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Abstract

The sentences asserting the existence of invariants for mathematical structures
are usually third order ones. We develop a general approach analyzing the strength
of such statements in second order arithmetic in the spirit of reverse mathematics.
We discuss a number of simple examples that are equivalent to ACAy. Our major
results are that the existence of elementary equivalence invariants for Boolean al-
gebras and isomorphism invariants for dense Boolean algebras are both of the same
strength as ACASr . This system corresponds to the assertion that X («) (the arith-
metic jump of X) exists for every set X. These are essentially the first theorems
known to be of this proof theoretic strength. The proof begins with an analogous
result about these invariants on recursive (dense)Boolean algebras coding 0.

1 Introduction

We are interested in measuring the complexity of standard mathematical theorems and
constructions in various ways. Our two primary approaches are recursion theoretic and
proof theoretic. The first is the domain of Recursive Mathematics as in Ershov et al.
[1998]. the second is that of reverse mathematics as in Simpson [1999]. The typical
theorem to be analyzed is an existence theorem of the form Vn € Ndm € N... or
Vf € NN¥3g € NY. The first corresponds to a function 4 : N — N and the second to a
functional H : N¥ — NN, From the recursion theoretic point of view, we want to know
the complexity of h, or of H (in the sense of measuring the complexity of a witness g
relative to that of the given f). In either case, we would like lower and upper bounds
on the complexity. The standard measure of (relative) complexity here is that of Turing
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as given by Turing reducibility and the usual benchmarks along the Turing degrees (the
recursive functions, 0; the halting problem, 0’; true arithmetic, 0¢); the hyperarithmetic
hierarchy to Kleene’s O, etc.). The classical methods of proving high complexity include
diagonalization, coding, priority arguments, index set and other hierarchy type theorems.

Reverse Mathematics, on the other hand, studies the (proof theoretic) complexity
of mathematical theorems by determining the axioms needed to establish them. This
involves determining first the appropriate setting for such axioms. The choice is almost
always second order arithmetic and one restricts one’s interest to countable, or at least
“separable” structures. Next, one must isolate particular systems of axioms in which one
can prove (most of) the classical theorems of countable mathematics. The intuition here
is that the axiom systems correspond to a hierarchy of construction or existence principles
and are usually graded by types of comprehension (i.e. set existence) assertions. Finally,
one hopes to give a precise calibration of the complexity of a given theorem by showing
that (relative to some weak base theory of arithmetic) it is actually equivalent to the
axiom system used to prove the theorem. (This means that over the base theory one can
prove the other axioms of the system from the statement of the classical theorem being
studied. This reversal of proving “axioms” from “theorems” is the source of the name,
Reverse Mathematics.)

In fact, the two approaches are closely connected in both their methods and results
with each of the standard systems of reverse mathematics corresponding to one of the
classical markers of complexity in recursion theory. Proofs of reversals very often cor-
respond to proofs that any witness for particular instances of the existence theorem in
question would compute (in the sense of Turing degree) some degree such as 0’ or O.
Proofs of the theorem in the systems often correspond to proofs that solutions can be
found that are, e.g. recursive, recursive in 0', etc. At times both proof theoretic (e.g.
conservation results) and model theoretic (e.g. nonstandard models) are used as well. We
will list the standard systems of reverse mathematics and explain their recursion theoretic
counterparts in the next section. Our goal will then be to explore a type of mathemati-
cal classification of structures — the existence of invariants — that often provides central
and fundamental theorems and is naturally related to issues of complexity. This type of
theorem, however, presents unusual challenges to the subject of reverse mathematics.

Typically, such theorems begin with a class IC of structures which we want to classify
up to some equivalence relation. The classification is embodied by an assertion of the
form that there is an assignment of invariants to members of the class such that two
structures have the same invariant if and only if they are equivalent. For this to have
some content the invariants (and equality on them) should be somehow simpler than the
structures (and the equivalence relation of interest on them). The archetypical equiva-
lence relation is, of course, isomorphism and the invariant is generally viewed as a type
of dimension or degree. Standard examples here include vector spaces (dimension) and
algebraically closed fields (transcendence degree). Of course, other equivalence relations
are studied as well and one looks for invariants up to homotopy, homeomorphism, ele-
mentary equivalence or other restricted types of identification of structures. Frequently,



the invariants are cardinal numbers corresponding to the size of some sort of basis for
the structure. If the structures are countable then these are numbers in w or w itself.
At other times (e.g. Ulm invariants for p-groups) the analysis of the structures proceeds
by some kind of ordinal decomposition and the invariants are then ordinals (below w;
for countable structures). In other situations the invariants may be real numbers or
other objects though in the countable case these may be as complicated as the structures
themselves and so not provide too much information.

In any case, formalizing the existence of invariants for a class K of even countable
mathematical structures is beyond the scope of the setting for Reverse Mathematics. It
typically asserts the existence of a functional F from a class C of mathematical structures
to the set of invariants such as N, N; etc. that classifies A up to =, the equivalence
relation of interest, in the sense that F'(A) = F(B) & A = B. Even when the invariants
are numbers and K is definable in second order arithmetic this basic assertion of the
existence of invariants for IC is a third order existential one as F is a map from an
uncountable class of countable structures:

(%) I(F: K —=N)(VA, Ay € K)(F(A)) = F(Ay) & AL = Ay).

(We denote this as (x/,=) when we want to make the class and equivalence relation
explicit.) Reverse mathematics only allows one to discuss numbers and sets of numbers,
not sets of sets of numbers as are needed here. Thus to even begin our analysis we must
first find a way to capture the assertion in some second order way.

In the standard direction of proving the existence of invariants there is usually not
much to worry about. A classical proof provides an analysis that specifies a particular
procedure for identifying the invariant. One can analyze first this procedure as recursive,
arithmetic, hyperarithmetic, etc. and then (in terms of axiom systems) the proof that
the procedure produces the same invariant for two structures if and only if they are
equivalent. Thus, the assertion that this particular procedure works as desired can be
proven in some appropriate subsystem Ax of second order arithmetic, and so gives us
an upper bound on the (recursion and proof theoretic) complexity of the existence of
invariants. Formally, we produce a formula ®(A, n) of second order arithmetic such that
Ax = ¢ where ¢ is the sentence saying that ® properly defines the invariant n associated
with A:

¢p:(VAeK)(Fn e N)P(A,n)&
(VAl, A2 € /C)(‘v’nl,ng S N)((I)(Al,nl)&(l)(/lg,ng) — (n1 = Ng < Al = Ag)
Here we are assuming that our class K is definable in second order arithmetic and use
A € K as an abbreviation for quantification over sets satisfying this definition. Similarly,

we are assuming that the equivalence relation = being considered is also definable in
second order arithmetic. In all the cases we consider, coding the class of structures of
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interest in second order arithmetic will be routine and we will simply assume that we
have such a coding. The notion of isomorphisms is even easier. That of elementary
equivalence will, however, take some care (see Definitions 4.5-4.7).

For example, consider the case where K is the set of countable (and so, without
loss of generality, with domain N) vector spaces over the rationals and the equivalence
relation of interest is isomorphism. Here the invariant is the dimension and the required
definition ® says that n (possibly w) is the cardinality of a maximal independent set of
vectors. As each of the questions of whether there exists an independent set of size n is
at the same level of complexity (29), arithmetic comprehension (or the iterated Turing
jump) is clearly sufficient to produce the answer and so the invariant. (The proof that
two vector spaces with the same dimension are isomorphic is even simpler.) Thus we
have a sentence ¢ as required above for the class of vector spaces which is provable using
arithmetic comprehension (ACAy).

For the reverse direction we need some second order consequence of the existence
of invariants that implies the axiom system Ax used to prove the correctness of the
particular procedure used in the forward direction. Our proposal is to use the special
case of the theorem for countable subclasses of our class of structures. More precisely,
we consider the following sentence which will play a central role in our analysis and to
which we will refer repeatedly as v :

(We are again using membership in K as a shorthand for its definition.) This assertion
is obviously weaker than the existence of number invariants for the class K. We can now
hope to prove that it implies whatever system was used to prove the forward direction of
the existence result (in the sense of providing a specific procedure defining the invariant
from the structure). In the case of vector spaces over Q with isomorphism, it is not
difficult to show (Theorem 2.1) that, for this choice of K and =, ¢ does imply arithmetic
comprehension in RCAy, the standard weak base theory of reverse mathematics. Thus
we are justified in asserting that the existence of number invariants for isomorphism of
countable vector spaces over Q is equivalent to arithmetic comprehension (ACAy).

We believe the plan proposed here should be intuitively convincing for the claim that
we capture the strength of the existence of invariants by these results (at least for the
specific choices of ¢ and 1 that we present). From a recursion theoretic point of view,
there will be no difficulty in that we can (and do) show that the procedure for computing
the invariant of A is recursive in the recursion theoretic counterpart of Az (the jump,
the w-jump or the hyperjump of A as the case may be). On the other hand we can (and
will) show that for any given set X there are instances of ¢ for sequences (A;) recursive
in X for which any witness sequence (n;) computes the corresponding jump of X.

For the proof theoretic point of view, however, we should say a few words about the
formalities of what types of sentences should be acceptable and where the “mathematical”
proofs that ¢ — (x) and (%) — 1 take place. The issue here is, as Carl Jockusch pointed
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out to us, that in the cases of interest all these sentences are theorems of ZFC. What
would then prevent us from choosing any theorems of ZFC (expressible in second order
arithmetic) as ¢ and 1. Such choices, of course, would be nonsensical and irrelevant to
any claims of capturing the complexity of some instance of (x). (All the other ingredients
in our claim for the equivalence of (%) and Az are assertions in second order arithmetic
and can take place unproblematically in RCA.)

