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Chapter 1

Introduction

Our goal in these lectures is to explore the fundamental notion of e¤ective computability
(recursiveness) and, more speci�cally that of relative complexity of computation (relative
recursiveness). The formal de�nitions that best captures the intuitions, �rst, that some
function (or set) is computable and, second, that one set (or function) is easier to compute
than another are those of Turing. We work with the natural numbers N and subsets of
and functions on them. Turing machines supply a formalism for describing what are
generally agreed to be all the intuitively computable functions and the basic notion of
general computability of one set (or function) from another. While there were many
other formalisms introduced in an attempt to capture these notions we now know that
they are all equivalent and we can simply think of the programs in any general purpose
computer language as supplying our basic list of such functions. To describe the notion
of computing one set from another we equip our (Turing) machines with an �oracle�.
For A;B � N, we say that A is recursive in (or (Turing) computable from ) B, A �T B,
if, when we want to decide if n 2 A, we allow our basic machines at any point in their
computation to generate an m 2 N, ask if m 2 B and receive the correct answer from
the oracle for B. The machine may then continue on with its computation. We say that
A and B are (Turing) equivalent, A �T B, if A �T B and B �T A.
This notion of relative recursiveness (computability) de�nes a symmetric, transitive

relation on the subsets of (or functions on)N. As usual, we move to the equivalence classes
of this relation which are called the (Turing) degrees. The degree of a set A, deg(A), is
then fBjB �T Ag; often denoted by a. These degrees then form a partial order under the
induced ordering a � b. (Note that we can pass between sets A and functions f by using
graphs of functions (fhx; yi jf(x) = yg) in one direction and characteristic functions of
sets (CA(n) = 1 if n 2 A and CA(n) = 0 if n =2 A) in the other. We generally abuse
notation and confuse sets and functions in this way. It is a basic fact (or an exercise to
check) that these procedures preserve Turing degree.) We denote the structure of these
degrees and partial ordering by D. It is our primary object of study in these lectures.
It is easy to see that this partial order has a least element 0 the degree of the empty

set 0 (or equivalently of any recursive set, i.e. one computable by a Turing machine). It
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2 CHAPTER 1. INTRODUCTION

also has join operator a _ b = deg(A�B) where A�B = f2njn 2 Ag[ff2n+1jn 2 Bg.
(It is an exercise to see that this de�nes the least upper bound of a and b in D.) A deeper
fact about the ordering is that it has the countable predecessor property, i.e. fbjb < ag
is at most countable for any degree a. The point here is that there is computable listing
of the Turing machines (which have �space�for an oracle) and so of the functions they
compute �e (�Ae when relative to the oracle A). Thus fBjB �T Ag is countable for every
set A and so, a fortiori, fbjb < ag is at most countable. One of our major goals is to
see what more we can say about this ordering in �rst order or algebraic terms. Is it a
linear ordering? It is an uppersemilattice (usl) but is it a lattice? What orderings can
be embedded into it, etc.?
There are also important and remarkable connections between relative computability

as expressed in structural properties of D and approximations to, and growth rates of,
functions on the one hand and de�nability in arithmetic on the other. This story begins
with the halting problem and its generalization, the (Turing) jump to all sets and degrees.
The halting problem is traditionally de�ned as 00 = fej�e(e) convergesg with degree 00.
Its generalization is given by A0 = fej�Ae (e) convergesg with degree a0. (Again it is a basic
fact (or an exercise to see) that this operation is well de�ned on degrees. The fact that it
is strictly increasing is essentially the classical result on the undecidability of the halting
problem but relative to arbitrary oracles.) In terms of de�nability in arithmetic, A0 is
essentially the same as the set of existential formulas true in N: (It is certainly of the same
degree as this set but even more closely related to it.) For A0, the corresponding set is that
of the existential formulas in arithmetic with an added unary relation for A. Iterations
of this operator move up the levels of quanti�er complexity. (See Theorem 1.1.10.) As
for approximations, the sets computable from A0 are precisely those with approximations
recursive in A. (See Theorem 1.1.11.) The connections to rates of growth are a bit more
subtle but quite important. (See Chapter 5.) Thus another important concern in these
lectures will the jump operator and its relation to the order structure onD. In particular,
in parallel with our study of D, we will extensively study the structure of the degrees
recursive in the halting problem, D(� 00).
Finally, in addition to investigating the algebraic or �rst order properties of these

structures we will analyze their second order or metamathematical properties. For ex-
ample, we will characterize the complexity (in terms of Turing degree and more) of their
theories, Th(D) and Th(D(� 00), the sets of sentences true in these structures as well as
as well as study the sets and relations de�nable in them.
We give a brief list of some of the notations, conventions and basic results that are

used later in §1.1. We begin our main task of analyzing D and D(� 00) in Chapter 2.
There we introduce the idea of dividing up a complex property into simpler ones (called
requirements) and the method of approximating the sets we want to build having the
desired property by �nite initial segments. In a construction by such approximations
we want to satisfy the requirements in terms of these approximations in such way that
we guarantee the sets constructed have the desired properties. These ideas all come
from the seminal paper on degree theory by Kleene and Post [1954]. In hindsight, these
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constructions can be seen as simple examples of Cohen�s later method of forcing but
implemented in the setting of arithmetic instead of set theory. In the rest of these lectures,
we formalize and develop a more general approach to forcing in recursion theory. We
then apply it to prove most of our results about the structures D and D(� 00), both
mathematical and metamathematical.
We do not attempt to give a historical account of the material presented in these

lectures. Indeed, most of the proofs are not the original ones. However, we do give, in
Notes at the end of most sections, basic attributions and references for most of the results
to provide some historical perspective.

1.1 Some background material

We hope that almost all of the material in this section is already known to the readers.
If so, it can be skipped, If not, it can be taken on faith, worked out as exercises or found
in the �rst couple of chapters of any standard text.
We begin with a few facts about Turing computations and how the basic programs

�e work with oracles.

De�nition 1.1.1 There is master (universal) recursive function,

'(�; e; x; s) = y

where the variables are � a �nite binary string (initial segment of a characteristic function
or set), e a number (index), x a number (input), s a number (steps of the computation).
The expression means that the Turing machine with index e and oracle restricted to �
given input x and run for s many steps converges and outputs y.

Conventions: If the computation asks question outside the domain of � or does not
converge in s steps we announce that the computation is divergent.
Properties:

(i) Use: If � � � and '(�; e; x; s) #= y then '(� ; e; x; s) = y

(ii) Permanence: If s < t and '(�; e; x; s) #= y then '(�; e; x; t) #= y

(iv) The domain of ' is computable, in other words there is a procedure to decide
whether ' converges on any given tuple (�; e; x; s). This procedure simply runs the
machine with index e on input x and oracle �. If the machine arrives at an output
by step s, then answer yes (and otherwise, answer no).

De�nition 1.1.2 (Computations from Oracles) �Ae (x) = y means that 9� � A9s�
'(�; e; x; s) #= y

�
. So �Ae (x) is a partial function (recursive in A). We de�ne the use of

a computation �Ae (x) = y as the least n such that '(A � n+ 1; e; x; s) = y. We also say
that � = A � n is the axiom (about the oracle A) that gives this computation. Note that
if A is changed at or below the use then this axiom no longer applies and we no longer
have the same computation giving the output y.
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De�nition 1.1.3 We adopt two additional conventions when the oracle is a �nite string
�. First, we run the Turing machine for only j�j, the length of �, many steps so we
write ��e (x) for �

�
e;j�j(x). Second, we require that for �

�
e (x) to converge we must have

x < j�j.(Roughly speaking we must read the input before giving an output.)

De�nition 1.1.4 (Turing Reducibility) A �T B means 9e(�Be = A). A �T B
means that A �T B and B �T A. The equivalence classes under this relation are the
(Turing) degrees a and b (of A and B, respectively). They are ordered by the induced
partial order, a � b.

Intuitively this means that there is a Turing machine with oracle B that computes A.

Exercise 1.1.5 Turing reducibility is symmetric and transitive.

De�nition 1.1.6 A set is recursively enumerable (r.e.) in A if it is the domain of a
partial function recursive in A; i.e. of some �Ae .

Exercise 1.1.7 For any sets A and B, A �T B if and only if both A and �A are r.e. in
B.

The archetypic r.e. in A set is its jump A0.

De�nition 1.1.8 (Jump Operator) The jump of A, A0, is fej�Ae (e) #g. The itera-
tions of this operator are de�ned by A(n+1) = (A(n))0. (We use # to stand for �con-
verges�.)

Exercise 1.1.9 A0 is r.e. in A. Moreover, the jump operator is order preserving and
hence well de�ned on the degrees, i.e., if A �T B then A0 �T B0. In addition, A <T A

0

for every set A.

We assume some standard language for �rst order arithmetic containing for example
the functions + and �, the relation � and the constants 0 and 1 (or also an additional
unary predicate for a set A). The standard syntactic hierarchy of �n (or �An ) and �n
(�Bn ) formulas in prenex normal form are de�ned by counting the number of alternations
or quanti�ers as usual. Typically one includes bounded quanti�cation 9x < s and 8x < s
in the matrix of these formulas. One can instead add the master function ' of De�nition
1.1.1 into the language. There are normal forms for these formulas that show that, for
example, one can assume that there is only one quanti�er of each sort as the types of the
quanti�ers at the beginning of the formula alternate. The primary connection between
the classes of sets de�ned by such formulas which are also denoted by �An and �

B
n are

given by the hierarchy theorem. (We say that a set is �A
n if it is both �

A
n and �

A
n .)

Theorem 1.1.10 (Post�s Hierarchy Theorem) 1. B 2 �An+1 , B is RE in some
�An set.
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2. A(n) is �An m-complete for n > 0,i.e. for any B 2 �An there is a recursive function
f such that 8n(n 2 B , f(n) 2 A(n)). This is even stronger than the assertion
that B �T A.

3. B 2 �An+1 , B is r.e. in A(n).

4. B 2 �A
n+1 , B �T A(n).

There is an important connection between the �B
2 sets (which are those recursive in

B0) by clause 4 of this theorem and those with approximations computable in B:

Theorem 1.1.11 (Shoen�eld Limit Lemma) A �T B0 , 9f �T B such that 8x
�
A(x) =

lims!1 f(x; s)
�
. Note that asserting that lims!1 f(x; s) exists means that f(x; s) is even-

tually constant for each x.

The jump and its iterations are important markers along the highway of complexity
for sets. Thus we will often take some construction and ask where along this road the
sets or degrees constructed lie or can be made to lie, such as below 00 or 000 or some other
0(n). Another measure of complexity is where the jump(s) of the set constructed lie. For
example, we might ask if A0 �T 00 (the smallest possible value) or if A00 �T 000 (the largest
possible value for any r.e. set or one recursive in 00). These ideas are captured in the
de�nition of the jump hierarchy and the generalized jump hierarchy.

De�nition 1.1.12 For n � 1, X 2 GLn if and only if X(n) �T (X _ 00)(n�1) (by
convention, Z(0) = Z for every Z); X 2 GHn if and only if X(n) �T (X _ 00)(n). If
X �T 00 then these conditions simplify and we say that X 2 Ln if X(n) �T 0(n) and
X 2 Hn if X(n) �T 0(n+1). We indicate the corresponding degree classes by boldfac-
ing: GLn;GHn;Ln and Hn. The complementary classes are indicted by GLn;GHn; �Ln
and �Hn where the last two refer to the complement within the degrees below 00. These
notations are read as (generalized) lown or (generalized) highn.

Notes: For basic background including the material of this section we recommend the
classics texts on recursion theory Rogers [1987] and Soare [1987] or the more encyclopedic
Odifreddi [1989] and [1999].
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Chapter 2

Embeddings into the Turing Degrees

2.1 Embedding Partial Orders in D
Based on only the background information on the Turing degrees mentioned in the In-
troduction, we know only that D is an uppersemilattice of size 2@0 (Exercise) with least
element and the countable predecessor property. It also has an operator, the Turing
jump, which is strictly increasing and closely related to the quanti�er complexity of the
de�nitions of sets and functions in arithmetic. The only speci�c degrees we know are
0 and the iterations of the jump beginning with 00. Are there others? Is D a linear
order? If not, how �wide� is it? How far away from being a linear order? Where do
these other degrees lie with respect to the ones we already know? We begin answering
these questions by considering what is perhaps the simplest question and showing that
D is not a linear order.

Notation 2.1.1 We write AjTB, A is Turing incomparable with B, for A �T B & B �T
A.

Theorem 2.1.2 (Kleene and Post) 9A0; A1(A0jTA1).

How can we approach such a result. We recast the desired properties of the sets we
want to construct into a list of simpler ones Re called requirements. Then we choose
an approximation procedure so that we can build a sequence of approximations �i;s
�converging� to Ai such that the information in an an approximation h�i;si can be
su¢ cient to guarantee that we satisfy one of the requirements in the sense that Re is true
of any pair Ai � �i;s.
Proof. We build A0; A1. The requirements necessary to guarantee the theorem are:

Rhe;ji : �
Aj
e 6= A1�j

for all e 2 N, j 2 f0; 1g. It is clear that if the sets we construct satisfy each requirement
then the sets satisfy the demands of the theorem. Our approximations in this case

7



8 CHAPTER 2. EMBEDDINGS INTO THE TURING DEGREES

are �nite binary strings (so initial segments if characteristic functions) �j;s such that
Aj = [s�j;s.
The construction cannot be recursive because A0; A1 can�t both be recursive and

incomparable. But, the approximations won�t change once de�ned at some x; in other
words, �j;s � �j;s+1 so we get better and better approximations.
What actions satisfy a requirement? Given �j;s (j = 0; 1), we want �j;s+1 � �j;s to

guarantee that we satisfy Rhe;ji. For de�niteness, let j = 0. We want �0 � �0;s, �1 � �1;s
such that for any A0 � �0, A1 � �1, �A0e 6= A1. In other words,

9x:
�
�A0e (x) = A1(x)

�
We can choose x as the �rst place x at which �1;s is not de�ned (formally x = dom(�1;s) =
j�1;sj). Ask if 9�0 � �0;s

�
��0e (x) #

�
. If so, we can choose the �least� such �0. To which

ordering does the �least�refer here? We make a master list of all convergent computations
'(�; e; x; t), i.e. fh�; e; x; ti : '(�; e; x; t) #g where we write '(�; e; x; t) or ��e;t(x) to mean
the result of running the eth Turing machine on input x for t many steps with oracle
questions answered by the �nite string � (which must be long enough to answer them)
and then least refers to the least quadruple h�; e; x; si in this list. From now on we,
usually without comment, use �least�in this sense of being the �rst object enumerated
in some given search.
Then, we set �0;s+1 = �0 and �1;s+1 = �^1;s(1 � ��0e (x)). By the standard properties

of Turing machines, if A0 � �0 = �0;s+1 and A1 � �1;s+1 then

�A0e (x) = �
�0
e (x) 6= 1� ��0e (x) = A1(x):

What if no such �0 exists? We do nothing, i.e. we set �i;s+1 = �i;s. This �nishes the
construction.
A general principle of our constructions is do the best you can, and if you can�t do

anything useful, then do nothing and hope for the best (i.e. that what you can is enough).
In this case, it is enough because if A0 � �0;s then �A0e (x) ". (If �Ae (x) # for any A � �0;s
then the computation only requires �nitely much information about A and so ��e (x) #
for some �nite initial segment � of A. As A0 � �0;s we can certainly take this � to
extend �0;s as well if �A0e (x) #.) So �A0e is not total and can certainly then not be the
characteristic function of a set, i.e. �A0e 6= A1.)
Thus we have actually veri�ed that the construction satis�es all the requirements and

so provides the desired sets: Consider Rhe;ji. Look at the stage s at which we acted for
this requirement. Either we did something (de�ned �i;s+1 6= �i;s) which guaranteed the
requirement by guaranteeing that �Aje (x) #6= A1�j(x) at some x; or we did nothing by
setting �i;s+1 = �i;s but in that case we also guaranteed that the requirement is satis�ed
by making �Aje (x) " for some x.

Question 2.1.3 How do we know that this construction keeps going, i.e. that there is
no point after which we always �do nothing�. If that were the case, then both A0; A1
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would be �nite, so certainly not Turing incomparable. Why doesn�t this happen? Is it
necessary to include another requirement to guarantee this: Qe : �j;s � e? (These would
be easy to satisfy.) Whenever we do act on a requirement, we make one of the ��s longer
and since in�nitely often there is an index e which doesn�t look at its oracle and outputs
0, at the stage at which we deal with the requirement with index e, we automatically
extend the approximation. Hence, both strings are extended in�nitely often. This is a
common phenomenon. Constructions often do more than one expects.

Question 2.1.4 How complicated are A0 and A1? We want a bound on their complexity
such as A0;A1 �T 0(n) (this would also give de�nability properties). To determine what
n is, let�s look back at the construction. By recursion, we have �j;s. To calculate �j;s+1,
we asked one question:

9�0 � �0;s
�
��0e (x) #

�
?

This is a �1 question so 00 can answer it and tell us which case to implement. The �do
nothing� case is easy to do. For the other case, we have to enumerate the master list
fh�; e; x; ti : '(�; e; x; t) #g, which we can do e¤ectively. So, once 00 told us which case
we�re in, everything else is recursive. Hence, A0; A1 � 00.

Question 2.1.5 Where do A0; A1 lie in the jump hierarchy? Because of the symmetry of
the construction, even though A0 6�T A1, they should have some of the same properties.
Are they low (or can we add something to the construction to make sure that they�re
low)?

Recall: A0 is low i¤ A00 �T 00 i¤ fe : �A0e (e) #g �T 00.
We can add a new requirement:

Ne;j : make �Aje (e) # if we can.

Suppose that at stage s we are acting on Ne;0. We have �j;s and ask if

9�0 � �0;s
�
��0e (e) #

�
?

If the answer is yes, let �0;s+1 be the least such �0 and let �1;s+1 = �1;s. On the other
hand, if the answer is no, then do nothing and put �j;s+1 = �j;s This is called deciding
or forcing the jump. The terminology will be better understood after §3.2.

Claim 1: The construction is still recursive in 00: Our actions for requirements Pe;j are
the same as before. For Ne;j, 00 can decide if 9�0 � �0;s

�
��0e (e) #

�
.

Claim 2: We can compute A00 from 00. Since the whole construction is recursive in 00, 00

can go along the construction until it gets to the stage s at which we act for Ne;0. Then,
it sees what the construction does and can compute A00 from this action.
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Claim 3: We can relativize the construction to any degree x to get incomparables AXj
between X;X 0 such that (AXj )

0 = X 0. By relativizing, we mean that at each part of the
computation where we have oracle �j, we instead have the oracle X � �j. At the end,
we build X � Aj. The veri�cation of the construction goes through as before.

Claim 4: It is easy to extend the construction to more than two incomparables. We can
change the requirements to

Pe;i;j : �
Aj
e 6= Ai i 6= j:

Thus, we can produce countably many low pairwise incomparables between 0 and 00,
indeed all with jumps uniformly recursive in 00.

Exercise 2.1.6 Show that the sets Ai of the original construction (for Theorem 2.1.2)
are already low.

Notation 2.1.7 Given any sequence hAiji 2 Ii of sets we let �fAiji 2 Ig = fhi; xi ji 2
I & x 2 Aig. Conversely, given any set A we let A[i] denote the set fhi; xi j hi; xi 2 Ag.
We let A[̂{] = �fAjji 6= jg = fhj; xi ji 6= j & x 2 Ajg

In general, given a countable partial order P, can we embed it in D or in D(� 00) or
in the low degrees? Let P = fp0; p1; : : :g;�P . Without loss of generality, we can assume
that p0 is the least element of P. (If P doesn�t have a least element, add one in and
then any embedding of this enlarged partial order gives an embedding of the original P.)
We build Ai such that Ai �T Aj if and only if pi �P pj. To do so, we build Ci and let
Aj = �fCi : pi �P pjg. Does pi �P pj imply that Ai �T Aj? By transitivity,

hk; xi 2 Ai , x 2 Ck ^ pk �P pi ) hk; xi 2 Aj , x 2 Ck ^ pk �P pj

so if �P is recursive, i �P j implies that Ai �T Aj. We can use this fact to embed
recursive partial orders in the low degrees by using the construction above to guarantee
incomparability when needed and the recursiveness of P with this simple argument to
guarantee comparability when needed. If a partial order is not recursive, it is at least
recursive in some oracle so relativizing the proof for recursive partial orders gives an
embedding into D. Perhaps this is the best we can do �it may not intuitively obvious
that D(� 00) is a universal countable partial order. We begin by constructing a recursive
universal partial order. The construction is an example of the method of �nite approx-
imations being used to build sets with properties not necessarily expressed in terms of
Turing degrees. We then embed it into D(�00).

Theorem 2.1.8 There is a recursive universal partial order P, i.e. one such that every
countable partial order Q can be embedded in P
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Proof. We build P by �nite approximations, P = [Ps. At stage s we have a �nite
partial order Ps and extend it to Ps+1 such that for every subset of Ps, every one element
partial order extension is realized in Ps+1. That is, for every subset M � Ps, and a
particular partial order relation on M [ fzg (z, a new element), add z to P and de�ne
its relation to the elements in Ps nM as dictated by the axioms of partial orders. Thus
we can prove that given any partial order and any �nite subset and any extension by
one element, there is a new partial order that realizes that extension. We can apply this
�nitely many times to take care of each �nite subset and each possible one-element partial
order extension. This construction is recursive so we have a recursive partial order.
To see that P is universal, consider any countable partial order Q. We use a forth

argument to embed Q into P. That is, if Q = fq0; q1; : : :g we de�ne the embedding
f by recursion. Start with f(q0) = p0 and then, given f(qm) for m < n, de�ne f(qn)
to be an element of P realizing (up to this �nite isomorphism) the same extension of
ff(qm)jm < ng that qn does of fq0; : : : qn�1g.

Proposition 2.1.9 Every recursive partial order P = (P;�P) can be embedded in D.

Proof. Let pi enumerate the elements of P . We build sets Ci and let Ai = �fCj : pj �P
pig so if pk �P pj then Ak �T Aj since �P is recursive.
Requirements: Rk;j;e : pk �P pj implies Ak �T Aj i.e. 8e�Cje 6= Ck.
Approximations: Finitely many �nite binary strings j;s. We set Cj = [j;s. Then

we approximate the Ai by
Ai;s = �fj;s : pj �P pig

i.e. Ai;s is de�ned at hj; xi if j;s(x) is de�ned. Think of each j;s as partial function and
Ai;s is the sum of these partial functions. To make Ai a total characteristic function we
set Ai(hj; xi (x) = 0 if pj �P pi.
Suppose we wish to act for Rk;j;e at stage s = hk; j; ei. We have Aj;s; Ak;s �nite

characteristic functions determined by the i;s so far de�ned. To guarantee that �
Aj
e 6=

Ak, could we take x = jk;sj and ask if there is extension of the �s such that �
Aj
e (x) # to

diagonalize? The problem is that an extension of the �s which guarantees convergence
might also determine the value Ak(x), so we might not be able to diagonalize.
To make x not interfere with the computation from Aj, we want an x = hn; yi such

that pn �P pj. Also, to be able to de�ne Ak at x, we need pn � pk (otherwise the relevant
column is always empty). We also need hn; yi � jk;sj. So we want pn � pj and pn �P pk.
By assumption, pk �P pj, so choose n = k. Then let x = hk; jk;sji.
Now, ask for least extension of the �s which makes �Aje (x) #. This only depends on

i for pi �P pj. If such an extension exists, put Ak(x) = 1� �
Aj
e (x). If there is no such

extension, do nothing. Then, go to stage s+ 1.
To verify that the construction satis�es all the requirements, for Rk;j;e consider the

stage s = hk; j; ei. Either we extended some  or we didn�t. If we extended some , then
there is x such that �Aje (x) #6= Ak(x). If we didn�t, then no such extension exists and
since Aj extends j;s, �

Aj
e (x) ".



