they are ordered as are f1, f2, while if they first differ at an
odd number, then there is at most one value for g that can lie on the tree T̂
at all.

We can now construct a pair of f -trees Fi such that the set of degrees of
corresponding paths have some property (e.g., they form a minimal pair), then
take some single S, and apply this proposition to the pair S(Fi) = Ti to show
that the left-most paths in Ti have these properties as well. We provide a sample
result.

Theorem 6.7 There are Turing degrees c,d ∈ P that form a minimal pair;
i.e., c ∧ d = 0.

Proof: We define two f -trees F0, F1, both ∆02, such that for any f ∈ ωω, the
Turing degrees of the two paths ∪nFi(f ¹ n) form a minimal pair. We proceed by
induction on lh(σ), beginning with Fi(∅) = i. Suppose we have defined Fi(σ) for
σ of length e, and we wish to define Fi(σˆn). We ask if there exist τ i ⊇ Fi(σ)ˆn,
i = 0, 1, and x such that ϕτ0e (x) 6= ϕτ1e (x). If so, we choose the first such pair
τ i in some standard search, and we let Fi(σˆn) = τ i. If there do not exist
such τ i and x, then we let Fi(σˆn) = Fi(σ)ˆn. The standard argument used in
the construction of a minimal pair shows that for every f ∈ ωω, the degrees of
∪nFi(f ¹ n), for i = 0, 1, form a minimal pair.
Now, let S be any tree in N , and consider S(Fi) = Ti. Every path on Ti

is of the form ∪nFi(f ¹ n), for some f ∈ S, and this correspondence preserves
lexicographic order; i.e., if f1 <L f2 are in [S], then

∪nFi(f1 ¹ n) <L ∪nFi(f2 ¹ n) ,

by our requirements on f -trees preserving lexicographic order. Thus, if f is
the left-most path in S, then for i = 0, 1, fi = ∪nFi(f ¹ n) is the left-most
path in Ti, and f0, f1 form a minimal pair. The corresponding paths f̂i in
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T̂i have the same degrees, and so also form a minimal pair. Since there is no
hyperarithmetical path in S, it follows that there is no hyperarithmetical path
in S(Fi), or in T̂i. Thus, the degrees of the paths f̂i form a minimal pair in P.

We can generalize the construction above to build infinitely many mutually
generic degrees in P.

Theorem 6.8 There are functions fi, for i ∈ ω, with degrees in P which are
mutually 1-generic. In fact, we can arrange that ⊕ifi is 1-generic, and the
degrees of ⊕ifi and all fi are in P. As a further refinement, we may take the
degree of ⊕ifi to be computable in any degree in P that is above 00.

Proof: We first build uniformly ∆02 f -trees Fi such that for all f ∈ ωω,
⊕i∪nFi(f ¹ n) is 1-generic. We define Fi(σ), for σ ∈ ω<ω, by induction on lh(σ),
beginning with Fi(∅) = ∅. Suppose we have Fi(σ), for i ∈ ω, where lh(σ) = e.
We wish to define Fi(σˆn). We ask if there are τ i ⊇ Fi(σ)ˆn such that τ = ⊕iτ i
forces the eth computable Σ1 statement about G = ⊕iGi–a sample statement
would be ϕτk(k) ↓. This question can be answered using the ∆02 oracle, since
without loss of generality, we may suppose that all but finitely many of the τ i
are Fi(σ)ˆn. If so, then we choose the first sequence (τ i)i∈ω witnessing this fact,
and let Fi(σˆn) = τ i. If not, then we let Fi(σˆn) = Fi(σ)ˆn.
Suppose c ∈ P, and let S ∈ N be such that the left-most path f in S has

degree c. Consider the ∆02 trees Ti = S(Fi), and the left-most paths fi in these
trees. By construction, ⊕ifi is 1-generic. By the remark before Theorem 6.5, if
c ≥ 00, then the fi are uniformly computable in c. In any case, for each i, fi
has the same degree as the left-most path in T̂i, so the degrees are all in P, as
required.
Finally, we consider the sum tree ⊕iTi. Let us say what this is. First, for

σ ∈ ω<ω, let σi = (σhi, ni)hi,ni<lh(σ). Then

⊕iTi = {σ ∈ ω<ω : (∀i) [hi, 0i < lh(σ)→ σi ∈ Ti]} .

Then T = ⊕iTi is in N , and the left-most path through T , call it ⊕ifi, has
degree in P. By the uniformity of the reductions, if ∅0 ≤T X, then ⊕ifi ≤T X.

Corollary 6.9 Every countable distributive lattice can be embedded in P, and in
P(≤ c), so long as 00 ≤ c ∈ P. It follows that every countable upper semilattice
can be embedded in P.

By the use of lattice tables, one can embed every computable lattice in
P–not just the distributive ones.

In Theorem 6.8, if we consider finite sums, and give up the full genericity of
⊕ifi, then we can take the fi so that the Turing degrees are independent and
pairwise minimal. In addition, we can give ⊕ifi degree c, for any desired c ∈ P
such that c ≥ 00. Thus, for example, for any such degree c, we can embed any
finite Boolean algebra in P so that the top is c and the bottom is 0.
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We will now give a new solution to Problem 71 on Friedman’s list [10]4 .