First we suggest that any possible dependence on the mathematical content of the
assertion be removed by making the implication ¢ — (*) independent of the choices of
IC and =. Formally we require that

ZFC F (Vclass of structures K)(Vequivalence relation = on K)[¢p — (x)] (1)

where here, of course, we leave A € K in ¢ as a formula of set theory. This seems to be
sufficient to support the claim that ¢ is at least as strong as (%) and is certainly true of
the class of sentences that we have proposed as candidates for ¢.

We should, of course, make the same requirement for the implication (x) — 1 but this
is not sufficient. Here we are asserting that ¢ contains some of the strength of (%) but
want to also prove that it is itself strong. We must take care not to allow some theorem
of ZFC (not mentioning K or = say) as a candidate that itself proves Az without any
connection to (). Indeed the sentence 1) that we have proposed to use is a theorem
of ZFC for every K and = . (As there are only countably many A; there are only
countably many equivalence classes, and so we can number them accordingly.) Thus our
worry here is that the strength asserted for ¢ has no connection to its dependence on
(%) but is induced by the use of comprehension in ZFC. To eliminate this possibility we
require that the proof that (x) — 1 take place in a version of set theory with very limited
comprehension. A very strong version of this proposal is that the implication be provable
in rudimentary set theory. This is the system B of Simpson [1999, VII.3] whose only
axioms are extensionally, infinity and that the universe is closed under the rudimentary
operations which are essentially the standard ones for the primitive recursive functions
on N without the recursion scheme. This system corresponds to Ay comprehension (see
Jensen [1972]) so no application of comprehension in the metatheory can be the source of
the strength of v». Rather, the only source of the power of comprehension is the existential
assertion of (x) itself. For our proposed v, it is clear that the implication (x) — % is
provable with only Ay comprehension. It only asserts the existence of the composition of
two given functions — F given by () and the one from w — w corresponding to the given
sequence (A;) — and so is easily seen to exist by Ag comprehension. A final desideratum
for ¢ might be that the axiom system Az claimed to be of the same strength as (x) also
prove ¢ (all for the same choice of K and =, of course).

Thus we will be willing to claim that the existence of invariants for some K and =
has the same strength as an axiom system Az (of second order arithmetic) if we have
formulas ¢(KC,=) and ¢(K,=) (both of third order arithmetic or its set theoretic analog



but with the only nonsecond order atomic subformulas being of the form A € K and
A; = A, and no third order quantification allowed) such that RCAy - Ax — ¢ and
RCAy + ¢ — Az (both with appropriate definitions replacing the occurrences of K and
=), Az F ¢, ZFC F (Vclass of structures K)(Vequivalence relation = on K)[(x) — ¢
and B F (x) — 1.

Now that we have an approach to analyzing the strength of the existence of invariants
for different classes of structures we can consider particular classes of interest. As we have
indicated, the case of vector spaces is easily seen to be equivalent to the standard system
ACA( (Theorem 2.1). The situation is the same for algebraically closed fields (Theorem
2.2). Our goal here is to consider a class that presents a second challenge to the standard
approach of reverse mathematics by being provably equivalent to an axiomatic system
that lies strictly between two of the standard systems. The class of structures that we
analyze is that of Boolean algebras. Now the isomorphism relation for arbitrary Boolean
algebras is ¥} complete (see §3) so no simply defined invariants for isomorphism can
exist. Indeed, the existence of invariants for isomorphisms, even for countable sequences
of structures in the sense of 1, implies III — C'Ay, the system of reverse mathematics
corresponding to the existence of Kleene’s O (or equivalently the hyperjump). On the
other hand, IT; — C'Ay is enough to prove ¢ for isomorphism for any class K. However, it
is a classical result of Tarski [1949] (see Monk [1989, 18] or Goncharov [1997, 2.3]) that
there are number invariants for elementary equivalence of Boolean algebras. Our goal
is to prove (Theorem 6.10) that the existence of any number invariants, in the sense of
(%), is equivalent (over RCAy), in the sense of our analysis above in terms of ¢ and 1,
to an axiom system ACAJ that is intermediate between two of the standard systems,
ACAy and ATRg. We believe that this is the first real example of a theorem known to be
equivalent to ACA{. This system corresponds to the existence of the arithmetic jump,
A for each set A and the recursion theoretic version of our main theorem (Theorem
5.10) is that determining the elementary invariants for recursive Boolean algebras is of
the same complexity (in the sense of Turing degree) as 0.

Some might say that the use of the logical notion of elementary equivalence is the
source of the problem and that it alone might require ACA{. Indeed, one must be careful
to develop a reasonable notion of elementary equivalence that makes sense in RCA,.
Following the approach to satisfaction from Simpson [1999], we do this in Definitions
4.5-4.7. Another objection might stem from a possible general aversion (which we do
not share) to logical notions as the proper objects of study for reverse mathematics.
This concern can be alleviated by noting that these invariants are, in fact, isomorphism
invariants for an algebraically defined subclass of Boolean algebras. These are the dense
Boolean algebras as presented in Goncharov [1997]. The required algebraic notions are
given in Definitions 4.1-4.3. Intuitively these algebras play the same role for Boolean
algebras that dense linear orderings play for linear orderings. The prime example is the
atomless Boolean algebra but there are, of course, countably many others. (From the
logical or model theoretic point of view these are just the saturated countable Boolean
algebras.) We will show that the existence of isomorphism invariants for this class also



implies the existence of the w-jump, and so has the same strength as the existence of
elementary equivalence invariants for all countable Boolean algebras. These results will
be Theorems 5.10 and 5.19 for the recursion theoretic version and Theorems 6.6 and 6.9
for the reverse mathematics one.

2 Axiom Systems and Examples

All our axiom systems for reverse mathematics are phrased in terms of the language of
second order arithmetic, that is the usual first order language of arithmetic augmented
by set variables and the membership relation €. Each system also contains the standard
basic axioms for +, - and < (which say that N is an ordered semiring). In addition, they
all include one of two forms of induction. The first form is the full induction scheme I.

(I) (0) AVn(p(n) = ¢(n+1)) — Vnp(n),
for every formula . The other form of induction that we consider is an axiom that permits
the application of induction only to sets (that one knows to exist):

(Ip) e X AVn(ne X - n+1€ X)—Vn(neX).

We call the system consisting of (I) and the basic axioms of ordered semirings P. If we
replace (I) by (Iy), we call the system P,. In general, if we have any system S containing
(I), we denote by Sy the system in which (I) is replaced by (Iy) . All the systems we
shall consider will be defined by adding various types of set existence axioms to P or
Py. We begin with a base theory strong enough to do basic arithmetic and elementary
combinatorics.

(RCA): RCA, for recursive comprehension axiom, is a system just strong enough to
prove the existence of the recursive sets but not of () nor indeed of any nonrecursive set.
In addition to P its axioms include the schemes of AY comprehension and %Y induction:

(A} = CAg) Vn(p(n) < 1(n)) — IXVn(n € X < ¢(n))
for all ¥9 formulas ¢ and I1{ formulas 1 in which X is not free.

(5} = 1)((0) AVn(p(n) — ¢(n+ 1)) — Ynp(n))
for all 3¥ formulas .

The next system says that every infinite binary tree has an infinite path. It is con-
nected to the low basis theorem of recursion theory which says that every such tree has
an infinite path whose jump is recursive in that of the tree itself.

(WKL): WKL, for weak Konig’s lemma, asserts, in addition to RCA, that every
infinite subtree of 2<“ has an infinite path.

We next move up to arithmetic comprehension.



(ACA): ACA, for arithmetic comprehension axioms, consists of P plus the compre-
hension scheme for arithmetic formulas:

(ACA) 3XVn(n € X < ¢(n)) for every arithmetic formula ¢ in which X is not free.

In recursion theoretic terms, AC' A, proves the existence of () and by relativization it
proves and, in fact is equivalent to, the existence of X’ for every set X. The next system
corresponds to the existence of all (relativized) H-sets, i.e. the existence of the HX (and
so the hyperarithmetic hierarchy up to e) for each e € OX for every set X.

(ATR): ATR, for arithmetical transfinite recursion, consists of P plus the assertion
that arithmetic comprehension can be iterated along any countable well ordering.

(ATR) If X is a set coding a well ordering <x with domain D and Y is a code for a
set of arithmetic formulas ¢,(z, Z) ( indexed by x € D) each with one free set variable
and one free number variable, then there is a sequence (K, |x € D) of sets such that if y
is the immediate successor of x in <x, then Vn(n € K, < ¢,(n, K,)) and if z is a limit
point in <y then K, is &{K,|y <x x}.

The systems climbing up to full second order arithmetic (i.e. comprehension for all
formulas) are classified by the syntactic level of the second order formulas for which we
assume a comprehension axiom.

(ITL-CA): TIL-CA, for I} comprehension axiom, is the system P plus comprehension
for I} formulas:

(ITL-CA) 3XVEk(k € X < p(k)) for every IT} formula ¢ in which X is not free.

The recursion theoretic equivalent of the simplest of these systems, II} — C'A, is the
existence of O, the hyperjump of X, for every set X. Together with the four systems
listed above, it makes up the standard list of axiomatic stems of reverse mathematics.
Almost all theorems of classical mathematics whose proof theoretic complexity has been
determined have turned out to be equivalent to one of them.