12 CHAPTER 2. EMBEDDINGS INTO THE TURING DEGREES

Corollary 2.1.10 Every countable partial order can be embedded in D.

Corollary 2.1.11 The one-quanti�er theory of (D;�T ) is decidable.

Proof. A one-quanti�er existential sentence is equivalent to a disjunction of ones of the
form

' � 9x19x2 � � � 9xn
�
xi � xj ^ � � � ^ xj � xk ^ � � � ^ xn = xn

�
:

Note that if we can decide whether an existential sentence is true or false then we can
�ip the answers to decide if universal sentences are true and false. Given such a disjunct,
we ask if there is a partial order that satis�es one of the disjuncts. If not, then (D;�T )
cannot because it itself is a partial order. So suppose (P ;�P) � P. If we can embed P
into D then we�re done because embedding preserves atomic sentences. Not every partial
ordering can be embedded into D (for example, huge ones can�t). But if there is any
partial order that satis�es ' then there is a �nite partial order that satis�es it, because
' only mentions n elements. So, we can assume that P is �nite, hence recursive. Then,
the theorem above says that P embeds into D. The last piece of the proof is to verify
that we can answer the question of whether ' is satis�able by a partial order. Well, we
can enumerate all partial orders of size at most n and then check each one. And, if ' is
satis�able by a partial order then it is satis�able by a member of the list.

Exercise 2.1.12 If the recursive partial order P of Proposition 2.1.9 has a least element
0, then embedding f into D can be chosen such that f(0) = 0. Then Corollary 2.1.10
can be extended to partial orders with least element and Corollary 2.1.11 to the language
with a constant for 0.

Question 2.1.13 We ask the following questions about the proof of embedding theorem,
Proposition 2.1.9:

1. How complicated are the images of the partial order under the embedding? We
claim that Ai �T 00 uniformly. Indeed the whole construction and so the Ci are
(uniformly) recursive in 00. To compute Ai(x) where x = hj; ni we �rst ask if
pj � pi (the partial ordering is recursive). If not, Ai(x) = 0. If so, we can follow
the construction recursively in 00 until it is decided if x 2 Cj.

2. Can we ensure that all the Ai are low? We can add requirements

Ne : make ��Aie (e) # if we can:

To act for Ne still takes just a 00 question. Alternatively, instead of adding in�nitely
many requirements we can add a top element 1 to P. The construction then gives
A1 = �Cj � 00 and we can then just make sure that A1 is low.

Corollary 2.1.14 Every countable partial older can be embedded in D(� 00) and so its
one quanti�er theory is decidable.
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An alternative approach to these results begins with strengthened versions of incom-
parability.

De�nition 2.1.15 The set fAi : i 2 Ng is independent if no Ai is computable from
the join of �nitely many of the other Aj. The set fAi : i 2 Ng is very independent if
Ai �T �j 6=iAj for all i.

Very independent implies independent because Ai1 �� � ��Ain �T �j 6=iAj if no ik = i
(x 2 Ai , hi; xi 2 �j 6=iAj). However, while independence is a degree theoretic notion,
very independence is not. This is proved in the following exercises.

Exercise 2.1.16 Find fAi : i 2 Ng very independent. (Hint: either write down require-
ments and use �nite approximations or use partial order embedding).

Exercise 2.1.17 Find fAi : i 2 Ng; fBi : i 2 Ng such that fAi : i 2 Ng is very
independent, fAi : i 2 Ng is not, but Ai �T Bi.

De�nition 2.1.18 An uppersemilattice (usl) is a partially ordered set P such that every
pair of elements x; y in P, has a least upper bound, x _ y.

Exercise 2.1.19 Every usl L is locally countable, i.e. for any �nite F � L the subusl
F of L generated by F (i.e. the smallest one containing F ) is �nite. Moreover, there is
a uniform recursive bound on jFj that depends only on jF j.

Exercise 2.1.20 Given usls Q � P and an usl extension Q̂ of Q generated over Q by
one new element (with Q̂\P = Q), prove that there is an usl extension P̂ of P containing
Q̂.

Exercise 2.1.21 Prove that there is a recursive usl L such that every countable usl can
be embedded in it (as an usl).

Exercise 2.1.22 Every countable usl L can be embedded in D and even in D(� 00)
(preserving _ as well as �). Hint: Use a very independent set Ci. If L = flig send
li to �fCjjlj � lig.

Notes: The �nite extension method for constructing degrees was developed in Kleene
and Post [1954]. It was the seminal paper on the structure of the Turing degrees. They
proved, among others, Theorem 2.1.2, the existence of a countable family of independent
sets and Proposition 2.1.9 for �nite partial orders and that these theorems are true in
the degrees below 00. Sacks [1961] and [1963] contain Corollary 2.1.10 and much more.
Corollary 2.1.11 is pointed out in Lerman [1972].
We will see in Theorem 3.3.1 that every countable lattice can be embedded in D but

not by the methods used here in the sense that there is no countable lattice L which is
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countably universal, let alone a recursive one. Indeed local �niteness fails and there are
2@0 many lattices generated by four elements. We provide such with seven generators in
§3.4.
What about uncountable partial orders, usls and lattices? Of course, they must have

the countable predecessor property, i.e. fyjy � xg is countable for every x. Sacks [1961]
shows that all partial orders of size @1 with the countable predecessor property can be
embedded into D. For lattices this follows from Abraham and Shore [1986] where the
embedding is made onto an initial segment ofD. Sacks [1961] shows that all those with the
countable successor property can be embedded. However, it is consistent that 2@0 = @2
and there is an usl of size @2 with the countable predecessor property which cannot be
embedded in D (Groszek and Slaman [1983]. It is a long standing open question if every
partial order of size 2@0 with the countable predecessor property can be embedded in D
(Sacks [1963]).

2.2 Extensions of embeddings

We now look at extensions of embedding results which give information about the 2-
quanti�er theory of (D;�T ).

Theorem 2.2.1 (Avoiding cones) For every A > 0 there is B such that AjTB.

Proof. Given a set A, we build B such that A �T B, B �T A. There are two kinds of
requirements:

Pe : �
A
e 6= B Qe : �

B
e 6= A:

The construction is by �nite binary string approximations �s for B. At the end, we let
B = [s�s.
Suppose at stage s we work to satisfy Pe. We have �s and construct �s+1 guaranteeing

that B meets the requirement. We ask for the value of �Ae (j�sj). If �Ae (j�sj) " then Pe
is satis�ed so do nothing. Otherwise, put �s+1 = �s^(1 � �Ae (j�sj)). So, B(j�sj) =
�s+1(j�sj) 6= �Ae (j�sj). Observe that at this stage we ask a question that A0 can answer
and then carry out a recursive procedure.
Likewise, suppose at stage s we work to satisfy Qe. We ask if there is an x and an

extension � of �s such that �
�
e (x) #6= A(x). If no such extension exists, do nothing. If

there is such an extension, let �s+1 be the least such extension. Note that this is a �
A
1

question followed by a recursive procedure, so this step is recursive in A0.
To verify that this construction works, observe that all the Pe are clearly satis�ed.

Suppose we fail to satisfy Qe. Then at stage s there was no x and � � �s such that
��e (x) #6= A(x). If �Be (x) " for any x then Qe is satis�ed. Otherwise, we claim that
A is recursive: To compute A(x), look for a � � �s such that �

�
e (x) #. There is one

since �Be (x) #. The value computed with oracle � must be A(x). This contradicts our
assumption that A is not recursive. Thus, Qe is satis�ed.
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Exercise 2.2.2 The B of theorem 2.2.1 can be made recursive in A0 and indeed we can
guarantee (or the construction already does) that B0 �T A0.

Exercise 2.2.3 Every maximal chain (i.e. linearly ordered subset) in D is uncountable.

Exercise 2.2.4 For every countable set of nonrecursive degrees there is a degree incom-
parable with each of them.

Exercise 2.2.5 Every maximal antichain (i.e. pairwise incomparables) in D is uncount-
able.

Exercise 2.2.6 Every maximal independent set of degrees is uncountable.

Theorem 2.2.7 (Minimal Pair) There are A;B > 0 such that A ^ B = 0. In other
words, for all C, if C �T A;B then C �T 0.

Proof. We build A;B by �nite approximations �s; �s. There are three kinds of require-
ments:

Pe : �e 6= B, Qe : �e 6= A and Ne;i : �
A
e = �

B
i = C ) C is recursive:

To satisfy Pe; Qe (respectively): given �s (�s), ask if �e(j�sj) " (or �e(j�sj) "). If yes, then
the requirement is already satis�ed so let �s+1(j�sj) = 0 (�s+1(j�sj) = 0). Otherwise, let
�s+1(j�sj) = 1� �e(j�sj) ( �s+1(j�sj) = 1� �e(j�sj)).
Suppose at stage s we work onNe;i. Ask if (9� � �s) (9� � �s)9x(��e (x) #6= �

�
i (x) #).

If such extensions exist, pick the �rst pair (�; �) which satisfy the condition and put
�s+1 = �, �s+1 = �. If no such extensions exist, do nothing.
To verify that the construction works, �rst notice that all the Pe and Qe are satis�ed

so A;B > 0. For Ne;i, we may assume that �Ae = �
B
i = C as otherwise the requirement

is automatically satis�ed. We want to show that C is recursive. Consider �s; �s for the
stage s at which we work on Ne;i. To compute C(x), �nd any �nite extension � � �s
such that ��e (x). (There is one since A � �s and �Ae (x) #.) We claim that ��e (x) = C(x).
If not, there is a � � �s with � � B such that ��e (x) = �

B
e (x) = C(x) and so we would

have acted at s with � and � contrary to our assumption.
We frequently use the idea seen in this proof of searching for extensions that give

di¤erent outputs when used as oracles for a �xed �e and, if we �nd them, doing some
kind of diagonalization. If there are none, we generally argue that �Ae is recursive (or
recursive in the relevant notion of extension as in Theorem 2.2.11). We extract the
appropriate notion and provide some terminology.

De�nition 2.2.8 We say that two strings � and � e-split (or form an e-splitting) if
9x(��e (x) #6= ��e(x) #). We denote this relation by �je� and say that � and � e-split at x.
Note that by our conventions in De�nition 1.1.3, ��e (x) = �

�
e;j�j(x) is a recursive relation

as is 9x(��e (x) #6= ��e(x) #); i.e. �je� .
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Exercise 2.2.9 We may make the A and B of Theorem 2.2.7 low or note that as con-
structed they are already low. We can also relativize the result: 8C9A;B(A ^ B �
C & A0 � B0 � C 0).

We want a notion similar to minimal pairs but with an arbitrary countable ideal of
degrees playing the role of 0.

De�nition 2.2.10 C � D is an ideal in the uppersemilattice D if it is closed under joins
and is closed downwards (i.e. if y 2 C and x � y then x 2 C).

Theorem 2.2.11 (Exact Pair) If C is any countable ideal in D, there are a;b such
that C = fx : x �T a;bg = fx : x �T ag \ fx : x �T bg.

An alternative statement of the theorem is the following:

Theorem 2.2.12 If C1 �T C2 �T � � � is an ascending sequence, then there are A;B
such that fX : X �T A;Bg = fX : 9n(X �T Cn)g.

Exercise 2.2.13 These two statements are equivalent. We can list all the sets Dj with
degrees in a countable ideal C and then consider the ascending sequence Ci = �j<iDj.

We prove the second formulation of the theorem.
Proof. Given hCni ascending in Turing degree, we build A;B such that

� for all n, Cn �T A;B and

� C �T A;B implies that C �T Cn for some n.

Therefore, we need to satisfy the requirements

Rn : Cn �T A;B Ne;i : �
A
e = �

B
i = C ) 9n(C �T Cn):

We build A;B by �nite approximations �s; �s. Instead of these being thought of as �nite
strings, however, they are matrices. In each matrix, �nitely many columns are entirely
determined and there is �nitely much additional information. Suppose at stage s we work
for Rn. Choose the �rst column in each of �s; �s which has no speci�cations as yet. Let
�s+1 (�s+1) be the result of putting Cn into that column of �s (�s) and leaving the rest
of the approximation unchanged. This action is computable in Cn. Otherwise, suppose
at stage s we work to satisfy Ne;i. Ask if 9x(9� � �s) (9� � �s)(�

�
e (x) #= �

�
i (x) #) with

the domains of � and � being only �nitely larger than those of �s and �s, respectively.
If such extensions exist, let (�s+1; �s+1) be the least such pair of extensions. If no such
extensions exist, do nothing.

A;B meet the condition that Cn �T A;B for all n because all the Rn requirements are
satis�ed. Consider the stage s at which we deal with requirement Ne;i. We may assume
that �Ae = �

B
i = C as otherwise the requirement is automatically satis�ed. We want to
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prove C �T Cn for some n. Indeed let n be the largest m such that we have coded Cm
into A and B by stage s. To compute C(x), �nd any �nite extension � of �s such that
��e (x) #. (There is one since A � �s and �Ae (x) #.) We claim that ��e (x) = C(x). If not,
there is a �nite extension � of �s with � � B such that ��e (x) = �

B
e (x) = C(x) and so

we would have acted at s with � and � contrary to our assumption. The crucial point
now is that checking whether � � �s is recursive in Cn.

Corollary 2.2.14 D is not a lattice.

Proof. Let Ci be strictly ascending in Turing degree. (Such exist, for example, by
Theorem 2.1.9.) Now let A and B be as in Theorem 2.2.12. If there were a C whose
degree is the in�mum of those of A and B then C �T A;B and so C �T Cn for some n.
In this case, C <T Cn+1 �T A;B for a contradiction.

Exercise 2.2.15 What is a bound on the complexity (degrees) of the A and B of Theorem
2.2.12 in terms of the Cn? Does (�Cn)0 work? How about a better bound? How low can
we make this bound? Consider also the special case that Cn = 0(n).

Exercise 2.2.16 Use the results of the previous exercise and Corollary 2.1.14 to show
that D(� 00) is not a lattice.

Exercise 2.2.17 (Extensions of Embeddings ) Given a �nite usl P and a �nite par-
tial ordering Q extending P with no x 2 Q � P below any y 2 P and an usl embedding
f : P ! D prove that there is an extension g of f embedding Q into D as a partial order.

Notes: Theorems 2.2.1 and 2.2.7 and Corollary 2.2.14 are due to Kleene and Post
[1954]. Exercises 2.2.4 and 2.2.5 to Shoen�eld [1960]. Sacks [1961] proves Exercise 2.2.6
but Groszek and Slaman [1983] shows that it is consistent that 2@0 = @2 but there is
a maximal independent set of size @1. Theorem 2.2.11 and Exercise 2.2.16 are due to
Spector [1956].
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Chapter 3

Forcing in Arithmetic and Recursion
Theory

3.1 Notions of Forcing and Genericity

Forcing provides a common language for, and generalization of, the techniques we have
developed in Chapter 2. It captures the idea of approximation to a desired object and
how individual approximations guarantee (force) that the object we are building satis�es
some requirement. Now approximations usually come with some sense of when one is
better, or gives more information, than another. Of course, an approximation may have
improvements which are incompatible with each other, i.e. the set of approximations is
partially ordered. The intuition is that p � q means that p re�nes, extends or has more
information than q. We are generally thinking that the conditions are approximations
to some object G : N! N (typically a set) and that if p � q then the approximation
p gives more information than q and so the class of potential objects that have p as an
approximation is smaller then the one for q. In addition, we have some notion of what,
at least at a basic level, the approximation p says about G. We formalize these ideas as
follows:

De�nition 3.1.1 A notion of forcing is a partial order P with domain a set P and
binary relation �P . We call an element of P a (forcing) condition. For convenience,
we assume that the partial order has a greatest element 1. (For further restrictions see
De�nition 3.1.11.)

Example 3.1.2 If the notion of forcing is (2<!;�), then � � � � � � � . In many of
our previous constructions we used such binary strings � as approximations to a set G
such that � � G. So the longer the string, the fewer sets that �satisfy�it, i.e. have it as
an approximation (initial segment). This example is often called Cohen forcing.

Example 3.1.3 In Theorem 2.2.12, we used partial characteristic functions � de�ned
on some �nite set of columns and some �nitely many additional points. Again we were
approximating a set G � �.

19
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Example 3.1.4 If the notion of forcing is the set of perfect (i.e. every node has two
incomparable extensions) recursive binary trees under � then S � T � S � T . (Here
trees T are simply sets of �nite strings, i.e. subsets of !<!, which are downward closed,
i.e. if � � � 2 T then � 2 T .) Think of such a tree T as approximating the set [T ]
of its paths, i.e. [T ] = ff j8n(f � n 2 Tg, so more information means fewer paths, i.e.
more information about which path is being approximated. This notion of forcing is often
called Spector forcing (or perfect forcing or Sacks forcing or other names for di¤erent
variations).

What object is it exactly or what class of objects is it that a condition p approximates?
For Cohen forcing a condition (string) � approximates the class of sets fGjG � �g. So
the collection of all approximations to a single set G is simply f�j� � Gg, the class of all
the initial segments of G. We want to isolate the salient features of this set of conditions
or any set G � P that might considered as an object its members are approximating.
The general approach that we want for an arbitrary notion of forcing begins with that
of a �lter.
Rather than simply comparing any two elements, the idea is to compare each of them

with the imaginary end point that we�re approximating. That is, between two given
positions and end goal, there is an element extending both of the given ones.

De�nition 3.1.5 Two elements p; q are compatible if and only if 9r(r � p ^ r � q). If
p; q are incompatible we write p ? q (as opposed to incomparables which are written as
p j q to denote that p � q and q � p).

De�nition 3.1.6 F � P is a �lter on P if and only if F is upward closed and for every
p; q 2 F there is an r 2 F with r �P p; q.

We are thinking of �lters as connected with the object we are approximating, the end
goal.

Example 3.1.7 Suppose we want to approximate a set G 2 2! and our notion of forcing
is (2<!;�) (�nite binary strings). Then the set f� : � � Gg is a �lter. In particular, the
union of this set (�lter) is the characteristic function G. It will commonly be the case
that the object we want is de�ned from a �lter by some �simple�operation such as union.
We formalize this idea in De�nition 3.1.11. Note that for �nite strings, being comparable
is the same as being compatible.

Example 3.1.8 Suppose we want to approximate a set G 2 2! and our notion of forcing
is some countable set of in�nite binary trees (not necessarily perfect) such as the recursive
ones. Then the set fT : G 2 [T ]g = fT : 8� � G(� 2 T )g is a �lter: Suppose two trees
both have G as a path. Then the tree which is the (set) intersection of the two trees is a
common re�nement. For upward closure, if G is a path on T and T � S then G is also
a path on S. In this case, the intersection of this �lter is the characteristic function of
G.
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Suppose F is a �lter on some notion of forcing P. We can often associate some set
or function with F in a canonical way. For example, for Cohen forcing we can naturally
try [F . For forcing with binary trees we might try \f[T ]jT 2 Fg. Does this always
make sense even for Cohen or Spector forcing? For Cohen forcing it might be that [F
is a �nite string so itself a condition. For Spector forcing \f[T ]jT 2 Fg could be a set of
paths through a binary tree with more than one branch which might not necessarily be
recursive or perfect. We need to add conditions on our �lter to make sure we get a total
function or a single set at the end. We might for example require for Cohen forcing that F
contain strings of every (equivalently arbitrarily long) length, i.e. (8n)(9� 2 F)(j�j � n).
For Spector forcing we could require that there are trees in F with arbitrarily long nodes
� before the �rst branching (i.e. � has two immediate successors in the tree but no � � �
does). To this end we add a function V (p) representing the atomic information about
our generic object determined by the condition p and the requirement that all generic
�lters meet certain dense sets de�ned in terms of V .

De�nition 3.1.9 D � P is dense in P if 8p 2 P9q 2 D(q �P p). D is dense below r
if 8p �P r9q 2 D(q � p).

In general we want the conditions guaranteeing (forcing) each of our requirements to
be dense.

De�nition 3.1.10 If C is a class of dense subsets of P, we say that G is C-generic if
G \ D 6= ; for all D 2 C. We say that a sequence hpni of conditions is C-generic if
8i(pi+1 �P pi) and 8D 2 C9n(pn 2 D).

De�nition 3.1.11 We always require that a notion of forcing have a valuation function
V : P ! !<! which is recursive on P and continuous in the sense that if p �P q then
V (p) � V (q). (We say that a partial recursive function ' is recursive on a set X if
X � dom(').) Moreover, we require that the sets Vn = fpj jV (q)j � n)g are dense. We
also require that any collection of dense sets that we consider for the construction of a
generic �lter or sequence include the Vn.

Example 3.1.12 In the Examples above we may de�ne V (p) = p for Cohen forcing.
When the conditions are trees T , we may let V (p) be the largest � such that every � 2 T
is comparable with �. Show that the corresponding Vn are dense. What should V be for
the forcing that constructs an exact pair?

Proposition 3.1.13 If hpni is a C-generic sequence then G =fpj9n(pn � pg is a C-
generic �lter containing each pn.

Proof. G is C-generic because it contains an element, pn, of Dn for all n. It is upward
closed because if p 2 G then p � pe for some e so if q > p � pe then q � pe as well.
Finally, it is pairwise compatible because given p � pe1, q � pe2 then p; q � pe where
e = maxfe1; e2g.
If our collection of dense sets is countable then generic sequences and �lters always

exist.
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Theorem 3.1.14 If C is countable and p 2 P, then there is a C-generic sequence hpni
with p0 = p and so, by Proposition 3.1.13, a C-generic �lter G containing p.
Proof. Let C = fDnjn 2 Ng. We de�ne hpni by recursion beginning with p0 = p. If
we have pn then we choose any q � pn in Dn as pn+1. One exists by the density of Dn.
It is clear that hpni is a C generic sequence and so G =fpj9n(pn � pg is C-generic �lter
containing p.

Exercise 3.1.15 If C is countable (as it always is in our applications) and G is a C-
generic �lter containing p, then there is a C-generic sequence hpni �T G with p0 = p such
that G =fpj9n(pn � pg. (This is a converse to Proposition 3.1.13.)
De�nition 3.1.16 We associate to each C-generic sequence hpni or �lter G the generic
function (or set) G = [V (pn) or fV (p)jp 2 Fg.
Proposition 3.1.17 If G is associated with the C-generic sequence hpni (�lter G) then
G �T hpni (G).
Proof. As V is recursive on P and the sets Vn of De�nition 3.1.11 are included in C, we
can compute G(n) by searching for a k such that pk 2 Vn (or p 2 G) and then noting
that G(n) = V (pk) (V (p)).
As is our general practice, we often care about how hard it is to compute a C-generic

sequence, �lter or function. We must begin with the complexity of P and then consider
how hard it is to compute the generic sequence hpei and so the associated generic G. We
view the elements of P as being (coded by) natural numbers. For convenience we let the
natural number 1 be the greatest element of P .

