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Abstract

We investigate the complexity of several classical model theoretic theorems
about prime and atomic models and omitting types. Some are provable in RCA0,
others are equivalent to ACA0. One, that every atomic theory has an atomic
model, is not provable in RCA0 but is incomparable with WKL0, more than Π1

1

conservative over RCA0 and strictly weaker than all the combinatorial principles
of Hirschfeldt and Shore [2007] that are not Π1

1 conservative over RCA0. A prior-
ity argument with Shore blocking shows that it is also Π1

1-conservative over BΣ2.
We also provide a theorem provable by a finite injury priority argument that is
conservative over IΣ1 but implies IΣ2 over BΣ2, and a type omitting theorem that
is equivalent to the principle that for every X there is a set that is hyperimmune
relative to X. Finally, we give a version of the atomic model theorem that is equiv-
alent to the principle that for every X there is a set that is not recursive in X, and
is thus in a sense the weakest possible natural principle not true in the ω-model
consisting of the recursive sets.
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1 Introduction

In this paper we investigate the complexity of a few classical model theoretic theorems
about prime and atomic models and about omitting types in terms of both computa-
tional (recursion theoretic) and proof theoretic (reverse mathematical) calibrations and
of the interplay between these approaches. The theorems of interest in such investiga-
tions are typically of the form ∀A (Θ(A) → ∃B Φ(A,B)) where Θ and Φ are arithmetic
and A,B ∈ 2N. Thus, from the recursion theoretic point of view, we want to bound
or characterize the computational complexity of B given an A satisfying Θ (typically in
terms of Turing degree or place in one of the standard arithmetic/analytic definability or
jump hierarchies). From the reverse mathematics point of view we want to determine the
axiom systems in which the theorem is provable (typically subsystems of second order
arithmetic determined by the amount of comprehension assumed). Here, characteriza-
tions correspond to reversals in the sense that one proves (over some weak system) the
axioms of one of the subsystems of second order arithmetic from the statements of the
mathematical theorems being investigated.

We briefly review the five standard systems of reverse mathematics. For completeness,
we include systems stronger than arithmetical comprehension, but these will play no part
in this paper. Details, general background, and results, as well as many examples of
reversals, can be found in Simpson [1999], the standard text on reverse mathematics.
Each of the systems is given in the language of second order arithmetic, that is, the
usual first order language of arithmetic augmented by set variables and the membership
relation ∈. Each contains the standard basic axioms for +, ·, and < (which say that N is
an ordered semiring). In addition, they all include a form of induction that applies only
to sets (that happen to exist):

(I0) (0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X).

We call the system consisting of I0 and the basic axioms of ordered semirings P0. All
the five standard systems are defined by adding various types of set existence axioms to
P0. They also correspond to classical construction principles in recursion theory.

(RCA0) Recursive Comprehension Axioms: This is a system just strong enough to
prove the existence of the recursive sets but not of 0′ nor indeed of any nonrecursive set.
In addition to P0 its axioms include the schemes of ∆0

1 comprehension and Σ0
1 induction:

(∆0
1-CA0) ∀n (ϕ(n) ↔ ψ(n)) → ∃X ∀n (n ∈ X ↔ ϕ(n)) for all Σ0

1 formu-
las ϕ and Π0

1 formulas ψ in which X is not free.

(IΣ1) (ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) for all Σ0
1 formulas ϕ.

The next system says that every infinite binary tree has an infinite path. It is con-
nected to the Low Basis Theorem (Jockusch and Soare [1972]) of recursion theory, which
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says that every such tree has an infinite path whose jump is recursive in that of the tree
itself.

(WKL0) Weak König’s Lemma: This system consists of RCA0 plus the statement
that every infinite subtree of 2<N has an infinite path.

We next move up to arithmetic comprehension.

(ACA0) Arithmetic Comprehension Axioms: This system consists of RCA0 plus the
axioms ∃X ∀n (n ∈ X ↔ ϕ(n)) for every arithmetic formula ϕ in which X is not free.

In recursion theoretic terms, ACA0 proves the existence of 0′ and, by relativization, it
proves, and in fact is equivalent to, the existence of X ′ for every set X.

The next system corresponds to the existence of all (relativized) H-sets, i.e. the
existence, for every set X, of the HX

e (and so the hyperarithmetic hierarchy up to e) for
each e ∈ OX , the hyperjump of X. It says that arithmetic comprehension can be iterated
along any countable well order.

(ATR0) Arithmetical Transfinite Recursion: This system consists of RCA0 plus the
following axiom. If X is a set coding a well order <X with domain D and Y is a code for
a set of arithmetic formulas ϕx(z, Z) (indexed by x ∈ D) each with one free set variable
and one free number variable, then there is a sequence 〈Kx | x ∈ D〉 of sets such that if
y is the immediate successor of x in <X , then ∀n (n ∈ Ky ↔ ϕx(n,Kx)), and if x is a
limit point in <X , then Kx is

⊕
{Ky | y <X x}.

The systems climbing up to full second order arithmetic (i.e. comprehension for all
formulas) are classified by the syntactic level of the second order formulas for which we
assume a comprehension axiom.

(Π1
n-CA0) Π1

n Comprehension Axioms: ∃X ∀k (k ∈ X ↔ ϕ(k)) for every Π1
n formula

ϕ in which X is not free.

The recursion theoretic equivalent of the simplest of these systems, Π1
1-CA0, is the

existence of OX for every set X. Together with the four systems listed above, this
system makes up the standard list of the axiomatic systems of reverse mathematics.
Almost all theorems of classical mathematics whose proof theoretic complexities have
been determined have turned out to be equivalent to one of them.

Below, we will also consider induction and bounding principles. In the definition of
IΣ1 above, if we replace Σ0

1 formulas by Σ0
k or Π0

k formulas, we obtain the principles IΣk

and IΠk, respectively. The principles IΣk and IΠk are equivalent over RCA0 (see Exercise
II.3.12 in Simpson [1999]). The Σk bounding principle is defined as follows.

(BΣk) (∀i < n)(∃x)ϕ(x)→ (∃u)(∀i < n)(∃x < u)ϕ(x) for all Σ0
k formulas ϕ.

Over RCA0, the principle BΣk is strictly between IΣk−1 and IΣk (Paris and Kirby [1978];
see also Hájek and Pudlák [1998]).
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The early connections between recursion theoretic ideas and methods on the one
hand and reverse mathematics in the other typically involved recursive mathematics,
diagonalization or finite injury arguments, and coding. Consider, for example, a theorem
of the form ∀A (Θ(A)→ ∃B Φ(A,B)) where Θ and Φ are arithmetic. We call B a solution
for the instance of the theorem specified by A if Θ(A)→ Φ(A,B).

A construction of recursive mathematics that shows that there is a solutionB recursive
in any given A generally shows that the theorem is provable in RCA0. One that shows
that B can be obtained arithmetically in A usually shows that the theorem is provable
in ACA0. Standard forms of applications of recursion theoretic diagonalization or finite
injury results to reverse mathematical calibrations are as follows:

1. If there is no solution B recursive in some given A then the theorem is not provable
in RCA0.

2. If there is no solution B that is low over A, i.e. (B ⊕ A)′ ≡T A
′, then the theorem

is not provable in WKL0.

3. If there is no solution B arithmetic in A then the theorem is not provable in ACA0.

Coding methods tend to give reversals.

1. If, for any recursive tree T , there is a recursive instance of the theorem such that
any solution codes a path through T then the theorem usually implies WKL0.

2. If there is a recursive instance of the theorem such that any solution computes 0′

then the theorem usually implies ACA0.

3. If there is a recursive instance of the theorem such that any solution computes O
then the theorem usually implies Π1

1-CA0.

In this paper we will analyze several theorems that fall into this standard classification
scheme and some that fall well outside it. We are also particularly interested in reverse
mathematical relationships derived from more complex recursion theoretic results and
constructions.

In this paper all theories T in a language L are deductively closed (T ` ϕ ⇒ ϕ ∈ T ),
complete (T ` ϕ or T ` ¬ϕ for every sentence ϕ of L) and consistent (there is no
formula ϕ such that T ` ϕ and T ` ¬ϕ). All languages and models are countable.
For the purposes of reverse mathematics, we include with a model A of T the function
interpreting terms and the full satisfaction predicate for formulas with constants from
the model. Formal definitions suitable for work in RCA0 can be found in Simpson [1999,
Section II.8] along with, for example, a proof in RCA0 that any complete consistent
theory has a model in this sense.
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Definition 1.1. A partial type of a theory T is a set of formulas in a fixed number of
free variables that is consistent with T . We will reserve the unmodified term type for
complete types, i.e., maximal partial types. A partial type Γ is realized in a model A of
T if there is an ~a such that A � ϕ(~a) for every ϕ ∈ Γ. Otherwise, Γ is omitted in A.

A formula ϕ(x1, . . . , xn) of T is an atom of T if for each formula ψ(x1, . . . , xn) we
have T ` ϕ→ ψ or T ` ϕ→ ¬ψ but not both. A partial type Γ is principal if there is a
formula ϕ consistent with T such that T ` ϕ → ψ for all ψ ∈ Γ. Thus a complete type
is principal if and only if it contains an atom of T .

The theory T is atomic if, for every formula ψ(x1, . . . , xn) consistent with T , there is
an atom ϕ(x1, . . . , xn) of T extending it, i.e. one such that T ` ϕ→ ψ. A model A of T
is atomic if every n-tuple from A satisfies an atom of T , that is, every type realized in
A is principal. The model A is prime if it can be elementarily embedded in every model
of T .

The standard classical theorems about these notions (as in e.g. Chang and Keisler
[1977, 2.3]) are as follows:

1. AMT (Existence): T has an atomic model iff T is atomic.

2. AUniqueness: If A and B are atomic models of T then A ∼= B.

3. PMT (Existence): T has a prime model iff T is atomic.

4. PUniqueness: If A and B are prime models of T then A ∼= B.

5. Equivalence: A model of T is atomic iff it is prime.

Counting each biconditional as two implications, this list provides eight implications
to analyze in terms of reverse mathematics. Three are easily seen in §2 to be provable in
RCA0 (the “only if” directions of AMT (1) and PMT (3) and the “if” direction of Equiva-
lence (5)). We prove in §2 as well that three others are equivalent to ACA0 (AUniqueness
(2); the “only if” direction of PMT (3) and the “only if” direction of Equivalence (5)).
Of the remaining two, the implication PUniqueness (4) is easily provable in ACA0 but
its status in terms of reversals or connections to other systems remains completely open.
Thus, when we refer below to principles considered in this paper, we always exclude
PUniqueness. It is the “if” direction of AMT (1), which we call simply AMT, that turns
out to be quite interesting.

(AMT) Atomic Model Theorem: Every complete atomic theory has an atomic model.

AMT is an exceptionally weak principle but nonetheless not provable in RCA0 or even
WKL0, as we will show below in Corollary 3.4. It turns out to be strictly weaker than most
of the combinatorial principles studied in Hirschfeldt and Shore [2007] (hereafter [HS]),
which were themselves shown to be weaker than the classical Ramsey’s Theorem for pairs
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that has long been of interest both recursion theoretically and in reverse mathematics.
We refer to Cholak, Jockusch and Slaman [2001] (hereafter [CJS]) for the best analysis
of Ramsey’s Theorem itself.

Our general analysis and, in particular, our proof that AMT is implied by the weakest
of these combinatorial principles (SADS, as defined below) are related to various forcing
constructions and priority arguments. Some of them supply more general conservation
results; others touch on the issue of the role of BΣ2 and IΣ2 in (reverse) recursion theory.
In particular, AMT is shown to be conservative over not only RCA0 (IΣ1) and IΣ2 but
over BΣ2 as well. This last argument uses a finite injury argument with Shore blocking
to carry out the relevant construction in BΣ2. (We know of only two other examples
of principles that are known to be conservative over BΣ2: WKL0 by Hájek [1993] and
COH by Chong, Slaman and Yang [ta].) On the other hand, we are lead in §4 to a single
statement about the existence of certain types of generics (a bit less than weakly 2-
generics) that can be proven by a finite injury priority argument and that is conservative
over both IΣ1 and IΣ2 but not over BΣ2, as it implies IΣ2 over BΣ2. This seems to be
the first example of such a theorem.