As simple examples of our approach to invariants, we now analyze the existence of

number invariants for isomorphism of vector spaces over a fixed field and algebraically
closed fields of fixed characteristic.

Theorem 2.1 Let F' be a field and V the class of countable vector spaces over F. The
existence of number invariants for the isomorphism relation on'V, (xV, %), is of the same
complexity as ACAy. This is also true if we restrict our class to vector spaces of any
fixed set of dimensions as long as the set has cardinality at least 2.

Proof. Our formula says that V' has dimension n — 1 for n > 0 and oo for n = 0:



d(V,n): [n>08&Hwy,...2,) € V" W {cy,...co) € F" N egag + ... coxy =0 &

o= ...c, =0)&—-F(xy,...2,) € V™V(ey,...cn) € F' (121 + ...z, = 0 &
c=. =0)] V[n=0&VYm[Izy,...2,) € V™ Vo, ...cn) € F™ Heyo + ... Cn
o= ...¢p, =0)].

One can easily develop enough of the usual theory of vector spaces in ACAy to prove
that every vector space has a unique dimension (in this sense) and that any two of the
same dimension are isomorphic. (See Simpson [1999, II1.4 for a sketch and Friedman,
Simpson and Smith [1983] for more details.) For the other direction, consider any two
dimensions n < m and the class K of vector spaces with dimensions in A with n,m € A
(where we allow oo as a value of m for the countable vector space of largest dimension).
We need to build a sequence V; of vector spaces such that any witness to ¢ will compute
0’ (and so, by relativization, ¢ implies the existence of X’ for every X). We take 1}
and Vj to be fixed spaces of dimension n and m, respectively. We define the rest of
the V; uniformly recursively so that we build V; as a space of dimension n until we see
that ¢ € 0" at which point we start extending the space so that at the end it will have
dimension m. Now if (n;) is any witness for (V;) as required by 1), it is clear that, for
1>1,ie0 n=m. O

Theorem 2.2 Let A be the class of countable algebraically closed fields of characteristic
p. The existence of number invariants for the isomorphism relation on A, (xA, =), is of
the same complexity as ACAy. This is also true if we restrict our class to fields of any
fixed set of transcendence degrees as long as the set has cardinality at least 2.

Proof. The proof is the same as for vector spaces except that we replace linear (in)dependence

by algebraic (in)dependence (over the prime field). O

We next introduce the system ACA™ that captures the instances of the existence of
elementary invariants for Boolean algebras that we analyze. Recursion theoretically, it
corresponds to the existence of the arithmetic (or w) jump of X for every set X.

(ACA™): VXTA(AO = X & (Vn)[Al+1] = (Al]Y].

As an axiomatic system in reverse mathematics ACA™ was first studied in Blass,
Hirst and Simpson [1987]. They proved in RCA, that Hindman’s theorem implies ACA,
and is implied by ACA{. The precise strength of this theorem is still open. We do not
know of any other theorems that are even candidates for equivalence with ACAZ. (We
are leaving out uniform infinite versions of theorems that are each equivalent to ACA
such as Ramsey’s theorem for n-tuples, RT%. Each one for n > 3, is equivalent to ACA,
in such a way that the assertion that for any sequence F), of colorings of n-tuples there
is a sequence H,, so that each H,, is homogeneous for F, is equivalent to ACA{".)

=0



3 Boolean Algebras

We take the standard definition of the class B of Boolean algebras B with constants 0
and 1 and operations V, A and —. For convenience we also use the (Ag) defined relation
< and function —: z <y < x Ay =xand xr —y = = A —y. A general reference for
information about Boolean algebras is Monk [1989].

As we mentioned in the introduction, the isomorphism problem for Boolean algebras
is ¥ complete, and so has no reasonable notion of invariant. In fact, there is a single
recursive Boolean algebra B (the Harrison Boolean algebra) such that for any X} formula
Q(n) there is a recursive sequence of algebras B,, such that Q(n) < B, = B. (This result
is presumably folklore.() A proof for the analogous statement about linear orderings can
be found in White [2000, 5.4]. The result for Boolean algebras follows by taking the
interval algebras (Definition 5.3) of the linear orderings constructed there.) Thus the
existence of invariants even for all countable sets of Boolean algebras up to isomorphism,
i.e. ¢ for B and = implies I} — C'Ag. Of course, 1 is provable in I} — C'Ay for any
(definable) class K of structures as isomorphism is a Y] relation. Thus there is not
much to say about isomorphism invariants for arbitrary classes of Boolean algebras. We
will investigate a coarser relation — elementary equivalence — on all Boolean algebras
and isomorphism restricted to a subclasses of Boolean algebras — the “dense” Boolean
algebras.

Tarski [1949] showed that there are only countably many completions T; of the the-
ory T of Boolean algebras and they are uniformly axiomatizable. Thus the theory of
Boolean algebras is decidable. This, of course, supplies number invariants for elementary
equivalence of countable Boolean algebras in the sense of (x): F(A) =i < A | T; and
so F(A) = F(B) & A = B. Our tasks are now first to analyze a proof of this theorem to
see that we can define this relation ®(A,7) and prove in ACAJ that it has the properties
described in ¢. For the reversal we want to construct a uniformly recursive sequence B;
of Boolean algebras so that any witness function assigning them number invariants for
elementary equivalence in the sense of ¢ computes 0“). Together these will prove our
main result:

Theorem 6.10: The existence of number invariants for elementary equivalence of count-
able Boolean algebras or for isomorphism of dense countable Boolean algebras has the
same complezity in the sense of reverse mathematics as ACAg .

We begin with a series of definitions that are needed just to describe the theories T;
and the Tarski invariants.

Definition 3.1 Let a be an element of a Boolean algebra B. a is an atom if and only if
0 < a but -3x(0 < x < a). The set of atoms of B is denoted by At(B). The element a
is atomic if and only if Vo < a3z < z(x # 0 — z is an atom). It is atomless if and only
if nox < a is an atom.
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Now Tarski’s analysis of a Boolean algebra B proceeds by taking successive quotients
by uniformly defined ideals much the way the Cantor-Bendixson analysis of a topological
space or a Boolean algebra works (Monk [1989, 6]. The difference is that the Cantor-
Bendixson analysis uses at each step the ideal generated by atoms. Now, Tarski’s analysis
uses a larger ideal. We follow the analysis as in Monk [1989, 7] which is very neat or
Goncharov [1997] which is more constructive, and so often better suited to our purposes.
We refer to these sources for many basic algebraic facts. For example, the ideal we want
is generated by the atomic and the atomless elements. That it can also be defined via
single joins is 2.2.1 of Goncharov [1997].

Definition 3.2 For B a Boolean algebra, I1(B) = {x € B|3y,z(y is atomic & z is
atomless &x =y V z}. We let B'= B/I(B). We call B’ the Tarski derivative of B.

We now define the sequence of Boolean algebras constructed by successively taking
quotients by this ideal.

Definition 3.3 Given a Boolean algebra B we define a sequence B of Boolean algebras
and a sequence I, of ideals of B as follows: B = B; BI*+1 = B /[(BI"). The
canonical embeddings are given by Ty, : BI™ — Bl for m < n. We denote mo,, by m,.
The desired sequence of ideals of B is given by Io(B) = {0}, I,.1(B) = ;' [I(BM™)] so
B~ B/I,(B).

We can now define the elementary invariants for Boolean algebras as a triple of natural
numbers or symbols —1, 0o encoding the level at which this process stops and the type
of the final nonzero algebra produced.

Definition 3.4 The invariant of the Boolean algebra B, inv(B), is a triple of numbers
(or symbols —1, o0 ):

1. inv(B) = (—1,0,0) if B = {0};
2. inv(B) = (00,0,0) if Vi(B" # {0});
3. inv(B) = (k,l,m) if

(a) B¥ £ {0}, BIF+1 = {0},
(b) 1 = min{oo, | At(BM)]|},

(¢c) m =0 if B¥ is atomic and m = 1 otherwise.
We denote the entries of this triple by inv;(B) fori=1,2,3.

Tarski showed that these invariants characterize all Boolean algebras up to elementary
equivalence
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Theorem 3.5 (Tarski [1949]) For all Boolean algebras B and A, B = A & inv(B) =
inv(A).

We now wish to argue that we can prove the existence of the map inv as a definable
procedure and the fact that it characterizes elementary equivalence in ACAJ. It should
be clear that in ACAy we can show for every Boolean algebra B that Aty(B), the sets
of atomic and atomless elements of B, I(B), B/I(B) and the canonical map 7 : B —
B/I(B) all exist. The sequence of these predicates and maps over all n, however, do
not obviously provably exist in ACAy. Indeed, even the existence of all “finite” initial
segments of these sequences does not seem to be provable in ACA, although the existence
for the sequences of length n are, of course, provable for all n in ACA by induction. This
will be an important issue in our consideration of reversals but for now it is sufficient
to note that all these (even infinite) sequences of subsets of B provably exist in ACA{.
The point is that they are all uniformly recursive in B“). Thus the map inv is recursive
in Bt (We need to quantify over the sequences B I, to check if inv;(B) = oo.
Otherwise, we just need to check the individual B for their cardinality and atomicity
and each one is recursive in a finite (in the model) number of jumps, and so in B“) (in
the model). Thus we can define inv and prove that the definition defines a function in
ACA{.