De�nition 3.1.18 A notion of forcing P is A-recursive (or a-recursive) if the set P and
the relation �P are recursive in A (2 a). (As usual if A = ; (a = 0) we omit it from the
notation.) If C = fCng is a collection of dense sets in P then f is a density function for
C if 8p 2 P8n 2 N(f(p; n) 2 Cn).
Proposition 3.1.19 If P is an A-recursive notion of forcing and C = fCng is a uni-
formly A-recursive sequence of dense subsets of P and p 2 P then there is a C-generic
sequence hpni with p0 = p which is recursive in A. More generally, for an arbitrary notion
of forcing P, p 2 P and a class C of dense sets, if f is a density function for C, then
there is a C-generic sequence hpni �T f with p0 = p. The generic G function associated
with these �lters or sequences are also recursive in A or f , respectively.

Proof. If P is an A-recursive notion of forcing and C = fCng is a uniformly A-recursive
sequence of dense subsets of P, then we can de�ne a density function f �T A by letting
f(p; n) be the least (in the natural order of N) q �P p with q 2 Cn. The desired generic
sequence is now given by setting p0 = p and pn+1 = f(n; pn). That G is recursive in A
or f now follows from Proposition 3.1.17.
Note that the generic �lter G de�ned from the generic sequence hpni in Proposition

3.1.13 is �1 in hpni but not necessarily recursive in it. While in the other direction some
such sequence is recursive in the �lter. (Exercise 3.1.15)
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3.2 The Forcing Language and Deciding Classes of
Sentences

The ad hoc approach to constructions presented in Chapter 2 looks at the speci�c theorem
we want to prove, decides what are the speci�c requirements we need to meet, and then
builds the desired sets accordingly. For example, this is what we did to build AjTB.
Our approximations were P = fh�; �ig. The requirements were �Ae 6= B (and �Be 6= A).
Given �; �, we could �nd h�̂; �̂i � h�; �i which would guarantee the requirement. In
particular, if one exists, we chose a speci�c h�̂; �̂i � h�; �i such that 9x��̂e (x) #6= �̂(x) #;
if not, we took h�; �i. In the terminology of forcing, we had dense sets

De = fh�; �i : 9x��e (x) #6= �(x) # or (8h�̂; �̂i � h�; �i)(:[9x��̂e (x) #6= �̂(x) #])g

Likewise, we de�ned dense sets Ce, which guaranteed that �Be 6= A. Then if G is fDe; Ceg-
generic, G0 jT G1.
In this manner, each of the proofs we did earlier by constructions with requirements

can be translated to dense sets and generics for the dense sets De determined by the
conditions that guarantee (force) that we satisfy the eth requirement. However, the
bene�t of the forcing technology comes in the form of the generality it allows. For
example, we could try to tackle many of the constructions at once. We need to de�ne
the forcing relation () more generally, by induction on formulas ' that somehow say
that if p  ' then '(G) holds for the set or function G determined by any su¢ ciently
generic �lter G.
Thus we want a relation  between conditions p 2 P and sentences �(G) (where

we use G as the formal symbol that is to be interpreted as our generic set or function
G). This relation should approximate truth in the sense just described. We could use
a standard language of arithmetic (in set theoretic forcing, one would use the language
of set theory) augmented with another parameter (G) for the set we are building, and
possibly other parameters ( �F ) for given sets or functions. For our purposes it is more
convenient to use the master (universal) partial recursive predicates �(G; �F ; e; �x) and the
standard normal form theorems mentioned in §1.1 and described below.
We �x some �nite sequence of functions or sets �F and view them as �xed parameters

that appear in our formulas. This allows us to formalize relativizations to such �F as well
as other notions. For the most part, however, we can ignore them in our proofs as the
relativizations are almost always straightforward.
We use �n(G; �F ; e; x0; : : : xn�1) to mean that the eth Turing machine with oracles

G and �F (which we are viewing as a �xed (possibly empty) set or function parame-
ters that depends on the notion of forcing and is included in the oracle) running for
x0 many steps on inputs x1; : : : xn�1 converges. Our conventions are that if the ma-
chine runs for s many steps then it must �rst read the program and inputs and then
can ask about the value of any one of the oracles at n only after writing out n and
must then read the answer. So, in particular, �n(G; �F ; e; x0; : : : xn�1) can hold only if
e; x1; : : : ; xn�1 < x0 and for any information G(m) or F (m) about the oracles used in the
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computation m;G(m) and F (m) are also less than x0. Thus if �n(G; �F ; e; x0; : : : xn�1)
holds then it only depends on G � x0 (and �F � x0 although we ignore this fact as
we are thinking of the �F as given parameters) in the sense that it is also true for any
G0 � G � x0 and. In this case we also say that �(�; �F ; e; x0; : : : xn�1) holds for any
� � G � x0. Thus, crucially, the predicates �n(�; �F ; e; x0; : : : xn�1) are uniformly recur-
sive in �F . Moreover, every �1 sentence about G and �F is equivalent to one of the form
9x0�(G; �F ; e; x0) and so to 9x0�(G � x0; �F ; e; x0). Every �1 sentence about G and �F is
equivalent to one of the form 8x0:�(G; �F ; e; x0) and so to 8x0:�(G � x0; �F ; e; x0). More
generally, for n > 0, every �2n+1 sentence about G and �F is equivalent to one of the form
9x2n8x2n�1 : : : 9x0�(G; �F ; e; x0; : : : ; x2n); every �2n sentence about G and �F is equivalent
to one of the form 9x2n8x2n�1 : : : 8x0:�(G; �F ; e; x0; : : : ; x2n) and similarly for �n sen-
tences about G and �F . Thus, it su¢ ces to consider only formulas beginning with a list of
quanti�ers of alternating type followed by a predicate of the form �(G; �F ; e; x0; : : : xn�1)
(if the �nal quanti�er is 9) or :�(G; �F ; e; x0; : : : xn�1) (if the �nal quanti�er is 8). (Note
that n may be larger than the number of quanti�ers and we include constants m in our
language for every m 2 N.)

Notation 3.2.1 We use :' to stand for the canonical equivalent of the negation of ',
i.e. change each quanti�er (9 to 8 and vice versa) and the matrix (� to :� and vice
versa). So, in particular, ::' = '.

Notation 3.2.2 We use G for the generic �lter, G for [fV (p)jp 2 Gg, the set or function
that we are building and G for the symbol in language that stands for that set or function.

We de�ne the forcing relation p  ' for p 2 P and ' a sentence of our language
by induction on the complexity of sentences. The usual de�nition in standard languages
proceeds by induction on the full range of formulas with the crucial steps (after the atomic
variable free formulas) being p  9x , 9n (p  '(n)); p  :' , 8q � p(q 1 ') and
so p 1 8x' , 8n8q � p (q 1 :'(n)) , 8n8q � p9r � q (r  '(n)). (The de�nitions
for conjunction and disjunction are given by p  ' ^  , p  ' and p   and
p  '_ , p  ' or p   .) With our restricted language we can simply the de�nitions
and so the calculation of the complexity of the relation p  '.

De�nition 3.2.3 We de�ne the relation p forces ', p  ', by induction.

� If ' is a �1 formula 9x0�n(G; �F ; e; x0;m1; : : :mn�1) then p  ' if and only if there
is an m0 such that �n(V (p); �F ; e;m0;m1; : : :mn�1) holds (or equivalently, for every
G � V (p), �n(G; �F ; e;m0;m1; : : :mn�1) holds.

� If ' is a �1 formula 8x0:�n(G; �F ; e; x0;m1; : : :mn�1) then p  ' if and only if
8m08q � p(:�n(V (q); �F ; e;m0;m1; : : :mn�1).

� If ' is a �n+1 formula 9x (x) then p  ' if and only if 9m(p   (m)).
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� If ' is a �n+1 formula 8x (x) then p  ' if and only if 8m8q � p(q  : (m).

Exercise 3.2.4 Unravel the de�nition for p to force a �2 sentence 8x9y (x; y) to see
that it means that for every m there is a n and a q � p such that  (m;n).

Theorem 3.2.5 If P is a notion of forcing recursive in A then, for n � 1, forcing for
�n (�n) sentences ' (i.e. whether p  ') is a �n (�n) in A (and �F ) relation.

Proof. As we generally do from now on, we assume that the sequence �F of parameters
is empty and leave the relativization of results to the reader. We proceed by induction
on n and for notational convenience ignore A (i.e. assume it is recursive) as well. If ' is
�1 or �1 then p  ' is directly de�ned as a �1 or �1 formula, respectively. (The point
here is that the �n are uniformly recursive.) For n � 1 the result follows by induction
and our de�nition of forcing.

Exercise 3.2.6 If p  ' and q � p then q  '.

We now want to tackle the question of how much genericity do we need to make
forcing equal truth for generic �lters/sets in the sense that if p  ', p 2 G and G is
su¢ ciently generic then '(G) holds and, in the other direction, if '(G) holds then there
is a p 2 G such that p  '.

De�nition 3.2.7 The �lter G is n-generic (for n � 1) if and only if for every �n (in P)
subset S of P,

9p 2 G(p 2 S _ 8q � p(q =2 S)).
We say that G is (!-) generic if it is n-generic for all n. Similarly the descending sequence
hpni of conditions is n-generic i¤ for every �n (in P) subset S of P, there is an n such
that pn 2 S or 8q � pn(q =2 S). The sequence is called (!-) generic if it is n-generic
for all n. We also say that the function or set G determined by an (n-)generic �lter
or sequence is itself (n-)generic. These notions all relativize to an arbitrary X in the
obvious way. We then say, for example, that G is n-generic relative to (or over) X.

The following equivalence is now immediate.

Proposition 3.2.8 Let Cn be the class of dense sets fp : p 2 Se _ 8q � p(q =2 Se)g = Dn;e

for all �n (in P) subsets Se of P. Then a �lter G (or a descending sequence hpni) is
n-generic i¤ G (hpni) is Cn-generic.

Exercise 3.2.9 If D � P is dense and �n then D meets every n-generic G. If D is
dense below p (i.e. 8q �P p9r �P q(r 2 P )) and �n then D meets every n-generic G
containing p.

To build an n-generic G we proceed as in the construction of a generic for a given
countable class of dense sets. We can now also calculate how hard it is to carry out this
construction.
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Proposition 3.2.10 For any notion of forcing P and each n � 1, there is an n-generic
sequence hpki �T 0(n) (P(n)) and so its associated n-generic G is also recursive in 0(n)

(P(n)). There is also a generic sequence hpki such that it and its associated G are recursive
in 0(!) (P(!)). Moreover, for any p 2 P we may require that p0 = p and so V (p) � G.

Proof. Fix n. We build a generic sequence hpni for the Cn of Proposition 3.2.8 recursively
in 0(n) (as usual assuming P is recursive). We begin with p0 the given p 2 P . If we have
already de�ned ps we �nd, recursively in 0(n), a q �P ps which is inDn;s+1. This procedure
clearly constructs the desired sequence and is recursive in 0(n) by de�nition of the Dn;e.
For !-genericity one simply carries out this construction for the collection fDn;ejn; e 2 !)g
recursively in 0(!). That G is recursive in P(n)(P(!)) follows from Proposition 3.1.17.

De�nition 3.2.11 We say that a condition p decides a sentence ' if p  ' or p  :'.

Theorem 3.2.12 If G is n-generic and ' 2 �n (�n) then there is p 2 G which decides
'. Moreover, if p  ' then '(G) holds while if p  :' then :'(G) holds. Moreover, if
q 2 G and q  ' then '(G) holds.

Proof. We proceed by induction on n � 1. Consider ' = 9x (x; G). Now the set
S = fp : p  9x (x; G)g is �n by Theorem 3.2.5. So by the de�nition of n-genericity,
either there is p 2 G in S which forces ' or one with no extension forcing '. If p 2 G and
p  9x (x; G), then (by de�nition) there is an n such that p   (n; G) (or �m(V (p); : : :)
for somem, if n = 1). Now by induction (or the basic properties of �m for n = 1),  (n;G)
holds and then so does 9x (x;G) as required. On the other hand, suppose there is p 2 G
such that (8q � p)(q 1 9x (x; G)). In this case, we claim that that :9x (x;G). If not,
there would be an n such that  (n;G) and so by induction (or de�nition for n = 1), a
q 2 G such that q   (n; G) (or �m(V (q); : : :) if n = 1). So, q  9x (x; G). But, since
p; q 2 G they are compatible and there is an r 2 G with r � p; q. This would contradict
Exercise 3.2.6. Finally, we claim that in this case p  :'. First, (8q � p)(q 1 9x (x; G))
implies that (8q � p)(8x)(q 1  (x; G)), and so p  8x: (by the de�nition of forcing)
which is the same as p  :' as required. As for the last claim of the Theorem, note that
there is some p 2 G that p decides ' in the way that corresponds to the truth of '(G).
The conditions p and q are compatible and so p  ' and '(G) holds as required.
The case that ' is �n clearly follows as then :' is �n and ::' = ':
We now look at degree theoretic properties of sets with various amounts of genericity.

We begin with some connections between genericity and lowness. The �rst improves
Proposition 3.2.10. The second is speci�c to notions of forcing similar to that of Cohen.

Proposition 3.2.13 For any notion of forcing P and each n � 1, there is an n-generic
sequence hpki �T P(n). For any G associated with such a sequence, G(n) �T P(n).
There is also a generic hpki �T P(!) and for any G associated with such a sequence,
G(!) �T P(!). Moreover, for any p 2 P we may require that p 2 G (p0 = p).
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Proof. A sequence hpki as required exists by Proposition 3.2.10. Now note that the
question of whether x 2 G(n) is uniformly �n and so we can �nd theDn;e that corresponds
to the the �n formula p  e 2 G(n) and, recursively in P(n) (P(!)), �nd a k such that
pk forces this formula or no extension of it does. By Theorem 3.2.12, this determines if
x 2 G(n)(G(!)) or not.

Exercise 3.2.14 If every condition in P has two incompatible extensions then we can
replace �T by �T in Proposition 3.2.13. Indeed we can make G(n) �T C for any C �T
P(n) or G(!) �T C for C �T P(!). This is a generalization of the Friedberg Completeness
Theorem (8c � 00)(9a)(a0 = c) to iterations of the jump.

Proposition 3.2.15 If G is n-generic for Cohen forcing then G(n) �T G _ 0(n). Simi-
larly, if G is generic, G(!) �T G _ 0(!)

Proof. It is immediate that for any G, G _ 0(n) �T G(n). Thus, it su¢ ces to show that
if G is n-generic then G(n) �T G _ 0(n). The formula '(e; G) which says that e 2 G(n) is
uniformly �n. Therefore, by Theorem 3.2.12 and the n-genericity of G, either there is
p 2 G such that p  '(e; G) or there is p 2 G such that p  :'(e; G). However, p forcing
' is a �n relation and forcing :' is �n so to see if e 2 G(n) we can search for a p 2 G
such that p  '(e; G) or p  :'(e; G). This is a G_ 0(n) question since for Cohen forcing
p 2 G if and only if V (p) � G. By Theorem 3.2.12, the one forced is the true fact about
G. The uniformity of this argument gives the desired result for generic G.

Exercise 3.2.16 The results of Proposition 3.2.15 relativized to P hold for any notion
of forcing P such that for every 1-generic G there is a �lter G �TG such that G =
[fV (p)jp 2 Gg.

Exercise 3.2.17 Find an A-recursive notion of forcing for which the analog of Proposi-
tion 3.2.15 does not hold, i.e. there is an n-generic G with G(n) �T G _ A(n).

The next proposition gives almost all our previous incomparability and embeddability
results in one fell swoop.

Proposition 3.2.18 If G is Cohen 1-generic then the columns G[i] = fhi; xijhi; xi 2 Gg
of G form a very independent set, i.e. 8j(G[j] �T G[|̂]).

Proof. For each e we want to show that �G[|̂]e 6= G[j]. We consider the following set of
conditions:

Se = fp : 9x
�
�p

[|̂]

e (x) #6= p[j](x)
�
g:

Here we use the natural extension of our notation for columns of a set to �nite binary
strings: p[j](hj; xi = p(hj; xi) and p[j](hj; xi = 0 for p(hj; xi) # and i 6= j. We de�ne p[|̂]

similarly. Since Se 2 �1 and G is 1-generic, there is p 2 G \ Se or there is p 2 G no
extension of which is in Se. If p 2 G \ Se then p � G so the requirement is satis�ed.
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Suppose that p � G and (8q � p)q =2 Se then we claim that �G
[|̂]

e is not total. If it
were, let hj; xi be outside the domain of p. We must then have some q � G with q � p,
q(hj; xi) # and �q[j]e (x) #. Now let q̂(hj; xi) = 1� q(hj; xi) and q̂(z) = q(z) for z 6= hj; xi.
So q̂[|̂] = q[|̂] and �q

[|̂]

e (x) #= �q̂
[|̂]

e (x) # but q̂(hj; xi) 6= q(hj; xi. Thus one of q and q̂ (both
of which extend p) is in Se for the desired contradiction.

Exercise 3.2.19 The Theorems and Propositions of this section relativize to an arbitrary
X. For example, Proposition 3.2.18 now says that if G is 1-generic relative to X, then
the independence results hold even relative to X, i.e. 8j(G[j] �T X �G[|̂]).

Exercise 3.2.20 If G is Cohen 1-generic over X and A;B �T X then

A �T B , A�G �T B �G:

Also, G jT X if X > 0.

Exercise 3.2.21 Prove that if G is Cohen n-generic then the G[i] are very mutually
Cohen n-generic in the sense that each G[i] is Cohen n-generic over G[̂{].

Exercise 3.2.22 Translate the Exact Pair Theorem into the language of forcing. Hint:
Given hCii, de�ne a notion of forcing P with conditions h�; �; ni for �; � 2 !<! and
n 2 N. The ordering is given by h�0; �0; n0i � h�; �; ni if �0 � �, �0 � �, n0 � n and, for
i < n, if �0(hi; xi) # but �(hi; xi) " then �0(hi; xi) = Ci(x) and similarly for �

0 and �.

Exercise 3.2.23 Construct a 1-tree T such that every G 2 [T ] is Cohen 1-generic. To
be precise we want a function F : N ! f0; 1; 2gsuch that if fdng lists the x such that
F (x) = 2 in increasing order and for any A 2 2!, we let FA(x) = A(n) if x = dn for
some n and FA(x) = F (x) otherwise, then FA is Cohen 1-generic for every A 2 2!. Hint:
make F 1-generic for conditions p 2 f0; 1; 2g<!.

Exercise 3.2.24 Show that the Cohen 1-generic degrees generate D. Hint: Fix an A 2
2!. Make the F of the previous construction 1-generic relative to A. Show that for any
j 6= k, (F [j]A _ F [j]�A ) ^ (F

[k]
A _ F [k]�A ) �T A where for any i F

[i](x) = F (hi:xi.

We close this section with a slightly variation of our previous constructions that is
needed in §5.4.

Proposition 3.2.25 If P is a recursive notion of forcing and C0 and C1 are low sets,
i.e. C 00 �T 00 �T C 01 then there is a G which is 1-generic for P over C0 and over C1 so
that, in particular, both G� C0 and G� C1 are low.

Proof. Build a generic sequence meeting the dense sets fp : p 2 Se _ 8q � p(q =2 Se)g =
De;i for all �n in Ci subsets Se;i of P for i 2 f0; 1_g as in the proof of Proposition 3.2.13.
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The point is that as both Ci are low, 00 can uniformly compute a density function for all
of these sets. The argument for lowness is now exactly as above.

Notes: Forcing in arithmetic was introduced in Feferman [1965]. It has since been
used in various formulations by many people. Hinman [1969] introduced a version of
n-genericity. Two important early papers applying forcing to degree theory are Jockusch
[1980] in which many of the results of this section appear for the special but typical case
of Cohen forcing and Jockusch and Posner [1978]. A systematic development of degree
theory based on forcing was �rst presented in Lerman [1983]. Our approach attempts to
both simplify and generalize previous versions. A very similar version has been presented
in Cai and Shore [2012].

3.3 Embedding Lattices

We have so far studied questions of embedding countable partial orders (and usl�s) in
D which is itself an usl. Now we know that D is not a lattice (Corollary 2.2.14) but
we also know that some pairs of degrees do have greatest lower bounds in D (Theorem
2.2.7). Thus we can ask which lattices can be embedded in D preserving the full lattice
structure. We now prove that every countable lattice can be embedded in D.

Theorem 3.3.1 (Lattice Embedding Theorem) Every countable lattice L with least
element 0 is embeddable in D preserving the lattice structure and 0.

For later convenience, we actually want to prove an a priori stronger statement about
partial lattices.

De�nition 3.3.2 A partial lattice L is a partial order �L on its domain L together with
partial functions ^;_ which satisfy the usual de�nitions when de�ned, i.e. if x ^ y = z
then z is the greatest lower bound (glb) of x and y in �L; if x_ y = z then z is the least
upper bound (lub) of x and y in �L. We say that L is recursive (in A) if L and �L are
recursive (in A) and _ and ^ are recursive (in A) functions on L.

Now, actually every partial lattice can be embedded into a lattice.

Theorem 3.3.3 If L is a partial lattice with least element 0 and greatest element 1 then
there is a lattice L̂ and an embedding f : L ! L̂ which preserves 0, 1, order and all meets
and joins that are de�ned in _L.

Proof. Consider the lattice I of nonempty ideals of L, i.e. nonempty subsets I of L
closed downward and under join in L (when de�ned). The ordering on I is given by set
inclusion. Meet is set intersection and the join of I1 and I2 is the smallest ideal containing
both of them. The map that sends x 2 L to Ix = fy 2 Ljy �L xg, the principle ideal
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generated by x, is the desired embedding into the sublattice L̂ of I generated by the
principle ideals.
Thus as far as an embedding theorem is concerned, it may seem that there is no

reason to use partial lattices but both e¤ectiveness considerations and convenience come
into play. It is certainly often more convenient to specify a partial lattice than to decide
all the meets and joins. Thus we state our theorem for partial lattices.

Theorem 3.3.4 (Partial Lattice Embedding) If L is a partial lattice recursive in A
with least element 0 and greatest element 1 then there is an embedding f : L ! D with
f(0) = 0 (or with f(0) = degA) which preserves order and all meets and joins that are
de�ned in _L. Moreover, for x 2 L, f(x) is uniformly recursive in f(1), in the sense that
we have sets Gx of degree f(x) which are uniformly recursive in f(1) �T A.

To prove Theorem 3.3.4, we need some lattice theory. In particular, we use a type of
lattice representations called lattice tables.

De�nition 3.3.5 A lattice table for the partial lattice L is a collection, �, of maps
� : L! N such that for every x; y 2 L and �; � 2 �

1. �(0) = 0.

2. If x �L y and �(y) = �(y) then �(x) = �(x).

3. If x �L y then there are �; � 2 � such that �(y) = �(y) but �(x) 6= �(x).

4. If x _ y = z, �(x) = �(x) and �(y) = �(y) then �(z) = �(z).

5. If x ^ y = z and �(z) = �(z) then there are 1; 2; 3 2 � such that �(x) = 1(x),
1(y) = 2(y), 2(x) = 3(x), 3(y) = �(y). Such i are called interpolants for �
and � (with respect to x, y and z).