The existence of atomic models can be seen not only as a forcing/genericity construc-
tion but also (as is traditional in model theory) as a type omitting argument. In §5, we
investigate the strength of another type omitting argument and show that it is equivalent
(both recursion theoretically and in the sense of reverse mathematics) to the existence of
hyperimmune sets. In §6, we give a weaker version of AMT that is equivalent to the ex-
istence of nonrecursive sets, and is thus in a sense the weakest possible natural principle
not true in the ω-model consisting of the recursive sets. (An ω-model of a fragment of
second order arithmetic is one whose first order part is standard, and hence is determined
entirely by which subsets of ω it contains.)

To set the stage for our eventual analysis of AMT we define here many of the principles
studied in [CJS] and [HS] and summarize the relationships among them in Diagram 1
below. (Single arrows are implications; double arrows are strict implications and negated
arrows represent known nonimplications. See [HS] for attributions and references.) Each
principle is to be understood as an addition to RCA0.

Definition 1.2. An n-coloring (partition) of [N]k, the unordered k-tuples (n1, . . . , nk)
of natural numbers (listed by convention in increasing order), is a map f : [N]k → n.
A subset H of N is homogeneous for the coloring f if H is infinite and |f“[H]k| = 1
(i.e. all tuples from H have the same color). Unless otherwise stated all colorings will be
2-colorings of [N]2.

(RT2
2) Ramsey’s Theorem for pairs: Every 2-coloring of [N]2 has a homogeneous set.

Definition 1.3. A coloring f of [N]2 is stable if (∀x)(∃y)(∀z > y)[f(x, y) = f(x, z)].

(SRT2
2) Stable Ramsey’s Theorem for pairs: Every stable 2-coloring of [N]2 has a

homogeneous set.
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Definition 1.4. If ~R = 〈Ri | i ∈ N〉 is a sequence of sets, an infinite set S is ~R-cohesive
if (∀i)(∃s)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)].

(COH) Cohesive Principle: For every sequence ~R = 〈Ri | i ∈ N〉 there is an ~R-
cohesive set.

We will denote the nth partial recursive in A function (in some standard effective
listing) by ΦA

n .

(DNR) Diagonally Nonrecursive Principle: For every set A there is a function f that
is diagonally nonrecursive relative to A, i.e. ∀n¬(f(n) = ΦA

n (n)).

(CAC) Chain-AntiChain Principle: Every infinite partial order (P,6P ) has an infi-
nite subset S that is either a chain, i.e. (∀x, y ∈ S)(x 6P y ∨ y 6P x), or an antichain,
i.e. (∀x, y ∈ S)(x 
P y ∧ y 
P x).

Definition 1.5 (RCA0). An infinite linear order (L,6L) in which all nonfirst elements
have immediate predecessors and all nonlast ones have immediate successors has type

• ω if every element has finitely many predecessors;

• ω∗ if every element has finitely many successors;

• ω + ω∗ if it does not have type ω or ω∗ and every element has either finitely many
predecessors or finitely many successors.

(ADS) Ascending or Descending Sequence: Every infinite linear order (L,6L) has
an infinite subset S that is either an ascending sequence, i.e. (∀s < t)(s, t ∈ S → s <L t),
and so of order type ω, or a descending sequence, i.e. (∀s < t)(s, t ∈ S → t <L s), and
so of order type ω∗.

(SADS) Stable ADS: Every linear order of type ω+ ω∗ has a subset of order type ω
or ω∗.

(CADS) Cohesive ADS: Every linear order has a subset S of order type ω, ω∗, or
ω + ω∗.

Definition 1.6. A partial order P is stable if either

(∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i <P j) ∨ (∀j > s)(j ∈ P → i |P j)]

or

(∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i >P j) ∨ (∀j > s)(j ∈ P → i |P j)].
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(SCAC) Stable CAC: Every infinite stable partial order has an infinite chain or
antichain.
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Diagram 1

2 Within RCA0, ACA0 and Reversals

We begin with the two facts provable in RCA0. The first is the “only if” direction of
AMT (1) and requires simply the classical proof.

Proposition 2.1 (RCA0). If T has an atomic model, T is atomic.

Proof. Let A be an atomic model of T . Consider any formula ψ(x1, . . . , xn) consistent
with T . As T is complete, T ` ∃x1, . . . , xnψ(x1, . . . , xn) and so there are c1, . . . , cn in
A such that A � ψ(c1, . . . , cn). As A is atomic there is an atom ϕ(x1, . . . , xn) of T such
that A � ϕ(c1, . . . , cn). Thus ϕ(x1, . . . , xn) is the required atom of T extending ψ.

The second is the “if” direction of Equivalence (5) and uses the effective version of
the omitting types theorem in the classical proof.

Proposition 2.2 (RCA0). Every prime model A of T is atomic.
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Proof. Consider any n-tuple c1, . . . , cn of A and the set S of formulas it satisfies, S =
{ψ(x1, . . . , xn) | A � ψ(c1, . . . , cn)}. We wish to show that S contains an atom of T .
If not, the classical omitting types theorem says that there is a model B of T that fails
to realize S, i.e. there are no elements d1, . . . , dn of B such that S = {ψ(x1, . . . , xn) |
B � ψ(d1, . . . , dn)}. In this situation there could not be an elementary embedding of A
into B, for the desired contradiction. Thus we need only verify in RCA0 that there is
such a model B. The usual effective version of the Henkin construction for the omitting
types theorem, as for example in Harizanov [1998, 6.1], provides in RCA0 a complete
consistent set of sentences in the language with Henkin constants in which every n-tuple
d1, . . . , dn satisfies ¬ψ(d1, . . . , dn) for some ψ(d1, . . . , dn) ∈ S. Simpson [1999, II.8.6]
then constructs the required model in RCA0.

These two Propositions together obviously supply the proof in RCA0 of the “only if”
direction of PMT (3). We now prove that three other of the eight basic implications are
equivalent to ACA0.

Theorem 2.3. The following assertions are equivalent (over RCA0):

1. ACA0.

2. Every atomic model of T is prime.

3. AUniqueness.

4. Every atomic theory T has a prime model.

Proof. The classical proofs of assertions (2)–(4) can be easily carried out in ACA0. We
construct a theory T that will establish all the implications in the other direction. The
language of T has unary predicates Ri and Ri,j for i, j ∈ N. The theory T is the deductive
closure of the following set S of axioms.

Axioms for T:

1. Axioms asserting that the Ri define infinite, pairwise disjoint sets.

2. Ri,s(x)→ Ri(x) for every i, s ∈ N.

3. Ri,s(x)→ Ri,s+1(x).

4. If Φi(i) does not converge in fewer than s many steps then the axiom ¬Ri,s(x) is
included.

5. If Φi(i) converges in exactly s many steps then there are axioms asserting that there
are infinitely many x such that Ri,s(x) and infinitely many x such that ¬Ri,s(x).

6. If Φ(i) converges in exactly s many steps then the axioms ¬Ri,s(x)→ ¬Ri,t(x) are
included for every t > s.
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This set S of axioms is clearly recursive and so provably exists in RCA0. We claim
that S admits quantifier elimination, i.e. for every formula ψ(x̄) there is a quantifier free
ϕ(x̄) (possibly just the formal propositional symbols T, for true, or F, for false) with the
same free variables such that S ` ϕ(x̄) ↔ ψ(x̄). This claim implies that S is complete,
as any sentence is equivalent to T or F modulo S, and so its deductive closure is ∆1

definable and provably exists in RCA0. This closure is our desired theory T .

To see that S admits quantifier elimination it suffices to present a recursive procedure
that finds a quantifier free equivalent ϕ(x̄) for a given existential formula ∃ȳϕ(x̄, ȳ) as
one can then carry out the usual induction (for the provable, in S, equivalence of the
resulting formulas) in RCA0 by IΣ1. By the usual applications of DeMorgan’s laws and
the distribution of ∃ over ∨, we may assume ϕ is a conjunction of atomic formulas and
negations of atomic formulas. As the language has only unary predicates the only atomic
formulas are of the form Ri(z) or Ri,s(z) for z ∈ x̄ȳ.

We begin with the following simple consistency checks. If any of them fail, the formula
is inconsistent with S and its equivalent is F.

Consistency Checks:

1. Is ϕ propositionally consistent, i.e. is there no occurrence of both R(z) and ¬R(z)
for any relation R and variable z?

2. Is ϕ consistent with Axiom 1, i.e. does it not contain, for any z and i 6= j, both
Ri(z) and Rj(z)?

3. Is ϕ consistent with Axiom 2, i.e. if it contains some Ri,s(z) then does it not contain
¬Ri(z)?

4. Is ϕ consistent with Axiom 3, i.e. if it contains some Ri,s(z) then does it not contain
¬Ri,t(z) for any t > s?

5. Is ϕ consistent with Axiom 4, i.e. if Φi(i) does not converge in fewer than s many
steps, then does Ri,s(z) not occur in ϕ?

6. Is ϕ consistent with Axiom 6, i.e. if ¬Ri,s(z) and Ri,t(z) occur in ϕ with s < t then
does Φi(i) converge in exactly n steps with s < n 6 t?

If ϕ passes all these tests then the required equivalent to ∃ȳϕ(x̄, ȳ) is gotten by
replacing all the atomic and negated atomic conjuncts about any z ∈ ȳ with T. It is
straightforward to see that the result is equivalent to ∃ȳϕ(x̄, ȳ) modulo S. Thus S is
complete as any sentence is equivalent to T or F modulo S.

We now determine the atoms of T . As the language has only unary predicates, the
formulas satisfied by an n-tuple are determined by the ones satisfied by the individual
elements of the tuple. Thus it suffices to determine the quantifier free formulas with one
free variable x that decide all atomic formulas about x. If Φi(i) is divergent then Ri(x)
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is such a formula since it implies ¬Ri,s(x) for every s and also ¬Rj(x) and ¬Rj,t(x) for
every j 6= i and every t. If Φi(i) is convergent and converges in exactly s many steps
then Ri,s(x) and ¬Ri,s(x) ∧ Ri(x) are such formulas. The first implies Ri(x), implies
Ri,t(x) for every t > s and ¬Ri,t(x) for every t < s and implies ¬Rj(x) and ¬Rj,t(x) for
every j 6= i and every t. The second one implies ¬Ri,t(x) for every t and also ¬Rj(x)
and ¬Rj,t(x) for every j 6= i and every t. In any model A of T any element that satisfies
some Ri satisfies one of these atoms. Thus any model in which every element is in some
Ri is atomic.

Finally, we claim that T is atomic. Again we need to consider only quantifier free
formulas ϕ(x) with one free variable, which we can take to be a conjunct of atomic
formulas about x and negations of such formulas. (If we can extend all such consistent
formulas to atoms, we can extend any consistent disjunction of them to an atom and
so any formula to an atom as required.) If ϕ fails one of the above consistency checks
it is inconsistent with T and so of no concern. Otherwise, if it contains some Ri(x) or
Ri,s(x) as a conjunct then we can obviously extend it to one of the atoms described
above. Otherwise, it contains only negated atomic formulas. In this case the atom Ri(x)
extends ϕ for any i larger than all j such that Rj or any Rj,t appears in ϕ and Φj(j) is
divergent.

To deduce ACA0 from each of assertions (2)–(4) of the theorem, we build two atomic
models A,B of T such that if there is a model C with embeddings into both A and B
then 0′ is recursive in C and the embeddings.

The domains of both A and B are N and in each the interpretation of Ri is {〈i, n〉 |
n ∈ N}. To define Ri,s first see whether Φi(i) is convergent in at most s steps. If not,
then Ri,s is empty. If so, say it converges at step t 6 s. In A we put {i} × [0, t] ⊆ Ri,t,
split the rest of i × N into two recursive infinite pieces, and put one into Ri,t and the
other into ¬Ri,t. In B we put {i} × [0, t] ⊆ ¬Ri,t and then also split the rest of i × N
into two recursive infinite pieces and put one into Ri,t and the other into ¬Ri,t. Clearly
A and B are recursive models of T and so provably exist in RCA0.