To finish the proof of Theorem 3.5 in ACA{ we have to define elementary equivalence,
=, and go through a suitable proof. Again in, say RCAy, the definition of = is delicate
and we will deal with it more carefully when we prove the reversals in Definitions 4.5-
4.7. For now, it is straightforward to check that any reasonably constructive standard
inductive definition of satisfaction for a structure A for a recursive language L can be
carried out uniformly recursively in A“), and so we can adopt the standard definition of
=as A=B & Vpe L(A | p < B E p). The proof of Tarski’s theorem itself requires
some care. The most commonly found proofs (as in Chang and Keisler [1977, 5.5.10] or
Monk [1989, 18] use saturated or special models of some sort that rely on the existence
of uncountable cardinals. Tarski’s original proof (according to Doner and Hodges [1988])
was a quantifier elimination proof in an expanded language and presumably the most
constructive of them all. For the purposes of our argument in ACA{, the easiest route to
follow is the one done in detail in Goncharov [1977, 2.3], as it can be straightforwardly
carried out in ACA{ . It is also the one defining the dense Boolean algebras and explicitly
dealing with the isomorphism problem for that class. We now turn to these matters and
the proof of Tarksi’s theorem in ACA{.

4 Dense Boolean algebras
We begin with the analog of our invariants for individual elements and formal definitions

in the language of Boolean algebras of the predicates we will use to describe the sequences
of algebras and ideals of Definition 3.3. These will be the key ingredients in the proof
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of existence of isomorphism invariants for the dense Boolean algebras and the associated
proof of Tarski’s theorem.

Definition 4.1 The invariant, inv(a) (or invg(a), if we need to make B explicit), of an
element a of the Boolean algebra B is a triple of numbers (or symbols —1, o0):

1. inv(a) = (—1,0,0) if a = 0;
2. inv(a) = (00,0,0) if Vi(a ¢ I,,)
3. inv(a) = (k,1,m) if
(a) a ¢ Iy, a € I,
(b) 1 = min{oo, | {z € At(B¥) &z < a}|

(¢c) m =0 if in B there are no nonzero atomless elements below a and
m = 1 otherwise.

We denote the entries of this triple by inv;(a) fori=1,2,3. Note that inv(B) = invp(1).
Definition 4.2 We define unary predicates T,,,A,,, B, and C, and the associated formu-

las in the language of Boolean algebras that characterize them by induction:

Io(z) & o =0;
Ao(z) & ~Lo(z) & (Vy <z)(y =0 V y = x);
By(z) < (—Jy < x)(Ao(y));

Co(z) < (—3y < 2)(=Zo(y) A Bo(y))-

Znii(z) < Fy, 2(Bu(y) &Ch(2) & z =y V 2);

An-i-l ([B) g _‘In-i-l( ) & (Vy S {lf) (In-i-l (y) V In-i-l ([L’ - y) );
Bn—l-l(‘r) (_'Hy < I) (An—i-l(y));

)

nt1(z) & (73y < 2) (L1 (y) A Buia(v))-

We note that these formulas Z,, A,, B, and C, are equivalent (by prenexing rules)
to a recursive list of formulas which are ¥4, 14,11, [l4,12 and Iy, 3, respectively. It is
proven in Goncharov [1997, 2.2] that they define the notions of being in I,,, an atom of
BI" | atomless in BI" and atomic in B, respectively. There is no problem in carrying out
his proofs in ACA{. Thus in ACA{ we can extend B to a structure with these predicates
for all n. In particular, in ACA{ we can prove that if A = B then inv(A) = inv(B).

To prove the converse, that inv does determine elementary type, we continue to
follow Goncharov [1997, 2.3] by defining dense Boolean algebras and noting some of their
properties.
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Definition 4.3 A Boolean algebra B is dense if Vb € BVk € w

1. k <invi(b) = Ja < b(inv(a) = (k,00,0)) and

2. invy(b) = oo orinvy(b) = co = (Ja < b)
[invi(a) = invy(b) = invy (b — a) & inve(a) = invy(b) = invy(b — a)].

We denote by DB the class of dense Boolean algebras.

Goncharov [1997, 2.3] proves that every countable Boolean algebra has an elementary
extension B* which is dense and that any two countable dense Boolean algebras with
the same invariant are isomorphic. This then shows that any two countable Boolean
algebras with the same invariant are elementary equivalent, and so establishes Tarski’s
theorem. (For uncountable Boolean algebras it follows from the countable case by the
downward Skolem-Lowenheim theorem and the fact mentioned above that the value of
inv is determined by the elementary theory of a Boolean algebra.)

Given B, the construction of a dense elementary extension B* proceeds by building
an ascending chain of algebras each satisfying the complete elementary diagram of B
(with constants for all its elements) and adding on the witnesses needed in the definition
of density as one goes along. The existence of the required extension at each step follows
from a compactness argument that depends on the existence of witnesses for any finite
subset of conditions in the original algebra based only on the characteristic of the given
b. The existence of these witnesses is proven using only arithmetic comprehension once
one has the existence of B“) (to supply the elementary diagram of B). Of course, the
compactness theorem holds in ACAy as well. Thus the existence of the desired chain
can always be proven in ACAZ. Each element in this chain is a model of the complete
diagram of B, and so an elementary extension of B as is its union B* (again all this is
provable in ACA{ ). As all the required witnesses for density were put in along the way,
B* is dense, and so it is the required extension of B.

The proof that any two countable dense Boolean algebras A and B with the same
characteristic are isomorphic proceeds by considering the relation

S ={(a,b) € A x Blinva(a) = invg(b) &inva(—a) = invg(—b)}

and proving that S satisfies the Vaught Criterion [1954] (as described in Goncharov
(1997, 1.5]) for carrying out the back and forth argument needed to prove isomorphism
of the Boolean algebras. The existence of S follows from the existence of the function
inv (as characterized in Definition 4.2) and ACAg and so from ACA{. That it satisfies
the Vaught Criterion follows from density in ACA, (given the existence of the function
inv on A and B). The construction of the isomorphism from S is the usual back and

forth argument that can be carried out in ACAy. Thus the following results are provable
in ACA{:
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Theorem 4.4 (ACA{ ) For Boolean algebras A and B, A = B if and only if inv(A) =
inv(B). Moreover, if A and B are dense then A = B if and only if inv(A) = inv(B).

For the sake of our eventual reversal results in RCA(y we will reconsider these argu-
ments in ACA, for algebras with inv; = k < oo under assumptions that allow us to
make sense in RCAg or ACAq of the notion of elementary equivalence for the structures
we will consider. We begin with our promised treatment of satisfaction and elementary
equivalence in RCAy (or at least ACAg). We model our definitions on Simpson’s [1999,
I1.8.9] notion of a weak model. The notion of a structure for a language (having a do-
main and functions and relations interpreting the appropriate symbols of the language)
is standard. The interpretation of variable free terms in the structure and satisfaction
for atomic sentences are defined as usual (using recursion) in RCA,.

Definition 4.5 (RCAg) If A is a structure for a language L (with equality) and S is a
set of sentences of La (L expanded by constants a for all elements a of A) containing the
atomic sentences of L o which is closed under propositional combinations and substitution
instances (by variable free terms of L) of subformulas then F': S — {0,1} is a (partial)
truth assignment for A (defined on S) if the following hold for any formulas o, T in S:

1. If o is atomic then Flo]=1< A=o.

2. F|-o| =1— F|o] for any o € S.

3. Flo&t|=1% Flo] =1and F[r] = 1.

4. F[Azo(x)]|=1< (Ja € A)(Flo(a)] = 1).

Of course, given two assignments F' and F” for a structure A defined on sets S and

S’ respectively, it is easy to prove by induction in RCA that the two assignments agree
on SN S’ Thus we can define the (partial) satisfaction function.

Definition 4.6 For a structure A and sentence o of its language L we set the (partial)
satisfaction function Sat(A,o) =i € {0,1} if there is a truth assignment F for A such
that Flo] =1 and let it be undefined otherwise.

Definition 4.7 (RCA,) Two structures A and B for a language L are elementary equiv-
alent, A = B, if, for every sentence o of L, Sat(A,o) = Sat(B, o) in the sense that, if
either is defined, they are both defined and equal.

It is now immediate that = an equivalence relation coarser than isomorphism

Proposition 4.8 (RCA,) If A= B then A = B.
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In ACA{ there is always a truth assignment on S,,, the set of all sentences, and it
and our definition of = agree with the usual notions. Indeed, in ACA we can prove by
induction that there is a truth assignment to the sets S,, consisting of all sentences of L 4
of quantifier depth at most n. Thus the notions of satisfaction and elementary equivalence
also have their usual properties in this system as well. In ACA alone however, we cannot
prove that Sat is defined on all sentences for all structures. (This requires the existence
of A™ for every n which follows from either ACAJ or ACA.) We can, however, hope
to build specific structures A (e.g. decidable ones) for which we can prove that Sat is
defined for all ¢ € L. This is the course we will follow in our reversal argument for
Boolean algebras.