Notation 3.3.6 We de�ne equivalence relations on � for each x 2 L by � �x � if and
only if �(x) = �(x). For sequences p, q from � of length n and x 2 L, we say p �x q
if p(k) �x q(k) for every k < n. In general, we say an equivalence relation E on a set
S is larger or coarser than another one Ê if for every (8a; b 2 S)(a �Ê b ) a �E b).
Similarly, E is �ner or smaller than Ê if (8a; b 2 S)(a �E b ) a �Ê b). With this
ordering on equivalence relations, the lub of E and Ê is simply their intersection. Their
glb is the smallest equivalence class on S that contains their union. This is also the
transitive closure of their union under the two relations.

The conditions of De�nition 3.3.5 can now be restated in terms of these equivalence
relations:

1. � �0 � for all � and � and so �0 is the coarsest congruence class, i.e. the one
identifying all elements.
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2. If x � y then � �y � implies � �x � for all � and � and so �x is larger than �y.

3. If x �L y then there are � and � such that � �y � but � 6�x � and so �x is not
larger than �y.

4. If x _ y = z and � �x � and � �y � then � �z � and so �z is the glb of �x and
�y.

5. If x ^ y = z then there are 1; 2; 3 2 � such that � �x 1 �y 2 �x 3 �y �. So
�z is certainly contained in the lub of �x and �y. It is part of the theorem that we
can arrange it so that chains of length three su¢ ce to generate the entire transitive
closure.

Thus a lattice table � produces a representation by equivalence relations with the
dual ordering. A reason for reversing the order is that D is only an uppersemilattice. So
joins always exist and we want them to correspond to the simple operation on equivalence
relations of intersection. On the other hand, meets do not always exist and they then
correspond to lub on equivalence relations which requires work to construct. Note that
�(1) uniquely determines each � 2 �, i.e. �1 is the �nest congruence, i.e. equality which
makes all elements distinct.
We now prove our representation theorem in terms of lattice tables.

Theorem 3.3.7 (Representation Theorem) If L is a recursive (in A) partial lattice
with 0; 1 then there is a uniformly recursive (in A) lattice table � for L.

Proof. De�ne �x;i for x; y 2 L, i = 0; 1 by

�x;0(y) =

(
hx; 0i if y 6= 0
0 if y = 0

�x;1(y) =

(
�x;0(y) if y �L x
hx; 1i if y �L x

The set of these �x;i satisfy (1), (2), (3) and (4). We now want to sequentially close
o¤ under adding interpolants as required in (5) for each relevant instance . To do so,
we have some dovetailing procedure which does the following. Consider x ^ y = z and
� �z �. We want to add 1; 2; 3 as required in (5) and preserve the truth of (1)-(4) in
the expanded set. If x �L y or y �L x, it is easy to do so just using � and �. If not (i.e.
x �L y and y �L x), then choose new numbers a; b; c; d not used yet and for w 2 L let

1(w) =

(
�(s) if w �L x
a if w �L x

2(w) =

8><>:
1(w) if w �L y
b if w �L x and w �L y
c otherwise

3(w) =

8><>:
�(w) if w �L y
a if w �L x and w �L y
d otherwise

This is a recursive (in A) procedure and it is an Exercise to check that it works.

Exercise 3.3.8 The construction given above provides a lattice table for L.
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Now we can turn to the proof of our embedding theorem for partial latices.

Proof (of Theorem 3.3.4). We begin with a lattice table � for L which is recursive
in L. We de�ne a notion of forcing P with elements p 2 �<!, the natural ordering
p �P q if p � q and V (p) = p. Our generics are then maps G : N!L. De�ne, for
x 2 L, Gx : N ! N by Gx(n) = G(n)(x). The desired embedding is given by 0 7! 0 if
we want to preserve 0 and 0 7! a if we want to send 0 to a. In either case, for x 6= 0,
x 7! deg(Gx) _ a. We use a su¢ cient amount of genericity to prove that this map really
is an embedding that preserves all the required structure. For notational convenience we
assume that A is recursive but at times point out the notational changes needed when it
is not. We follow the numbering of clauses in De�nition 3.3.5.

1. By de�nition, 0 is preserved by our embedding (or sent to a if so desired). (Note,
however, that G0(n) = 0 for all n and so G0 is recursive for any L.)

2. Suppose x �L y. We must show that Gx �T Gy. Given n, we want to compute
Gx(n) = G(n)(x). Find any � 2 � such that �(y) = G(n)(y) = Gy(n), i.e.
� �y G(n). One exists because G(n) is one such. As � is uniformly recursive we
can search for one. Then since x �L y and G(n) �y �, by De�nition 3.3.5(2) we
have that G(n) �x � so G(n)(x) = �(x) = Gx(n).

4 Suppose x _ y = z. We must show that Gz �T Gx � Gy. By the preservation of
order, Gz �T Gx �Gy, so it su¢ ces to compute Gz(n) = G(n)(z) from Gx(n) and
Gy(n). We search for an � 2 � such that �(x) = G(n)(x) and �(y) = G(n)(y),
i.e. � �x;y G(n). There is one and we can �nd it as above. Now as � �x;y G(n),
� �z G(n) by De�nition 3.3.5(3), so �(z) = G(n)(z).

We can also say something about the image of 1 under the embedding. Given n,
G1(n) = G(n)(1) so G1 �T G since by De�nition 3.3.5(2) for any � 2 �, �(1) determines
� uniquely and uniformly recursively. Thus the greatest degree in the embedding is the
degree of the generic G (G� A when L is not recursive).
Until this point, we have not used any genericity. We now turn to nonorder and

in�mum.

3 Suppose x � y. We want to prove that �Gye 6= Gx for every e. Suppose that G is
1-generic (over A) and consider the sets

Se = fp 2 �<! : (9n)[�pye (n) #6= px(n)]g

where px 2 !<! is de�ned in the obvious way by px(m) = p(m)(x). Se 2 �1 because
given � we can compute p(n)(x) (since � is uniformly recursive ). Therefore, the
1-genericity of G implies that there is a p 2 G \ Se or there is a p 2 G no extension
of which is in Se. Suppose p 2 G \ Se, then �Gye (n) 6= Gx(n) as py � Gy and
px � Gx and we are done. Otherwise, no extension of p is in Se. Suppose then, for
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the sake of a contradiction, that �Gye = Gx. Let � and � be as in De�nition 3.3.5(3)
for x and y. By the obvious density of the sets Dn = fpj9m > n(p(m) = �g and
the 1-genericity of G, there is a q � p and an m > jpj such that q(m) = � and
q 2 G. Moreover as �Gye (m) # by our assumptions, we may also guarantee that
�
qy
e (m) # by simply choosing q as a long enough initial segment of G. Consider now
the condition q̂ such that q̂(k) = q(k) for k 6= m and q̂(m) = �. Our choice of �,
� and q guarantees that q̂ � p, q �y q̂ and q 6�x q̂. Thus �qye (m) #= �q̂ye (m) # but
qx(m) 6= q̂x(m). So one of q and q̂ is in Se by de�nition for the desired contradiction.

5 Suppose that x ^ y = z and �Gxe = �
Gy
e = D. We want to prove that D �T Gz.

Now the assertion that �Gxe and �Gye are total and equal is �2. So let us assume
that G is 2-generic (over A) and so there is (by Theorem 3.2.12) a p 2 G such that
p forces this sentence. Thus for each n and q � p, there is an r � q such that
r  �Gxe (n) #= �

Gy
e (n) #. We now wish to compute D(n) from Gz. As above, we

can recursively in Gz �nd a q � p such that q  �Gxe (n) #= �
Gy
e (n) # and qz � Gz

(since some initial segment of G does this). We claim that �qxe (n) = D(n). To
see this consider a t 2 G such that t � p, tz � Gz and t  �Gxe (n) #= �

Gy
e (n) #.

Necessarily, �txe (n) #= �
ty
e (n) #= D(n) and t �z q. By suitably lengthening t or q

we may assume that they have the same length m. Let l = jpj < m. We now use
both the interpolants guaranteed by De�nition 3.3.5(5) and the fact that p forces
�Gxe and �Gye to be total and equal.

For each k with l � k < m we choose interpolants k;i (for i 2 f1; 2; 3g) between
q(k) and t(k) as in De�nition 3.3.5(5). We let qi(k) = p(k) = t(k) for k < l and
qi(k) = k;i for l � k < m. We also let q0 = q and q4 = t. So q = q0 �x q1 �y
q2 �x q3 �y q4 = t. We now extend the qi in turn to make them force convergence
at n but remain congruent modulo z. In fact, we make a single extension for all of
them. By the fact that p  �Gxe = �

Gy
e and q1 � p, we can �nd an r1 = q1^s1 such

that r1  �Gxe (n) #= �
Gy
e (n) #. We now extend q2^s1 to r2 = q2^s1^s2 such that

r2  �Gxe (n) #= �
Gy
e (n) #. Finally we extend q3^s1^s2 to r3 = q3^s1^s2^s3. Let

s = s1^s2^s3 and consider qi^s for i � 4. Looking at each successive pair we see by
the alternating (between x and y) congruences that they all force the same equal
values for �Gxe (n) and �

Gy
e (n). Thus, by transitivity of equality and permanence of

computations under extension, �qxe (n) = �
tx(n) = D(n) as required.

By Theorem 3.2.5, the embedding of L given by the generic G produced in Theorem
3.3.4 can be taken to be into the degrees below the double jump of L. We can improve
this by a direct construction recursive in 00.

Exercise 3.3.9 If L is a recursive lattice with 0 and 1 then it can be embedded in D(�00)
preserving 0. Moreover, we may take the image of 1 to be low and the image of L to be
uniformly recursive in it. This result relativizes to an arbitrary L and (degL)0. Hint: Do
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a direct construction of the sort done in Chapter 2 following the proof above but when it
relies on 2-genericity to guarantee the existence of extensions forcing some convergence
ask 00 instead if they exist and if not terminate the search and declare the requirement
satis�ed (by nonconvergence).

Alternatively we may use the following Exercise.

Exercise 3.3.10 The proof given above that in�ma are preserved used 2-genericity. Give
a proof that uses only 1-genericity. Indeed, given a partial recursive lattice L and any
1-generic G for the recursive notion of forcing P of the proof of Theorem 3.3.4 the map
from L to the degrees below that of G given by x 7�! deg(Gx) is a lattice embedding. This
implies the results of the previous exercise. More speci�cally, G is low. Hint: Suppose that
x ^ y = z and �Gxe = �

Gy
e = D. Consider the �1 sets Te = ftj9n(�txe (n) #6= �

ty
e (n) #g

and Se = fs : 9n; 9q; s0; s2; r(of the same length) �qxe (n) #= �
qy
i (n) #6= �rxe (n) #=

�
ry
i (n) # and q �x s0 �y s �x s2 �y r so q �z rg restricted to the conditions extending
a t witnessing the 1-genericity condition for Te. This also supplies a proof for Exercise
3.3.9.

Exercise 3.3.11 If L is a recursive lattice with 0 and 1 then it can be embedded into
D(� g) preserving both 0 and 1 for any Cohen 1-generic g. Hint: Show that for any
in�nite recursive set �, the degrees which are 1-generic for �<! are the same as the Cohen
1-generic degrees by de�ning a recursive isomorphism between �! and the elements of 2!

with in�nitely many values equal to 1 that �preserves denseness�.

Next, we disprove the homogeneity conjecture for D0 = hD;�T ;0 i. This conjecture,
like the analogous one for D, was based on the empirical fact that every theorem about
the degrees or the degrees with the jump operator relativizes and so if true in D (or D0)
then it is true in D(� c) or D0(� c) for every c. The conjectures asserted then that
D �= D(�c) and even that D0 �= D0(�c) for every degree c.

Theorem 3.3.12 There is c such that (D;�;0 ) � (D(� c);�;0 ).

Proof. If not, then [0;000] �= [c; c00] for every c. To �nd a contradiction, it is su¢ cient
(by Theorem 3.3.4) to �nd partial lattice recursive in c which cannot be embedded in
[0;000].
Now it is a fact of lattice theory that there are continuum many �nitely generated

lattices indeed ones with only four generators. We supply ones with seven generators
in the next section. On the other hand, only countably many �nitely generated lattices
can be embedded in [0; 000] since the lattice embedded is determined by the image of its
generators. Thus we may choose an L which is �nitely generated but not embeddable
in [0;000]. L has some degree, say c. By theorem, L is embeddable in [c; c00]. Thus
[0;000] � [c; c00] as required.

Corollary 3.3.13 The homogeneity conjecture for D0 fails.
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Notes: Representations by equivalence relations is an old subject in lattice theory.
In degree theory they were �rst used to embed all �nite lattices in D and certain special
lattices as initial segments of D by Thomason [1970]. The version used here in terms of
tables is particularly suited to degree theory and was introduced in Lerman [1971] and
extensively presented in his [1983]. Their use to embed lattices not as initial segments
appears in Shore [1982] where it is used to prove Theorem 3.3.1 and Exercise 3.3.9 and
various strengthenings of Theorem 3.3.12. The �rst proof of Theorem 3.3.12 and so the
failure of the homogeneity conjecture for D0 is due to Feiner [1970] but it depended on
the construction of �1 but not recursively presented Boolean algebras and known but
much more complicated embeddings of lattices as initial segments of D. Exercises 3.3.10
and 3.3.11 and some aspects of our treatment of lattice tables come from Greenberg and
Montalbán [2003].

3.4 E¤ective Successor Structures

For later applications, we would like to have a speci�c family of size 2@0 of �nitely
generated partial lattices that code arbitrary sets S in a relatively simple way and can
be embedded below various degrees related to S in ways that we specify later. These
partial lattices begin with ones that are e¤ective successor structures.

De�nition 3.4.1 An e¤ective successor structure is a partial lattice generated by �ve
elements e0; e1; d0; f0; f1 with (for each n � 0) relations

(d2n _ e0) ^ f1 = d2n+1 (d2n+1 _ e1) ^ f0 = d2n+2.

where the dn are all distinct (and pairwise incomparable). For any �xed S � !, we de�ne
the class of e¤ective successor structures LS, by adding on two additional generators g0
and g1 and the additional relations

n 2 S , dn � g0; g1.

It is clear that the class of e¤ective successor structures LS provides us with continuum
many di¤erent �nitely generated partial lattices (at least one for each S � !) that we
can use in the proof of Theorem 3.3.12.
Thus, we have represented S in a partial lattice LS. For later applications we now

analyze the relations between the complexities of S and LS or more precisely its em-
beddings in D. To make these relations as simple as possible we want to impose some
additional conditions on our partial lattices and slightly modify the coding procedure for
S.

De�nition 3.4.2 A nice e¤ective successor structure is a partial lattice extension of an
e¤ective successor structure gotten by adding a least element 0 and additional elements
b0; b1 and d̂n for each n 2 ! such that b0 � b1 and (8n 2 !)(dn _ b0 � b1 & dn ^ d̂n =
0 & (8m 6= n)(d̂n � dm).
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Note that any embedding f of a nice e¤ective successor structure in D makes the
images f(dn) of dn very independent and so it can be extended to an LS representing
S as above for any S by adding on an exact pair for the ideal generated by the f(dn)
for n 2 S. We now want to analyze the complexity of sets coded by a slightly di¤erent
method in such substructures of D.

Proposition 3.4.3 If b0;b1; e0; e1;d0; f0; f1�a are the generators in a nice e¤ective suc-
cessor structure (necessarily contained in D(�a)) and g0;g1�a then we say that g0;g1
code the set Ŝ = fnj9x(x_b0�b1 & x� dn;g0;g1g. In this situation, Ŝ 2 �A3 .

Proof. We �rst compute the complexity of the structure D(�a). We represent this
structure in terms of indices i such that �Ai is total. (So this assigns countably many
indices to each degree.) This set is �A2 . The order of Turing reducibility on these indices
is given by k �T i if an only if

9j(��
A
i

j = �Ak ) , 9j8n9s(��
A
i;s

j;s (n) = �
A
k;s(n))

and so is �A3 . (Thus the relation that i and k represent the same degree is also �
A
3 . We

can now choose a unique representative from the class of indices coding a single set �Ai
uniformly in a �A3 way by taking the j such that hi; ji is the �rst enumerated by A00 in a
�xed enumeration of the pairs such that �Ai �T �Aj .)
Next note that there is a recursive function h on indices such that �Ai ��Aj = �Ah(i;j).

So the function corresponding to join is recursive on the indices. Now in�mum would
naturally be �4 on the indices but we have added enough additional structure so as to
be able of avoid using in�ma directly in the recovery of Ŝ.
By recursion on n, we de�ne positive �1 formulas 'n in �;_ (i.e. no negation symbols

are used in the formula which has � and _ but not ^ in it) such that D or equivalently
D(�a) satis�es 'n(x) if and only if 0 < x � dn.

'0(x) � x = d0; '2n+1(x) � x _ b0 � b1 & 9y('2n(y) & x � (y _ e0); f1);
'2n+2(x) � x _ b0 � b1 & 9y('2n+1(y) & x � (y _ e1); f0)

It is easy to see by induction that, for any degree x, 'n(x) is true in D or equivalently in
D(�a) if and only if 0 < x �T dn (Exercise). By our analysis of the complexity of the
structure D(�a), the 'n are uniformly �A3 on the indices.
Note now that n 2 Ŝ if and only if there is an index i such that �Ai �C � B, 'n(�

A
i )

and �Ai �T G0; G1 where we are using G0;G1; C and B for some �xed �Ag0 ;�
A
g1
;�Ab0 and

�Ab1 of degrees g0;g1;b0 and b1, respectively. By the uniformity of the 'n being �
A
3 , this

su¢ ces to show that Ŝ is �A3 .

Remark 3.4.4 If g0;g1 � a are an exact pair for the ideal generated by fdnjn 2 Sg then
the set they code is fnjdn � g0;g1g (Exercise). Thus if we can show for some embedding
of a nice e¤ective successor structure below a that all �A3 sets are coded by an exact pair
below a then we know that the sets coded in this structure by pairs below a are precisely
those which are �A3 .
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Notes: The conditions on (nice) e¤ective successor structures and their use in coding
arithmetic come from Shore [1981] as does Proposition 3.4.3.
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Chapter 4

The Theories of D and D(� 00)

In the previous section, we talked about embeddability issues. We need to consider more
in order to understand the theory of the degrees. We now approach theorems which say
that the theories of (i.e. the sets of sentences true in) D and D(� 00) are as complicated
as possible. More precisely they are of the same Turing (even 1�1) degree as true second
and �rst order arithmetic, respectively. The method used is interpreting arithmetic in
the degree structures.

4.1 Interpreting Arithmetic

We say that we can interpret (true �rst order) arithmetic in a structure S with parameters
�p if there are formulas 'D(x), '+(x; y; z), '�(x; y; z), '<(x; y) all with parameters �p and
one 'c(�p) such that for any �p 2 S such that S �'c(�p) the structureM(�p) with domain
D(�p) = fx 2 SjS � 'D(x)g and relations +;� and < de�ned by '+(x; y; z), '�(x; y; z),
'<(x; y), respectively, is isomorphic to true arithmetic, i.e. the natural numbers N with
relations given by +, � and < respectively and there is at least one such �p. (We are
writing the operations + and � in relational form +(x; y; z) , x + y = z and similarly
for �.) In this situation, the theory of true �rst order arithmetic, Th(N), i.e. the set
of sentences of arithmetic in this language true in N, is reducible to Th(S), the set of
sentences in the language of S true in S. Indeed, the reduction is a 1�1 reduction. More
precisely there is a recursive function T taking sentences ' of arithmetic to ones 'T of
S such that N � ',S �8�p('c(�p) ! 'T ). The de�nition of T is given by induction.
Atomic formulas +(x; y; z); �(x; y; z) and x < y are taken to '+(x; y; z), '�(x; y; z),
'<(x; y), respectively. A formula of the form 9w is taken to 9w('D(w) &  T ) while
8w is taken to 8w('D(w) !  T ). It should be clear (and, if not, routine to prove)
by induction that if M(�p) �= N then, any sentence ' (of the relational formulation of
arithmetic) is true in N if and only if 'T is true inM(�p). Thus if 'c(�p) guarantees that
M(�p) �= N, we have the desired recursive reduction from Th(N) to Th(S).
A second order structure is a two sorted structure (i.e. one with two sorts of variables

say x and X in its language and two domains U andW � 2U over which the two types of
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variable range, respectively. This provides the semantics for the quanti�ers 9x; 8x; 9X;
and 8X in the obvious way). The language also has relation symbols and relations on
the �rst sort as in a standard �rst order language and structure. In addition, it has
one relation x 2 X between elements of the �rst sort and ones of the second sort that
is interpreted by true membership. We say that it is a true second order structure if
W = 2U ; i.e. the second order quanti�ers range over all subsets of the domain U of the
usual �rst order structure. It is a model of true second order of arithmetic if U = N, the
�rst order language is that of arithmetic as above and W = 2N. (Note that as with true
�rst order arithmetic there is, up to isomorphism, only one model of true second order
of arithmetic.)

We extend our notion of an interpretation of arithmetic to second order structures
by adding a formula 'S(x; �y) which implies 'D(x). For each tuple of degrees �y, we are
thinking of 'S(x; �y) as de�ning the set of n 2 N such that 'S(dn; �y) holds for dn the
degree corresponding to the nth element of the model in the ordering given by '<, We
then translate the second order quanti�ers by replacing each atomic formula x 2 X by
'S(x; �yX), 9X by 9�yX T and 8X by 8�yX T where we are thinking of the �yX as
coding the set X. If, as before, 'c(�p) guarantees that the associated �rst order structure
is isomorphic to N and, in addition, as �y ranges over Sn (where n is the length of �y) the
sets S�y = fxj'S(x; �y)g range exactly over all subsets of D(�p) then it clear (or routine
to prove) that, for any second order sentence ' of arithmetic, ' is satis�ed in the true
second order model of arithmetic if and only if S � 'c(�p) ! 'T . In this case we again
have a recursive reduction: a sentence  of second order arithmetic is �true�, i.e. satis�ed
in the model of true second order of arithmetic if an only if S �8�p('c(�p)!  T ).

Our goals now are to prove that there are interpretations of true second order arith-
metic in D and true �rst order arithmetic in D(�00). The �rst we complete in this
chapter. We actually show in the next section that we can code and quantify over all
countable relations on D in a �rst order way by quantifying over elements of D. From
this result is routine to get a coding as described here of second order arithmetic in D.
The results and analysis need for D(� 00) are mostly contained in this chapter but the
proof also requires material from the next chapter as well. In each case, the correctness
condition 'c(�p) includes the translations (via T ) of the axioms of a �nite axiomatization
of arithmetic such as Robinson arithmetic that is strong enough to guarantee that any
model of the axioms in which the ordering < on its domain is isomorphic to ! is actually
isomorphic to N. The crucial steps are then to prove that there are �p such thatM(�p) �= N
and that there is a formula 'ĉ which guarantees that the ordering of M(�p) (given by
'<(�p)) is isomorphic to !.

We begin with D and coding countable subsets of pairwise incomparable degrees
by using Slaman-Woodin forcing. We then show how to deal with arbitrary countable
relations on degrees.
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4.2 Slaman-Woodin Forcing and Th(D)
Let S = fciji 2 Ng be a countable set of pairwise incomparable degrees. We want to
make S de�nable in D from three parameters c, g0 and g1. The de�nition is that S is
the set of minimal degrees x � c such that (x _ g0) ^ (x _ g1) 6= x in the strong sense
that there is a d � x _ g0;x _ g1 such that d � x.