Theorem 6.10 There exists c ∈ P such that 0 is the only hyperarithmetical
degree ≤ c.

Proof: First, we build a set of sequences that satisfies the definition of a ∆02
f -tree F except that the domain consists of pairs hσ, τi, of the same length,
with σ ∈ 2<ω and τ ∈ ω<ω–the range will be contained in ω<ω. We begin with
F (h∅, ∅i) = ∅. Suppose F is defined for hσ, τi with lh(σ) = lh(τ) = e. We find
the first pair σ0, σ1 ⊇ F (hσ, τi) and the first xσ,τ (in some standard order) such
that σ0 <L σ1 and ϕσ0e (xσ,τ ) ↓6= ϕσ1e (xσ,τ ) ↓, and we let F (hσ î, τ ˆni) = σiˆn.
If there do not exist such σ0, σ1 and xσ,τ , then we let F (hσ î, τ ˆni) = σ îˆn.
Consider the corresponding ∆02 tree TF with the same paths as F . Let S ∈

N , where each path starts with 1 and has degree above all the hyperarithmetical
degrees, as in Friedman [11]. We take a subtree Ŝ of TF in which each path codes
a path through S, and we diagonalize against every set that is computable in
the coded path but is not itself computable. We let Ŝ be the downward closure
of the set of nodes F (hσ, τi) such that τ ∈ S and

(∀e < lh(σ))¬[ϕF (hσ,τi)e (xσ¹x,τ¹x) ↓= ϕτe (xσ¹x,τ¹x) ↓ ] .

It is clear that S is a ∆02 tree with no hyperarithmetical path (as before, for
any path f in S, f⊕∅0 computes a path through Ŝ). Thus, the left-most path f
in S has degree in P. Let g be the path in Ŝ corresponding to f . Now, suppose
some hyperarithmetical set is computable in f . It is then computable in g, by
our choice of S. By Posner’s trick, we may suppose that there exists an e such
that ϕfe = ϕge . Let σ and τ have length e, let i ∈ {0, 1}, and let n ∈ ω be such
that F (hσˆi, τˆni) ⊆ f . If there were σ0, σ1 and xσ,τ as described above, then let
σ̂ ⊇ σˆi and τ̂ ⊇ τˆn be such that F (hσ̂, τ̂i) ⊆ f and ϕτ̂e (xσ,τ ) ↓. It is clear from
the definition of S that ϕF (hσ ˆi,τ ˆni)e (xσ¹x,τ¹x) ↓ and so as F (hσ î, τ ˆni) ⊆ f and
τ̂ ⊆ g, we have contradicted our assumption that ϕfe = ϕge. On the other hand, if
there do not exist σ0, σ1 and xσ,τ as described above, then, since F (hσ, τi) ⊆ f ,
ϕfe is computable.

If, instead of standard Turing reducibility, one is interested in the stronger
reducibilities given by allowing some added fixed hyperarithmetical set, then
results corresponding to most of the ones above can be derived by relativization.
One such set of relativizations gives information about the α-degrees, introduced

4Based on a completely different and more complex method, Steel [36] provided a rela-
tivized solution to Friedman’s problem. Harrington [16] also outlined, using a very different
method, how a solution to Friedman’s problem can be obtained. Steel’s method [36] involves
a forcing technique for ω branching trees whose paths are not easily definable from one an-
other, even when the defining formulas allow a parameter for the tree itself. Steel’s method
often produces only relativized results. After Steel completed his work, Harrington [16] found
a powerful method for obtaining the unrelativized versions of similar results, using iterated
priority arguments. Both Steel’s and Harrington’s techniques are quite different from, and
more complicated than, ours.
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in Section 2 (see the paragraph before Theorem 2.10). Again, we let ∆0α be a
complete ∆0α set, and we use the notation also for its Turing degree.
If c ∈ P, then by Corollary 6.3, c is anc relative to ∆0α. Relativizing the

proofs about anc sets, we obtain a set that is 1-generic relative to ∆0α, of degree
below c ∨∆0α. Then we can embed every countable partial ordering in the α-
degrees below c ≡∆0

α
c∨∆0α. For the arguments involving constructing various

computable trees and considering the properties of their left-most paths, we
relativize the entire construction to ∆0α to get ∆

0
α trees Ti whose paths have the

desired properties.
For Theorem 6.8, we get ∆0α trees Ti with left-most paths fi such that ⊕ifi

is 1-generic over ∆0α. Let hα be the characteristic function of ∆
0
α (our complete

∆0α set), and let Ri be a computable tree in which hα is the only path. Let the
tree T̂i be

{hσ, τi : lh(σ) = lh(τ) & σ ∈ S & (∀n < lh(σ))Ri(σ ¹ n, τ ¹ n)} .
It is clear that if hh, gi ∈ [T̂i], then h = hα. Moreover, g ∈ [Ti] and hh, fii is
the left-most path in T̂i. Thus, the degree of fi ⊕ hα is in P. Since the fi ⊕ h
are Turing independent, the fi themselves are independent with respect to ≤∆0

α
.