Suppose now that C is also a model of T and there are embeddings f : C → A and
g : C → B. We claim that we can compute 0′ from these models and embeddings, i.e.
that it is ∆1 in them and so provably exists in RCA0. Given i we find a c ∈ C such that
C � Ri(c). (One exists by our first axioms for T .) We then get f(c). If Φi(i) converges
in at most f(c) many steps then, of course, i ∈ 0′. If not, we get g(c). Again if Φi(i)
converges in at most g(c) many steps then, of course, i ∈ 0′. If not, then we claim that
Φi(i) diverges and so i /∈ 0′. Otherwise, by our assumptions, Φi(i) converges in exactly t
many steps for some t > f(c). Thus by our construction of A, we have {i} × [0, t] ⊆ RAi,t
and so, in particular, A � Ri,t(〈i, f(c)〉). As f and g are embeddings, B � Ri,t(〈i, g(c)〉)
and so by the construction of B, we have g(c) > t for the desired contradiction.

Finally, we argue that each assertion (2)–(4) of the theorem provides a model C of
T and embeddings into both A and B. For (2), note that A is atomic and so prime by
(2). Thus there is an embedding of A into B, and A itself fulfills the requirements on
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C. Similarly, assuming (3) there is an isomorphism between A and B, and so either will
fulfill the requirements on C. As for (4), we have shown that T is atomic and so (4)
implies that it has a prime model C which by definition is embeddable into both A and
B as required.

Of course, by Theorems 2.2 and 2.3(3), ACA0 ` PUniqueness, but the reversal is open.
We now turn to the remaining implication AMT and its relation to other principles.

3 AMT: Nonimplications

The reverse mathematically most interesting theorem of our group on prime and atomic
models is (the existence part of) AMT, that every atomic theory has an atomic model.
Along with those studied in [HS], it is another example of a mathematical existence
theorem weaker than ACA0 and incomparable with WKL0. We begin our analysis by
using some of the recursion theoretic results of Csima, Hirschfeldt, Knight and Soare
[2004] (hereafter [CHKS]), Csima [2004], [HS] and others to draw reverse mathematical
conclusions of the form that AMT does not imply various other principles.

Theorem 3.1 (Csima [2004]). Every atomic decidable T (i.e. the set of sentences in
T is recursive) has an atomic prime model A with a low complete diagram, i.e. if D is
the set of sentences in the language of T with constants added for each element of A true
in A, then D′ ≡T 0′.

Definition 3.2 ([CHKS]). A degree a is prime bounding if every decidable atomic T
has an atomic model recursive in a, i.e. its atomic diagram is recursive in a.

Theorem 3.3 ([CHKS]). A degree a 6 0′ is prime bounding iff a ∈ L̄2, i.e. a′′ > 0′′.

Corollary 3.4. WKL0 0 AMT.

Proof. Essentially by the low basis theorem (Jockusch and Soare [1972]) as shown in
Simpson [1999, proof of Theorem VIII.2.17], there is a low degree d, i.e. d′ = 0′, bounding
a standard modelM of WKL0, i.e. every set inM is recursive in d. On the other hand,
Theorem 3.3 says that no low degree can bound a standard model of AMT.

We now want to combine and slightly improve the two previous theorems to get the
reverse nonimplication. As we will need the notion of the tree of Henkin constructions
of models of a theory for this and later proofs, we first make it precise with the following
definition.

Definition 3.5 (RCA0). Let T be a (complete, consistent, deductively closed) theory
in a language L. Let L′ be the extension of L gotten by adding on countably many new
(Henkin) constants ci and ϕi be an enumeration of all the sentences of L′. The tree F of
all possible standard Henkin constructions of models of T is defined by recursion. Each
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node σ ∈ 2N in F will also be labeled by a set Sσ of sentences of L′ consistent with T
associated with it. We begin by putting ∅ into F and setting S∅ = ∅. If σ ∈ F and
|σ| = n, we ask whether Sσ ∪ {ϕn} is consistent with T . If so, we put σˆ1 into F . If ϕn
is of the form ∃xψ(x) we choose the least i such that ci does not appear in Sσ and let
Sσˆ1 = Sσ ∪{ϕn, ψ(ci)}; otherwise Sσˆ1 = Sσ ∪{ϕn}. If ¬ϕn is consistent with T , we put
σˆ0 into F and let Sσˆ0 = Sσ ∪ {¬ϕn}.

Remark 3.6. Even in RCA0, the usual arguments show that at least one of ϕ and ¬ϕ
must be consistent with T ∪ Sσ and if σˆi ∈ F , then Sσˆi is consistent with T . If P is
any (infinite) path through F , then SP = T ∪ {Sσ | σ ∈ P} is consistent and recursively
defines a model MP of T (in RCA0) by the usual Henkin argument. (The elements are
the ci for i least such that there is some cj with ci = cj ∈ SP . The functions and relations
are defined in the standard fashion.) The recursion theoretic version of this fact is that
the tree F is recursive in T and eachMP is recursive in T ⊕P . This consideration gives
rise to a tree S (with the same nodes as F) labeled with Dσ, subsets of the complete
diagrams of Henkin models of T . Of course, F and S trivially have infinitely many splits
along every path (determined by various constants being equal or not if by nothing else).
Thus if T is decidable (recursive), F and S are recursively isomorphic to the full binary
tree 2<N.

Proposition 3.7. If T is atomic and decidable and a /∈ GL2, i.e. (a ∨ 0′)′ < a′′, then
T has an atomic model B with complete diagram of degree b 6 a with b ∈ GL1, i.e.
b ∨ 0′ = b′.

Proof. As T is decidable, the tree F of all possible standard Henkin constructions of
models of T and the associated tree S of Henkin models of T are recursive and recursively
isomorphic to 2<N. As always, the sets of nodes that decide each membership question
of the jump of the model (given that it lies on S) are dense. Any path through S that
meets each of these dense sets is in GL1. (To decide whether e is in the jump just
find a node σ such that either ΦDσ

e (e) is convergent or σ has no extension τ (on F)
with ΦDτ

e (e) convergent.) As T is atomic, the set of nodes that make a given n-tuple
c1, . . . , cn of Henkin constants satisfy an atom is also dense. (At any node there is some
formula ψ(x1, . . . , xn) that contains all the facts determined so far about c1, . . . , cn. By
atomicity of T , that formula ψ(x1, . . . , xn) can be extended to an atom ϕ(x1, . . . , xn).
One then simply finds an extension of the given node on S whose label includes the
formula ϕ(c1, . . . , cn).) Thus all we need to do is to produce a path through S that is
recursive in a and meets all these dense sets of conditions. The corresponding Henkin
model of T is then atomic and its complete theory is recursive in a and in GL1 as
required.

The crucial point is that the function going from one of these dense sets and a node σ
to an extension τ in the dense set is uniformly recursive in 0′. (For deciding the jump this
is standard. For atomicity, just note that being an atom is a Π1 property of a formula.)
We combine these operations into a single function f recursive in 0′ for which we can use
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the hypothesis that a /∈ GL2. We define a function f recursive in 0′ by recursion. Given
f(n), we let f(n+ 1) be the least m > f(n) such that

1. every σ of length at most f(n) that has any extension τ on S such that ΦDτ
e (e) ↓

for any e 6 n has one at level m and

2. for every tuple ā of Henkin constants with code below f(n) and every σ on S of
length at most f(n),

(a) σ has an extension τ on F of length less than m whose label has a formula
isolating the type of ā and

(b) letting τ be such an extension of shortest length, for every ρ ⊇ σ such that
|ρ| 6 |τ |, if ρ does not have a formula isolating the type of ā then ρ has a split
in the type of ā (as given by Dρ) appearing on (the labels of) S below level
m.

Now as a /∈ GL2, there is a g recursive in a that is strictly increasing and not domi-
nated by f (see Lerman [1983, Corollary IV.3.4]).

We now construct a path through S recursive in g that meets all the specified
dense sets. Inductively assume that at stage n we have σ on S of length at most
min{f(n), g(n)}. We find the least e or ā below n (in a priority ordering where we
order e before the tuple ā with code e) such that

1. ΦDσ
e (e) diverges but ΦDτ

e (e) converges for some τ ⊇ σ of length at most g(n+ 1) or

2. there is a split in the type of ā above σ below level g(n + 1) in S, but for some
τ ⊇ σ of length less than g(n + 1) there is no split of the type of ā in S above τ
below level g(n+ 1).

Choose a τ of minimal length satisfying the required condition for this least requirement.
Let the (n+ 1)st step in constructing our desired path be τ . Note that we maintain our
inductive hypothesis in that |τ | 6 f(n + 1), g(n + 1). The point here is that τ is by
construction of length less than g(n + 1) and if f(n + 1) 6 g(n + 1) then it is of length
less than f(n+ 1) by the definition of f and our inductive hypothesis that |σ| < f(n).

Now we argue that every requirement is satisfied. Say deciding ΦM
e (e) is the least

one not satisfied and all higher priority ones have been satisfied by node ρ constructed
at stage k. At some n > k we are at a node σ of length at most min{f(n), g(n)} and
g(n + 1) > f(n + 1). If there is any extension τ of σ such that ΦDτ

e (e) ↓ then there is
one of length at most f(n+ 1) < g(n+ 1) and so we find it at stage n and take the first
one as the next element of our path and satisfy this requirement. Otherwise, there is no
such extension and we also decide the jump at e as required.

If ā is the least tuple with a nonatomic type in the model we built again choose an
n > ā such that g(n + 1) > f(n + 1) and all higher priority requirements have been
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satisfied by the node σ of length at most min{f(n), g(n)} produced at stage n (i.e. all
ΦDσ
e (e) have been decided and all b̄ < ā have had their types isolated by σ). At stage

n+ 1 our computation sees that σ does not isolate the type of ā (by our assumption that
it is not isolated in our model and the definition of f). If we search for a τ ⊇ σ that has
no extensions splitting the type of ā in the labels below level g(n+1), the one of shortest
length that we find actually isolates the type of ā by the definition of f . We choose one
such as the next node on our tree.

Corollary 3.8. Every degree a /∈ GL2 is prime bounding and, in fact, bounds a standard
model of AMT all of whose sets are recursive in sets below a which are also in GL1.

Proof. Given any a /∈ GL2 we can build a standard model of AMT bounded by a by
iterating Proposition 3.7 to dovetail and produce a class of sets closed under AMT (i.e.
for any atomic theory in the class there is an atomic model in the class) with each
member of the class recursive in a and indeed recursive in some GL1 degree below a.
To be more precise, we construct three sequences Ti, Ai and bi such that for each i,
we have Ti 6T bi 6 bi+1 6 a and bi ∈ GL1, so that every complete atomic theory
recursive in any bj occurs as some Tk and Ak is an atomic model of Tk whose complete
diagram is recursive in bk+1. Say we have Ti 6T bi ∈ GL1 and bi 6 a. Since bi ∈ GL1,
we have (a ∨ b′i)

′ = (a ∨ (bi∨0′))′. As bi 6 a, we have (a ∨ (bi∨0′))′ = (a ∨ 0′)′. As

a /∈ GL2, we have (a ∨ 0′)′ < a′′. Thus (a ∨ b′i)
′ < a′′, so a /∈ GLbi

2 . By Proposition
3.7 (relativized to bi) we can get an atomic model Ai of Ti with its complete diagram
recursive in a and GLbi

1 . We let bi+1 be the degree of Ai and note that it is in GL1 as
b′i+1 = (bi+1 ∨ b′i) = (bi+1 ∨ bi ∨ 0′) = bi+1 ∨ 0′ as required.

Corollary 3.9. AMT does not imply WKL0.

Proof. No incomplete r.e. degree can bound a model of WKL0 by Jockusch and Soare
[1972]. On the other hand, by Corollary 3.8 every r.e. degree not in L2 bounds one.

We now turn to the relations between AMT and the combinatorial principles ranging
in strength from RT2

2 to ADS and SADS studied in [CJS] and [HS] and defined in §1.
We begin with the recursion theoretic arguments for nonimplications.

Corollary 3.10. AMT does not imply RT2
2, SRT2

2, CAC, COH or CADS.