Theorem 4.2.1 For any set S = fC0; C1; : : : ; g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0, G1 and Di such that, for every i 2 N and
j < 2, Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property
among sets recursive in C in the sense that for any X �T C for which there is a D
such that D �T X � Gj (j < 2) but D �T X there is an i such that Ci �T X. Indeed,
there is a notion of forcing P recursive in C such that any 2-generic computes such G0
and G1. Thus for ci; c and g0;g1 the degrees of Ci, C, G0 and G1 respectively, the set
S = fciji 2 Ng is de�nable in D from the three parameters c, g0 and g1.

Proof. Without loss of generality we may assume that each Ci is recursive in any of
its in�nite subsets: simply replace Ci by the set of binary stings � such that � � Ci.
The point of this assumption is that to compute Ci from some X it su¢ ces to show that
X can enumerate an in�nite subset of Ci as then there is an in�nite subset of this set
recursive in X and so then is Ci.
We build Gi as required by forcing in such a way as to uniformly de�ne the Di from

G0 and Ci and such that Di is also recursive in G1 � Ci (although not uniformly). We
begin with the coding scheme that says how we compute the Di.
Let fci;0; ci;1; : : :g list Ci in increasing order. Our plan is that Di(n) should be G0(ci;n)

and so the Di are uniformly recursive in G0 � Ci. We call hi; ki a coding location for Ci
if k 2 Ci. To make sure that Di �T G1�Ci as well, we guarantee that G[i]0 (cn) = G

[i]
1 (cn)

for all but �nitely many n. We now turn to our notion of forcing P.
The forcing conditions p are triples of the form hp0; p1; Fpi where p0; p1 2 2<!, jp0j =

jp1j, and Fp is a �nite subset of !. We let the length of condition p be jpj = jp0j = jp1j.
Re�nement is de�ned by

p � q , p0 � q0; p1 � q1; Fp � Fq; and

if i 2 Fq and jqj < hi; ci;ni � jpj then p0(hi; ci;ni) = p1(hi; ci;ni):

This is a �nite notion of forcing with extension recursive in C. The function V is de�ned
in the obvious way: V (p) = p0�p1 so our generic object de�ned from a �lter G is G0�G1
where Gk = [fpkjp 2 Gg. We use Gk in our language to mean the kth coordinate the
generic object. Note that C �T P as well (Exercise) and so n-generic for P means generic
for all �Cn sets.
Note that for any ' 2 �1, if p  ' then (p0; p1; ;)  ' as V (p) = V (hp0; p1; ;i. So if

q � p and q   for  2 �1 then (q0; q1; FP )   as well.
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Suppose that G is 1-generic for P. It is immediate from the de�nition of �P and the
density of the recursive (in P) sets fpji 2 Fpg that G[i]0 and G

[i]
1 di¤er on at most �nitely

many n 2 Ci. (If i 2 Fp and p 2 G then G[i]0 (m) = G
[i]
1 (m) for m 2 Ci and m > jpj.)

Thus Di �T G1 � Ci as required.
We next show that Di �T Ci, that is �Cie 6= Di for each e. Suppose for the sake of a

contradiction that Di = �
Ci
e for some e (and so in particular �Cie is total). Consider the

�C1 set
Si;e = fp : 9m(p0(hi; ci;mi) 6= �Cie (m))g.

The Si;e are dense because if p 2 P and m is such that hi; ci;mi > jpj then we can de�ne
q � p by Fq = Fp and for jpj � j � hi; ci;mi put q0(j) = q1(j) = 1� �Cie (m). So q 2 Si;e
and q � p as desired. Thus, there is a p 2 G \ Si;e for which

Di(m) = G0(hi; ci;mi) = p0(hi; ci;mi) 6= �Cie (m);

contradicting Di = �
Ci
e .

Now, we have to ensure the minimality of the Ci. In other words, we want to prove
that if

�X�G0e = �X�G1i = D; X �T C and D �T X

then Ck �T X for some k.
Consider the sentence ' that says that �X�G0e and �X�G1i are total and equal. It is

�2 in C (because X �T C) and true of G = G0 � G1. So, if we now assume that G
is 2-generic, there is p 2 G such that p  '. Suppose �rst that :9n(9� � p0)(9� �
p0)[�

X��
e (n) #6= �X��e (n) #]. Then we claim D is computable from X. To compute D(n)

search for any � � p0 such that �X��e (n) # and output this value as the answer. There
is such a � � G0 by the totality of �X�G0e . Our assumption that there is no pair of
extensions of p0 that give two di¤erent answers implies that any such � gives the answer
�X�G0e (n) = D(n).
On the other hand, suppose there is such a splitting for n given by p0^�, p0^� . By

extending one of � and � if necessary, we may assume that j�j = j� j. We claim that p0^�
and p0^� di¤er at a coding location hk; ck;mi for some k 2 Fp. Let � 0 be such that

�
X�(p1^�^� 0)
i (n) #= �X�(p0^�^� 0)e (n) # :

There must be such a � 0 as (p0^� ; p1^� ; Fp) � p and so it has a further extension
q = (p0^�^�0; p1^�^�1; Fp) which forces �

X�G0
e (n) #= �X�G1i (n) #. Next consider

q̂ = (p0^�^�0; p1^�^�0; Fp) � p. It also has an extension (p0^�^�0^�0; p1^�^�0^�1; Fp) 
�X�G0e (n) #= �X�G1i (n) #. It is now clear that � 0 = �0^�1 has the desired property.
Next, consider the condition q = (p0^�^� 0; p1^�^� 0; Fp). Notice that q � p because:

1. �X�(p0^�)e (n) = �
X�(p0^�^� 0)
e (n) as p0^�^� 0 � p0^�.

2. �X�(p1^�^�
0)

i (n) = �
X�(p0^�)
e (n) by our choice of � 0, but
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3. �X�(p0^�)e (n) 6= �X�(p0^�)e (n) because n; p0^�; p0^� were chosen to be splitting.

Hence, �X�(p0^�^�
0)

e (n) 6= �
X�(p1^�^� 0)
i (n) and so q does not extend p. However,

p0^�^�
0 � p0 and p1^�^�

0 � p1, so it must be that p0^�^� 0 and p1^� ^�
0 di¤er at a

coding location above jpj. Therefore, p0^� and p0^� di¤er at a coding location hk; ni
with k 2 Fp.
We now show that there must be such p0^� and p0^� which di¤er at only one number

(which then must be a coding location hk; ni for some k 2 Fp). Suppose �; � are strings
as above with j�j = j� j = `. Let � = 00; 

0
1; : : : ; 

0
z = � be a list of strings in f0; 1g` such

that 0i ; 
0
i+1 di¤er at only one number for each i. Let � be such that �

X�(p0^01^�)
e (n) #

(such a � exists by the same argument as before). Set 1i = 0i ^� for each 0 � i � z.

Repeat this process for each j � z. At step j + 1, let � be such that �
X�(p0^jj+1^�)
e (n) #,

and set j+1i = ji^� for each 0 � i � z. At the end, we have strings z0; 
z
1; : : : ; 

z
z such

that �X�(p0^
z
i )

e (n) # for each i, and p0^zi ; p0^zi+1 di¤er at only one number for each i.
Since

�X�(p0^
z
0)

e (n) = �X�(p0^�)e (n) 6= �X�(p0^�)e (n) = �X�(p0^
z
z)

e (n);

there must be an i for which �X�(p0^
z
i )

e (n) 6= �X�(p0^
z
i+1)

e (n). The strings p0^zi ; p0^
z
i+1

di¤er at only one number and it must be a coding location hk;mi for some k 2 Fp as
required.
Next, we show that X can �nd in�nitely many coding locations hk;mi for some �xed

k 2 Fp. Suppose we want to �nd such a location hk;mi with m > M . Search for
strings p0^� and p0^� that agree on the �rst M positions, di¤er at only one position,
and satisfy �X�(p0^�)e (n) 6= �X�(p0^�)e (n). Such strings must exist because we could have
started the above analysis at any condition q 2 G with q � p (so we can �nd such strings
agreeing on arbitrarily long initial segments). The position at which p0^� and p0^� di¤er
must be a coding location bigger than M . Since Fp is �nite, in�nitely many of these
coding locations must be for the same k. Given this k, X can �nd in�nitely many coding
locations hk; ck;mi. Hence, X can enumerate an in�nite subset of Ck and so can compute
Ck by our initial assumption on the Ci.
As 2-genericity su¢ ced for the proof of the theorem above , we can get the required

Gj �T C 00 and,indeed with (G0 � G1)
00 �T C 00. We show below (Theorem 4.3.1 and

Exercise 4.3.3) that we can do better.
Now we work toward coding arbitrary countable relations on D.

Proposition 4.2.2 If H is Cohen 1-generic over C, then, for any i; j 2 ! and X; Y �
C, if X �H [i] � Y �H [j] then i = j and X � Y .

Proof. Suppose that for some e, X;Y �T C, �Y�H
[j]

e = X �H [i] and consider the set

Se = f� 2 2<! : 9n
�
�Y��

[j]

e (n) #6= X � �[i](n)
�
g:
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Se 2 �1(C) so either there is � 2 Se \ H or there is � � H no extension of which is
in Se. The �rst alternative clearly violates our assumption that �Y�H

[j]

e = X �H [i] and
so there is a � � H such that � =2 Se for all � � �. Let n = j�[i]j. If i 6= j and there
were � � �[j] such that �Y��e (2n + 1) #, we could extend � to � such that � [j] = � and
� [i](n) = 1��Y��e (2n+ 1) (as the value of � [i](n) is independent of � [j]. In this case, we
have

�Y��
[j]

e (2n+ 1) #6= � [i](n) = (X � � [i])(2n+ 1)

and so � 2 Se, contradicting our choice of �. Therefore, there can be no � � �[j]

making �Y��e (2n + 1) converge while �Y�H
[j]

e is total by assumption and �[j] � H [j] for
a contradiction. Thus i = j.
Next, we show that X �T Y . To compute X(n) from Y , search for a � � � such that

�Y��
[j]

e (2n) converges (such a � exists because �Y�H
[i]

e is total and �[j] � H [j]). Then, as
usual, we claim that �Y��

[j]

e = (X � � [i])(2n) = X(n) for if not, � 2 Se and extends � for
a contradiction.

Theorem 4.2.3 Every countable relation R(x0; : : : ; xn�1) on D is de�nable from pa-
rameters. Indeed, if C is a uniform upper bound on representatives Ci of the sets with
degrees ci in the domain of R as well as of the

D
Cj0 ; : : : ; Cjn�1

E
such that R(cj0 ; : : : ; cjn�1 )

and H is Cohen 1-generic over C then there is a notion of forcing recursive in C � H
such that any 2-generic computes the required parameters. Moreover, for each n there is
a formula 'n(x0; : : : ; xn�1; �y) with �y of length some k > 0 (depending only on n) which
includes the clauses that xi � y0 for each i < n such that as �p ranges over all k-tuples
of degrees, the sets of n-tuples of degrees f�ajD � '(�a; �p)g range over all countable n-ary
relations on D.

Proof. We take c = deg(C) to be our �rst parameter. Let H be Cohen 1-generic over C
and hi;j be the degree of H [hi;ji]. We code R using the following countable sets of pairwise
incomparable degrees.

Hi = fhi;jjj 2 Ng for i < n

Fi = fcj _ hi;jjj 2 Ng for i < n

R = fh0;j0 _ h1;j1 _ � � � _ hn�1;jn�1 : R(cj0 ; cj1 ; : : : ; cjn�1)g

Each of these sets consists of pairwise incomparable degrees. The �rst and third by
Proposition 3.2.18 that for a Cohen 1-generic H the sets H [k] form a very independent
set. (So, for any �nite A and B, _fxjx 2Ag � _fxjx 2Bg if and only if A � B.) The
elements of each Fi are pairwise incomparable by Proposition 4.2.2. Our de�ning formula
' for R is now

&i<n(xi � c) & (9yi)i<n(yi 2 Hi & &i<n(xi _ yi) 2 Fi & _ fyiji < ng 2 R)
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where we understand membership in the sets Hi, Fi and R as being de�ned by the
appropriate formulas and parameters as given by Theorem 4.2.1. This also supplies
the notion of forcing required in our Theorem by taking (the disjoint union of) three
versions of the one provided in Theorem 4.2.1 for the three families of pairwise Turing
incomparable sets needed for these de�nitions as they are uniformly recursive in C �H.
The veri�cation that this formula de�nes the relation is straightforward. If R(�x) then
every element of the sequence �x is below c and is therefore equal to an ~xji (for i < n).
The degrees hi;ji 2 Hi then are the witness yi required in '. In the other direction, if
' holds of any n-tuple then all its elements are below c and we need to consider the
situation where '(xj0 ; : : :xjn�1) for some ji, i < n. Let the required witnesses be yi. As

yi 2 Hi and (xji _ yi) 2 Fi, yi = hi;j. Then as
_
i<n

yi 2 R, R(xj0 ;xj1 ; : : : ;xjn�1). The

assertions in the Theorem about the form of the required formulas ' are now immediate
from Theorem 4.2.1.
Note that with the above assumptions on c in this proof, Theorem 4.2.1, the remarks

immediately following it and Proposition 3.2.10, we can get all the parameters need for
this de�nition of R below c00. We improve this by one jump in the next section.
We can now precisely characterize the complexity of Th(D) as that of true second

order arithmetic.

Theorem 4.2.4 Th(D;�) �1Th2(N;�;+;�; 0; 1).

Proof. That Th(D;�) �1Th2(N;�;+;�; 0; 1) is easy. As A �T B is de�nable in arith-
metic (indeed as we have seen it is �3 in A and B) and quanti�cation over all sets gives
quanti�cation over all degree, we can recursively translate any sentence about D to an
equivalent one of about second order arithmetic. For the other direction we use the
formulas '1, '2 and '3 of Theorem 4.2.3 to give an interpretation of true second order
arithmetic in D. We consider sequences of parameters �pD, �p+, �p� and �p< so that '1(�pd)
de�nes a countable set of degrees and plays the role of 'D for our interpretation. Our
correctness condition then includes the sentences that say that '3(�p+), '3(�p�) and '2(�p<)
(playing the roles of '+, '� and '<, respectively) de�ne relations on the countable set
de�ned by '1(�pD) to determine a structureM(�p) (where �p is the concatenation of all the
sequences of parameters used here) that satis�es all the axioms of our �nite theory of
arithmetic. Theorem 4.2.3 then says that there are choices of these parameters such that
the structure so de�ned is isomorphic to N. After all, N is just a countable set with two
ternary relations and one binary one. We now use '1(x; �q)^'1(�pD) as the 'S required for
our interpretation of true second order arithmetic. Again by Theorem 4.2.3, as �q ranges
over tuples of degrees, the subsets ofM(�p) de�ned by 's range over all subsets ofM(�p) as
required. All that remains to do is to show that we can extend the list of correctness con-
ditions that guarantee thatM(�p) is a model of our �nite axiomatization of arithmetic to
also guarantee that it is isomorphic to N. We can do this by adding on the sentence which
asserts that every nonempty subset of M(�p) (as given by 'S(�q; �p) for some �q) has an <M
least element, i.e. 8�qf9x('S(x; �q))! 9x['S(x; �q; �p)^:9y('S(y; �q; �p)^'<(y; x; �p<))]g.
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Exercise 4.2.5 If C is a jump ideal of D (i.e. a downward closed subset that is also
closed under jump and join), then the theory of C is 1-1 equivalent to that of the model
of second order arithmetic where set quanti�ers range over the sets with degrees in C.

Notes: Slaman and Woodin forcing was introduced in Slaman and Woodin [1986]
where they proved Theorems 4.2.1 and 4.2.3. Theorem 4.2.4 (which as presented here
follows easily from these results) is originally due to Simpson [1977] although with a
very di¤erent proof using then new initial segments results and Theorem 2.2.11. Another
version using simpler codings and previously know initial segment results along with
Theorem 2.2.11 is in Nerode and Shore [1980]. Exercise 4.2.5 is from Nerode and Shore
[1980a].

4.3 Th(D � 00)
We now want to improve our coding results so that they become applicable below 00. We
begin with the Slaman and Woodin coding of sets of pairwise incomparable degrees.

Theorem 4.3.1 For any set S = fC0; C1; : : : ; g of pairwise Turing incomparable subsets
of N let C = �Ci. There are then G0,G1 �T C 0 and Di such that, for every i 2 N and
j < 2�Di �T Ci �Gj while Di �T Ci. Moreover, the Ci are minimal with this property
among sets recursive in C in the sense that for any X �T C for which there is a D such
that D �T X �Gj (j < 2) but D �T X there is an i such that Ci �T X.

Proof. We follow the ideas of the proof of Theorem 4.2.1 but replace the uses of 2-
genericity for extending conditions to make something converge. At various steps we ask
if there are appropriate extensions, if so we take them and continue our construction.
If not we have a condition that forces some functional to diverge and so can satisfy the
relevant requirement in that way.
We build Di �T G0 � Ci; G1 � Ci such that Di �T Ci. The requirements for diago-

nalization here are:
Pe;i : �

Ci
e 6= Di:

Let Xj = �
C
j . We also have requirements for minimality:

Re;;j : �
G0�Xj
e = �G1�Xje = D ) D �T Xj or 9i(Ci �T Xj):

Note that we are using the same index for computing from both X � G0 and X � G1
rather than two distinct ones. This is equivalent to our previous use of two indices, say
l0 and l1. The point is that we know that G0 and G1 are di¤erent. Say G0(x) = 0 while
G1(x) = 1 for some x: Given any indices l0 and l1, we can �nd an e such that for any
oracle Z, �Ze = �

Z
l0
if Z(x) = 0 and �Ze = �

Z
l1
if Z(x) = 1. Using this e for computing

from both X �G0 and X �G1 then gives the same results as using l0 and l1 to compute
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from X�G0 and X�G1, respectively. This notational device is known as Posner�s trick
(or at least as one variant thereof).
We list all the requirements as Qs. We build G0; G1 by �nite approximations 0;s; 1;s

of equal length. As before we let Di(m) = G0(hi; ci;mi) where fci;mg is an enumeration
of Ci in increasing order. So Di �T G0 � Ci. We guarantee that Di �T G1 � Ci as
before by making sure that, for each i, G0(hi; ci;mi 6= G1(hi; ci;mi for at most �nitely
many m. In particular we institute a rule for the construction that when we act to
satisfy requirement Qn at stage s by extending the current values of k (k = 0; 1) we
require, for i � n, hi;mi � j0;sj = j1;sj andm 2 Ci, that the extensions 

0
k are such that

00(hi;mi) = 01(hi;mi). As we act to satisfy any Qn at most once, this rule guarantees
that there are at most �nitely many relevant di¤erences between G0 and G1 for each i.
At stage s, if Qs = Pe;i, we act to satisfy Pe;i. Choose m such that hi; ci;mi �

j0;sj. Ask if �Cie (m) #. If not, let k;s+1 = k;s for k = 0; 1: (As usual this satis�es
Pe;i.) If it does converge, extend each of 0;s; 1;s by the same string � to 0;s+1; 1;s+1
with 0;s+1(hi; ci;mi) 6= �Cie (m). This also satis�es the requirement because Di(m) =
G0(hi; ci;mi) by de�nition and trivially obeys the rule of the construction.
Note that C 0 can decide if �Cie (m) #, so this action is recursive in C 0.
If Qs = Re;j, this stage has a substage for each requirement Qn = Re0;j0 with n � s

that has not yet been satis�ed. For notational convenience we write k for k;s in the
description of our action at stage s. At the end of each substage we de�ne successive
extensions k;l of k satisfying the rule of the construction. We �rst try to satisfy Re;j
(which, of course, we have not attempted to satisfy before). We ask if 9x9�k � k which
satisfy the rule of our construction and such that the �k �X e-split at x, i.e.

��0�Xje (x) #6= ��1�Xje (x) # :

Note that, when we are acting to satisfy any Qn, checking if extensions of the current
values of k satisfy the rule of the construction is recursive in �fCiji � ng and so
uniformly recursive in C. Thus this question can be answered by C 0. There is one
subtlety here. We must be careful with what we mean by a computation from Xj as
there is no list of all the sets recursive in C that is uniformly recursive in C. So what we
mean here is that there is a computation of �Cj providing a long enough initial segment
of Xj so as to make the desired computations at m converge. This makes the whole
question one that is �C1 and so recursive in C

0.
If the answer is yes, choose as usual the �rst such extensions (in a uniform search

recursive in C) as 0;0; 1;1. Note that we have now satis�ed Re;j. If the answer is no,
ask if 9x9�; � ((0^� �Xj)je(0^� �X)) (See De�nition 2.2.8). This question is also
�1(C).

� If not, let k;s;0 = k;s. Then, as usual, if �
G0�Xj
e is total, it is recursive in X as we

guarantee that G0 � 0;0. To calculate it at x, �nd any � such that �
0^��Xj
e (x) #.

This computation must give right answer. So in this case we have also satis�ed
Re;j.
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� If so,we can �nd such � and � (recursively in C). We interpolate between �; � with
strings � = �0 = �1; : : : ; �z = � which di¤er successively at exactly one number.
Ask if 9�1 such that �0^�1^�1�Xje (x) #. If not, let k;0 = k^�1. Note that this
extension satis�es the rule of the construction and that we have satis�ed Re;j by
guaranteeing that �G0�Xje (x) ". If yes, consider �2^�1 and ask again if there is a �2
such that ��2^�1^�2�Xje (x) #. If not, let k;0 = �2^�1 as before obeying the rule of
the construction and satisfying Re;j. If so, we continue on inductively through the
�k.

� Eventually we either de�ne k;0 and satisfy Re;j or we �nd �1; : : : ; �z such that
�
0^�l^��Xj
e (x) # for every l � z where � = �1^ : : : ^�z. In the second case, we set

k;0 = k;s. This action does not satisfy Re;i but it demonstrates that there are
�̂ and �̂ which di¤er at exactly one number and for which (0^�̂ � X)je(0^�̂ �
X). The point here is that, as �0^�0^��Xje (x) #= �0^��Xje (x) #6= �0^��Xje (x) #=
�
0^�z^"�Xj
e (x) #, there is an l such that �0^�l^��Xje (x) #6= �0^�l+1^��Xje (x) # while

�l^� and �l+1^� di¤er at exactly one number. Now consider 1^�̂. If there is no
� such that �1^�̂^��Xje (x) # then we can again satisfy Re;j by setting k;s;0 =

k;s^�̂. If there is such a �, we compare �
1^�̂^��Xj
e (x) # with �0^�̂^��Xje (x) # and

�
0^�̂^��Xj
e (x) #. As the last two are di¤erent one of them must be di¤erent from
the �rst. If �1^�̂^��Xje (x) #6= �0^�̂^��Xje (x) #, we would contradict our assumption
that the answer to our very �rst question was no as 1^�̂^� and 0^�̂^� certainly
satisfy the rule of the construction. If �1^�̂^��Xje (x) #6= �0^�̂^��Xje (x) #, the only
way we would not have the same contradiction is if the one point at which �̂ and
�̂ di¤er is a coding location hk; ck;mi with k < s. Thus the only way our actions at
this stage do not satisfy Rhe;ji is if there are �̂^� and �̂^� which di¤er at at exactly
one point such that (1^�̂^� � Xj)je0^�̂^� � Xj and for any such �̂ and �̂ the
point of di¤erence must be a coding location hk; ck;mi with k < s.