The crucial notions are the predicates Z,, A,, B,, and C, (for n < inv,(B)), as defined
above. We want to consider Boolean algebras B for which we can extend the structure to
include the predicates Z,,, A,,, B, and C, (for n < inv;(B)) so as to satisfy the formulas
of Definition 4.2. Given a Boolean algebra in the extended language which satisfies these
axioms, we can prove in ACAg that they correctly represent the associated notions, and
so define the invariant of each element of the algebra. In the other direction, given a
function h on B we can use these predicates and axioms to characterize the requirements
for h be the function inv; (or inv) as in Definition 6.4. Although we will not need it here,
it is possible to prove in ACA, that there is a total satisfaction function (even in the
extended language) for algebras with such predicates (or functions) defined on them. It is
uniquely determined by the 1-quantifier theory in the extended language. (All this would
follow from the appropriate quantifier elimination result underlying Tarski [1949] or the
one for model completeness in Ershov [1964].) One can also prove that the algebras have
dense elementary extensions (which necessarily have the same invariant). Moreover, the
proof of Goncharov [1997, 2.3] discussed above, that two dense Boolean algebras of the
same characteristic are isomorphic, can be carried out in ACAq given these predicates as
they effectively determine inv(a) for every element a of the algebras.

We next (§5) turn to the analysis of the recursion theoretic complexity for (B, =)
and of ¢(DB,=). We will then use those constructions to establish our proof theoretic
reversals in §6.

5 Recursion theoretic complexity

Our plan is first to provide a uniformly recursive set of Boolean algebras By, ,,, such that
inv(Byim) = (k,l,m). Next, by induction we construct uniformly recursive Boolean
algebras, A; ;, which code 0 in the following sense:

inv (4;;) =i < j €00

invy(A;) =i+ 1< j¢00.
If we now apply the assumption of the existence of invariants for countable sequences in
the sense of ¥ to the sequence C; recursively listing all the By, and A, j, we code 0 in
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the sense that any sequence (n,) witnessing 1 for (C,) computes 0@): To see if i € 0,
find a ¢ such that C, = A;; and then (k,l, m) and p such that By, = C, and n, = n,.
(Such numbers exist since the By, include all possible invariants and so all possible
elementary equivalence types with inv, finite.) Now 7 € 0U) if and only if k = 4. On the
other hand, our analysis in §4 shows that for every sequence (A;) of Boolean algebras the
desired witness (n;) for ¢ is given by (inv(A4;)) and this sequence is recursive in (A;)®).
Thus we characterize the recursion theoretic strength of (x5, =) as that of the w-jump.

We now need some definitions and construction methods for Boolean algebras. Our
primary building blocks will be algebras generated from linear orderings. We refer the
reader to Monk [1989, 1.6.15] and Goncharov [1997, 1.6 and 3.2] for general information
about these interval algebras. We begin with some simple linear orderings and operations
on linear orderings that we will use to construct the orderings whose interval algebras
will be our desired By, and A, ;.

Definition 5.1 We let m denote the order type of an m-element linear ordering; w that
of the first infinite ordinal and n the order type of the rationals.

Definition 5.2 We define operations 4, Y ..\, » -, ™ and * on linear orderings L; and
M by describing the resulting order types. We leave the formalities of defining particular
representations of the order types to the reader.

1. L1+ Lo, the sum of the two orderings, has the order type of Ly followed by L.

2. Y iem Li has the order type produced by replacing the element i of M (assumed to
have underlying set N) by the ordering L;.

3. Lq- Ly the product of the two orderings, has the order type gotten by replacing each
element of Ly by a copy of Ly (and so it is the ordering on pairs (x1,y1) € L1 X Lo
given by (w1,y1) < (T2, Y2) & Y1 < Y2 or (y1 = Y2 and 11 < 13)).

4. L%, the n'™ power of Ly, is defined as usual given by repeated multiplication: L} =
Ll; Ln+1 = L? . Ll.

Definition 5.3 If L is a linear ordering with a first element, then Intalg(L) is the
Boolean algebra of finite unions of half open intervals [a,b) of L where b can be co. (The
understanding here is that [a,00) = {z|x > a}.) We often abuse notation by using L in
place of Intalg(L). For example, we write inv(L) forinv(Intalg(L)). We also carry over
notions and notation. For example, an ordering L or interval [a,b) is atomic if every
subinterval contains an atom, i.e. a subinterval [x,y) such that [z,y) = {x}. Similarly,
L or [a,b) is atomless iff it is dense with a first element (i.e. of the form 1+ n).

Note that, when we deal with interval algebras, the orderings generating them all
have a first elements. We think of co as a symbol used to define half open intervals but
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not as an element of the ordering. It is not hard to see that every countable Boolean
algebra is isomorphic to the interval algebra of a countable linear order (Monk [1989,
1.6.15.10]). We will generally work directly with the linear orders. To that end, we want
to point out a few facts about the correspondences between L and Intalg(L) that are
relevant to the analysis described by the Tarski invariants. They can be found in Monk
[1989, 1.6.15] or Goncharov [1997, 1.6 and 3.2].

Definition 5.4 A subset S of L is convex if x,y € S and x < z < y implies that z € S.
An equivalence relation «~ on L is convex if every one of its equivalence classes is convez.

Proposition 5.5 There is a one-one correspondence between ideals I of Intalg(L) and
convez equivalence relations <~ on L such that Intalg(L)/I = Intalg(L/ «). Here L] «~
is the linear ordering of equivalence classes [x], [y] of «~ given by [x] < [y] & Yw «~ 2Vz
y(w < z). The convention here is that if a final segment of L is collapsed to a single
equivalence class then it is removed from L/ «~ and its role is taken by oco. (That is, we
identify the final segment with the “external” point 0o.) For a given ideal I and canonical
projection 7, the corresponding equivalence class « is given by x «~y < w(x) = w(y).

Definition 5.6 In accordance with this Proposition, we define the equivalence relation
wp corresponding to the Tarski ideal I(Intalg(L)) by © «~r y < [x,y) is a finite sum
of atomic and atomless suborderings. We denote L/ «~p by L' and so Intalg(L') =
Intalg(L)/I(Intalg(L)) = (Intalg(L))'. As with the corresponding algebras we let LI% =
L and LU = (LY,

Now for the canonical algebras By, ,, with invariant (k, 1, m) we take those of Morozov
[1982] which are not only uniformly recursive (indeed, uniformly decidable) but dense as
well.

Proposition 5.7 (Morozov [1982]) Let P = (1+n+ 14w -n)-w. The following table
lists linear orders whose interval algebras are uniformly decidable, dense and have the
indicated invariants.

Ln,O,l P (1 + 77) (n, m, 1>
Lm0 P".m (n,m,0)
Ln,m,l pPm. (]- +77+m) <n,0,1>
Ly o0 P (1+w-n) (n, 00, 0)

Lyooqy P"-(1+n+1+w-n) (n,o00,1)

Thus we may take By, to be Intalg(Lym).

Next, we must describe the algebras A;; that code 0@, Our plan is to uniformly
construct recursive linear orderings L), ; and L, ; such that
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=n+1&j€0™ (3, case)

(L)
o invy (LY ;) =n<j¢ 0™ (I, case)
o invy (L)) =nsje 0™ (%, case)
o invy (L) =n+1&j¢0™ (I, case)

We begin with n =1:

o LY, =P & jel (¥ case)
o LY, =P & j¢0 (I case)
o I, =P & jel (¥ case)
o L' =P & j ¢ (Il case)

Note that the desired properties for n = 1 hold (in ACAy) as inv (P) = 1 and
invy(P?) = 2. In fact, if B = Intalg(P) then B/I(B) = {0,1} and so inv(B) = ( ,0)
while P?/I(P?) = P and so inv(P?) = (2,1,0).

Now each En+1(Hn+1) fact such as j € 0+V(j ¢ 0"*Y) is uniformly of the form
3z(f(n,j,z) ¢ 0™) (Vz(f(n, 7, x) E 0(™)) for some fixed recurswe f. Moreover, we may
choose f such that f(n,j,z) ¢ 0™W&y >z — f(n,j,y) ¢ 0. (This is just quantifier
manipulation to replace 3z... with Jz3z < x... etc.) We now define the rest of our
orderings as follows:

P n L
o Liviy =P+ P4 Y p L, n.f (n,:k)
° Lg_,’_l] Pn+l + P’I’L"Fl + ZkEP Ln,f(n7]7k)

We let £, = {L);|j € w} U{L},|j € w}. To verify that the invariants of these
orderings are as required we proceed by induction on n to prove various facts about the
orderings including that the coding works. We begin with a general lemma.

Lemma 5.8 If, for every i € w, invi(L;) > 1 for every L; and L = Y., L; then
L'=3% . uli

Proof. Consider the equivalence relation x «~y y on L. If x and y belong to the same
copy of Ly in M then they are clearly T-equivalent in M if and only if they are in Ly
as this depends only on the order type of [z,y). If 2 and y are not in L; and L, for
successive i, € M then x ~p y as the interval between them contains some L, which
by assumption is not a finite sum of atomic and atomless orderings. If x and y are in
adjacent L;, L; then they can be identified only if x is identified with all the points to
its right in L;, i.e. the final segment of L; beginning with x is a finite sum of atomic and

atomless orderings (and so disappears in L}) and y is identified with the first element of
Ljin L. [
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Theorem 5.9 If L € L, then invi(L) is n or n+ 1. Moreover,

1. Lf: L,Ew- &j € 0™ = inv (K) =n+1land K" =1 for every final segment K
of L;

2. L =1L%&j ¢ 0" = invy(L) = n&L" =1 ifn =1 and LI" = m for some
m>11ifn>1;

3. L= Lg,j & j ¢ 0™ = inu(K)=n+1land K" =1 for every final segment K
of L;

4. L =1L & j € 0™ = invy(L) = n& LM =1 ifn =1 and L" = m for some
m>114ifn>1.

Proof. We proceed by induction on n. We have already noted that for n = 1 the
desired facts about invariants and Tarski derivatives of L are true. For the final segments
just note that in cases 1 and 3 they all contain (and are contained in) final segments
isomorphic to the whole ordering.