Proof. RT2
2 and CAC have recursive instances with no ∆2 solution by Jockusch [1972]

and Herrmann [2001]. COH has ones whose only ∆2 solutions are high (i.e. with jump
0′′) by Cooper [1972] and Jockusch and Stephan [1993], and so does CADS, since it has
the same ω-models as COH ([HS]). SRT2

2 has ones with no low (i.e. with jump 0′) solution
(Downey, Hirschfeldt, Lempp and Solomon [2001]). As above, however, every r.e. degree
not in L2 bounds a model of AMT in which every degree is low.

A more subtle degree theoretic argument shows that AMT does not imply SADS.
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Theorem 3.11 ([HS]). For any r.e. A,B there is a recursive order of type ω+ω∗ such
that, if C is a suborder of type ω or ω∗, then either B 6T A⊕ C or A 6T B ⊕ C.

Corollary 3.12. AMT 0 SADS.

Proof. By standard results there are high r.e. h, a and b such that a 
 b ∨ h and
b 
 a ∨ h. (For example, by Robinson [1971] as in Soare [1983, VIII.4.8], every finite usl
can be embedded in every interval of r.e. degrees and we can take such an embedding
with the bottom of the interval high.) By Corollary 3.8, there is a model of AMT with
all sets recursive in h.

AMT also does not imply any of the other principles studied in [HS] that are below
ACA0 and incomparable with WKL0. In fact, we have a very strong conservation result
similar to that for COH in [HS] that implies almost all of these independence results over
AMT.

The basic situation here is that we start with a countable model M of RCA0 and a
notion of forcing P defined overM. Moreover, if G is sufficiently generic over P (usually
1-generic plus satisfying a specific list of requirements that guarantee that if we force
an instance of a Σ0

1 (or Π0
1) formula then there is a least instance that can be forced

and we do so), we can show that IΣ1 holds for formulas over M with G as an added
set parameter. (This typically relies on a sufficiently simple definition of forcing for one
quantifier sentences.) In this situation, M is an ω-submodel of the model M[G] gotten
by adding on to the sets of M all sets definable over M by ∆0

1 formulas with G as
an added set parameter, and M[G] is itself a model of RCA0 (Friedman [1976], or see
Simpson [1999] or [CJS §6]), where a submodel A of B is an ω-submodel if A has the
same first-order part as B. (Warning: in [CJS], M[G] is first officially defined as the
model of IΣ1 gotten by adding on just G to the sets of M. What we generally want,
however, is its extension to a model of RCA0.)

Here we are interested in AMT and the relevant notion of forcing is standard Cohen
forcing on the appropriate tree. Note that if G is Cohen 1-generic (i.e. every Π0

1 formula
or its negation is forced and the conditions specific to forcing IΣ1 mentioned above are
met) then adding G to M preserves IΣ1 and so M[G] � RCA0.

Theorem 3.13. LetM be a countable model of RCA0 and let Φ(A,B) be a Σ0
3 predicate

of two set variables such that for some fixed A ∈ M there is no B ∈ M with M �
Φ(A,B). If G is Cohen 2-generic over M then there is no B ∈ M[G] with M[G] �
Φ(A,B).

Proof. Suppose that Φ(A,B) = ∃x∀y ∃z ϕ(A,B, x, y, z) where ϕ is ∆0
0 and, for the sake

of a contradiction, that there is a B ∈ M[G] such that M[G] � Φ(A,B). Now M is an
ω-submodel of M[G], and B is of the form ΦG⊕C

e for some Turing functional Φe and set
C in M, so for some x ∈M,

M[G] � ΦG⊕C
e is a total characteristic function and ∀y ∃z ϕ(A,ΦG⊕C

e , x, y, z).
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As this whole formula is equivalent (even in RCA0) to a Π0
2(G) (over M) formula

∀y ∃zΨ(G,C,A, x, y, z) and G is 2-generic, there is a condition p ∈ M such that p 

∀y ∃zΨ(G,C,A, x, y, z).

By the general definition of forcing this means that for every y in M and every con-
dition p′ 6 p, there is a z ∈M and a condition p′′ 6 p′ such that p′′ 
 Ψ(G,C,A, x, y, z).
As forcing a ∆0

0 formula is itself a ∆0 relation, we can now define by recursion the func-
tion f such that f(0) = p and f(n + 1) 
 ∃zΨ(G,C,A, x, n, z). As M is a model of
RCA0, this function is an element of M and so gives the characteristic function of a set
H ∈ M which by construction satisfies ∀y ∃zΨ(H,C,A, x, y, z). Finally, if D = ΦH⊕C

e

then D ∈M and M � ∀y ∃z ϕ(A,D, x, y, z) for the desired contradiction.

We now want to observe that adding a Cohen 2-generic adds an atomic model of each
atomic theory T ∈ M. (In fact, even less than meeting all uniformly Π0

1 sequences of
dense sets suffices for AMT as we will see in §4.) Iterating the forcing will then provide
our conservation result.

Proposition 3.14. Let M be a countable model of RCA0 and let T be an atomic theory
in M. If G is Cohen 2-generic over M then there is an A ∈ M[G] that is an atomic
model of T in M[G].

Proof. Consider again the tree S in M of all standard Henkin constructions of models
of T . For each initial segment of Henkin constants c̄ the set of nodes σ of S that include
an atom ϕ about c̄ is dense by the assumption that T is atomic. Moreover, this set is
Π1 as that is the complexity of the statement that ϕ is an atom of T . Thus the path
through S determined by G meets every such set and so produces an atomic model of T
as required.

We now have our conservation and nonimplication results. In the terminology of
Simpson [1999, Definition VII.2.28], a model M is a restricted β-submodel of a model
M′ ifM is an ω-submodel ofM′ and for every sentence of the form ∃X ψ where ψ is Π0

2

with parameters in M, we have M � ∃X ψ if and only if M′ � ∃X ψ. (This condition
says that a subtree of N<N in M has a path in M if and only if it has a path in M′,
whence the terminology.)

Corollary 3.15. AMT is restricted (r-)Π1
2 conservative over RCA0, i. e. conservative

over RCA0 for sentences of the form ∀A (Θ(A) → ∃B Φ(A,B)) where Θ is arithmetic
and Φ is Σ0

3. Furthermore, every model of RCA0 is a restricted β-submodel of a model
of AMT.

Proof. Consider any sentence of the specified form and any model M of RCA0 not
satisfying the sentence. Then there is a set A of M such that M � Θ(A) for which
there is no B in M such that M � Φ(A,B). Construct a sequence 〈Gi | i ∈ ω〉
of subsets of NM such that Gi+1 is Cohen 2-generic over M[G1] . . . [Gi]. Let M′ =⋃
{M[G0] . . . [Gi] | i ∈ ω}. By the results mentioned above, M[G0] . . . [Gi] � RCA0 for

17



each i, and, by Proposition 3.14, every atomic theory T in M[G0] . . . [Gi] has an atomic
model inM[G0] . . . [Gi][Gi+1]. ThusM′ �RCA0 + AMT as the first order part of every
element of this ascending sequence of models is the same. By induction (on true ω) our
theorem shows that there is no B ∈ M[G0] . . . [Gi] such that M[G0] . . . [Gi] � Φ(A,B).
Again, as each successive model in this list is an ω-extension of the preceding one and
M′ is just their union, we see that while M′ � Θ(A), there is no B ∈ M′ such that
M′ � Φ(A,B). Thus our original sentence is not a theorem of RCA0 + AMT, as required.

The version of the corollary in terms of restricted β-extensions follows by taking Θ
to be empty and Φ to be Π0

2. Our argument shows that if M′ � ∃B Φ then M � ∃B Φ.
The other direction follows from the fact that M is an ω-submodel of M′.

We note that this result also provides the usual Π1
1 conservativity result, since any

Π1
1 sentence ∀AΨ(A) is equivalent to ∀A(¬Ψ(A) → ∃B(0 6= 0)). Moreover, the result is

the best possible one of this form as AMT itself is a sentence of the form ∀A (Θ(A) →
∃B Φ(A,B)) with Θ arithmetic and Φ a Π0

3 formula. It is, however, strong enough to
show that any principle that asserts, for example, the existence of an infinite set satisfying
some recursive condition such as being homogeneous, a path through a tree, or a chain or
antichain in a linear or partial order cannot be implied by AMT, as all of these statements
are ones in which Φ is Π0

2.

Corollary 3.16. None of the following principles are implied by AMT: RT2
2, SRT2

2,
WKL0, DNR, CAC, ADS, SADS.

By the argument of [HS] using Mathias forcing we can also add COH so that AMT
+ COH has the same properties specified in Corollaries 3.15 and 3.16 for AMT alone.

Note that by [HS] CAC, ADS and SADS are also incomparable with WKL0.

4 AMT, SADS and IΣ2

We now place AMT with respect to the combinatorial principles of [HS] by showing that
it is implied by the weakest of them that is not conservative over RCA0: SADS. (Note
that by Corollary 3.16 this implication is strict.) We also place it more precisely in the
purely proof theoretic hierarchy by showing that it is Π1

1-conservative over BΣ2. The
proof of the implication uses a finite injury priority argument that must be carried out in
RCA0 (and so only with IΣ1) by using Shore blocking. The situation is more subtle than
might first appear as similar constructions provide priority arguments for slightly stronger
conclusions that, provably, cannot be carried out in RCA0. The conservation proof also
uses a priority argument. We will discuss these issues after proving our implication from
SADS.

Theorem 4.1. RCA0 ` SADS → AMT.
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Proof. We work in RCA0 and begin with an atomic theory T . We again have the tree
S of standard Henkin constructions of models of T (with Henkin constants ci). We
want to recursively define an ordering <L on N of type ω + ω∗ such that recursively
in any subsequence R of type ω or ω∗ we can construct an infinite path P through S
that corresponds to an atomic model A of T . Looking ahead to the construction of the
path and model, we define a monotonic recursive operation Φ taking finite sequences of
numbers to finite paths in S.

We define Φ(x1, . . . , xn) = 〈σ1, . . . , σn〉 to be an increasing sequence of nodes in S by
recursion on n. We let σ1 be the least node σ on S (in some standard ordering of nodes
of type ω) that mentions c0 and such that in a (standardized) search of x1 many steps
we have not found a witness to the assertion that σ is not an atom about c0. (Remember
that the nodes on S correspond to the conjunction of sets of formulas about the Henkin
constants. This conjunction, viewed as a sentence about any particular set of constants
(by existentially quantifying out the rest), may or may not be an atom of T . To see
that it is not an atom, it suffices to find two incompatible extensions both of which are
consistent with T . As T is complete, this is a recursive test of the candidate extensions.)
We now proceed by induction. Given σi we let σi+1 be the least σ (in the standard
ordering) extending σi on S that mentions all of c0, . . . , cxi such that in xi+1 many steps
we have not found a witness to the assertion that σ is not an atom about c0, . . . , cxi .

Our goal in defining our order L is to guarantee that any ω or ω∗ subsequence will
infinitely often have successive elements far enough apart so that applying Φ will, for
each i, produce at some point a correct witness that some σn is an atom for c0, . . . , ci. If
so, Φ applied to any such sequence will produce our desired path through S generating
an atomic model of T .

The construction of L will involve a movable marker procedure with two sets of
markers di,s and ui,s that remain in two disjoint parts Ds and Us of L with every member
of Ds being L-less than every member of Us. The intuition is that the limit D of Ds is
the ω part of L (the down side) and the limit U of Us is the ω∗ part (the up side). The
di,s and ui,s will also stabilize to numbers di and ui that will be in D and U and ordered
by <L in the end in ω and ω∗ orderings, respectively. We have requirements Di and Ui
with a standard priority ordering giving Di priority over Dj for j > i and over Uj for
j > i, and Ui priority over Uj for j > i.

We say that the requirement Di needs attention at stage s if there exists a se-
quence x1, . . . , xn, di,s of elements of Ds increasing in both L and natural order such
that Φ(x1, . . . , xn, di,s) = 〈σ1, . . . , σn+1〉 and by stage s we have seen a witness that σn+1

does not supply an atom about c0, . . . , cxn . Similarly, we say that Ui needs attention at
stage s if there is a sequence x1, . . . , xn, ui,s of elements of Us decreasing in L and in-
creasing in the natural order such that Φ(x1, . . . , xn, ui,s) = 〈σ1, . . . , σn+1〉 and by stage
s we have seen a witness that σn+1 does not supply an atom about c0, . . . , cxn .