� In this last case we set 0;0 = 0 and 1;0 = 1;s. In any event, we now proceed to
extend 1;0 (and then 1) in the same way but attempting to satisfy eachQn = Re0;j0
with n < s that has not yet been satis�ed. After some �nite number of such
attempts we have tried them all, satisfying some and for the others producing
one more example of an x and two strings �̂ and �̂ di¤ering at one number only
(after j0j) such that (0^�̂�Xj0)je(1^�̂ �Xj0) for each he0; j0i which we have not
yet satis�ed and a guarantee that any two such strings di¤er at a coding location
hk; ck;mi with k < n.

� At the end of this process we let k;s+1 be the �nal extension of k that we have
produced.

We now claim that all the requirements are satis�ed. It is immediate that Pe;i is
satis�ed when we act for Qs = Pe;i at stage s: Consider any Re;j = Qs0. If we ever act so
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as to satisfy it at some stage s of the construction, it is clearly satis�ed and we never act
for it again. As we violate the rule of the construction at some hk; ck;mi only when we act
to satisfy requirement Qn for n � k and we do so at most once for each n, Di �T G1�Ci
as required.
Finally, suppose that the �rst requirement that we never act to satisfy during the

construction isQn. It must be some Re;j. Suppose that all requirementsQr for r < n have
been satis�ed by stage s0 > n. At each stage s > s0 with Qs = Re0;j0 we attempt to satisfy

Re;j at some substage of the construction. As we fail, there are �
�0�Xj0
e0 (x) #6= ��1�Xj0e0 (x) #

with �k � k;s � k;n which di¤er at exactly one point and any such pair di¤er at a
coding location hk; cm;ki with k � n. Recursively in Xj we can then search for and �nd
in�nitely many extensions �k of k;n with this property with the points at which they
di¤er becoming arbitrarily large (as jk;sj is clearly going to in�nity). As there are only
�nitely many k � n, there must be one k � n for which in�nitely many of these �k di¤er
at a point of the form hk; zi with in�nitely many di¤erent z. As every such point is a
coding location, recursively in X we can compute an in�nite subset of Ck, so by our
initial assumption that each Ci is recursive in everyone of its in�nite subsets Ck �T Xj

as required for Re;j to be satis�ed in the end.
This step-by-step construction is the much the same as the forcing argument we saw

before, but grittier, and we gain a quanti�er. This helps us determine the true complexity
of Th(D;� 00): Th(D;� 00) �m Th(N;+;�;�).

Exercise 4.3.2 It is easy to show that the Gi of Theorem 4.3.1 can be made to have (or
already have) jumps below C 0.

Exercise 4.3.3 With the notation as in Theorem 4.2.1 show that for any G 1-generic
for P, G0 and G1 have the properties required by the Theorem. So in particular, we can
make G00 �T 00 �T G

0
1. This then supplies the analogous result for Theorem 4.2.3, i.e. a

notion of forcing recursive in the appropriate C � H such that any 1-generic computes
the parameters necessary to de�ne the given relation. Hint: This is not too easy. A proof
can be found in Greenberg and Montalbán [2004].

Theorem 4.3.4 If R is an n-ary relation on D(�00) which is uniformly recursive in a
low degree c in the sense that there are families of sets fXig = S and fhXi1 ; : : : ; Xinig =
T uniformly recursive in C 2 c such that fdeg(Xi)jXi 2 Sg is the �eld of R (i.e. all ele-
ments that occur in any n-tuple satisfying R) and fhdegXi1 ; : : : ; degXini j hXi1 ; : : : Xini 2
Tg = R, then there are �p < c0 = 00 which de�ne R by the formula 'n of Theorem 4.2.3.

Proof. We begin with a G which is Cohen 1-generic over C so that (C � G)0 �T C 0.
The set of degrees R and the �nite families of sets of degrees Hi and Fi of the proof of
Theorem 4.2.3 are all now uniformly recursive in C � G and consist of pairwise Turing
incomparable sets so, by Theorem 4.3.1, there are sequences of parameters de�ning each
of them all below (C � G)0. The proof of Theorem 4.2.3 now shows that they de�ne R
as required.
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We now explain how we plan to code arithmetic in D(�00): The �intended model�
starts with an nice e¤ective successor structure determined by parameters �q: c, b0, b1,
e0, e1, d0, f0 and f1 with c0 = 00 and c being above all of the other parameters and all the
required d̂n as well. Moreover, the dn are all uniformly recursive in c. We can do this by
Exercise 3.3.9 or 3.3.10. We then choose, as in the proof of Theorem 4.2.4 parameters
�pD, �p+, �p� and �p< so that '1(�pd) de�nes fdnjn 2 Ng and '3(�p+), '3(�p�) and '2(�p<)
(playing the roles of '+, '� and '<, respectively) that de�ne relations on the countable
set de�ned by '1(�pD) to determine a structureM(�p) (where �p is the concatenation of all
the sequences of parameters used beginning with �q) that satis�es all the axioms of our
�nite theory of arithmetic and such that d0 is the least element in the ordering ofM(�p)
given by '2(�p<) and, for each n, dn+1 is the immediate successor of dn in this order.
We can �nd such parameters below 00 by the arguments for the proof Theorem 4.2.3
combined with Theorem 4.3.1 (relativized to c) since the dn and the desired relations on
them are uniformly recursive in c and c0 = 00. Now this model is standard since the dn
are ordered in order type ! and constitute the universe of the model.
The problem is that there is no obvious way to de�nably say that the universe of the

model is precisely the dn in terms of just the prescribed parameters (or any other �nite
list). The issue is that we only have a scheme to generate these degrees not one to de�ne
them. We can come fairly close in �rst order way. In addition to the correctness conditions
that guarantee that the de�ned relations give a model of arithmetic on fxj'D(x; �p)g, we
can approximate niceness by adding the sentences c � b and 8d['D(d) ! d _ c �
b & 9d̂(d^ d̂ = 0 & (8d� 6= d)('D(d

�)! (d^ d� = 0) & (d̂ � d�))]. We can approximate
the desired condition that fdnjn 2 !g is the domain of our structure by saying that d0
is the least element in the ordering ofM(�p) given by '2(�p<) and for every d such that
'D(d; �p), if d is an even number inM(�p), then (e0 _ d) ^ f0 is its immediate successor
in the ordering given by '2(�p<) while if it is an odd number then its immediate successor
is given by (e1 _ d) ^ f1. This guarantees that fdnjn 2 !g is the standard part of the
model M(�p). Thus if we had a formula '̂S(x; �r; �p) which, as �r ranged over n-tuples
from D(�00), de�ned a collection of subsets ofM(�p) that include fdnjn 2 !g, we could
guarantee thatM( �P ) was standard by saying that every subset (i.e. picked out by some
choice of parameters �r) ofM(�p) which contains its least element (d0) and is closed under
immediate successor is all ofM(�p).
The crucial point now is that the proof of Proposition 3.4.3 shows that, under these

conditions, fdnjn 2 !g 2 �C3 as is the ideal generated by this set. That is, the standard
part of any M(�p) for �p satisfying all of these correctness conditions and the ideal it
generates are both �C3 . Our goal now is to prove that for every c < 0

0 and every �C3
ideal in the degrees below c, there are g0;g,1 �T 00 which are an exact pair for the given
ideal. Proposition 3.4.3 and Remark 3.4.4 then show that we could de�ne the desired
set fdnjn 2 !g in terms of this exact pair. We now turn to the proof of this result as
Theorem 5.2.12. It supplies the �nal ingredient of our theorem.

Theorem 4.3.5 Th(D �00) �1�1 Th(N).
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Proof. The above argument (together with Theorem5.2.12) shows that we can interpret
true �rst order arithmetic in D(�00). Thus Th(N) �1�1Th(D �00). The other direction
is immediate since we can de�ne the sets recursive in 00 in arithmetic as well as the
ordering of Turing reducibility on them. Thus we have a recursive translation of sentences
about D(�00) to ones of arithmetic that preserves truth. Of course, this implies that
Th(D �00) �1�1 Th(N).

Notes: Theorem 4.3.1 and a special case of Theorem 4.3.4 are in Slaman and Woodin
[1986]. The full version of Theorem 4.3.4 is in Odifreddi and Shore [1991] as is the proof
of Theorem 4.3.5 which is originally due to Shore [1981].
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Chapter 5

Domination Properties

5.1 Introduction

An important topic in the study of the complexity of functions from N to N is the
notion of rate of growth and of one function growing faster than another or faster than
a whole class of functions. These issues are not only natural but they have important
connections with the computational complexity of the functions as measured by Turing
and other reducibilities. In this chapter we will study some of these notions and their
impact on the structure of the degrees. They will play a crucial role in our analysis of
the complexity of D(� 00). We begin with some basic de�nitions.

De�nition 5.1.1 1. The function g dominates the function f (f < g) if, for all but
�nitely many x, f(x) < g(x).

2. The degree g dominates the function f if some g 2 g dominates f .

3. The function g dominates the degree f if g dominates every function f 2 f .

4. The degree g dominates the degree f if for every f 2 f there is a g 2 g which
dominates f .

We also sometimes express these relations in the passive form saying, for example,
that f is g-dominated or f is g-dominated for the �rst two relations. A function g that
dominates the degree 0 is called dominant.

In the literature a degree f that is not 0-dominated (i.e. there is an f 2 f which is not
dominated by any recursive function) is, for historical reasons unrelated to our concerns,
called hyperimmune. If f is not hyperimmune, i.e. it is 0-dominated, is also called
hyperimmune free. For example, we show later that every 0 < a < 00 is hyperimmune
(Theorem 5.2.3) while the usual minimal degrees constructed below 000 are hyperimmune
free.

53
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5.2 R.E. and �02 degrees

Theorem 5.2.1 If A >T 0 is r.e. then there is a function m �T A which is not 0-
dominated, i.e. it is not dominated by any recursive function. Indeed, any function g
which dominates m computes A.

Proof. For A r.e., let As be the standard approximation to A at stage s. Let m be the
least modulus function for this approximation: m(x) = �s(8t � s)(As � x = At � x). For
r.e. sets, the approximation changes its mind at most once and is correct in the limit, so
m(x) is also the �s(As � x = A � x) and is clearly of the same degree as A. Moreover, if
g(x) � m(x) for almost all x, then A �T g as A � x = Ag(x) � x for all but �nitely many
x. Thus, if A >T 0, then m is not dominated by any recursive function and any g that
dominates m computes A.
The Shoen�eld limit lemma (Lemma 1.1.11) gives us a recursive approximation h(x; s)

to any A 2 �0
2 (or equivalently A �T 00). So the least modulus function m makes sense

for such an approximation as well. So does the second version used in the above proof.
Here we call it the computation function: f(x) = �(s > x)(8y < x)(h(y; s) = A(y)) (for
technical reasons, we don�t consider �rst few stages). It calculates the �rst stage after x
at which the approximation is correct up to x. But, since we are no longer looking at
r.e. sets, the approximation might change even after it�s correct and the computation
function f need not be the same as the least modulus m. The two functions may not be
the same even up to degree.

Exercise 5.2.2 Find an A <T 0
0 and an approximation h(x; s) to A for which the least

modulus function m computes 00. On the other hand, the computation function f for h
is always of the same degree as A.

We can, nonetheless extend Theorem 5.2.1 to all A 2 �0
2.

Theorem 5.2.3 If A is �0
2, then there is an f �T A which is not 0-dominated. Indeed,

any function g which dominates f computes a.

Proof. By the Shoen�eld limit lemma, there is a recursive h(x; s) such that lims!1 h(x; s) =
A(x). Let f(x) be the computation function for this approximation. Suppose f < g. We
claim that even though h(z; s) may change at z < x for s > f(x), we can still compute
A from g. Let s0 be such that (8m � s0)(f(m) < g(m)). To calculate A(n) for n > s0
�nd an s > n such that h(n; t) is constant for t 2 [g(s); gg(s)]. Since h(n; t) is eventually
constant, such an s exists. Moreover, we can �nd it recursively in g: compute the inter-
vals [g(n+ 1); gg(n+ 1)]; [g(n+ 2); gg(n+ 2)]; [g(n+ 3); gg(n+ 3)]; : : : checking to see if
h is constant on the intervals. By the clause that makes f(x) > x in the de�nition of the
computation function and our choice of s0, gg(s) > fg(s) > g(s), so the �rst t > g(s) at
which h is correct for all elements below g(s) is in [g(s); gg(s)]. For this t, h(n; t) = A(n).
As we chose s so that the value of h(n; t) is constant on this interval, A(n) = h(n; t) for
any t 2 [g(s); gg(s)] and we have computed A recursively in g as required.



5.2. R.E. AND �0
2 DEGREES 55

Exercise 5.2.4 What are the correct relativizations of the previous two theorems?

Exercise 5.2.5 The above results can be extended by iterating the notions of �r.e. in�
or more generally ��0

2 in� as long as one includes the lower degrees. We say that A
1-REA if it is r.e. then we de�ne n-REA by induction: A is n + 1-REA if A is of the
form B �WB

e where B is n-REA. (REA stands for r.e. in and above.) Prove that any
n-REA set A has an f �T A such that any g > f computes A: Do the same with �0

2

replacing r.e. These results can be carried into the trans�nite. Prove, for example, that
0(!) has the same property.

Theorem 5.2.6 If A > 0 is r.e. and P is a recursive notion of forcing then there is is
1-generic sequence hpsi �T A so that the corresponding 1-generic G is recursive in A as
well.

Proof. We build a 1-generic sequence ps recursive in A. Let f �T A be the least modulus
function for A. The requirements are

Re : for some s, ps 2 Se or (8q � ps)(q =2 Se), where Se is eth �1 set of conditions.

At stage s, we have a condition ps. Note that we are thinking of P as a subset of N
and so have the natural ordering � on its members (and all of N) as well as the forcing
ordering �P . We say that Re has been declared satis�ed by stage s if there is a pn with
n � s such that pn 2 Se;f(s). Find the least e < s such that Re has not yet been declared
satis�ed and such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). For this e, choose the least
such q and put ps+1 = q. If there is no such e, let ps+1 = ps.
To verify that the construction succeeds, suppose for the sake of a contradiction that

e0 is least such that
:9s(ps 2 Se0 _ (8q �P ps)(q =2 Se0)):

Choose s0 > e0 such that 8i < e0 if there is a ps 2 Si then there is one with s < s0
and ps 2 Si;f(s0) (so by this stage we have already declared satis�ed all higher priority
requirements that are ever so declared). We claim that we can now recursively recover
the entire construction and the values of f(s) for s � s0. As this would compute A
recursively, we would have our desired contradiction. Consider what happens in the
construction at each stage s � s0 in turn. Suppose we have ps. At stage s we look for the
least e < s such that (9q �P ps)(q � f(s) & q 2 Se;f(s)). There is no such e < e0 by our
choice of s0. If e0 itself were such an e, we would act for it and declare Pe0 to be satis�ed,
contrary to our choice of e0. On the other hand, by our choice of e0 there is a q �P ps
with q 2 Se0. We can �nd such a q recursively (because we know it exists). We did not
�nd this q in the construction at stage s because either q > f(s) or q 2 Se0 � Se0;f(s).
So we can now �nd a bound t on f(s) by �nding the stage at which q enters Se0. Given
t � f(s) we can calculate f(s) as the least z such that Az � s = At � s. Once we have
f(s) we can recursively determine what happened at stage s of the construction and in
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particular the value of ps+1. Thus we can continue our recursive computation of f(s) as
claimed.
Relativizing Theorem 5.2.6 to C gives, for any C recursive notion of forcing P, a

G �T A which is C 1-generic for P for any A >T C which is r.e. in C.

Exercise 5.2.7 The crucial property of the function f used in the above construction was
that there is a uniformly recursive function computing f(x) from any number greater than
it. Prove that if there is a partial recursive '(x; s) such that (8s � f(x))('(x; s) = f(x))
then f is of r.e. degree.

Corollary 5.2.8 If a > 0 is r.e. then there is Cohen 1-generic G <T A and so, for
example, every countable partial order can be embedded in the degrees below a.

Similarly we have

Corollary 5.2.9 If a is r.e. in b and strictly above it, then every partial lattice recursive
in b can be embedded into [b; a).

Corollary 5.2.10 If a is r.e. then every maximal chain in (D(� a);�T ) is in�nite. In
fact, there is no maximal element less than a in (D(� a);�T ).

Proof. Suppose b < a. Then a is r.e. in and strictly above b. Relativizing Theorem
5.2.6 to a B 2 b and using Cohen forcing gives us a G �T A which is Cohen 1-generic
over B. So the degrees of B�G[i] are in fact all between b and a and even independent.

Exercise 5.2.11 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any r.e. a.

We now apply Theorem 5.2.6 to provide the missing way of identifying the standard
parts of e¤ective successor models coded below 00 that we need to calculate the complexity
of Th(D(�00)).

Theorem 5.2.12 If A >T C, A is r.e. in C and I is an ideal in D(� deg(C)) such that
W = fe : deg(�Ce ) 2 Ig 2 �C3 then there is an exact pair G0, G1 for I below A.

Proof. We provide a C-recursive notion of forcing P such that any 1-generic for P gives
an exact pair for I and apply Theorem 5.2.6 relativized to C. The conditions of P are of
the form p = hp0; p1; Fp; npi where pi 2 2<!, jp0j = jp1j = jpj, Fp 2 !<!, np 2 ! such that

(8i 2 f0; 1g)(8he; x; yi)(9�1hw;mi) (he; x; y; w;mi 2 pi) .

We de�ne V as expected V (p) = p0� p1. So for a 1-generic G, we have Gi = [fpijp 2
Gg. If e 2 W , we want �Ce to be coded into Gi. The unusual restriction above on
conditions in P suggests how we intend to do this coding. Since W 2 �C3 we have
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a relation R �T C such that e 2 W , 9x8y9zR(e; x; y; z). We denote the pairs of
elements of W and their witnesses by Ŵ = fhe; xi : 8y9zR(e; x; y; z). To calculate �Ce
for e 2 W , our plan is to �rst choose an x such that he; xi 2 Ŵ . We then search for
hw;mi such that he; x; y; w;mi 2 Gi and announce that �Ce (y) = m. The de�nition of P
guarantees that this procedure gives at most one answer. The de�nition of the partial
order �P below guarantees that this procedure makes only �nitely many mistakes for any
1-generic. Genericity also guarantees that, when he; xi 2 Ŵ , it gives a total function.
The number np in our conditions acts as a bound for how far we have to search to

su¢ ciently verify the �2 assertion that x is a witness that e 2 W (and so also that �Ce
is total). The set Fp tells us for which he; xi we can make no further mistakes in our
coding of �Ce into G

he;xi
i when we extend p. With this intuition, we de�ne extension in

P by q �P p i¤
qi � pi; Fq � Fp; nq � np;

and

(8i 2 f0; 1g)(8he; x; y; w;mi 2 [jpj; jqj)(he; xi 2 Fp & he; x; y; w;mi 2 qi
! �Ce;nq(y) = m & 8y0 � y9z � nq (R(e; x; y

0; z))

Note that P is recursive in C.
Suppose that G0; G1 are given by a C-1-generic sequence hpsi �T A as in Theorem

5.2.6 relativized to C. We claim that G0; G1 are an exact pair for I.
First assume that he; xi 2 Ŵ . We show that �Ce �T Gi. As the sets fpj he; xi 2 Fpg

are obviously dense in P, there is an s such that he; xi 2 Fps . For any he; x; y; w;mi 2 pt
with t > s, �Ce (y) = m by de�nition and so as noted above, the prescribed search
procedure which is recursive in Gi returns only correct answers for y > jpsj. Next,
we claim that for each y > jpsj, i 2 f0; 1g and m = �Ce (y) the �

C
1 sets Se;x;y;m;i =

frj9w(he; x; y; w;mi 2 rig are dense below ps. This guarantees that hpti meets each of
these sets and so the search procedures are total and correctly compute �Ce (x) for all
but �nitely many x. To see that these sets are dense below ps, consider any q � ps
with no w such that he; x; y; w;mi 2 qi. Choose any w > jqj and de�ne an r �P q by
making jrj =



e; x; y; w;�Ce (y)i+ 1

�
, ri = qi [ fhe; x; y; w;�Ce (y)ig (i.e. we let them be 0

at other points below the length), Fr = Fq and letting nr be the least n � nq such that
8y0 � y9z < n(R(e; x; y0; z) & �Ce;n(y) #) (one such exists since we are assuming that
he; xi 2 Ŵ ). Then r�Pq and r 2 Se;x;y;m;i as desired.
We next want to deal with the minimality conditions associated with the Gi being

an exact pair for I. Suppose then that �G0e = �G1e = D is total. We want to prove that
D � �f�Ce : e 2 Fg for some �nite F � W . Consider the �1 set Se of conditions p:

Se = fp : 9n (�p0e (n) #6= �p1e (n)) #g

By our assumption there is no ps 2 Se so we have a ps = p such that 8q �P p(q =2 Se).
We claim that D � �f�Ce : he; xi 2 Fp \ Ŵg. For every he; xi 2 Fp n Ŵ , let y(e; x)
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be the least y such that :8y0 � y9zR(e; x; y0; z) _ �Ce (y) ". It is clear that there is
no q �P p with any he; x; y; w;mi 2 qi for he; xi 2 Fp n Ŵ and y � y(e; x). Choose
q �P p in hpsi so that it has the maximal number of y�s with some he; x; y; w;mi 2 qi for
y < y(e; x) and i 2 f0; 1g. To compute D(y) for y > jqj, we �nd a t 2 P such that ti � qi,
�t0e (y) #= �t1e (y) #, no elements not in qi are added into ti in columns he; xi 2 FpnŴ and
for any he; x; y; w;mi 2 ti with he; xi 2 Fp \ Ŵ , �Ce (y) = m. Such an extension exists
because �G0e (y) #= �G1e (y) # and by the maximality property of q and the de�nition of
�P , G[he;xi]i = q

[he;xi]
i for he; xi 2 Fp n Ŵ and so there is such a t̂ 2 hpsi. Finding one such

t is clearly recursive in �f�Ce : he; xi 2 Fp \ Ŵg. Thus we only need to show that any
such ti provide the right answer. If one such gave an answer di¤erent than that given by
t̂ (and so G0 and G1) then



t0; t̂1; Fp; n

�
(where n � nq is large enough so that �Ce;n(y) #

for every he; x; y; w;mi in t0 or t̂1 with he; xi 2 Fp \ Ŵ ) would be an extension of p in Se
for the desired contradiction.
This Theorem completes the proof of Theorem 4.3.5 that the theory of the degrees

below 00 is recursively isomorphic to true arithmetic. We can extend the result to all r.e.
degrees.

Exercise 5.2.13 For every r.e. r > 0, Th(D(�r) �1�1Th(N).

Notes: Theorem 5.2.1 is due to Dekker [1954]; Theorem 5.2.3 to Miller and Martin
[1968]. We are not sure who �rst proved Corollary 5.2.8 (presumably using a di¤erent
method called r.e. permitting). The style of proof based directly on domination proper-
ties used here to prove Theorem5.2.6 is attributed to us in Soare [1987, Ch. VI Exercise
3.9] in the case of Cohen forcing. Theorem 5.2.12 is in Shore [1981] which also is the
original source of Exercise 5.2.13.