For the inductive step at n + 1 we consider the cases in order. For notational conve-
nience, we choose Ly, in each case so that L = P + Pt 4%~ L.

1. Here invy(Ly) is n for finitely many k& and n + 1 for the rest by induction. Re-
cursively applying Lemma 5.8 we see that L") = P+ P + Y okep LE:L]. For the cofinitely
many k for which inv;(Ly) = n+1 the entry in the & spot in the sum corresponding to
L1 g LEC"H] which is a single point (by induction). For the finitely many & for which
invy(Ly) = n, Lgﬂ is my, for some m; € N (by induction). Thus in LU it is identified
with the least element in L[ to the right of all the points in LL"] or the greatest one to
its left if there is one (if both exist they are also identified) and otherwise becomes 1, i.e.
a single point. Thus L"*! is 1 + 1 4+ P (finitely many points have been removed from
P but the result is still isomorphic to P) and so L"*2 = 1 as required. Of course, the
same argument works for the sum over the L; for k in any final segment of P.

2. Here invy(Lg) = n for every k by induction. If n = 1, L) = 1 for every k and so
L' =P+ P+ P and L = 3 as required. If n > 1, L") = P4+ P+ V where V is atomic,
and so L") = 2 again as required.

3. Here invy(Ly) = n+ 1 and L™ = 1 for every k by induction. Thus L+ =
1+ 1+ P, and so L"™2 = 1 as required. Of course, the same is true for the sum over
the Ly for k in any final segment of P.

4. If n = 1 then L is P? 4 P? followed by a sum over P in which finitely many points
have been replaced by P? and the rest by P. It is clear that, in this case, LI? is m where
m is three more than the number of points that have been replaced by P?. (The final
segment of L is essentially P? and so contributes one point to L. The initial segment
is P? + P? and contributes two points as does every other copy of P? in L. The points
of P replaced by a copy of P which are to the left of a location where a copy of P? is
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inserted are again single points in L', and so these intervals in L’ are isomorphic to proper
segments [x,y) of P which are then identified with the least point of the next copy of P2
in LP)

Finally, if n > 1 then for finitely many k, invy(Lx) = n + 1 and LL"H] = 1 while for
all the rest invi(Ly) = n and Lgf} = my, for some my, > 1. In this case, LM is P+ P+ V
where V' is a sum over P in which finitely many of the points are replaced by copies of
P and the rest are replaced by the my, which are atomic. Thus LI**Y is again two more
points than the number of copies of P in V. (Each copy of P contributes one point. The
atomic portions caught between two copies of P are identified with the first point of the
copy of P immediately to their right. The final atomic segment is identified with oo and
so is removed.) O

We can now prove that the recursion theoretic complexity of the existence of elemen-
tary equivalence invariants for recursive sequences of Boolean algebras is that of 0.

Theorem 5.10 There is a uniformly recursive sequence (A;) of Boolean algebras such

that 0“) is recursive in any witness (n;) to the instance of (B, =) corresponding to (A;).

Proof. Let the members of the sequence (A;) be the By ,,, and the interval algebras of the
orders L in U{L,|n € w} as defined above in some recursive order of type w. To decide if
j € 0™ (recursively in (n;)) find numbers k, [, m, p and g such that A, = By, 4, = L,Ew-
and n, = n,. (Such numbers exist since the By, include all possible invariants and so
all possible elementary equivalence types with inwv; finite.) By Theorem 5.9, inv,(A,) is
n + 1 or n depending on whether j € 0™ or not. As we also know that inv,(4,) = k
since Ay = By m, we know that j € 0 if and only if k =n+1. O

We now work towards a proof that the Boolean algebras appearing in the above proof
are all dense.

Lemma 5.11 (Goncharov [1997] 2.24) If a,b € A a Boolean algebra and a Nb =0 then
1. invy(a V b) = max{inv,(a),invy(b)};
2. invy(a) = invy(b) = inve(a V b) = inve(a) + inve(b);
3. invy(a) < invy(b) = inv(a V b) = inv(b).

Corollary 5.12 Ifa € Intalg(L) and (as must necessarily be true for some choice of ;,
y; andn)a = U{[x;,y;)|i < n} then there is ani < n such that invi(a) = invi([z;,y;)) and
if invg(a) = oo then there is ani < n such that invy(a) = invy([z;, i) and inve([z;,v;)) =
0.

Lemma 5.13 If K,L and M are linear orderings with first elements and z,y € L
(with y possibly being the oo of L which we identify with the first element of M) then
invE([z,y)) = invE LM ([2,y)) where we use the superscript to indicate that the eval-
uation of the invariant is taking place in the specified Boolean algebra (i.e. the interval
algebra of the specified ordering).
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Proof. This is immediate from the fact that points z and y are identified under the
Tarski equivalence relation if and only if [z, y) can be divided up into a finite sum of sub
intervals each of which is atomic or atomless and this depends only on the order type of
[z,y) and not on the ambient order containing it. [

Definition 5.14 We say that a linear ordering L is B-dense if Intalg(L) is a dense
Boolean algebra.

Remark 5.15 By Corollary 5.12 if we want to prove that a linear ordering L is B-dense
we need only verify the requirements of B-density for elements of the form [x,y). As all
the orderings we consider have finite first invariant, proving the B-density of L amounts
to verifying two conditions for every b = [z,y) and every m € N:

1. m <invy(b) = Ja < b(inv(a) = (M, 00,0)) and

2. invy(b) = 0o = Ja < b(invi(a) = invi(b) = invi(b—a) & inve(a) = oo = invy(b—a)

Lemma 5.16 If K and L are linear orderings with first elements then K + L is B-dense
if and only if both K and L are B-dense.

Proof. Assume K and L are B-dense. We verify the requirements for the B-density of
K + L for an arbitrary [z,y). If x and y are in the same component of K + L (including

= 07, which plays the role of co in K') then the requirements follow from the B-density
of the component and Lemma 5.13. So suppose that z € K and y € L — {0} so that
[z,y) = [2,0,)U[01,y). Now the result follows from our assumptions and Corollary 5.12.

For the other direction, assume that K + L is B-dense. Consider any b = [z, y) with
x and y in the same component (we identify cox and 1;). If b satisfies the hypotheses of
one of the conditions defining B-density in its own component, then it does so in K + L
as well by 5.13. The witness a, assured by the B-density of K + L, is smaller than b and
so contained in the same component. Again, its invariants in that component are the
same as in K + L, and so it witnesses satisfaction of the requirement for the B-density
of the component. []

Theorem 5.17 FEvery L € L, is B-dense for every n.

Proof. We begin with P itself and consider an arbitrary b = [x,y). The only ones such
that invy(b) = 1 are those with y = oo. For these inv(b) = (1, 1,0); all the others have
invy(b) = 0. So, if invy(b) = 1 we must verify Condition (1) with £ = 0. Any element a
corresponding to the suborder 1+w-n of any component of P =", (1+n+1+w-n)in
the final segment b has inv(a) = (0, 00, 0) as required. If inv;(b) = 0, then we only have
to verify Condition (2). If inve(b) = oo, i.e. b contains infinitely many pairs of points
that are immediate successors, then it must contain some suborder of type w - n. It can
then be split into two such suborderings as required.
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We should next consider P? and indeed all the P* but their B-density follows from
the general argument for Case 3 so we proceed by induction on n beginning with Case
3. We phrase the proof to cover the P" as well. It also then covers Case 2 with n = 1.

Note that, in every case, by Lemma 5.16, we need only prove the B-density of orderings
of the form L = ZkeP Ly for L, € L,. Note that by Lemma 5.13 and the inductively
assumed B-density of the Ly, we only need to verify the conditions for B-density for
b= [z,y) with y = oo and with x € L; and y € L, for i <p j. Also note that if j is the
immediate successor of i in P, then b = [x,1.,) U [1z,,y). Now Corollary 5.12, together
with the assumptions that L; and L; are B-dense, shows that b satisfies the requirements
for B-density. Thus we may assume that there is a k such that i <p k <p j.

3. We want to show that if L =", , Lj and, for every k, Ly is B-dense, inv(K) =
n+ 1 and KD =1 for every final segment K of Ly, then L is B-dense. We already
know that inv,(b) = n+ 2 only if b = [x,00) and that in this case invy(b) = 1. Thus, for
these b, we need only verify Condition (1). By induction and Lemma 5.13, we only have
to verify the case that m = n + 1. Here we know that LIl = P. Thus any element a
whose image in L™+ corresponds to the suborder 1 4 w - 7 of any component of P in
the image of b has inv(a) = (n+ 1,00, 0) as required. We are now left with the case that
x € Ly and y € L; with i <p j. In this case inv,(b) = n + 1 = inv}(2,00) so there is
an a = [w,z) € L; as required by Condition (1) for the B-density of L;. This element
satisfies the same condition for b in L by Lemma 5.13. Finally we must verify Condition
(2) for such b with inwvy(b) = co. Since L™ = P, the argument for P can be applied to
the image of b in L™ and the inverse image of the element so produced provides the
desired witness.