At stage s let r be the smallest number not yet appearing in Ls = Ds ∪ Us. Suppose
the highest priority requirement needing attention at s is Di. We move all numbers in Ds
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that are L greater than or equal to di,s to be the L smallest members of Us+1 (preserving
the L order already defined on them). We let di,s+1 = r and insert it as the L largest
element of Ds+1. All dj,s+1 become undefined for j > i as do all uj,s+1 for j > i. Similarly,
if the highest priority requirement needing attention at s is Ui, we move all numbers in Us
that are L smaller than or equal to ui,s to be the L largest members of Ds+1 (preserving
the L order already defined on them). We let ui,s+1 = r and insert it as the L smallest
element of Us+1. All uj,s+1 become undefined for j > i as do all dj,s+1 for j > i. If no
requirement needs attention, we add r as the L largest member of Ds+1, let it be dj,s+1

for the least j such that dj,s is undefined, and add r + 1 as the L smallest member of
Us+1 and let it be uj.s+1 for the least j such that uj,s is undefined. We then go on to the
next stage.

We first claim that every n is eventually in Ls and from some stage onward is always
in Ds or always in Us. As for entering Ls, as we always put in the least number not yet
in Ls at every stage, n ∈ Ln+1. Once n is in Ds or Us, it can change to the other at
t > s only when we act for some requirement. By IΣ1 there is a requirement of highest
priority for which we ever act that moves n. Say it is Di and it acts to move n at stage t.
This means that di,t 6L n, we move n to Ut+1 and all markers of lower priority become
undefined. No action for Uj of higher priority ever moves n back to Ds by our choice of
Di. Any marker of lower priority is appointed after t and assigned to a number that, by
construction, is L-less than n. Moving such a lower priority marker for its requirement,
by construction, does not move any number L-above it. Thus n never leaves Us after t.
The argument if the highest priority requirement moving n is Ui is symmetric.

Once n has stopped moving at t, all numbers entering L after t are L-above n (if it is
in Dt) or all are L-below n (if it is in Ut). Thus n has either finitely many L predecessors
or finitely many L successors and is therefore of type ω + ω∗ as desired. We now apply
SADS to get an infinite ascending or descending sequence R = 〈xi〉 in L. Without loss
of generality, assume it is ascending in L and in natural order. Let P = Φ(〈xi〉) be the
path in S determined by R. We claim that it includes an atom for each initial segment
c0, . . . , cn of Henkin constants and so provides the required atomic model of T . We need
an important fact about the construction.

Lemma 4.2. If we act for a requirement Di at s and never act for any requirement of
higher priority again then we eventually stop acting for Di and so di,t eventually remains
fixed. Moreover, if di,s never changes after t, then, for any sequence x1, . . . , xn, di,t that
is increasing in both L and natural order, σn+1 includes an atom about c0, . . . , cxn where
Φ(x1, . . . , xn, di,t) = 〈σ1, . . . , σn+1〉.

Similarly, if we act for a requirement Ui at s and never act for any requirement of
higher priority again then we eventually stop acting for Ui and so ui,t eventually remains
fixed. Moreover, if ui,s never changes after t, then, for any sequence x1, . . . , xn, ui,t that is
decreasing in L and increasing in natural order, σn+1 includes an atom about c0, . . . , cxn
where Φ(x1, . . . , xn, ui,t) = 〈σ1, . . . , σn+1〉.

Proof. We prove the first part of the lemma. The proof of the second part is symmetric.
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Suppose we act for Di at s. We then appoint some r as di,s+1. We now act for Di again
only if we discover a new witness as described in the definition of needing attention. As
we never act for any requirement of higher priority the numbers L-below di,s+1 are fixed
in Dt forever. We then act again for Di at t > s only when we discover some new witness
that some σ is not an atom, where σ is the final value of Φ(x1, . . . , xn, di,t) for some in-
creasing (in both L and natural order) sequence x1, . . . , xn of numbers L-below di,t. Each
such sequence x1, . . . , xn produces a fixed σ(x1, . . . , xn) as the next to last value under
Φ. The only variations arise from trying to find the first node τ(x1, . . . , xn) extending
σ(x1, . . . , xn) that includes an atom about c1, . . . , cxn . The set of such σ(x1, . . . , xn) is
finite and each has such an atom extending it by the assumption that T is atomic. We
can avoid the use of BΣ2 that might naturally be invoked to find a common bound on all
such extensions by a trick peculiar to our setting. We simply relabel each σ(x1, . . . , xn)
so as to replace the constants c1, . . . , cxn by new free variables that are distinct from the
ones used for all the other sequences. The other constants appearing are existentially
quantified out as usual. This gives a formula with xn many free variables for each se-
quence x1, . . . , xn with all the sets of variables distinct for different sequences. We can
now consider the conjunction of all these formulas as a single formula of many variables.
(Note that this conjunction is consistent with T . Each conjunct is consistent with T
and so the existential closure of each conjunct is a theorem of T . As all the variables
are distinct, the conjunction of these existential closures is the existential closure of the
conjunct which is therefore itself consistent with T .) As T is atomic this formula can be
extended to an atom Ψ. If in Ψ we existentially quantify out the variables not free in the
relabeled σ(x1, . . . , xn), we have an atom extending σ(x1, . . . , xn). Thus there is a single
bound on atoms extending all the relevant σ(x1, . . . , xn) and so by IΣ1 there is a first
one for each and a bound on the witnesses needed to show that all smaller candidates
are not such atoms. Once we are above such a stage, no change occurs in di,t and its
value must also be above the stage at which the correct extensions are found for each
σ(x1, . . . , xn). After such a stage Di will never need attention again. In particular, this
stage is large enough so that the search incorporated in Φ produces a σn+1 including an
atom about c1, . . . , cxn .

Returning to our verification that P determines an atomic model of T , we choose any
m = xj+1 ∈ R so that xj is larger than n and let t be the last stage at which m is put
into Dt. If it is moved into Dt (say by the action of some Ui) then it is part of a block
of numbers moved all of which are L-below ui,t. Otherwise, it is just put into Dt on its
own as some di,t at t and never moves. In the second case, by the lemma applied to Di,
if Φ(x1, . . . , xj,m) = 〈σ1, . . . , σj+1〉 then σj+1 includes an atom about c0, . . . , cxj and so
one about c0, . . . , cn as required. In the first case, no Dk of higher priority than Ui can act
after t as that would move m. The highest priority requirement that acts at a t′ > t must
be a Uj for j 6 i. Let Uj be that requirement and (by the lemma) let v the last stage at
which it acts. At v, the marker uj,v and a block of numbers are moved from Uv to Uv+1.
They include m (if v = t) and otherwise are all L-above m. At v + 1 no requirement
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can need attention as all of lower priority than Uj have had their markers undefined at v
and no higher priority ones can act by our assumptions. Thus we insert some number r
as the L-greatest element of Dv+1 and let it be dj+1,v+1. By the lemma there is a stage
w > v + 1 at which we last act for Dj+1. At w we appoint some r′ as dj+1,w and it too
is L-above m. Let m′ be the last element of R in [m, r′) and m′′ be the first element
of R greater than or equal to r′. By the lemma, if Φ(x1, . . . , xj,m

′, r′) = 〈σ1, . . . , σj+2〉
then σj+2 includes an atom about c1, . . . , cm′ . As m′′ > r′, the search to produce the last
element of Φ(x1, . . . , xj,m

′,m′′) begins with the same σj+1 and runs for at least as many
steps as the one that produced the correct answer in r′ many steps. Thus it too produces
the desired atoms and as x1, . . . , xj,m

′,m′′ is an initial segment of R, the sequence Φ(R)
contains an atom about c1, . . . , cm′ and so, of course, about c1, . . . , cn as required.

The above argument is a finite injury one that we carried out in RCA0 and so only
using IΣ1. The amount of induction needed for various types of priority arguments has
been extensively studied as reverse recursion theory but primarily in the setting of first
order arithmetic (where one talks about r.e. or ∆2 sets in terms of their indices). Good
basic references here include Chong and Yang [1998] and [2000]. A number of finite
injury arguments have been carried out in IΣ1, such as the Friedberg-Muchnik theorem
and even the Sacks splitting theorem. The general situation described by Groszek and
Slaman [nd] is that ones with recursive bounds on the number of injuries (as in the
Friedberg-Muchnik type arguments) can be carried out in IΣ1. Ones with unbounded
(but still finite) injuries (as in the Sacks splitting theorem) can at times be carried out
in IΣ1 or BΣ2. However, the ability to carry out all such arguments implies IΣ2 over
BΣ2. On the other hand, until now there did not seem to be a known example of a single
theorem of this type that cannot be carried out in BΣ2.

Our theorem about SADS and atomic models involves a finite injury priority argument
as does the one in [HS] building low solutions to SADS. One could also frame the basic
construction of an atomic model of an atomic theory as an argument of this sort. Viewed
as a forcing argument, the general construction of an atomic model involves meeting a
uniformly Π0

1 set of dense sets (the atoms along the tree of the Henkin construction).
Our construction in Theorem 4.1 gets by with IΣ1 because of two special properties of
the argument. The first corresponds to the technique developed in α-recursion theory
(Shore [1975]) and latter called Shore blocking in applications to reverse recursion theory
in models of first order arithmetic (as in Mytilinaios [1989]). It relies on the fact that
producing an atom for the single n-tuple c1, . . . , cn automatically produces one for all
j-tuples from the set {c1, . . . , cn} for all j 6 n. Thus at any stage s we can take care
of all requirements of this form up to s by a single action. The second use of such a
special property allowed us to avoid BΣ2 in the argument that action for each single
requirement was bounded by combining finitely many formulas into one before finding
an atomic extension.

If we move on to the general case of meeting arbitrary uniformly Π0
1 collections of

dense sets we actually find a theorem proven by a priority argument of the unbounded
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but finite type that requires IΣ2 in the sense of reverse mathematics. The theorem is
that for any uniformly Π0

1 collection of sets Di each of which is dense in 2<N there is
a set G that meets each of them, i.e. ∀i∃s(G � s ∈ Di) and is low, i.e. G′ is ∆2. This
theorem is easily proved assuming IΣ2 by a standard finite injury argument. The number
of times we act to get into a single Di is finite but, in general, unbounded. (Each lowness
requirement acts at most once after it has highest priority.) We denote the formal version
of this theorem by Π0

1G (for Π0
1 Generic), and claim that it implies IΣ2 over the base

theory BΣ2. To remain in keeping with the rest of this paper we formulate our result in
second order arithmetic over RCA0 but it is not difficult to translate it to the more usual
setting of first order arithmetic.

(Π0
1G) For any uniformly Π0

1 collection of sets Di each of which is dense in 2<N there
is a G such that ∀i∃s(G � s ∈ Di).

Theorem 4.3. RCA0 + BΣ2 ` Π0
1G→ IΣ2.

Proof. Let (M,S) be a model of RCA0 + BΣ2 in which each uniformly Π0
1 collection

of dense subsets of 2<N has a G meeting all its members. Suppose for the sake of
a contradiction that IΣ2 fails in M . Then there is a Σ2 cut I in M , i.e. x ∈ I ⇔
∃y∀zϕ(x, y, z) and I is an initial segment of M closed under successor. The dense sets
Di we consider correspond to the actions of getting a gap large enough to correctly
recognize one more witness for membership in I (and also in a Di). To be precise we let

Di = {σ ∈ 2<N | the last two elements of σ are w and 〈i, x, y〉 ∧
∃y′ < y∀zϕ(x, y′, z) ∧ ∀y′ 6 w∃z′ < y(¬ϕ(x, y′, z′))}.

Clearly the Di are uniformly Π0
1. As I is a cut and so not a member of S, there is no

bound on the least witnesses y such that ∀zϕ(x, y, z) for x ∈ I, while by IΣ1 every x ∈ I
has such a least witness y, and by BΣ2 there is a bound on the z′ needed to show that
y is in fact the least witness for x. Thus each Di is dense, for if we consider any τ with
last element w there is an x ∈ I whose least witness y is larger than w and a z > y such
that counterexamples for all y′ 6 w can be found below z. So if we let σ extend τ by
adding on as its first new element 〈i, x, z〉 we have our extension of τ in Di as required.