5.3 High and GL2 degrees

We now look at stronger domination properties and their relation to the jump classes
H1 and �L2 below 00 and their generalizations. Recall from De�nition 1.1.12 that for
a � 00, a 2 H1 , a0 = 000; a 2 L2 , a00 = 000. For degrees a not necessarily below 00,
a 2 GL2 , (a _ 00)0 = a00; a 2 GH1 , a0 = (a _ 00)0. It is also common to say that a
is high if a0 � 000. As it turns out these last are the degrees of dominant functions. Of
course, a 2GL2 means that a =2 GL2. We relativize these notions to degrees above b by
writing, for example, a 2GL2(b).
Let�s begin by showing that there is there a dominant function. In fact, if C is any

countable class of functions ffig then there is function f which dominates all the fi. For
example, put f(x) = maxffi(x) : i < xg + 1. This construction requires a uniform list
of all the functions fi. For the recursive functions we know that 000 can compute such a
list: Tot = fe : �e totalg is clearly �02 and so recursive in 000 by the Hierarchy Theorem
(Theorem 1.1.10) and so there is a sequence fi uniformly computable from 000 which then



5.3. HIGH AND GL2 DEGREES 59

computes a dominant function as described. We can do better than this and avoid using
totality. If f(x) = maxf�e(x) : e < x & �e(x) #g then f �T 00 and is also clearly
dominant. We can even do a bit better and get away with functions of high degree.

Theorem 5.3.1 (Martin�s High Domination Theorem) A set A computes a dom-
inant function f if and only if 000 �T A0.

Proof. Suppose �rst that 000 �T A0. By the Shoen�eld limit lemma (Theorem 1.1.11)
and the fact that Tot �T 000, there is an h �T A with lims!1 h(e; s) = Tot(e). We want
to compute a function f recursively in A such that, for every e for which �e is total, f(x)
is larger than �e(x) for all but �nitely many x. Any such f is dominant. To compute
f(x) we compute, for each e < x, both �e;t(x) and h(e; t) for t � x until either the �rst
one converges, say to ye, or h(e; t) = 0. As, if �e is not total, limh(e; t) = 0, one of these
outcomes must happen. We set f(x) to be one more than the maximum of all the ye so
computed for e < x. Note that f �T h �T A. It remains to verify that if �e is total then
�e < f . By our choice of h, 9s0(8s � s0)(h(e; s) = 1). So for x > s0 when we calculate
f(x) we always �nd a t such that �e;t(x) #= ye and so f(x) > �e(x) for all x > s0.
For the other direction, suppose we have a dominant f . As Tot is �02 and computes

000, it su¢ ces to show that it is also �2(f) as it would then be �2(f) and so recursive in
f 0. We claim that

8x9s�e;s(x) # , 9c8x�e;f(x)+c(x) # :

Suppose �e is total (if not, then of course both conditions fail). Let k(x) = �s�k;s(x) #.
Then k is recursive (because we know that8x�e(x) #). By hypothesis, f dominates k.
Thus, the right hand side holds. This is a �2(f) formula as desired.
Now a look at the de�nitions shows that for a �T 00, a =2 L2 is equivalent to 00 not

being high relative to a. Relativizing Theorem 5.3.1 to an a �T 00 we see that a =2 L2
if and only if no f �T 00 dominates every (total) function recursive in A. We can then
handle GL2 by relativizing to a _ 00 to prove the following:

Proposition 5.3.2 A set A �T 00 has degree in L2 if and only if (8g �T 00)(9f �T
A)(f � g). An arbitrary set A has degree in GL2 if and only if (8g �T A _ 00)(9f �T
A)(f � g).

Proof. Exercise.
This says that, while sets that are not high do not compute dominant functions, if

they are not too low they compute functions which are not dominated by any recursive
function. This su¢ ces for many applications.

Theorem 5.3.3 If A =2 GL2 then for any recursive notion of forcing P there is 1-generic
sequence hpsi �T A and so the associated 1-generic G is also recursive in A.
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Proof. For any g �T A _ 00, there is an f �T A not dominated by g. Without loss
of generality we may take f to be strictly increasing. We �rst construct the function
g that we want and then, using the associated f , we construct a 1-generic sequence ps
recursively in f (and so A). We again make use of the natural order � on P � N.
Let Se list the �1 subsets of P . As usual, we declare Se to be satis�ed at s if

(9n � s)(pn 2 Se;s). We de�ne g by recursion using 00. Given g(s), we want to determine
g(s+1). For each condition p � g(s)+1, ask 00 if (9q �P p)(q 2 Se) for each e � g(s)+1.
If such an extension exists, let xe be the least x such that (9q �P p)(q � x & q 2 Se;x).
Put g(s+ 1) = maxfxeje � g(s) + 1g.
We cannot use g itself in the construction of the desired 1-generic hpsi because we

want hpsi �T A. But, since g �T A_ 00, we can use an increasing f �T A not dominated
by g. The construction of G is recursive in f (hence in A). At stage s, we have �nite
a condition ps. For each e � s not declared satis�ed at s, see if (9q �P ps)(q <
f(s+ 1) & q 2 Se;f(s+1)). If so, take the smallest such q for the least such e and let it be
ps+1. If not, ps+1 = ps. The construction is recursive in f , hence in A. Thus hpsi �T A
and the associated G �T A as well. Note that ps � f(s) by induction. Indeed ps � g(s)
as well because g(s) gives a bound on the witness required in the de�nition of ps.
To verify that G is 1-generic suppose, for the sake of a contradiction, that there is a

least e0 such that
:9s(ps 2 Se0 _ (8p �P ps)(p =2 Se0)):

Choose s0 such that, (8i < e0)(9s)(Si is declared satis�ed at s), Si is declared satis�ed by
s0. Consider any s > s0 at which f(s+1) > g(s+1). By our choice of e0, there is a q �P ps
such that q 2 Se0 . Moreover, as ps � g(s), by de�nition of g there is one � g(s+1) such
that it belongs to Se0;g(s+1) as well. By our choice of s, q � g(s+ 1) < f(s+ 1). Thus at
stage s+ 1, we would act to extend ps to a ps+1 2 Se0 for the desired contradiction.
As for the r.e. degrees, having a 1-generic below a degree a =2 GL2 provides a lot of

information about the degrees below a. For example, as in Corollary 5.2.8, we can embed
every countable partial order below any a =2 GL2. It is tempting to think that we could
also prove the analog of Corollary 5.2.10 that every maximal chain in the degrees below a
is in�nite. This is true for a < 00 (Exercise 5.3.4) but was a long open question (Lerman
[1983]). Cai [2012] has now proven that it is not true. There are a =2 GL2 which are the
tops of a maximal chain of length three.

Exercise 5.3.4 Prove that if a � 00 and a =2 L2 then any maximal chain in the degrees
below a is in�nite.

On the other hand, we can say quite a bit that is not true of arbitrary r.e. degrees
about the degrees above a when a =2 GL2 .

De�nition 5.3.5 A degree a has the cupping property if (8c > a)(9b < c)(a _ b = c).

Theorem 5.3.6 If a 2GL2 then a has the cupping property. Indeed, if A =2 GL2 and
C >T A then there is G �T A such that A _G �T C and G is Cohen 1-generic.
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Proof. We need to add requirements Re : �Ge 6= A to the proof of Theorem 5.3.3 for
Cohen forcing (making all the requirements into a single list Qe) and code C into G as
well (so as to be recoverable from A � G). In the de�nition of g(s + 1) in that proof,
for each p � g(s) + 1 look as well for q0; q1 � p and x such that q0jeq1. Then make
g(s+1) also bound the least such extensions � 0; � 1 for each e; p � g(s)+1 for which such
extensions exist.
Again choose f �T A strictly increasing and not dominated by g. The construction

is done recursively in f � C. At stage s we have ps and we look for the least e such
that Qe has not yet been declared satis�ed and for which there is either a q �P p with
q � f(s + 1) that would satisfy Qe as before if it is an Si or a pair of strings q0; q1 � ps
with qi � f(s + 1) such that q0jeq1 if Qe = Ri. Let e be the least for which there are
such extensions. If Qe = Si choose q as before. If it is Ri Let q be the qj such that
�
qj
e (x) #6= A(x). We then let ps+1 = q^C(s) and declare Qe to be satis�ed. If there is no
such e, we let ps+1 = ps^C(s). Note that ps+1 � f(s + 1) + 1 (the extra 1 comes from
appending C(s)).
Since the construction is recursive in f � C and f �T A �T C, we have G �T C.

But, C �T hpsi because C(s) = ps+1(jps+1j). However, hpsi �T A _ G because f �T A
tells how to compute each stage from the given ps to the choice of q. Then G tells us the
last extra bit at the end of ps+1.
To verify thatG has the other required properties suppose e0 is least such thatQe fails.

Assume that by stage s0 we have declared all requirements with e0 < e0 which will ever
be declared satis�ed to be satis�ed. Consider a stage s > s0 at which f(s+1) > g(s+1).
If Qe = Si then we argue as in the previous theorem. If Qe = Ri and there were any
q0; q1 � ps with q0jeq1 then would have taken one of them as our q and declared Qe = Ri
to be satis�ed contrary to our choice of e0. On the other hand, if there are no such
extensions, then as usual �Ge is recursive if total and so Ri would also succeed contrary
to our assumption.

Remark 5.3.7 Not every r.e. degree has the cupping property.

For other results about GL2 degrees it is often useful to strengthen Theorem 5.3.3 to
deal with notions of forcing recursive in A rather than just recursive ones.

Theorem 5.3.8 For A 2 GL2, given an A recursive notion of forcing P and a sequence
Dn of dense sets uniformly recursive in A_00 (or with a density function d(n; p) �T A_00)
there is a generic sequence hpsi �T A meeting all the Dn. Of course, the generic G
associated with the sequence is recursive in A as well.

Proof. Let mK be the least modulus function for K = 00 and let 	A�Kn = Dn, i.e. the
	n uniformly compute membership in Dn. We de�ne g �T A _ 00 by recursion. Given
g(s) we �nd, for each p; n � g(s)+1 the least q such that q �P p and q 2 Dn as witnessed
by a computations of 	A�Ku�u

n;u (n) = 1 where Ku is the same as K on the use from K in
this computation. Next we let g(s+ 1) be the least number larger than q, u and mK(u)
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for all of these q and u as well as mK(g(s) + 1). As g �T A_ 00 and A 2 GL2 there is an
increasing f �T A not dominated by g.
We construct the sequence hpsi recursively in f �T A. At stage s we have ps. Our

plan is to satisfy the requirement of meeting Dn for the least n for which we do not seem
to have done so yet and for which we can �nd an appropriate extension of ps when we
restrict our search to q � f(s + 1) as well as our use of 00 to what we have at stage
f(s + 1). More formally, we determine (recursively in A) for which Dn (n � s) there is

a t � s such that 	
(A�Kf(s+1))�f(s+1)
n (pt) = 1. Among the other n � s, we search (again

recursively in A) for one such that (9q �P ps)(q � f(s+1) & 	
(A�Kf(s+1))�f(s+1)
n (pt) = 1).

If there is one we act for the least such n by letting ps+1 be the least such q for this n. If
not, let ps+1 = ps. Note that ps+1 � f(s+ 1) by the restriction on the search space and
ps+1 � g(s+1) as well since g(s+1) also bounds the least witness by the de�nition of g.
We now claim that for each n there is a ps 2 Dn. If not, suppose, for the sake of a

contradiction, that n is the least counterexample. Choose s0 such that for allm < n there
is t < s0 such that pt 2 Dm and indeed such that 	

(A�Ks0 )�s0
m (pt) = 1 andKs0 � u = K � u

where u is the use of this computation of 	m at pt. Thus, by construction, we never
act for m < n after s0. As g does not dominate f we may choose an s > s0 with
f(s+1) > g(s+1). At stage s we have ps and pt =2 Dn for all t � s in the sense required,

i.e. 	
(A�Kf(s+1))�f(s+1)
n (pt) = 0 since any computation of this form gives the correct answer

by our de�nition of g(s + 1) and the fact that f(s + 1) > g(s + 1). There is a q �P ps

with q 2 Dn and the least such is less than f(s + 1) and 	
(A�Kf(s+1))�f(s+1)
n (q) = 1 with

the computation being a correct one from A�K by the de�nition of g(s+1) < f(s+1).
Thus we would take the least such q to be ps+1 2 Dn for the desired contradiction.
We now give a couple of applications that play a crucial role in our global analy-

sis of de�nability in D( � 00). The �rst is a jump inversion theorem that generalizes
Shoen�eld�s (Corollary 5.3.10).

Theorem 5.3.9 (GL2 jump inversion) If A 2 GL2, C �T A_ 00, and C is r.e. in A,
then there is a B �T A such that B0 �T C.

Proof. Let Cs be an enumeration of C recursive in A. We want a notion forcing recursive
in A and a collection of dense sets Dn such that for any hDni generic G, G0 �T C. This
time, our notion of forcing has conditions p 2 2<!. The de�nition of extension for P is
a bit tricky. If q � p and

he; xi 2 [jpj; jqj)) [Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)]

we say that q �1 p. Now this relation is clearly recursive in A since A computes Cjpj for
each p. However, it need not be transitive (Exercise). We let �P be its transitive closure.
As, given any r � p, there are only �nitely many q�s with r � q � p we can check all
possible routes via �1 from p to r recursively in A and so �P is also recursive in A. The
plan for coding C into G0 uses the Shoen�eld limit lemma 1.1.11 and partially explains
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the notion of extension. It guarantees that e 2 C ) G[e] =� ! while e =2 C ) G[e] =� ;.
Thus e 2 C , limsG(he; si = 1 and so C �T G0. Suppose we have a generic sequence
hpsi �T A for some collection of dense sets as in Theorem 5.3.8. The de�nition of
extension guarantees that coding mistakes can happen in column e only when �psn (n)
�rst converges for some n � e. Thus C �T G0.
Our �rst class of dense sets include the trivial requirements and in addition force the

jump of G in the hope of making G0 �T C:

Dm;j = fp : jpj � j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but :(9n � e)(�pn(n) " & �qn(n) #)])g

Note that, after we use A to compute Cjpj, membership in Dm;j is a �1 property and so
recursive in 00. Thus, the Dm;j are uniformly recursive in A _ 00. We must argue that
they are dense. Consider any p. We can clearly extend it to a q with jqj � j by making
q(he; xi) = Cjpj(e) for he; xi 2 [jpj; j). So we may as well assume that jpj � j. If �pm(m) #
then p 2 Dm;j and we are done. So suppose �pm(m) ". If there is q � p such that �qm(m) #
and (8e < m)(8 he; xi 2 [jpj; jqj)[Cjpj(x) = q(he; xi) or 9n � e (�pn(n) " & �qn(n) #)],
q �P p by de�nition (because �pm(m) " while �qm(m) # so any violation of coding is
allowed for e � m) and is in Dm;j. If there is no such q then p 2 Dm;j by de�nition.
Now we verify that G = [ps has the desired properties. By Theorem 5.3.8, G �T A.

To see that C �T G0 consider any e. Let s be such that (8i � e)(�Gi (i) #) �psi (i) #
& i 2 C ) i 2 Cjpsj): It is clear from the de�nition of �P that for any t > s and
hi; xi 2 [jpsj; jptj) with i � e, hi; xi 2 pt , i 2 C. Thus C(e) = limtG(he; ti and so
C �T G0 by the Shoen�eld limit lemma. For the other direction we want to compute
G0(e) recursively in C. (Of course, A �T C and so then is hpsi.) Suppose we have, by
induction, computed an s as above for e � 1. We can now ask if e 2 C. If so, we �nd
a u � t � s such that e 2 Cjptj and pu 2 De;jptj. If �

pu
e (e) #, then, of course, e 2 G0.

If �pue (e) " but e 2 G0, then there would be a v > u such that �pve (e) # and, of course,
pv �P pu. This would contradict the fact that pu 2 De;jptj by our choice of s and t and
the de�nitions of De;jptj and �P .

Corollary 5.3.10 (Shoen�eld Jump Inversion Theorem) For all C � 00 there is
B < 00 such that B0 �T C if and only if C is r.e. in 00.

Proof. The �only if�direction is immediate. The �if�direction follows directly from the
Theorem by taking A = 00.
For later applications we now strengthen the above jump inversion theorem to make

B <T A.

Theorem 5.3.11 If A 2 GL2, C �T A _ 00, and C is r.e. in A, then there is B <T A
such that B0 �T C.

Proof. In addition to the requirements of Theorem 5.3.9, we need to make sure that
�Gi 6= A for each i. To do this we modify the de�nition of extension to also allow violations
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of the coding requirements for e when we newly satisfy one of these diagonalization
requirements for i � e. (As we did above for making �Gi (i) #.) We say q �1 p if

he; xi 2 [jpj; jqj)) [Cjpj(x) = q(he; xi) or

9n � e ([�pn(n) " & �qn(n) #] or [9y�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)]) :

Again �P is de�ned as the transitive closure of this relation and it is recursive in
A _ 00 as before. We then adjust the Dm;j accordingly

Dm;j = fp : jpj > j & [�pm(m) # or (8q � p)(�qm(m) "
or [(9e < m)(9he; xi 2 [jpj; jqj)(Cjpj(e) 6= q(he; xi) but
:(9n � e)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.

We also need dense sets that guarantee that �Ge 6= A:

Di = fpj(9x)(�pi (x) #6= A(x) or

(8q0; q1 � p)(8x < jq0j; jq1j)[:(�q0i (x) #6= �
q1
i (x) #) or

((9e < i)(9he; xi 2 [jpj; jqj)(9j 2 f0; 1g)[(Cjpj(e) 6= qi(he; xi) but
:(9n � i)([�pn(n) " & �qn(n) #] & :(9y)[�qn(y) #6= A(y) & :9y�pn(y) #6= A(y)])]g.

The proof now proceeds as in the previous Theorem. The arguments for all the veri�ca-
tions are now essentially the same as there and are left as an exercise.

Exercise 5.3.12 Verify that the notion of forcing and classes of dense sets speci�ed in
the proof of Theorem 5.3.11 su¢ ce to actually prove it.

Exercise 5.3.13 Prove that if A is r.e. and C �T 00 is r.e. in A then there is a B �T A
such that B0 �T C. Indeed we may also make B <T A.

The next result says that every a 2 GL2 is RRE (relatively recursively enumerable),
i.e. there is a b < a such that a is r.e. in b and a bit more.

Theorem 5.3.14 If a 2 GL2 then there is b < a such that a is r.e. in b and a is in
GL2(b), i.e. (a _ b0)0 < a00.

Proof. Let a 2 GL2. We�ll use a notion of forcing P with conditions p = hp0; p1; p2i,
pi 2 2<! such that

1. jp0j = jp1j, p0(dn) = A(n), p1(dn) = 1 � A(n) where dn is nth place where p0; p1
di¤er and

2. (8e < jp0 + p1j)(e 2 p0 � p1 , 9x(he; xi 2 p2)).
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As expected, our generic set G0 �G1 �G2 is given by V (p) = p0 � p1 � p2. The idea
here is that if we can force p0; p1 to di¤er at in�nitely many places while still making our
generic sequence recursive in A, the �rst clause in the de�nition of �P guarantees that
G0 � G1 �T A. The second clause works towards making G0 � G1 r.e. in G2 with the
intention being that deg(G2) = g2 is to be the b required by the theorem. Extension in
the notion of forcing is de�ned in the simplest way as q �P p , qi � pi but note that
this only applies to p and q in P and not all q with qi � pi are in P even if p 2 P. The
notion of forcing is clearly recursive in A.
We now de�ne the dense sets needed to satisfy the requirements of the Theorem. We

begin with D2n = fp : p0; p1 di¤er at at least n pointsg. These sets are clearly recursive
in A. We argue that these are dense by induction on n. Suppose D2n is dense. To show
that D2n+2 is dense, it su¢ ces, for any given p 2 D2n � D2n+2, to �nd a q �P p in
D2n+2. Let q0 = p0^A(n), q1 = p1^(1 � A(n)). Choose i 2 f0; 1g such that qi(jp0j) = 1.
De�ne q2 � p2 by choosing x large and setting q2(h2jp0j+ i; xi) = 1 and q2(z) = 0 for all
z =2 dom(p2) and less than h2jp0j+ i; xi. Now q = hq0; q1; q2i satis�es the requirements to
be a condition in P . It obviously extends p and is in D2n+2.
For any generic recursive in A which meets all the D2n, G0 �G1 �T A and G0 �G1

is r.e. in G2.
We also want dense sets similar in �avor to those of the previous theorems to force

the jump of G2 to make (a _ g02)0 < a00. Let

D2n+1 = fp : �p2n (n) # or (8� � p2)

(��n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0)g.

For p 2 P , membership in D2n+1 is a 00 question and so these sets are recursive in A_00.
We want to prove that they are dense. Suppose have a p 2 P and so we want a q �P p
with q 2 D2n+1. We may suppose that �p2n (n) " and that the second clause fails for p
as otherwise we would already be done. Thus we have a � � p2 such that ��n(n) # but
:(9he; xi 2 �)((p0�p1)(e) = 0). We claim that there is a q �P p such that q2 � � and so
�q2n (n) # and q 2 D2n+1 as required. The only issue is that there may be some hj; yi 2 �
with j > jp0 � p1j. If so, we must de�ne q0 and q1 accordingly, i.e. j 2 q0 � q1. So if j
is even, we want j

2
2 q0; if it is odd,

j�1
2
2 q1. We now de�ne q0; q1 at the appropriate

element ( j
2
or j�1

2
) to both be 1. Elsewhere we let both q0 and q1 be 0. Thus we have

not added any points at which q0 and q1 di¤er beyond those in p0; p1). Now we extend �
to q2 by adding he; yi for some large y if (q0 � q1)(e) = 1 and e � jp0 � p1j and wherever
not yet de�ned we let q2(z) = 0. Thus q 2 P and is the desired extension of p in D2n+1

as �q2n (n) = �
�
n(n) #.

We now let hpsi �T A be a generic sequence meeting every Dn as given by Theorem
5.3.8. We have already seen that G0�G1 �T A and it is r.e. in G2 �T A. If we can show
that (A � G02)

0 <T A00 then we will be done as this clearly implies that G2 <T A. We
�rst claim that G02 �T A _ 00. To see if n 2 G02, recursively in A _ 00 �nd an s such that
ps 2 D2n+1. Then we claim that n 2 G02 , �

ps;2
n (n) #. If �p2n (n) #, then we are done.

If not, then (8� � ps;2) (�
�
n(n) " or (9he; xi 2 �)((p0 � p1)(e) = 0)) and by de�nition of
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membership and extension in P, �pt;2n (n) " for every pt;2 for t � s. Thus �G2n (n) " as
desired. AsG02 �T A_00, (A�G02) = A_00 and so as A =2 GL2, (A�G02)0 = (A_00)0 <T A00
as required.

Exercise 5.3.15 If A >T 0 is r.e. and C �T 00 is r.e. in A then there is a B �T A such
that B0 �T C. Indeed we may also make B <T A. Hint: ....Build �s �nite extensions that
obey a coding rule for columns for e � c(s) � s (so that we can enumerate C recursively
in A) except that can violate the rule to force jump as above; search below mA(s+ 1) for
extensions forcing jump for e � s that obey rule. Also search for extensions so �e giving
di¤erent answers and allow violations in columns > e when satisfy this requirement by
choosing one that gives answer other than A.