2. (n > 1) Here LI" is atomic and so inv; (L) = n. Thus inv;(b) < n. As noted above
we may assume that b contains all of L, for some k. Thus inv(b) = n and there are w, z
strictly between x and y such that [w, z) = P", so there are smaller elements satisfying
Condition (1). The only way to have invy(b) = oo is for the image of [z,y) in P (in the
sum ) .. pmy = L") to contain a subinterval of type 7 or w-n. In either case, it is easy
to split this image into two parts both of which contain infinitely many points. Each of
these points of P corresponds to a component of L with at least one atom, and so its
inverse image in L satisfies Condition (2).

1. In this case, there is a final segment of L which has the same properties as all of L
did in Case 3, and so we have covered the situation in which y = oco. Now inv;(b) = n+1
if and only if b contains a finite segment of one of the L with invy(Ly) = n+ 1. Any
witness for Condition (1) for this final segment in L; works for b in L. As LI+l = p
(with perhaps finitely many points removed) the analysis for P shows that Condition (2)
is also satisfied for b if invy(b) = n + 1. Finally, if inv,(b) < n then inv,(b) = n, since
b contains some Ly with invy(Lg) = n. Condition (1) is satisfied by the density of the
Ly, contained in b. As for Condition (2), note that the only way that b does not contain
some Lj with invi(Lg) = n+ 1 is if it is contained in a finite sum of successive L; with
invi(L;) = n plus perhaps a proper initial segment of one L; with invy(L;) = n + 1.
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As for each such 7 other than j, LZ[-”] is atomic, Condition (2) can come into play only

because of [0z,;,y). As Lg-n] has P as an initial segment, invy([0z,,y) = oo implies that in
LE»"] the image of y is beyond the initial segment of P of type 1 4 7. Thus, it contains an
initial segment of the first copy of w -7 in P which can then easily be split as required
for Condition (2).

4. If n =1, L is a sum over P of finitely many copies of P? and the rest copies of P.
Now B-density follows easily from our previous arguments.

If n > 1, a final segment of L is of the form considered in Case (2). Thus we need
only consider an initial segment of L of the form } ;. Ly where Q = (1+n+1+w-n)m
for some m € w in which, for finitely many k, invi(Ly) = n + 1 and, for the rest,
invy(Lg) = n. In fact, by Lemma 5.16, it suffices to take m = 1. Now inv,(b) =n + 1 if
and only if b contains a final segment of one of the copies of an L with invi(Lg) = n+ 1.
In this case, Condition (1) is immediate from the B-density of L;. As LI**1 is finite,
Condition (2) is vacuous for such b. The only remaining case is that b contains only Ly
with invi(Lg) = n and at least one such Ly so that invi(b) = n. In particular, the image
of bin LM is ZZ.EQ m;, for some subinterval @) of P. In this case Condition (1) follows
from the B-density of Lj (by induction) and Condition (2) can apply only if () contains
a interval of the form n or w - n and so is easily satisfied. [

Remark 5.18 All the orderings of Proposition 5.7 (Morozov [1982]) can now been seen
to be dense. We have directly proved it for all the powers P™. The others all follow
from Lemma 5.16 as all of the orderings with first invariant n are either sums of P™ or
components of P! or sums of each of these. (For example, P"™' = P"(1+n)+ P"(1+
w-1n), and so both P"(1+n) and P*(1+w -n) are dense.)

We have now proven that the recursion theoretic complexity of the existence of iso-
morphism invariants for recursive sequences of dense Boolean algebras is also 0,

Theorem 5.19 There is a uniformly recursive sequence (A;) of dense Boolean algebras

such that 0“) is recursive in any witness (n;) to the instance of ¥ (DB, =) corresponding

Proof. Theorem 5.17 and Remark 5.18 show that all the Boolean algebras appearing in
the proof of Theorem 5.10 are dense. Goncharov [1997, 2.3| (as described in Theorem 4.4)
shows that for dense Boolean algebras elementary equivalence is the same as isomorphism.
OJ

From a recursion theoretic point of view these results can be viewed as types of
hardness results for index sets. In the terminology defined in Soare [1987, IV.3.1] we have
shown, for example, that (X, I1,,) <., (B, Bn+1) where B, = {B € Blinv;(B) =n}. The
first natural question is whether this is the best one can do. As mentioned above a simple
quantifier count shows only that B, is in >,,. One could therefore hope or even expect
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that it is X4, complete. At one point, we thought that such a result would be useful for
the reverse mathematical arguments we now wish to pursue. That does not seem to be
the case, and so this seems to be an instance where the recursion theoretic questions are
finer than those of reverse mathematics. Similar questions arise about the index sets for
all the values of inv. We hope to deal with these purely recursion theoretic issues along
with determining the index set for the Boolean algebras with finite first invariant in a
future paper (Csima, Montalban and Shore [2005]). For now we turn to the issue of the
complexity of the existence of these invariants in the sense of reverse mathematics.

6 Reversals

Our primary goal is to show that the strength, in the sense of reverse mathematics, of
the existence of elementary equivalence invariants for Boolean algebras is that of ACA{.
As we argued in §1, it is sufficient to prove that RC' Ay - ¥(B,=) — ACAZ. As usual,
establishing ACA{ amounts to proving the existence of 0) (by a relativizable proof).
Our recursion theoretic results seem to have provided us with such a proof already. In
particular, Theorem 5.10 provides us with a uniformly recursive sequence (A;) of Boolean
algebras such that any witness (n;) for the instance of (B, =) corresponding to (A;)
computes 0). The issue is, of course, whether our proof of Theorem 5.10 takes place in,
or can be revised to work in, RCA,.

The first problem is that even some of the simple algebraic arguments naturally take
place in ACAq. This problem is easy to handle in the style of the results of the previous
section. The only issue is that dealing with elementary equivalence in RCA( requires
some care since one cannot assume that a given structure has a full satisfaction function
(that would itself give ACAZ) nor even one for the set of ¥} sentences (as that in general
would give ACAg). Thus we must use structures for which we can prove the existence of
a partial satisfaction covering the sentences we need.

Proposition 6.1 RCAy - ¢(B,=) — ACAy. Indeed, RC Ay F ¢(DB,=) — AC Ay.

Proof. We begin with two nonisomorphic recursive dense Boolean algebras Cy =
Intalg(1 + n) and C; = Intalg(l +n + 1). For any natural choice of recursive pre-
sentations of Cy and (' it is easy to recursively define inv on these algebras and prove
in RCA( that they are dense. We can easily produce a uniformly recursive sequence (C;)
of Boolean algebras such that Vi(C; =2 Cy or C; = Cy) and (Vi > 1)(i € 0 & C; = C))
where each of the isomorphisms is recursive. Let (n;) be a witness for the instance of
¥(B, =) or ¥(DB, =) corresponding to (C;). If (n;) is a witness for ¢)(DB, =) it clearly
computes 0. Suppose it witnesses ¥(3,=). As isomorphism implies elementary equiva-
lence (Proposition 4.8), 1 € 0/ = n; = ng and i ¢ 0' = n; = ny. Thus we only need to
prove that ng # ny, i.e. Cy #Z Cy. Consider the sentence 0 = VaIy(z =0V0 <y < z). It
is true in Cyy and false in C. Moreover, it is easy to define partial satisfaction functions
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for both structures on the atomic sentences (with constants for the elements of Cy, C)
and the (propositional combinations of) substitution instances of subformulas of o. (The
only basic ones not covered by the atomic cases are of the form Jy(b=0V 0 <y < b).
These are true of 0 (in both algebras) but false for every nonzero b € Cy and of every
nonzero b € C except for the final segment of C consisting of a single atom.) [

In view of this proposition, we may work over ACA, from now on. We begin by
discussing the properties of Boolean algebras developed in §3-4. There is no problem
with the definition of the basic notions dealing with atomicity or atomlessness and of the
Tarski ideal and derivative. All make sense and can be proven to exist for every Boolean
algebra B in ACAy. Our first problem arises when we try to iterate the Tarski derivative
to define BI" and the function inv on B. These are not provably total operations in
ACAy. Of course, it only takes induction to define them and an induction argument to
prove that they exist. Thus, in ACA, we can prove that B exists for every n. Even in
ACA, however, we cannot prove the existence of either the sequence (B [”}) or the function
inv on B unless B™ = 0 for some n. Note that we need much less than full induction
to get these results. For example, let ACA} be ACAg + VXVn(X™ exists) (by this we
mean that VXVn3(Yo,... ,Y,) (Yo = X & (Vi < n)(Yiy1 =Y/))). Clearly ACA F ACA]
and ACAJ suffices to prove that, for every Boolean algebra B and every natural number
n, Bl exists and if for some n, BI" = 0 then there is a function inv on B from which
we can define the predicates of Definition 4.2 so that they satisfy the axioms listed there.
We can also say that inv(B) = (00, 0,0) with the intended interpretation by saying that
Vn—(invi(B) = n) (i.e. that the sequence of derivatives of length n + 1 exists and that
B does not become 0 in any of them).

Note that the algebras we needed in the last section all had finite first invariant. Of
course, for specifically constructed Boolean algebras, we may be able to prove even in
ACA, that a function ¢nv exists with the required properties.