Let G be as in Π0
1G and let a be any number above all those in I. By our assumption

∀i < a∃s(G � s ∈ Di). As being in Di is a Π1 property uniformly, by BΣ2 there is a t
such that ∀i < a∃s < t(G � s ∈ Di). Moreover, the set R = {s < t | ∃i < a(G � s ∈ Di)}
is M -finite (i.e. coded in M by a number) as is the relation

S = {〈i, x〉 | i, x < a ∧ ∃s < t(G � s ∈ Di) ∧ ∃y(the last element of G � s is 〈i, x, y〉)}

by BΣ2. Finally, we claim S is, in fact, a one-one function from a into I and so into a
proper subset of a for the desired contradiction. We have already seen that for every i < a
there is an x ∈ I such that 〈i, x〉 ∈ S. Suppose then that we have i 6= j both below a and
r, s < t such that G � r ∈ Di and G � s ∈ Dj, the next to last and last elements of G � r
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are v and 〈i, xi, yi〉, and the next to last and last elements of G � s are w and 〈j, xj, yj〉.
Without loss of generality, we assume that r < s and so v < 〈i, xi, yi〉 6 w < 〈j, xj, yj〉.
(As i 6= j, we know that G � r and G � s have different last elements and so r 6= s.) If
xi = xj = x, we would have an immediate contradiction as the definitions of Di and Dj

would say that ∃y′ < yi∀zϕ(x, y′, z) and ∀y′ 6 w∃z′ < y(¬ϕ(x, y′, z′)), respectively, but
yi 6 w.

Note that Π0
1G is obviously implied by the assumption of the existence of sets Cohen

2-generic with respect to any given set. The addition of such a set by standard Cohen
forcing preserves IΣ1 and IΣ2 (if true in the ground model). Thus the arguments of
Theorem 3.13 and Corollary 3.15 show that Π0

1G, while not conservative over BΣ2, is
r-Π1

2 conservative over both IΣ1 and IΣ2 as is AMT.

To conclude our analysis, we show that retreating to AMT gives us Π1
1-conservativity

over BΣ2 as well as IΣ1 and IΣ2. The only other known examples of mathematical
principles conservative over all three theories are WKL0 (Hájek [1993]) and COH (Chong,
Slaman and Yang [ta]). Here too we use a priority argument with Shore blocking.

Theorem 4.4. Let M be a model of BΣ2 and T an atomic theory in M. Let F be the
tree of Henkin constructions of models of T in M (as in Definition 3.5). Then there is
a path P through F such that M[P ] |= BΣ2 and the model of T given recursively in P
as in Remark 3.6 is atomic.

Proof. Our goals for P are that it preserve BΣ2 and that the associated formulas Sσ for
σ ∈ P (when extraneous new constants are replaced by new free variables and existen-
tially quantified) include atoms for each initial segment c1, . . . cn of Henkin constants. As
auxiliary requirements we will make P be 1-generic (for every e there is a σ ⊆ P such that
Φσ
e (e)↓ or ∀τ ⊇ σ(Φτ

e(e)↑)) and preserve IΣ1. Our construction will be a movable marker
one that produces P as a limit of approximations σs so that P will be ∆2 with convergence
at all initial segments σ: (∀σ ∈ 2<N)[σ ⊆ P ⇔ ∃s∀t > s(σ ⊆ σt) ⇔ ∀s∃t > s(σ ⊆ σt)].
Thus we will have ΠP

1 ⊆ Σ2: ΦP
e (e)↑ ⇔ (∃σ)(σ ⊆ P ∧ ∀τ ⊇ σ(Φτ

e(e)↑)). In particular,
any ΣP

2 formula inM[P ] will then be equivalent to one that is Σ2 inM and so BΣ2 will
hold in M[P ] since it holds in M.

We have the following requirements:

R〈e,n〉: Decide the eth Σ0
1 sentence with parameter n, i.e. get a σ ⊆ P such that Φσ

e (n)↓
or ∀τ ⊇ σ(Φτ

e(n)↑). If we satisfy the R〈e,n〉 corresponding to a Σ0
1 formula ∃xψ(x, n) by

forcing convergence, we act to preserve IΣ1 by guaranteeing that there is a least m such
that ∃xψ(x,m) by getting a σ ⊆ P such that Φσ

e (n)↓ and, for every k < m and τ ⊇ σ,
we have Φτ

e(k)↑.
Ae: There is a σ ⊆ P such that Sσ implies an atom for c1, . . . ce.

At each stage s of the construction we have an approximation σs to P and movable
markers qi,s (which may be of type R or A) for an initial segment of i’s indicating the
place (σs � qi,s) at which we think we have satisfied Qj (Q = R or A) for j < qi−1,s. At
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stage s we define whether a marker qi,s needs attention and the associated action for qi,s
by cases.

Q = R: First, qi needs attention if there is an 〈e, n〉 < qi−1,s such that Φ
σs�qi,s
e (n) ↑

and a τ ⊇ σs � qi,s with |τ | < s such that Φτ
e(n)↓. If so, we find the least such 〈e, n〉 and

the least τ for it and set σs+1 = τˆ0k where k is chosen so that |σs+1| = s; then qi,s+1 = s.

If not, but there is an 〈e, n〉 < qi−1,s such that Φ
σs�qi,s
e (n)↓, a k < n and τ ⊇ σ � qi,s such

that Φτ
e(k)↓, but no l 6 k such that Φ

σs�qi,s
e (l)[s]↓, then qi also needs attention. In this

case, we find the least such 〈e, n〉 and the least k and τ for it and set σs+1 = τˆ0k where
k is chosen so that |σs+1| = s; then qi,s+1 = s.

Q = A: If we see in s many steps that Sσs�qi,s does not imply an atom about
c1, . . . cqi−1,s

, then qi needs attention. If so, we let τ ⊇ σs � qi−1,s be least such that
in s many steps we do not find a witness that Sτ does not includes an atom about
c1, . . . cqi−1,s

and set σs+1 = τˆ0k where k is chosen so that |σs+1| = s; then qi,s+1 = s.

In each case, all markers qj for j > i become undefined and all with j < i remain as
they were at s.

Of course, at stage s we act for the least qi that needs attention. If no marker now
defined requires attention we let σs+1 = σsˆ0 and set qi,s+1 = |σs+1| for the least i for
which qi,s is undefined.

As in the proof of Theorem 4.1 and as usual in blocking arguments, it suffices to show
that if, for all j < i, the qj,s have reached their final positions qj by stage t then qi,s
eventually stops moving (with final value qi) and so P is well defined as the union of the
σqi . (The qi are cofinal inM by the construction as they are the stage at which qi,s is last
changed and if none are changed at s then a new one larger than all the others is added
to the list of defined markers.) Moreover, we argue that the associated requirements are
all satisfied. We have two cases.

Q = A: By our assumption that T is atomic there is a τ ⊇ σ � qi−1 such that Sτ
includes an atom for c1, . . . cqi−1

. There is a least one by IΣ1 (in the form of the equivalent
principle IΠ1) and by BΣ1 a stage by which all smaller ρ ⊇ σqi−1

have been seen to not
do so. At the first such stage s after qi−1 has settled down, we set σs = τˆ0k for some k
and qi,s = s and never change qi,s or σs � qi,s again.

Q = R: Once qi−1,s has settled down, qi,s moves monotonically upward. It moves only
for the sake of some 〈e, n〉 < qi−1 as in the first case of the description of the action of R,
or some 〈e, n〉 < qi−1 and k < n as in the second case of that description. In any event,
it moves at most once for each such 〈e, n〉 or pair of 〈e, n〉 and k. The set of 〈e, n〉 < qi−1

and pairs of 〈e, n〉 < qi and k < n for which qi,s moves is Σ1 and so by IΣ1 finite in M,
and the set of stages at which it moves is then bounded as well. Once qi,s has settled
down to its final value qi, the value of σs � qi never changes either, by construction.
Finally, it is clear from the definition of markers of type R requiring attention and the
associated action that we satisfy the requirements: for every 〈e, n〉 < qi−1 either ΦP �qi

e (n)↓
or (∀τ ⊇ P � qi)(Φτ

e(n) ↑), and if ΦP �qi
e (n) ↓ then there is a k 6 n such that ΦP �qi

e (k) ↓
while for every l < k and τ ⊇ P � qi, we have Φτ

e(l)↑.

25



Thus for each i in an initial segment ofM the qi,s settle down to a sequence qi cofinal
in M and we have satisfied all the R requirements. Once qi has stopped moving σ � qi
never changes either and so P settles down in the way required by the argument given
at the beginning of this proof to show that M[P ] |= BΣ2. Moreover, the model defined
in M[P ] by SP as in Remark 3.6 is an atomic model of T as we have satisfied the A
requirements.

The usual iteration of this construction gives an ω-extension ofM that satisfies both
BΣ2 and AMT and so we have our final result here.

Corollary 4.5. AMT is Π1
1-conservative over BΣ2.

For any complete decidable atomic theory T , let S be the tree of standard Henkin
constructions of models of T . For any tuple of constants ~c, the set of nodes of T that
are atoms about ~c is dense, and these sets are uniformly Π0

1 when taken over all tuples
of constants. Thus Π0

1G implies AMT. On the other hand, Theorem 4.3 and Corollary
4.5 show that the converse does not hold. However, Conidis [ta] has shown that every
ω-model of AMT is also a model of Π0

1G, so the use of non-ω-models is essential in
establishing this nonimplication. As, like AMT, Π0

1G can be forced by iterating the
addition of Cohen 2-generics, it is also r-Π1

2 conservative over RCA0 by Theorem 3.13.
Thus it (even with the addition of COH as in Corollary 3.16) does not imply any of
WKL0, RT2

2, SRT2
2, CAC, ADS, SADS or DNR (even for ω-models). As we remarked

above, it is easy in the standard model to meet any uniformly Π0
1 collection of dense sets

with a low set, so the degree theoretic properties mentioned in Corollary 3.10 show that
it does not imply COH or CADS either, even for ω-models.

We do not know whether RT2
2 implies Π0

1G. It is straightforward to check that the
construction used in Conidis’ proof mentioned in the previous paragraph can be carried
out and verified in RCA0 + IΣ2, and hence RCA0 + IΣ2 ` AMT → Π0

1G. Since RT2
2

implies AMT, we have that RT2
2 + IΣ2 implies Π0

1G. On the other hand, by Hirst [1987],
RT2

2 implies BΣ2, so by Theorem 4.3, RT2
2 + Π0

1G implies IΣ2. Thus the question of
whether RT2

2 implies Π0
1G is equivalent to the question of whether RT2

2 implies IΣ2,
which is the first part of Question 13.7 in [CJS]. Of course, this equivalence remains true
if we replace RT2

2 by any of the principles considered in [HS] such as SRT2
2, CAC and

ADS that lie between RT2
2 and AMT and imply BΣ2.

5 Type omitting and hyperimmunity

In this section we consider a version of the Omitting Types Theorem that has close con-
nections with the Atomic Model Theorem. We begin with a recursion theoretic analysis,
and later derive some reverse mathematical consequences. The classical Omitting Types
Theorem states that if T is a complete theory and S is a countable set of nonprincipal
types of T , then there is a model of T omitting all the types in S. Millar [1983] proved
the following effective version of this fact.
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Theorem 5.1 (Millar [1983]). Let T be a complete decidable theory. Let S0 be a
recursive set of complete types of T . Let S1 be a recursive set of nonprincipal partial
types of T . There is a decidable model of T omitting all nonprincipal types in S0 and all
partial types in S1.

Millar’s proof involves an effective Henkin construction with additional requirements
of two kinds: For each partial n-type Γ in S1 and each n-tuple of constants ~c, there is a
requirement that ~c should not realize Γ. Also, for each n-type Γ in S0 and each n-tuple
of constants ~c, there is a requirement that if Γ is nonprincipal then ~c should not have
type Γ. At a given stage of the construction, we can satisfy a requirement of the first
kind simply by extending what we have currently said about ~c to disagree with Γ, which
we know we can do because we are guaranteed that Γ is nonprincipal.

To satisfy requirements of the second kind, we need to be a little more careful. At a
given stage, when deciding whether to add a sentence ϕ or its negation to the elementary
diagram of the model we are building, we find the strongest priority requirement (if any)
that would be satisfied by adding ϕ or its negation, and proceed accordingly. We can
then easily argue that, for any given requirement R, once all previous requirements have
been satisfied, R will also eventually be satisfied.