Similarly, the relativization of Theorem 6.10 yields some c ∈ P such that for any
hyperarithmetical d, if d ≤ c ∨∆0

α , then d ≤ ∆0
α ; i.e., if a hyperarithmetical

set X is ∆0α-reducible to some set in c, then X has α-degree 0.
We close this section with an application of these ideas to a problem about

trees of minimal degrees. Before thinking of Theorem 5.13 and realizing how to
prove Proposition 6.1, we tried to construct minimal degrees in P along the lines
of the constructions above. The natural lemma to try for was the existence of a
∆02 f -tree F each of whose paths has minimal degree (or is hyperarithmetical),
as then the left-most path in S(F ) would represent the desired minimal degree
in P. Indeed, it has often seemed that constructing an f -tree each of whose
paths has minimal degree would be a useful first step in many arguments about
minimal degrees.
More generally, it would have been pleasing to find a notion of forcing with

f -trees which would produce minimal degrees; i.e., constructing for each e and
each f -tree (condition) F , an f -subtree (refinement) all of whose paths g are
either computable or computable in ϕge. If we had such a notion, then using it
in an iterated fashion along all paths would produce an f -tree each of whose
paths has minimal degree. Our observations above show that there is no such
tree computable in ∅0, and much more.
Proposition 6.11 There is no hyperarithmetical f-tree F each of whose paths
is hyperarithmetical or else has minimal (or even array computable) degree.
Indeed, this remains true even if we omit the restrictions that F preserves lexi-
cographic order and that (∀σ) (∃t) (∀m 6= n) [F (σˆm) ¹ t 6= F (σˆn) ¹ t ], so long
as [F ] is required to be a closed set.

Proof: Suppose we are given a hyperarithmetical order and nonorder pre-
serving F̂ : ω<ω → ω<ω such that [F̂ ] is a closed set all of whose elements are
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either hyperarithmetical or array computable. We construct a hyperarithmeti-
cal f -tree F with the same properties. We proceed by recursion, starting by
letting F (∅) = F̂ (∅). Suppose F (σ) = F̂ (τ). Let F̂ (τ) have length m. If there
are infinitely many different values for F̂ (τˆn)(m), then we choose a sequence
ni such that

i < j → F̂ (τˆni)(m) < F̂ (τˆnj)(m) ,

and we let F (σˆi) = F̂ (τˆni). If not, then we let m0 be the value of F̂ (τˆn)(m)
for all but finitely many n, and let m0 be larger than all the exceptions.
We now ask if there are infinitely many different values for F̂ (τˆn)(m+ 1).

If so, we choose ni > m0 such that

i < j → F̂ (τˆni)(m+ 1) < F̂ (τˆnj)(m+ 1) ,

and let F (σˆi) = F̂ (τˆni). If not, we let m1 be the value of F̂ (τˆn)(m + 1)
taken on for almost all n. Continuing in this way, either we define F (σˆi) so
that F preserves lexicographic order and all F (σˆi) differ at some one number
in the common domain, as required, or else we build a function g(k) = mk such
that g is a limit point of F̂ (τˆn) but g is not in [F̂ ], for a contradiction. Now,
F is clearly hyperarithmetical, as F̂ was, and F is an f -tree in our restricted
sense. Thus, we may suppose we have an f -tree F satisfying our restrictions,
and the hypotheses of the proposition. Moreover, we may assume that we also
have a hyperarithmetical function k which, for each σ, supplies a t such that

(∀s < t) [F (σˆs) = F (σˆt) & (∀m < n) (F (σˆm)(t) < F (σˆn)(t))] .

We again take S to be a computable tree with no hyperarithmetical paths,
and we consider S(F ) and its left-most path f , which corresponds to the left-
most path g in S. As before, f is not hyperarithmetical. We claim that there is
no hyperarithmetical h that dominates f , and so f is anc, for the desired con-
tradiction. Suppose h dominates f , so, without loss of generality, it is increasing
and majorizes f . We shall define a hyperarithmetical function ĥ that dominates
g, contradicting Proposition 6.2. We begin with ĥ(0) = h ◦ k(∅). Note that,
by our choice of k, and the corresponding restrictions on F , g(0) ≤ f ◦ k(∅) <
h ◦ k(∅) = ĥ(0), as desired. In general, we let

ĥ(n) = max{h ◦ k(σ) : lh(σ) = n & (∀m ≤ n)[σ(m) < ĥ(m)]}.

Clearly, ĥ is hyperarithmetical. Suppose that g(m) < ĥ(m) for each m < n and
g ¹ n = τ , so F (τ) ⊆ f . As at 0, g(n) ≤ f ◦ k(τ) and so g(n) < h ◦ k(τ), and τ

is one of the σ over which we take the maximum in the definition of ĥ. Thus,
g(n) < ĥ(n), as required.

Thus, it seems that there is no way to force with conditions consisting of hy-
perarithmetical f -trees bounded in the hyperarithmetical hierarchy and produce
a minimal degree.
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