One route to our main theorem might now be to prove an effective quantifier elimi-
nation result for Boolean algebra with these extra predicates (as Tarski apparently did).
This would show that two Boolean algebras are elementary equivalent if and only if they
have the same invariant. (One point being that the quantifier elimination result would
show that they have total satisfaction functions.) Although something along these lines
is possible, there is no direct classical style proof of quantifier elimination in the pub-
lished literature. The closest is the proof of model completeness in Ershov [1964] which
would also suffice to prove the existence of total satisfaction functions for each of our
algebras in ACA,. His decision procedure for the one quantifier sentences would then
give the decidability of the theories and show that they are elementary equivalent if and
only if they have the same invariant. That would still leave us with the (inductive) task
of establishing that our algebras have the desired invariants. We have chosen, instead,
to follow a path of analysis that exploits the density of our algebras, and so establishes
isomorphism results rather than elementary equivalence ones. Nonetheless, we will have
to deal with many of the same issue of the apparent calls on induction needed to define
the invariant functions for our algebras.
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Turning then to the development of the theory of dense Boolean algebras we imme-
diately hit the issue of the definition of density of B which, prima facie, assumes the
existence of the function ¢nv on B. Again, as we will only need ones with inv; < oo, we
could assume ACAj and keep the original definition. As we will in the end want to work
only in ACAy, it is better to follow a route like that taken for elementary equivalence.

Definition 6.2 (ACAy) A boolean algebra B is dense if, for every function inv and
associated predicates I, A,, B, and C, on B as given in Definition 4.2 that satisfy the
axioms listed there and the defining equations for inv of Definition 4.1, the conditions
defining density (Definition 4.3) hold.

Note that, given a function h on B purporting to be a candidate for inv which gives
inv(B) = n for some n, the properties that need to be verified to show that it is really
the function inv are all arithmetical, indeed, of fixed quantifier level (in h and B). (First
define the extra predicates directly from inv and then just look at the axioms in Definition
4.2.) Thus it makes sense to hope that we can verify that h is the desired inv function in
ACA, and that it witnesses the density of B even if an induction on invy, or equivalently,
on the levels of the predicates, is needed.

Next, it is easy to check that our basic definitions and lemmas about dense Boolean
algebras, interval algebras and the connections between them make sense and can be
carried out in ACAy. In particular, there are no problems with 5.1-5.5 and 5.8. (In
Lemma 5.7 we understand the assertion that inv;(Ly) > 1 to mean just that Lj is not a
finite sum of atomic and dense suborderings.) So too there are no problems in proving
5.11-5.16 in ACAy whenever the invariant functions assumed in the statements exist. We
also note again that Goncharov’s [1997, 2.3.2] proof that any two dense Boolean algebras
with the same invariant are isomorphic works in ACAy as long as the function inv exists
for both algebras.

Finally, we are left to consider the proofs of Theorems 5.9 where the Boolean algebras
coding 0 are constructed and analyzed and Theorem 5.17 where they are all proven to
be dense. There is no problem with the definition of the orderings (and so algebras) Ly
and those in the £, hierarchy as they are given uniformly recursively. As presented in the
last section, the proofs of both of these theorems are straightforward ones by induction.
They can be routinely carried out in ACA. Thus we have proven our reversals over ACA;
actually, by Proposition 6.1, over RCA .

Theorem 6.3 RCAF ¢(B,=) — ACAT and RCAF ¢(DB,~) — ACA™T.

One could also prove these results now in ACAj by showing that all is well for each
n. Here one can prove the existence of the functions inv for the orderings at each level
L, directly from the definitions of the predicates up to level n + 1 which exist for an
arbitrary Boolean algebra B since their definition only requires the existence of B(**+4).

However, we want to work over ACAg alone. The first step is to give the “right” proof in
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ACA} that only needs the existence of 0™ to prove the existence of the function inv on
the orderings in £,,. We then plan on doing an induction argument that simultaneously
proves the existence of 0 and that the orderings in £,, have the properties established in
§5. (A subtle point here is that we can not do an induction that establishes the existence
of 0 and then simply asserts that therefore there are inv functions for orderings in £,
as, in the abstract, this requires 0(**% whose existence we cannot prove in ACA, from
the existence of 0).)

We begin with a formal description of what it means to be the function inv; on a
Boolean algebra. Of course, the full invariant function inv is arithmetically definable
from inwv; and so if the latter has been shown to exist in ACAg then so does the former.

Definition 6.4 (ACAy) If B is a Boolean algebra, we say that a function h : B — N
satisfies the conditions to be invy; on B if Yn(Z,11 = {x € B| the image of x in B/, is
a finite sum of atomic and atomless elements of B/Z,) where I, = {x € B|h(x) < k}.

Proposition 6.5 (ACAy) Fir a natural number m and assume that 0™ exists, i.e. there
is a sequence of sets (Y;|i < m) such that Yo =0 and (Vi < n)(Yiz1 =Y/). Then there is
a family of functions hg’j for n < m and j € N uniformly recursively in 0™ such that
they satisfy the conditions to be invy on Intalg(LE’j) form<m,jeNandl' =% orIl.

Moreover, the properties established in Theorems 5.9 and 5.17 all hold.

Proof. We begin by defining the functions hfL’j by induction on n < m uniformly
recursively in 0™, In every case, we define the functions directly on subintervals [z, )
and extend to the whole algebra (i.e. to finite sums) by taking the max. When defining
h on a sum over P of orderings L; for which we already have defined functions hy,
we set h([z,y)) = hi([z,y)) if x and y are in the same component L, (with the usual
understanding that we identify the first element of L; with ooy, if j is the immediate
successor of k in P). Similarly, if x € L;, y € L; and j is the immediate successor of i
in P then we let h([z,y)) = max{hr,([z,00)),hr,([1,y))}. Thus we only need to specify
the value of h on intervals of the form [z, 00) and [z,y) with # € L;, y € L; when there
is some k such that i <p k <p j.

Forn =1, Lg’j is either P or P? and 0 can tell which one effectively. The correspond-
ing functions h};j are then just set to be what we know are the corresponding functions
invy on P or P?. For P, h([z,y)) is 1 if y = co and 0 otherwise. For P? = ", , P, we
let h([z,y)) = 2 if y = 0o and otherwise 1, for x and y in different components.

For 1 < n+1 < m, we divide into cases as in Theorem 5.9. Note that it suffices to
define h on Y, p L; as we can then extend it to P"+t' + Pt 43" L; by our algebraic
rules as long as we have a definition for P**!. This definition is given by the procedures
in Case 3 for ZZEP L; when each L; = P™. It also covers Case 2 for n = 1.

3. h([x,y)) = n+2if y = co and otherwise n + 1 for z and y in different components.

1. As j € 0"t there are only finitely many k such that f(n,j,k) € 0™ and
recursively in 0"*1) we can find (the canonical index of) the set F' consisting of these k.

28



Of course, we set h([z,00)) =n + 2 for every z. If z € L, and y € L; for i <p j, we set
h([x,y)) =n+ 1 if there is a k ¢ F such that i <p k < j; otherwise, h([x,y)) =

2. (n > 1) We set h([x,00)) = n + 1 for every x. For the other case that needs a
definition, we set h([z,y)) = n.

4. As j € 0"V there are only finitely many k such that f(n,j, k) € 0™ and,
recursively in 0" we can find (the canonical index of) the set F' consisting of these k.
We set h([z,00)) = n+ 1 for every x. For the other case required, we set h([x,y)) =n+1
if there is a k € F such that i <p k <p j; otherwise, h([z,y)) =n

It is now routine to prove by induction on n < m that these functions satisfy the
conditions to be inv; on the corresponding algebras and (following the previous proofs)
that they have the properties established in Theorems 5.9 and 5.17. [

We can now prove the reversal part of our main theorem.
Theorem 6.6 RC Ay (B,=) — ACA{.

Proof. Let (ny) be the witness to (B, =) for (A;). Define (Y;) recursively in the jump
of (n;) by j € Y; & 3k, I,m,p,q(A, = Brim&A, = LZ &n, = n,). We claim that
Yii1 = Y/ for every i. If not, let m be least counterexample. Thus, 00 exists and,
since RC A - ¢(B,=) — ACA, (Proposition 6.1), so does 002, Proposition 6.5 now
guarantees that all the orderings up to level m + 1 have all the desired properties, and so
the proofs of Theorems 5.10 and 5.19 work up to level m + 1 to show that Y,,.1 =Y.,
for the required contradiction. [J

Finally, we want to get the same result for ¢(DB,22). The problem is that we cannot
prove in advance of applying (DB, =) that that all the orderings in the £,, are B-dense.
We need one more twist to strengthen our inductive hand. We also show that for any
L € L, with a function satisfying the conditions to be inv; (or equivalently that the
function inv with the required properties on L exists), then 0" exists.

Definition 6.7 We define the members ofﬁ by induction. ﬁl = L;. For L£+1,j €Ly
we let LF+1 J € £n+1 be Zm<n Zzew n Tma + Zm<n Z'LEW m Tm.a + L?’L+1 J°

Proposition 6.8 (ACAy) If a function h : L—N satisfies the conditions to be invy on
L e L,, then 0™ exists.

Proof. Let h be the assumed function on L. Each L7; is an interval [z;;,y;;) in L that
can be found recursively. Define Y; for i < n by j € Y & hlz;j,v:;) =1+ 1. Again, it is
at this point straightforward to prove by induction that the ern, for m < n all have the
properties previously established, and so Y;41 =Y/ for i <n. O

Theorem 6.9 RC Ay - (DB, =) — ACAS.

29



Proof. The [A/n,j are all dense, and so we can argue as in Theorem 6.10 that applying
(DB, =) to the same sequence as there, except that we substitute L, ; for L, ;, we
obtain the same results. [

We have thus completed the proofs of our main theorems of reverse mathematics.

Theorem 6.10 The existence of number invariants for elementary equivalence of count-
able Boolean algebras or for isomorphism of dense countable Boolean algebras has the
same complezity in the sense of reverse mathematics as ACA{ .
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