This argument is by induction, of course, but the construction involves no injuries.
Once a requirement acts, it is permanently satisfied, even if stronger requirements act
later on. So we can cast our argument as a Σ0

1 induction as follows. Given a requirement
R, let F be the (finite) set of all stronger requirements that ever act. By the inductive
hypothesis, there is a stage s such that every requirement in F has acted by stage s.
Now we know that no requirement stronger than R will ever act after stage s, so if the
type mentioned in R is nonprincipal, then R will eventually act and be satisfied.

Thus Millar’s proof carries through in RCA0, and hence RCA0 proves the following
statement: Let T be a complete theory. Let S0 be a set of complete types of T . Let S1 be
a set of nonprincipal partial types of T . There is a model of T omitting all nonprincipal
types in S0 and all partial types in S1.

On the other hand, Millar [1978] also showed that there is a sense in which the
Omitting Types Theorem cannot be made fully effective, as a corollary to the following
result on atomic models.

Theorem 5.2 (Goncharov and Nurtazin [1974]; Millar [1978]). There is a com-
plete decidable atomic theory T such that all types of T are recursive but T has no
recursive atomic model.

Since the set of all partial types of such a theory T has a recursive listing, we have
the following corollary.

Corollary 5.3 (Millar [1978]). There is a complete decidable theory T and a recursive
set S of partial types of T such that no decidable model of T omits all nonprincipal partial
types in S.
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Improving a result of Csima [2004], Hirschfeldt [2006] showed that Theorem 5.2 cannot
be improved, in the following sense.

Theorem 5.4 (Hirschfeldt [2006]). Let T be a complete decidable atomic theory such
that all types of T are recursive, and let d > 0. Then T has a d-decidable atomic model.

We will consider a version of this result in the context of reverse mathematics in the
next section. It is natural to ask whether a similar result holds for the kind of type
omitting in Corollary 5.3. Csima [2004] obtained the following partial result.

Theorem 5.5 (Csima [2004]). Let T be a complete decidable theory, let S be a recursive
set of partial types of T , and let d be such that 0 < d 6 0′. Then there is a d-decidable
model of T that omits all nonprincipal partial types in S.

However, outside the ∆2 degrees, the situation for type omitting is different from that
for atomic models. As we now show, the degrees that can always carry out the kind of
type omitting in Corollary 5.3 are exactly the hyperimmune degrees. Recall that a degree
is hyperimmune if it contains a total function f that is not dominated by any recursive
function, that is, for each total recursive function g, there are infinitely many n such that
f(n) > g(n). If a degree is not hyperimmune then it is hyperimmune-free.

Theorem 5.6. 1. Let T be a complete decidable theory, let L be a recursive set of
partial types of T , and let d be a hyperimmune degree. Then there is a d-decidable
model of T that omits all nonprincipal partial types in L.

2. There is a complete decidable theory T and a recursive set L of partial types of T
such that any countable model of T that omits all nonprincipal partial types in L
has hyperimmune degree.

Proof. 1. Since d is hyperimmune, we can fix a d-recursive function f that is not dom-
inated by any recursive function. We use the tree S of Henkin constructions of models
of T as in Definition 3.5 and Remark 3.6 so that we think of our d-decidable model as a
path in S.

Thus it is enough to show that there is an f -recursive path P of S such that for
every nonprincipal Γ ∈ L and every tuple ~c of new constants of the same arity as Γ, the
following requirement is met:

RΓ,~c : if Γ is nonprincipal then there is a γ ∈ Γ with ¬γ(~c) ∈ θP .

We give these requirements a priority ordering in the usual way.

We build P =
⋃
σi, where we will have σ0 ⊂ σ1 ⊂ · · · and |σi| = i. At each stage in

the construction, each requirement may have a target string. Begin by letting σ0 be the
empty sequence, and declaring that no requirement has a target.

At stage i, given σi ∈ S, define σi+1 as follows. Say that RΓ,~c is satisfied if there is
a γ ∈ Γ with ¬γ(~c) ∈ Sσi . Once a requirement is satisfied, cancel its target. Suppose
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that RΓ,~c is not satisfied and does not have a target, and there is a τ ∈ S with Sτ
propositionally extending Sσi such that |τ | < f(i) and ¬γ(~c) ∈ Sτ for some γ ∈ Γ. Then
declare the least such τ (in some fixed ordering of 2<N) to be the target of RΓ,~c.

Let RΓ,~c be the strongest among the first i requirements that is not satisfied and
has a target, and let τ be its target. If there is no such requirement, let τ be the least
immediate successor of σi on S. Let σi+1 be the immediate successor of σi extended by
τ . Cancel the targets of all requirements weaker than RΓ,~c.

Clearly P is an f -recursive path of P . We show by induction that each requirement is
satisfied. Assume by induction that there is a stage s after which no requirement stronger
than RΓ,~c has a target. If there is a stage t > s at which RΓ,~c has a target τ , then P
extends τ , which, by the way targets are chosen, implies that RΓ,~c is eventually satisfied.
Thus it is enough to assume for a contradiction that Γ is nonprincipal and never satisfied,
and show that there is a stage t > s at which RΓ,~c has a target.

Define the recursive function g as follows. Given n, let Mn be the set of all σ ∈ S
such that |σ| = n. For each σ ∈ Mn, let τσ be the least extension of σ on S such
that ¬γ(~c) ∈ Sτσ for some γ ∈ Γ. Such a τσ must exist, since otherwise we would have
T ∪ Sσ ` γ(~c) for all γ ∈ Γ, contradicting the assumption that Γ is nonprincipal. Let
g(n) = max{|τσ| : σ ∈ Mn}. Now g is a total recursive function, so there is a t > s
such that f(t) > g(t). Since σt ∈ Mt, there is a τ extending σt such that |τ | < f(t) and
¬γ(~c) ∈ Sτ for some γ ∈ Γ. Since we are assuming RΓ,~c is not satisfied at stage t, this
means that RΓ,~c acquires a target at stage t, as desired.

2. Let T be a subtree of 2N with no dead ends. A partial path of T is a collection
G of pairs 〈n, i〉 with n ∈ N and i < 2, such that there is a path P of T with P (n) = i
for all 〈n, i〉 ∈ G. We call any such path P a completion of G. We can think of a path
P of T as a partial path by identifying P with {〈n, P (n)〉 : n ∈ N}. A partial path G is
isolated if there is a σ ∈ T such that every path of T extending σ is a completion of G.

We translate T into a theory T in the language with infinitely many unary relation
symbols U0, U1, . . . as follows. Let ∆ be the set consisting of the following axioms:

1. For each σ ∈ T and each n,

∃>nx (
∧

σ(i)=1

Ui(x) ∧
∧

σ(i)=0

¬Ui(x)).

2. For each σ /∈ T ,

¬∃x (
∧

σ(i)=1

Ui(x) ∧
∧

σ(i)=0

¬Ui(x)).

Let T be the theory axiomatized by ∆. It is straightforward to show that T is a
complete theory, and is decidable if T is recursive. Furthermore, the partial paths of T
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correspond to partial 1-types of T in a natural way, and a partial path of T is isolated
if and only if the corresponding partial type of T is principal. Finally, a model of T
corresponds to a choice of a dense sequence of paths of T (possibly with repetitions).

Thus it is enough to build a recursive subtree T of 2N with no dead ends, and a
uniformly recursive collection C of partial paths of T , such that any countable dense
sequence of paths of T of hyperimmune-free degree must contain an extension of some
nonisolated element of C. Since there are continuum many hyperimmune-free degrees,
we cannot play directly against such sequences of paths. Instead, we will build T and
define a functional Ψ to satisfy the requirements

Re : if M is a countable dense sequence of paths of T and

either ΨM is not total or Φe dominates ΨM , then

M contains an extension of some nonisolated element of C.

We reserve the portion of T above 0e1 for satisfying Re. The functional Ψ is defined
by letting ΨM(n) be the least k such that for each e 6 n, there is a P ∈ M extending
0e1, and for the first such P (in the order of M), there are m0 < m1 < · · · < mn+1 < k
with P (mi) = 1 for each i 6 n. We will ensure that every path of T of the form 0e1σ0ω

is nonisolated and is in C, which will imply that if ΨM is not total then either M is not
dense or M contains an extension of some nonisolated element of C.

Above 0e1, we act as follows, defining T above this node and defining an element De

of C. Whenever we declare a string to be in T , we of course also put all of its substrings
in T . Except for this requirement, any string we do not declare to be in T is not in T .
To explain the reasoning behind our construction, consider a countable dense sequence
M of paths of T such that ΨM is total and Φe dominates ΨM , and let P be the first
element of M extending 0e1. Our task will be to define T and C so that P extends De,
while making De nonisolated.

We begin by putting 〈i, 0〉 for i < e and 〈e, 1〉 into De. This action ensures that any
path extending De must extend 0e1. We then declare that 0e10n is in T for all n, and put
0e10ω into C. For each s such that Φe(e)[s]↑ and each n < s, we declare that 0e10n1s−n

is in T . Suppose there is a least stage t0 such that Φe(e)[t0]↓. By the usual conventions,
Φe(e) < t0. Thus, by the definition of Ψ, the path P must extend 0e10n1 for some n < t0.
So for each such n we declare that the string 0e10n1t0−n is in T , and we call these strings
the level 1 active nodes above 0e1. For each n > t0, we declare 0e10n1k to be in T for
all k. Notice that for every path Q extending a level 1 active node above 0e1 (including
the path P ), we have Q(e+ t0) = 1, while for every other path Q extending 0e1, we have
Q(e+ t0) = 0. We now put 〈e+ t0, 1〉 into De, thus ensuring that any path extending De

must extend some level 1 active node above 0e1.

We now work only above the level 1 active nodes above 0e1. Above these nodes, we
repeat a version of the above construction. More precisely, given a level m active node
σ above 0e1, we proceed as follows. (We will have already defined t0, . . . , tm−1 so that
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|σ| = e+ t0 + · · ·+ tm−1.) We declare that σ0n is in T for all n and put σ0ω into C. For
each s such that Φe(e+ t0 + · · ·+ tm−1)[s]↑ and each n < s, we declare that σ0n1s−n is in
T . If there is a least stage tm such that Φe(e+ t0 + · · ·+ tm−1)[tm]↓ then we proceed as
follows. For each n < t1, we declare that the string σ0n1tm−n is in T , and we call these
strings the level m + 1 active nodes above 0e1. For each n > tm, we declare σ0n1k to be
in T for all k. Finally, we put 〈e + t0 + · · · + tm, 1〉 into De. As argued above for the
m = 1 case, every path Q extending a level m active node above 0e1 (including the path
P ), we have Q(e + t0 + · · · + tm) = 1, while for every other path Q extending 0e1, we
have Q(e+ t0 + · · ·+ tm) = 0.

We have completed the definition of T and C. Now suppose that M is a countable
dense sequence of paths of T and that M has hyperimmune-free degree. If ΨM is not
total, then there is a path P in M of the form 0e1σ0ω for some e and σ. But every
such path is put into C during the construction, and is made to be nonisolated. Thus
in this case M contains a path extending a nonisolated element of C. On the other
hand, if ΨM is total then there is some e such that Φe dominates ΨM . Let P be the first
element of M extending 0e1. As argued during the construction, for every m, we have
P (e+t0+· · ·+tm) = 1. SinceDe = {〈i, 0〉 : i < e}∪{〈e, 1〉}∪{〈e+t0+· · ·+tm, 1〉 : m ∈ N},
we see that P extends De. Furthermore, De is nonisolated, since for every path Q
extending De and every σ ⊂ Q, there is a τ ⊃ σ that is not extended by any node active
at any level, which implies that no path extending τ can also extend De. Thus in this
case also, M contains a path extending a nonisolated element of C.

The previous results lead us to consider the following principle.

(OPT) Omitting Partial Types: Let T be a complete theory and let S be a set of
partial types of T . Then there is a model of T that omits all nonprincipal partial types
in S.

Since there is an ω-model of WKL0 consisting entirely of sets of hyperimmune-free
degree (see Simpson [1999]), part 2 of Theorem 5.6 implies that WKL0 0 OPT.