We can now deduce a result that plays a major role in our analysis of de�nability in
D(�00) (and many other results).

Theorem 5.3.16 If b <T a and a 2 GL2(b) and I is a �B3 ideal in D(�b) then there
is an exact pair for I below a.

Proof. By Theorem 5.3.14 (relativized to b) there is a c such that b � c < a and a is
r.e. in c. So I is also �C3 . Now, by Theorem 5.2.12, we have the desired exact pair.

Theorem 5.3.17 If A 2 a 2GL2 and S 2 �A3 then there is an embedding of a nice
e¤ective successor model (with the appropriate partial lattice structure) in the degrees
below deg(A) and an exact pair x;y � a for the ideal generated by the dn with n 2 S.
(Remember that the dn are the degrees representing n 2 N in the e¤ective successor
model.

Proof. Given A 2 GL2 and S 2 �A3 Theorem 5.3.14 gives us a B < A such that A is
r.e. in B and A is GL2(B). Since A0 � A_ 00 and is r.e. in it, Theorem 5.3.9 relativized
to B gives us a B̂ < A (with B �T B̂) such that B̂0 � A0 and so �B̂3 = �

A
3 , Moreover,

A is r.e. in B̂ because it was r.e. in B �T B̂. The result now follows by using Theorem
5.2.6 and Exercise 3.3.10 to embed an e¤ective successor model between B̂ and A and
then Theorem 5.2.12 to pick out the ideal generated by the associated dn for n 2 S as
the set fej9n(�B̂e 2 dn)g is itself �B̂3 = �A3 as is then fej(9n 2 S)(�Ae 2 dn)g.

Exercise 5.3.18 Prove that every degree has a GL2 degree below it.

Exercise 5.3.19 Prove that every recursive lattice L with 0 and 1 can be embedded in
D(�a) preserving 0 and 1 for any a 2 GL2.

Notes: Theorem 5.3.1 is due to Martin [1966]. Its very useful consequence, Proposi-
tion 5.3.2 is from Jockusch and Posner [1978] which also contains a version of Theorem
5.3.3 for Cohen forcing, Exercises 5.3.4 and 5.3.18 as well as Theorem 5.3.9. The version
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given here of Theorem 5.3.3 and the more general Theorem 5.3.8 as well as 5.3.14 come
from Cai and Shore [2012]. Corollary 5.3.10 was originally proved in Shoen�eld [1959].
The original direct proof of (a stronger version of) Theorem 5.3.17 is in Shore [2007].
Remark 5.3.7 follows, for example, from Slaman and Steel [1989, Theorem 3.1] or Cooper
[1989]. Theorem 5.3.6 is from Jockusch and Posner [1978].

5.4 De�nability and Biinterpretability in D(� 00)
We already know that the theory of D(�00) is (recursively) equivalent to true �rst order
arithmetic and so as complicated as possible. We now want attack the problem of de-
termining which subsets of, and relations on, D(�00) are de�nable in the structure. The
interpretation of D(�00) in N gives a necessary condition. Only subsets and relations
de�nable in arithmetic can possibly be de�nable in D(�00). Our goal is to prove that, if
they are also invariant under the double jump, then the are, in fact, de�nable in D(�00).

De�nition 5.4.1 A relation R(x1; : : : xn) on degrees is invariant under the double jump
if, for all degrees x1; : : :xn and y1; : : :yn such that x00i = y

00
i for all i � n, R(x1; : : :xn),

R(y1; : : :yn).

We begin with the subsets of D(� 00) and, in particular, with the basic question of
de�nably determining the double jump of a degree a � 00. (This would actually su¢ ce to
show that all subsets of D(�00) invariant under double jump and de�nable in arithmetic
are de�nable in D(�00) but as we prove more later we omit this argument.) The crucial
point is that the sets we can code below an r.e. or GL2 degree a are precisely the ones
�A3 . We use this to determine a

00 via the following characterization of the double jump.

Proposition 5.4.2 For any sets A and B, A00 �T B00 if and only if �A3 = �
B
3 . Indeed,

for any n � 1, A(n) �T B(n) if and only if �An+1 = �
B
n+1.

Proof. The hierarchy theorem 1.1.10 says that, for any set X and n � 1, �Xn+1 = �X
(n)

1 .
On the other hand, for any Z and W , �Z1 = �

W
1 i¤ Z �T W since the equality implies

that both Z and �Z (W and �W ) are �1, i.e. r.e., in W (Z) and so each is recursive in the
other. Thus if �An+1 = �

B
n+1 then �

A(n)

1 = �B
(n)

1 and so A(n) �T B(n) as required.

Theorem 5.4.3 The set L2 = fx � 00jx00 = 000g is de�nable in D(�00).

Proof. Our analysis of coding in models of arithmetic in Proposition 3.4.3 and preceding
Theorem 4.3.5 (which is really part of the proof of that theorem), shows that we have
a way to, de�nably in D(�00), pick out, via correctness conditions, parameters �p that
de�ne structuresM(�p) isomorphic to N: (The crucial point here is Theorem 5.2.12 which
says that there is an exact pair for the ��p03 ideal generated standard part of the model
below 00 as it is r.e. in and strictly above �p0.) Also note that, by Proposition 3.4.3,
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any set S coded in them by a pair g0;g1 and a coding formula 'S(x; �p) is �
A
3 as long as

the parameters �q for the nice e¤ective successor structure determining the domain of the
model and g0;g1 are recursive in A.
We now claim that x 2 L2 if and only for any such �q;g0;g1 �T x the set S coded by

g0;g1 is �3. Moreover, this property is de�nable in D(�00) and so proves the Theorem.
First suppose that x 2 L2. Then our initial remarks show that S 2 �X3 for anyX 2 x.

As X 00 �T 000, �X3 = �3 by Proposition 5.4.2. Next, if x =2 L2, then by Exercise 3.3.10
and Theorem 5.3.3 there are parameters �q de�ning a nice e¤ective successor model with
join c < x with c0 = 00. By Theorem 4.3.4, we can extend these parameters to ones �p
de�ning a standard model of arithmetic which, of course, satis�es the de�nable properties
guaranteeing that it is such a model. Now, by Theorem 5.3.16, for any S 2 �X3 there are
g0;g1 �T x which code S in this model. Since x00 > 000 there is an S 2 �X3 � �3 again
by Proposition 5.4.2 and so a code for such an S below x as required.
Finally, note that as we are working in de�nable standard models of arithmetic we can

de�nably say that a set is �3 simply by using the translation into our degree structure
of the corresponding sentence of arithmetic.

Theorem 5.4.4 For every h � 000 which is r.e. in 000, the set fx � 00jx00 = hg is de�n-
able in D(�00).

Proof. The previous theorem handles the case that h = 000. For h > 000 Let E 2
e 2 [00;000] be such that E 0 2 h. There is such an E by Corollary 5.3.10 and we can
�x a de�nition of one in arithmetic. Consider the formula which says that for any
q;g0;g1< x and �p which de�ne a standard model of arithmetic and a set S coded in the
model as in the proof of the Theorem, S 2 �E2 and for any set Ŝ 2 �E2 (again as given by
a de�nition in arithmetic) there are such q;g0;g1< x and �p de�ning Ŝ. Proposition 5.4.2
and calculations already described now show that this guarantees that �X

0
2 = �X3 = �

E
2

and so x00 = e0 = h as required.

Corollary 5.4.5 The jump classes Ln (a(n) = 0(n)) and Hn (a(n) = 0(n+1)) are de�nable
in D(�00) for n � 2.

Proof. In the proof of Theorem 5.4.4, require instead of E 0 2 h that E(n�1) �T 0(n) for
Ln and E(n�1) �T 0(n+1) for Hn.
By a separate additional argument that requires results beyond the scope of these

lectures we can also get the de�nability of H1. While we could make such an argument
at this point it will be easier later. We do so in Corollary 5.4.11. The de�nability of L1
in D(�00) is an important open problem.
If we now wish to deal with arbitrary relations on D(�00) rather than simply subsets,

we are faced with the problem that our analysis so far has, for each degree a, produced
various models of arithmetic in which we code the sets �A3 . To discuss even binary
relations we must have a way to analyze any a and b (or equivalently the sets coded
below them as long as we are only working up to invariance under the double jump) in a
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single model (perhaps with additional correctness conditions). The basic formulation of
this issue is given by asking about the biinterpretability of the structure (here D(�00))
with arithmetic (here �rst order). A similar notion applies to other structures (such as
the r.e. degrees, R) still with �rst order arithmetic and to ones such as D but for second
order arithmetic.

De�nition 5.4.6 A degree structure S is biinterpretable with true second (�rst) order
arithmetic if it is interpretable in second (�rst) order arithmetic and we have formulas
in parameters �p (including a correctness condition) as speci�ed in §4.1 and a formula
'S(x; �y) which de�nes sets (coded) in the model given by �p as described there which
provide an interpretation of true arithmetic in S (i.e. the models M(�p) satisfying the
correctness condition are all standard). For second order arithmetic, we require that the
sets de�ned by 'S(x; �y) as �y ranges over all parameters in S are all subsets of N. More-
over, for both �rst and second order arithmetic, there is an additional formula 'R(x; �y; �p)
such that S � 8x9�y'R(x; �y; �p) and for every a; �g 2 S, S �'R(a; �g; �p) if and only if the
set fnj'S(dn; �g; �p)g (where dn is the nth element of the modelM(�p) coded by the para-
meters �p) is of degree a. These last conditions then say that the set coded in M(�p) by
�g is of degree a and that all degrees a in S have codes �g for a set of degree a. We say
that S is biinterpretable with true �rst or second order arithmetic up to double jump if
we weaken the second condition on 'R so that for every a; �b 2 S, S �'R(a; �b; �p) if and
only if the set fnj'S(dn; �b; �p)g has the same double jump as a.

It is not hard to see that, if a degree structure S is biinterpretable with �rst or
second order arithmetic, then we know all there is to know about de�nability in, and
automorphisms of, S.

Theorem 5.4.7 If a degree structure S is biinterpretable with �rst or second order arith-
metic then it is rigid, i.e. it has no automorphisms other than the identity, and a relation
on S is de�nable in S if and only if it is de�nable in �rst or second order arithmetic,
respectively.

Proof. We �rst prove rigidity. Let �p satisfy all the formulas required for it to determine
a standard model of arithmetic via the given formulas. Consider any a 2S with some �g
such that S � 'R(a; �g; �p) and any automorphism 	 of S. The image 	(�p) = �r satis�es
all the same formulas as �p and so also de�nes a standard model of arithmetic. The image
�h of �g under 	 also determines a subset of this model via 'S and it must be the �same�
subset in the sense that they correspond to the same subset of N via the isomorphisms
among M(�p), M(�r) and N. Of course, 'R(b; �h;�r) (where b =	(a)) is also true in S
since 	 is an automorphism. Our de�nition of biinterpretability now says that a = b as
required for rigidity.
Now consider any relation Q(�x) on S. By the assumption that S is interpretable in

�rst or second order arithmetic, we know that Q is de�nable in those structures. For the
other direction, suppose Q is de�nable by a formula � of �rst or second order arithmetic.
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If this is �rst order arithmetic then we expanded it by a sequence �X of second order
parameters (of the same length n as �x) whose intended interpretations are some subsets of
the model. If it is second order arithmetic then we simply assume that the formula already
contains a sequence �X of free second order variables (of the same length as �x). In any
case, � de�nes the property that the sequence of the degrees of X satis�es Q.) Q is then
de�ned in S by the formula 	(�z) � 9�p; �g0 : : : 9�gn�1('c(�p) &

V
i<n

'R(zi; �gi; �p)! �T (�gi; �p))

where T is the translation of formulas of second order arithmetic given in §4.1. Here
our correctness condition 'c guarantees that the model M(�p) is standard and we also
assume that the requirements of the de�nition of biinterpretability are satis�ed. So the
translation of � asserts (because of the properties of 'R) that a sequence of sets of degree
zi satisfy � (in N), i.e. Q holds of �z.
Our goal now is to prove that D(�00) is biinterpretable with arithmetic up to double

jump and so every relation on it invariant under the double jump is de�nable in it if and
only if it is de�nable in �rst order arithmetic.

Theorem 5.4.8 D(�00) is biinterpretable with arithmetic up to double jump.

Theorem 5.4.3 and Theorem 5.4.4 show that we can de�ne the double jump classes
of degrees a in D(�00) by talking about the sets that are coded (by our usual formula
'S(x; �g)) in standard models M(�p) of arithmetic with �q; �g below a as in the proof of
Theorem 5.4.3. The point here is that these sets determine �A3 and so a

00 by Proposition
5.4.2. If we wish to de�ne the relations needed for biinterpretability up to double jump, we
need to be able to talk about the sets that are �A3 for an arbitrary degree a simultaneously
in a single model. Our plan is to provide a scheme de�ning isomorphisms between
two arbitrary standard models satisfying some additional correctness condition. Such
isomorphisms would allow us to de�nably transfer (codes for) sets in di¤erent models to
ones for the same sets in a single model and so de�ne the required relation 'R. We begin
with a lemma that is used to build such isomorphisms by interpolating a sequence of
additional models between the two given ones and isomorphisms between each successive
pair of models.

Lemma 5.4.9 If c � 00, c 2 L2 , a0; a1 2 L1 and P is a recursive notion of forcing,
then there is a G �T C which is 1-generic for P and such that A0 � G and A1 � G are
both low.

Proof. Let Dn;2 be the usual dense sets for making G 1-generic for P. They, and the
density function for them, are uniformly recursive in 00. Now consider, for i 2 f0; 1g,
the sets Dn;i = fpj�Ai�V (p)n (n) # or (8q � p)�

Ai�V (q)
n (n) "g. As the Ai are low, these

sets and their density functions are also uniformly recursive in 00. Thus, by Theorem
5.3.8, there is a 1-generic sequence hpki and associated generic set G both recursive in C
meeting all these dense sets. Any such G clearly has all the properties required in the
theorem. (Follow, for example, the proof of Proposition 3.2.13 using these De;i in place
of D1;e.)
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Proof (of Theorem 5.4.8). In addition to the previous correctness conditions for
our standard models M(�p) we require for the rest of this section that p0, the �rst of
the parameters �p, which bounds the parameters �q de�ning the nice e¤ective successor
structure providing the domain dn of the model, is in �L2. (This condition is de�nable by
Theorem 5.4.3.) Given two such modelsM(�p0) andM(�p4) we want to show that there
are additional models M(�pk) for k 2 f1; 2; 3g and uniformly de�nable isomorphisms
between the domain of these models taking di;n to d1+1;n for i < 4. (Given parameters
�pk de�ning a modelM(�pk) we write dk;n for the degree representing the nth element of
this model. Similarly, we write �pk;0 for the �rst element of �pk and �qk for the parameters in
�pk determining the e¤ective successor structure which provides the domain ofM(�pk).)
Thus (as we explain below) we produce a single formula �(x; y; �z; �z0) which uniformly
de�nes isomorphisms between any two of our standard modelsM(�p0) andM(�p4) (with
�z and �z0 replaced by �p0 and �p4).
We begin by choosing �q1 < 00 as given by a 1-generic over p0;0 sequence and function

for the recursive notion of forcing (Exercise 3.3.10) that embeds a nice e¤ective successor
model with �q1;0, the �rst element of �q1, being the bound on all the other required para-
meters. As p0;0 2 L2, 00 is �L2(p0;0) and so such �q1 exists by Theorem 5.3.3 (relativized
to p0;0). Note that �q1 (and so �q1;0) is in L1 by Proposition 3.2.13 as it is associated with
a 1-generic sequence recursive in 00. We may now extend �q1 to �p1 de�ning a standard
model M(�p1) by Exercise 4.3.3 and Theorem 5.3.3 as 00 is GL2(�q1). Similarly, we see
that there are �q3 and �p3 bearing the same relation toM(p4) as �q1 and �p1 do toM(p0).
Now as �q1;0 and �q3;0 are both low we may apply Lemma 5.4.9 to the forcing of Exercise
3.3.10 to get �q2 < 00 (again as 00 2 �L2(�q1;0); �L2(�q3;0)) such that both �q1;0 � �q2;0 and
�q2;0 � �q3;0 are in L1 and then extend �q2 to �p2 de�ningM(�p2) as we did for �q1.
We now apply Exercise 4.3.3 and Theorem 5.3.3 to get the desired schemes de�ning our

desired isomorphisms: Given any n 2 N and i < 4, consider the �nite sequences of degrees
hdi;0; : : : ;di;ni and hdi+1;0; : : : ;di+1;ni. We want to show that there are parameters �ri < 00
such that the formula '2(x; y;�ri) (where '2(x; y; �z) ranges over binary relations as �z varies
as in Theorem 4.2.3) de�nes an isomorphism taking di;k to di+1;k for each k � n. By
the results just cited it su¢ ces to show that the

L
k<n

di;k �
L
k<n

di+1;k are in L2 for each

i < 4. For i = 0, note that �q1 is associated with a 1-generic/p0:0 sequence which is
recursive in 00. Thus by Proposition 3.2.13 (suitably relativized) (�q1�p0;0)0 = p00;0 and
so (�q1;0��p0;0)0 = p00;0. As p0;0 2 L2, 000 = �p000;0 = (�q1;0��p0;0)00 as required. The argument
for i = 3 is similar. For the other pairs, we have already guaranteed that �q1;0 � �q2;0 and
�q2;0 � �q3;0 are both L1.
We can now de�ne the desired isomorphism �(n;m; �p0; �p4) between M(�p0) and

M(�p4). We say that an n in the domain of M(�p0) (i.e. 'D(n; �p0)) is taken to m
in the domain ofM(�p4) if and only if there are degrees �pk for k 2 f1; 2; 3g de�ning mod-
els of arithmeticM(�pk) and ones �ri for i < 4 as above such that each '2(x; y;�ri) de�nes
an isomorphism between initial segments of (the domains of)M(�pi) andM(�pi+1) where
the initial segment inM(�p0) is the one with largest element n and that inM(�p1) has
largest element m. Clearly this can all be expressed using the formulas 'D(x; �pk) and
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'<(x; y; �pk) de�ning the domains of M(�pk) and the orderings on them. Note that the
de�nition of this isomorphism is uniform in �p0 and �p4 and that we have shown that for
any �p0 and �p4 de�ning our standard models of arithmetic, there are parameters below 00

de�ning all these isomorphisms. In other words, we have described the desired formula
�(x; �y; �z; �z0).
We now wish to de�ne the formula 'R(x; �y; �p0) required in the de�nition of biinter-

pretability up to double jump (forM(�p0) a model of arithmetic). (We have replaced �p
in De�nition 5.4.6 by �p0 to match our current notation.) First, 'R says that, if x 2 L2
(as de�ned by Theorem 5.4.3), then �y de�nes (via our standard 'S) the empty set in
M(�p0). In addition, 'R says that, if x =2 L2 and S is the set de�ned in M(�p0) by �y,
then for every set Ŝ 2 �S3 (with Ŝ de�ned by other parameters �h inM(�p0) and Ŝ 2 �S3
expressed in the translation of arithmetic into M(�p0)), there are �g < x and �p4 with
�p4;0 < x such that �g codes a set Ŝ4 in M(�p4) and, for every n and m, �(n;m; �p0; �p4)
implies that 'S(n; �h; �p0),'S(m; �g; �p4), i.e. Ŝ = Ŝ4. By all that we have done already,
this guarantees that every Ŝ 2 �S3 is �X3 . For the other direction, 'R also says that if
�g < x and �p4 with �p4;0 < x are such that �g codes a set Ŝ4 inM(�p4) then there is a set
Ŝ (coded inM(�p0) by some �h) which is �S3 (as expressed inM(�p0)) such that Ŝ = Ŝ4
as expressed as above using �. So again by what we have already done, this guarantees
that every Ŝ4 2 �X3 is �S3 . Thus, by Proposition 5.4.2, S has the same double jump as
X as required.

Theorem 5.4.10 A relation on D(�00) which is invariant under the double jump is
de�nable in D(�00) if and only if it is de�nable in true �rst order arithmetic.

Proof. Follow the proof of Theorem 5.4.7 but use Theorem 5.4.8 in place of the assump-
tion that the structure is biinterpretable with arithmetic.

Corollary 5.4.11 H1 is de�nable in D(�00).

Proof. This follows immediately from the Theorem and fact that x < 00 is in H1 if and
only if D(�00) �8z9y � x(z00 = y00). This fact is proven for r.e. x in Nies, Shore and
Slaman [1998, Theorem 2.21] but (as indicated there on p. 257) replacing the last use
of the Robinson jump interpolation theorem in the proof by Theorem 5.3.9 provides a
proof for D(�00).
The analogous theorems hold for both D and R, i.e. they are biinterpretable with

second or �rst order arithmetic, respectively, up to double jump. (Moreover, in D the
jump is also de�nable.) Their de�nable relations which are invariant under the double
jump are then characterized in the same way. Indeed, every jump ideal I of D (i.e. an
ideal that is also closed under the jump operator) which contains 0(!) is biinterpretable
with second order arithmetic up to double jump if one takes the second order structure
to have sets precisely those with degrees in I and the jump is de�nable in I as well.
By more extensive uses of Theorem 5.3.8 we can prove our biinterpretability and so

de�nability results for D(� x) for any x � 00 in �L2.
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Exercise 5.4.12 For every x � 00 in �L2, Th(D(�x) is biinterpretable with true �rst
order arithmetic and so its theory is 1-1 equivalent to that of true arithmetic. Moreover,
for every x � 00 a relation on D(� x) invariant under double jump is de�nable in D(� x)
if and only if it is de�nable in �rst order arithmetic. (For x 2 L2, this last result is trivial.
Otherwise, it follows from biinterpretability as before.)

The Biinterpretability Conjectures for D(�00); R and D assert that these structures
are actually biinterpretable with �rst, �rst and second order arithmetic, respectively.
As we have seen proofs of these conjectures would show that the structures are rigid
and would completely characterize their de�nable relations. These are the major open
problems of degree theory.

Notes: The de�nitions of biinterpretability for di¤erent degree structures and the
associated conjectures are due to Harrington and Slaman and Woodin (see Slaman [1991]
and [2008]). Theorems 5.4.3 and 5.4.4 are originally due to Shore [1988] but for triple
jump in place of double jump. The improvement of one jump is essentially an application
of Proposition 5.4.2 as pointed out in Nies, Shore and Slaman [1998] where Corollary
5.4.11 also appears. Slaman and Woodin also proved Theorem 5.4.7 (again see Slaman
[1991] and [2008]). Plans for proving Theorem 5.4.8 were proposed in both Shore [1988]
and more concretely in Nies, Shore and Slaman [1998] but neither actually provided the
de�nitions of the required comparison maps nor the proofs that they exist as we have
done here. Thus Theorems 5.4.8, 5.4.10 and the improvement to initial segments of
D(�00) bounded by any x 2 �L2 of Exercise 5.4.12 are new. A proof of Exercise 5.4.12
will appear in Shore [2013]. Biinterpretability up to double jump for the r.e. degree R
is proven in Nies, Shore and Slaman [1998]. Slaman and Woodin (see Slaman [1991] and
[2008]) proved it for D. A very di¤erent proof that also gives the results described for
jump ideals containing 0(!) is in Shore [2007]. The de�nability of the jump is proven in
Shore and Slaman [1999] based on the results of Slaman and Woodin. This reliance is
removed in Shore [2007] where the jump is also de�ned in every jump ideals containing
0(!).
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