Iterating Theorem 5.5 and dovetailing in the usual way (also using the density of the
r.e. degrees), we see that every r.e. degree bounds an ω-model of OPT. This fact means
that OPT does not imply any of the principles mentioned above, except those that follow
from RCA0 and possibly IΣ2 and BΣ2. As we will see below, AMT implies OPT, and
hence OPT also does not imply IΣ2 or BΣ2.

The reverse mathematical analogue of Theorem 5.6 also holds. Let HYP be the
statement that for every set X there is a degree that is hyperimmune relative to X,
in other words, there is a function not dominated by any X-recursive function. (See
Definition VII.1.4 of Simpson [1999] for a definition of relative recursiveness in RCA0.)

Theorem 5.7. RCA0 ` OPT↔ HYP.

Proof. It is straightforward to check that the proof of part 2 of Theorem 5.6 relativizes
to any set X and can be carried out in RCA0.
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The proof of part 1 of Theorem 5.6 can also be carried out in RCA0. As usual,
the only worry is the induction required to prove that every requirement is satisfied.
Notice, however, that while a requirement’s target may be canceled by a stronger priority
requirement, once a requirement is satisfied, it can no longer be injured. Therefore we
can argue by Σ0

1 induction as follows.

Fix a requirement RΓ,~c and let F be the (finite) set of all stronger requirements that
are ever satisfied. By induction, there is a stage s by which all requirements in F have
been satisfied. If Γ is not principal then, by the same argument as before, there is a
stage i > s at which there is a τ ∈ S with Sτ propositionally extending Sσi such that
|τ | < f(i) and ¬γ(~c) ∈ Sτ for some γ ∈ Γ. We claim that no requirement stronger than
RΓ,~c acquires a target at a stage > i. Indeed, suppose otherwise and let RΓ′,~c′ be the
strongest requirement that acquires a target at a stage > i. Then this target is never
canceled, and hence RΓ′,~c′ is eventually satisfied. But no requirement stronger than RΓ,~c

is satisfied after stage s, so we have a contradiction. Thus, if RΓ,~c does not have a target
at stage i, then it acquires one at that stage. This target is never canceled, so RΓ,~c is
eventually satisfied.

Corollary 5.8. RCA0 ` AMT→ OPT.

Proof. The theory built in part 2 of Theorem 5.6 is atomic, and hence AMT also implies
HYP.

Corollary 5.9. RCA0 ` COH→ OPT.

Proof. Jockusch and Stephan [1993] proved that every p-cohesive set (i.e., one that is
cohesive for the collection of primitive recursive sets) has hyperimmune degree. Their
proof goes through a degree theoretic characterization of the p-cohesive sets, so we give
a more direct proof in RCA0.

Let sen be the least s such that Φe � n + 1[s]↓, if such an s exists. So sen 6 sen+1. We
assume the convention that Φe(n) 6 sen. Let re0 = se0 and ren+1 = se∑n

i=0 r
e
i
.

For each e, let Se be the set whose characteristic function is given by the sequence
0r

e
01r

e
10r

e
21r

e
30r

e
41r

e
5 . . . if Φe is total, and 0r

e
01r

e
10r

e
21r

e
3 . . . (1−i)ren−1iω if n is the least number

such that ren is undefined, and i = n mod 2. It is easy to see that the sequence S0, S1, . . .
can be defined in RCA0. Let C be cohesive for this sequence.

Let f be the C-recursive function defined by letting f(n) be the least m such that
the sequence giving the characteristic function of C has n zeroes and n ones among its
first m bits. We claim that f is not dominated by any recursive function. To show
this, let Φe be total. Suppose C is almost contained in Se (the case where C is almost
contained in the complement of Se being symmetric). It follows from the definition of Se
that for any m we can find y > x > m such that x, y ∈ C, there is no number strictly
between x and y in C, and for some n we have x <

∑n
i=0 r

e
i and y >

∑n+1
i=0 r

e
i . Then

f(x) > y > ren+1 = se∑n
i=0 r

e
i
> sex > Φe(x). Since we can take m as large as we want, Φe

does not dominate f .
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Thus C has hyperimmune degree. This proof is obviously relativizable, so COH
implies HYP, and hence OPT.

6 A Weak Form of AMT

In this section we consider the effect of adding effectiveness conditions on the types of a
theory to AMT.

It follows from Theorem 5.1 that a complete decidable atomic theory whose types are
uniformly recursive has a decidable atomic model. Theorem 5.2 shows that this result
no longer holds if we weaken the hypothesis by assuming only that the types of T are
recursive, but not necessarily uniformly so. On the other hand, Theorem 5.4 shows that
it does come very close to holding under this weaker hypothesis. Recall that Theorem 5.4
says that if T is a complete decidable atomic theory such that all types of T are recursive,
and d > 0, then T has a d-decidable atomic model. This fact leads us to consider the
following weak version of AMT, which captures the hypothesis of Theorem 5.4 without
explicit reference to recursiveness.

We say that partial types Γ and ∆ of a theory T are equivalent if they imply the same
formulas over T . Note that if Γ is a complete type equivalent to a partial type ∆ then Γ
is recursive in ∆. We say that a set S is a subenumeration of the types of a theory T if
for every type Γ of T there is an i such that {ϕ | 〈i, ϕ〉} ∈ S is equivalent to Γ. If the
types of T have a subenumeration then we say that they are subenumerable.

(AST) Atomic model theorem with Subenumerable Types: Let T be a complete
atomic theory whose types are subenumerable. Then T has an atomic model.

Suppose the types of T are recursive. Let ψ0, ψ1, . . . enumerate the formulas in the
language of T . Let S = {〈e,

∧
i6s ψn〉 | Φe(n)[s] ↓= 1}. Then S is recursive and is a

subenumeration of the types of T . Thus, by Theorem 5.2, AST does not hold in the ω-
model consisting of the recursive sets, so RCA0 0 AST. Theorem 5.4 leads us to expect
that AST may indeed be equivalent to the existence of relatively nonrecursive sets. We
now show that this is the case, which is remarkable given the fact that the statement of
AST does not use any recursion theoretic notions. We begin with the following recursion
theoretic result.

Theorem 6.1 (Goncharov and Nurtazin [1973]; Harrington [1974]). Let T be a
complete decidable atomic theory whose principal types are uniformly recursive. Then T
has a decidable atomic model.

This result is proven by a priority argument. It has the following analogue in reverse
mathematics which we prove by a similar argument using Shore blocking.

Theorem 6.2 (RCA0). Let T be a complete atomic theory such that there is a listing
of the principal types of T . Then T has an atomic model.
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Proof. Let Γ0,Γ1, . . . be the principal types of T . Let S be the tree of standard Henkin
constructions of models of T , with Henkin constants ci. For σ ∈ S, let Sσ be the set of
sentences associated with σ as in Definition 3.5. For σ ∈ S and n ∈ N, let t(σ, n) be the
least t such that ∃xn+1, . . . , xm

∧
ϕ∈Sσ ϕ[c0/x0, . . . , cm/xm] ∈ Γt, where cm is the largest

constant mentioned in Sσ. For a path P of S, let t(P, n) = limk t(P � k, n), which of
course can be infinite. Note that if t(P, n) < ∞, then c0, . . . , cn has type Γt(P,n) in the
model M of T determined by P . Thus, if t(P, n) <∞ for all n, then M is atomic.

We define a path P of S as follows. Begin at the root node of S, and define ni,0 = i
for all i ∈ N. Suppose we have reached a node σ of length k. If σ has a single successor
σˆj then proceed to that successor and let ni,k+1 = ni,k for all i. Note that in this case
t(σˆj, n) = t(σ, n) for all n.

If σ has two successors, then for j ∈ {0, 1}, let dσˆj be the least i 6 k such that
t(σˆj, ni,k) > t(σ, ni,k), or dj = ∞ if there is no such i. If dσˆ0 = dσˆ1 then let j = 0.
(Note that this case can happen only if dσˆ0 = dσˆ1 = ∞.) Otherwise, let j be such
that dσˆj > dσˆ(1−j). Proceed to σˆj. For i < dσˆj, let ni,k+1 = ni,k. For i > dσˆj, let
ni,k+1 = k + i.

Having thus defined P , let ni = limk ni,k, which can be infinite. We claim that the
finite values of ni are unbounded. In other words, for each n there is an i such that
n < ni <∞.

Suppose otherwise, and let n be such that every ni is either less than n or infinite.
Let e be least such that ne,k > n for some k. Such an e exists by Σ0

1-induction (and the
fact that there exist i, k such that ni,k > n). Let i < e. Then i < d(P � k + 1, ni) for all
k > n, so t(P � k + 1, ni) = t(P � k, ni) for all k > n, and hence t(P, ni) <∞. Let αi be
an atom in Γt(P,ni). Let m be such that SP �m contains αi[x0/c0, . . . , xni/cni ] for all i < e.
Note that for all τ � SP �m on S and all i < e, we must have t(τ, ni) = t(P, ni).

Since ne > n, we have ne = ∞. So there is an l > n such that dP �l+1 6 e. Let
τ = P � lˆ(1 − P (l)). By the construction of P we have dτ < dP �l+1 6 e, so for some
i < e we have t(τ, ni) > t(P � l, ni) = t(P, ni), contradicting the last statement of the
previous paragraph.

Thus the finite values of ni are unbounded. So given n there is an i such n < ni <∞.
For all sufficiently large k we must have dP �k > i, and hence t(P � k+1, ni) = t(P � k, ni),
which implies that t(P � k + 1, n) = t(P � k, n). So t(P, n) < ∞. Thus the model of T
determined by P is atomic.

We are now ready to show that AST is equivalent to the existence of relatively non-
recursive sets.

Theorem 6.3. RCA0 ` AST↔ ∀X ∃Y (Y 
T X).

Proof. First assume AST and fix a set X. The relativized form of the component of
the proof of Theorem 5.2 provided as the proof of Theorem 5.2 of [CHKS] builds an
X-recursive subtree T of 2<N with no dead ends, all of whose paths are X-recursive, but
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such that there is no X-recursive listing of the isolated paths of T . It is straightforward
to check that this construction can be carried out in RCA0. Translate T into a tree T as
in the proof of Theorem 5.6. The 1-types of T correspond to the paths of T . But because
the language of T has only unary relations, any n-type is simply a union of 1-types. It
follows that T is atomic and its types are X-recursive. By the same argument as in the
paragraph preceding this theorem, we can X-recursively define a subenumeration of the
types of T . By AST, T has an atomic model M. We can form the set of all 1-types
realized in M, that is, all principal 1-types of T . From this set we get a set consisting
exactly of the isolated paths of T . This set is not X-recursive, so ∃Y (Y 
T X).

Now assume ∀X ∃Y (Y 
T X) and let T be a complete atomic theory whose types
have a subenumeration S. Let D 
T S. For each n, let Tn be the tree of n-types of T ,
which we can think of as a subtree of 2<ω. Let T be the result of gluing together the Tn
into a single tree by placing a copy of Tn with root 0n1 for each n. Then T has no dead
ends and the isolated paths of T are dense. Furthermore, each path of T (other than
0ω) is a type of T equivalent to one of the rows of S, and hence is recursive in S. So for
each path P of T we have D 
T P . It is easy to check that the proof of Theorem 2.1 of
Hirschfeldt [2006] can now be carried out in RCA0 to show that there is a D-recursive
listing of the isolated paths of T , and hence a D-recursive listing of the principal types
of T . It follows from Theorem 6.2 that T has an atomic model.

Thus AST is implied by all principles mentioned above other than the ones that follow
from RCA0, IΣ2 and BΣ2, and implies none of the principles mentioned above other than
the ones that follow from RCA0. Indeed, AST is the weakest reasonable principle that
does not hold in the ω-model consisting of the recursive sets.

7 Summary and Open Questions

We summarize most of our main results in Diagram 2. As before, double arrows are
strict implications and negated arrows are nonimplications. We conclude with three
open questions.
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Question 7.1. Does COH (or CADS) imply AMT over RCA0?

Question 7.2. Does CADS imply OPT over RCA0?

Question 7.3. Is AMT r-Π1
2 conservative over BΣ2?
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